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Abstract. Considering an exterior domain with smooth closed boundary curve we introduce a 
fully discrete scheme for the solution of the acoustic boundary value problem of the Neumann 
type. We use a boundary integral formulation of the problem which leads to a hypersingular 
boundary integral equation. Our discretization scheme for the latter equation can be con-
sidered as a discrete version of the trigonometric collocation method and has arbitrarily high 
convergence rate, even exponential if the solution and the curve are analytic. 
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1. Introduction 

In this paper we consider the numerical solution of the acoustic exterior boundary value 
problem of the Neumann type. We represent the solution by means of the combined 
single-double layer representation, introduced by Brakhage and Werner [3], Leis [14], 
and Panich [19] for the Dirichlet problem and by Leis [15] and :panich '[19] for the 
Neumann problem. This approach leads to the solution of a hypersingular boundary 
integral equation. Considering smooth closed curves we propose a numerical solution 
method which has arbitrarily high convergence rate, even exponential if the solution and 
the curve are analytic. For other equations such results have been obtained by several 
authors, see, e.g., [1, 2, 9, 10, 17, 18, 21, 22]. In particular, in [13] a fully discretizéd 
trigonometric Galerkin method based on a modification of the fast Fourier transform 
for approximately solving boundary integral equations has been studied. (See also the 
books [5], [20] and the pioneering paper [7] for applications of trigonometric Fourier 
series to the numerical solution of integral equations.) Our fully discrete method can 
be considered as a further discretization of the trigonometric collocation method. The 
excellent convergence of the scheme follows from the good consistency property obtained 
when discretizing the boundary integral operator. 
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The boundary integral approach applied here has been used for the numerical ap-
proximation of the solution by KuBmaul [11], but the numerical scheme in [11] differs 
from that one proposed here, and moreover, no error analysis was given in the work 
of KuBmaul. The corresponding Dirichiet problem has been studied by Brakhage and 
Werner [3], Chapko and Kress [4], Greenspan and Werner [6], Kress and Sloan [10]. 
The solution of the potential equation with the Neumann condition was investigated by 
Kieser, Kleemann and Rathsfeld [8]. 

2. Exterior Neumann boundary value problem 

Let r be a smooth closed Jordan curve in the two-dimensional space 1R2 , and let lie be 
the corresponding exterior domain with boundary I'. We consider the solution of the 
following boundary value problem: 

Find a function lb in lie such that (0 54 Ic E C with Im ,c > 0; r = I x 1) 

L	+ ?C 2 = 0	in lie	 (2.1),, 

on F	 (2.1)6 

	

Virr
	for r-4	 (2.1),, 

	

zsc) c1(x) = 
o ()	

for r —* 00.	 (2.1)d 

Above n denotes the unit normal to the boundary F, directed into the exterior domain 
lie. The problem (2.1), when considered in proper spaces of functions, is uniquely 
solvable. In particular, the uniqueness is implied by the Sommerfeld radiation condition 
(2.1) d . By Leis [15] and Panich [19] it is shown that the solution 41 of problem (2.1) can 
be found using the combined single-double layer representation 

(x) 
= / 

ur(y )( On, - ir)g(x, y) ds	(x E lie) 

where i = 1, if Re r. >0 and ,' = —1, if Re ,c <0. Here 

g(x,y) = HO' (rlx - I) 

is the fundamental solution to the Helmholtz equation, and H0" is the Hankel function 
of first kind and of order zero. 

By the well-known continuity and jump relations of the classical potentials, one 
obtains the boundary integral equation 

(Hr - -I + iI?D) Ur = —gr	 (2.2)
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where Hr is the hypersingular acoustic integral operator and D. is the adjoint to the 
double layer acoustic integral operator, 

(Hrur)(z) = Ov 1 On9(xY)ur(Y)dsv 

(D ' ur)(x) = Jong(x,Y)ur(Y)dsy. 

Considering equation (2.2) in the Sobolev spaces H'(r)	E iR) of functions defined

on r, equation (2.2) is uniquely solvable; more precisely, 

"1 Hr - --'r + zriD	 (2.3) 

defines an isomorphism Lr : H A (I')	HA - I (r) (.X E 1R). With definition (2.3), 

equation (2.2) reads

Lrur = —gr. (2.4) 

For the following we write the integral operator Hr in a more convenient form by using 
the kernel representation 

(Hrur)(x) = _J9non;9(xv)ur(Y)dsv 

where, because of the strong singularity of the kernel at the diagonal, the integration is 
to be understood in the sense of Hadamard. Abbreviating z = 1s 1 x - I and applying 
the differentiation formulas for the Hankel functions 

= —H'(z)	and	-(zH'(z)) = zH'(z)	(2.5) 

we obtain

—ôO,g(x, y)	
zH(z)O, (n (v_x))

(2.6) 
. (y - x) y. (y - x) 

-	Zj 
hi -	hi - 

Here the latter term has logarithmic singularity, and the term zH'(z) is bounded. 
Thus, the leading singularity is determined by the factor 

(ny , (y — x) 
y-xI) = an. 8 , logIz—yI	 (2.7) 

•  

which behaveslike O( I x - I 2 ) . A more detailed analysis of the kernel is shown in the 
next section and the Appendix.
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3. Numerical method 
In order to define our numerical method we introduce a 1-periodic parametrization of 
the curve r: x = x(t) = (XI (t),x2(t)), such that x'(t)I > 0 (t E IR). Thereby we fix 
the orientation requiring that the normal vector at the point z is given by n = 
Ix'(t)L'(x(t), —xi (t)). Denoting u(t) = up(x(t)), f(t) = —g(x(t)), the equation (2.4) 
is equivalent to 

	

(Lu)(t) := ((H -	+ iD') ) (t) = f(t)	(t e IR)	(3.1) 

where
+1/2	 +1/2 

(Hu)(t) = J h,(t,r)u(r)dr	and	(D'u)(t) 
= f d',(t,r)u(T)dT 

-1/2	 -1/2 

h,(t, r) = — ôfl)ôfl() g(x(t), x(T)) Ix'(r)I
(3.2) 

d(t, r) = ôfl)g(x(t), x(r)) Ix'(r)I. 

In the Appendix the following expansions are shown: 

h,, (t, r) = ao ( t ) I xo (t ) - xo( r )1 2 + a i (t, r) log I xo(t) - x0 (r) 1 + b1 (t, r) 

d(t,r) = a2 (i,T)log Ixo(t) - x0 (r) I + 62(t,r) 

where ao(t) = —27r I x'( i )I, xo(i) = e' and a 1 ,a2 ,bj ,b2 are infinitely differentiable 
biperiodic functions depending on the parameter c. We correspondingly decompose the 
operator L as

L = H0 - + A + B 

where
+1/2 

_____	u(r)dr (Hou)(t) = - 
2 1 x '( t )I I sin  (t - T) 

-1/2 
+1/2 

(Au)(t) = f a(t,r)log I xo(t) - xo(r)u(r)dr 
-1/2 

+1/2 
(Bu)(t) = fb(t,r)u(r)dr	 0 

-1/2	 0 

with a = a 1 + ia2 and b = b 1 + i77 b2 . We consider the above operators in the Sobolev 
spaces H' (A E JR) of 1-periodic functions u endowed with norm 

I/2 

	

/	 \ 
IUIIA = (	(max(1, IkI))2A1u(k)12 

kEZ
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where ü(k) are the Fourier coefficients of u. The operator H0 , the main part of L, is 
continuous from H" into H 1 and has the Fourier representation 

(Hou)(t) = ir l x '( t )I'" E IkIÜ(k)Ck2rt 
k960 

The operator A is continuous from HA into H", and the operator B, being infinitely 
smoothing, defines a continuous mapping from HA into HM for all A, it E R. Finally, 
L: H" - H"' is an isomorphism for all A E R. 

Next we introduce the finite-dimensional space T" (n € liV) of trigonometric poly-
nomials

V(t) =
	

cke*k2lnt	(ck € C) 
kE A 

where	
An={kE:_<k<}. 

In addition, we consider the meshpoints jh (h = ,j € ) and introduce the corre-
sponding interpolation projection Q, : H' - T (A > ) such that 

(Qu)(jh) = u(jh)	(j € A, u € HA 

We approximate the operators A and B by the following operators An and B, respec-
tively:

+1/2 

(Anu)(i) = J log Ixo(t) - xo(r)I(Qn(atu))(r)dr 
—1/2 

+1/2 

(Bu)(t) = J (Q(btu))(r)dr 

—1/2 

where, for given t, a t and b t denote the partial functions at(T) = a t(t,r) and b(r) = 
b(t, r). Now, our numerical method is obtained replacing L in equation (3.1) by the 
approximation

Ln = H0 -	+ An + B,, 

and applying the collocation at the points 3 h (j € A,,). The approximate solution is 
sought in the space of trigonometric polynomials T". Thus we have the method 

u, E T1 ,	Q,,L,,u,, = Q,,f .	 (3.4) 

Before going to our analysis of the method we discuss matrix forms for the problem 
(3.4). In order to find the trigonometric polynomial u, one can use, e.g., the Fourier 
coefficients or the pointwise values as unknowns. These are related to each other by 
means of the discrete Fourier transformations as 

u,,(jh) =	i,,zi)e''2"	and	fi n(v) = h	u,,(jh)e"2' 
JEA.,
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For determination of the coefficient matrix corresponding to the operator A, it is 
helpful to present A as

(Au)(t) = (VQn(aiu))(t) 

where V is the logarithmic single layer operator 

+1/2 

(Vu)(t) 
= f 

log jxo(t) - xo(r)u(r) d7-= -	) 

-1/2	 k&O 

One easily finds that (3.4) is equivalent to the system 

Lu,(jh) = f(kh)	(k E A)

jEA,, 

with

kj 
 -	 - j) -	-	- j)a(kh,jh) + hb(kh,jh) 

- __ 

pa,n(p) = h	uIe'2"	(II <n) 
O9'vEA,. 

where Skj is the Kronecker symbol. If the Fourier coefficients are used as unknowns, we 
obtain the equations 

I47u(i) = f(kh)	(k e A) 
1EA

L7	( irIlI 
= x'(kh)J --2) 

e 

+	(_pi,n(k - j)a(kh,jh) + hb(1chh)) e2'1 
,EA. 

In the Appendix it is shown how to determine the values a(kh,jh) and b(kh,jh). 

4. Stability and convergence 

Here we prove stability and convergence results for the numerical method introduced in 
the previous section. Thereby we consider our method as a further discretization of the 
trigonometric collocation: 

Find u, E T" such that
QLu=Qf	 (4.1) 

where f = Lu. For this method the following result is true (see [1,17,18]).
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Theorem 4.1. Assume that u E H (j.i > ). Then for sufficiently large n 2 no, 
the equation (4.1) is uniquely solvable, and the asymptotic error estimate 

II u - uflflA :5 c A_M IIuIl ii	(1< A (
	

(4.2) 

is valid. 

In the following analysis we discuss the order of the consistency which is obtained 
when replacing L by L. More precisely, we estimate the norm of the operator u, - 
Q(L - L)un (Un E T") with respect to certain Sobolev norms. It turns out that the 
order of the consistency is sufficiently good, and we are able to derive our results for 
the method (3.4) from those of (4.1). First we observe that 

Q(L - L)u	QTh(A - A)u + Q(B - B)u. 

Since the operator Bn has a smooth kernel, the following result can be derived (see [22) 
and [23]). 

Lemma 4.1. Let A, p E JR and r > 0. Then the error estimate 

	

Q(B - B)uIIA	Cfl_ r II U II,	( Un E T')	 (4.3) 

is valid. 

To discuss the approximation of A by A, we make use of the approximation and 
the inverse properties, 

	

11( 1 - Qfl)u IIA ç cn A IIuII	(u E H, 0	A < /L, ti > 1/2)	(4.4) 

II U nIIM < cn'u,,	(un e TTh , A < hz).	 (4.5) 

First we prove the consistency property obtained when replacing A by A. 

Lemma 4.2. For any e > 0, p >1 + e the estimates 

II( A - A	<	p+1/2+e)uIlo	cn	IiuiIp	(u E HP)	 (4.6) 

II( A - A )u IIi < cn	Uuilp+i	(u € H)	 (4.7) 

are valid. 

Proof. For any t we obtain 

((A - An) U )( t )I < cmax I (( I - Qn)atu)(r)l rE JR 

< c M(I - Qn)attLl112+	 (4.8) 

< cn+/'2	II I Iuiip 

which implies (4.6). For (4.7) we differentiate to get 

- A)u)(t) = (5V(I - Q)a t u)(t) + (V(I - Qn )ôga t u)(t)	(4.9) 

	

-(Vu)(t) = —iir(Su)(t) + i7r(0)	 (4.10) dt
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where

+1/2 

(Su)(t) —2 J u(r)xo(r)dr =	ü(k)e 2nt _	ü(k)e2nt.	(4.11) -	x0(r) - xo(t) 
—1/2	 k>O	 k<o 

Abbreviating v(t,r) = ((I - Qn)at u)(r) we have by (4.11) 

+1/2 

(S(I - Q)at u)(t) = 2 
J (v(t,r) - v(t,t))xo(r)dr 

x0 (r) - xo(t)  

From (4.10) and (4.12) we further obtain 

(OV(I - Qn)a iu)(t)I	cmax ( I 5v ( i , T) + Iv(t, r)p) 
rE JR 

cv(t, )II3/2+ 

ii U 

which, by using (4.9) and (4.8) with ôa instead of a, gives 

Ia,(A - A)uIIo < cr	/2 IjuII +1 .	 (4.13) 

The assertion (4.7) follows from (4.6) and (4.13) I 
Next we have 

Theorem 4.2 (Consistency). For any e > 0, p ^ + e and A > 0, there holds 

IIQ(A - A )u flhIA <cn_P+1 /2+e IIII	(Un E T')	(4.14) 

IIQ(L - L)uflhIA < cn ' 1/2 II u flhlA+P	(Un E T").	 (4.15) 
Proof. From (4.4) and (4.7) we obtain 

IIQ(A - A )u IIi < c II( A - A)uIIi <	 (4.16) 

and using (4.4) - (4.6) (with p replaced by p + 1) and (4.7) we obtain 

IQ(A - A )u IIo	II(Q - I)(A - A )u IIo + II( A - A)uIIo 

	

C (n 'lI(A - An)u IIi + fl_P_1/2+eIIUnIIp+i)	
(4.17) 

< cr1 —p-1/2+eI -  

• —p+1/2+e -	 Ilunhip. 

For A > 0 we get from (4.5) and (4.17) (with p replaced by A + p) 

hIQ(A - An)uflhlA < cnQ(A - An)u hIo	cn ' 112
hP u flhIA+	(4.18) 

+ v(i,t).	(4.12) 
—1/2 

which proves (4.14). The other assertion follows from (4.3) and (4.14) I
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Next we prove the stability of the method (3.4). 
Theorem 4.3 (Stability). Assume u € H' (It > ). Then the equation (8.4) is 

uniquely solvable if n no, and we have 

IItL nllp	cflu p .	 (4.19) 
Proof. Assume that Un E T n is a solution of equation (3.4), QLu = QLu or, 

equivalently,	
QLu = QL(u + L 1 (Q(L - L)u)).	 (4.20) 

Using the stability of the trigonometric collocation obtained from (4.2) and (4.20),we 
have by the mapping properties of L and (4.15), 0 <e < 

lI unll <cflu + L' (Q(L - 

<c (ii u ii + IIQ L - L)uIl1) 

<c(u + nh/2lluflhIM) 

which gives (4.19), if n is large enough. Having (4.19), the unique solvability of the 
finite-dimensional problem (3.4) also follows I 

Finally we have our main result. 
Theorem 4.4 (Convergence). Assume u € H' (j > ). Then for the solution u, 

of the problem (8.4) there holds for n 

lu - u ,,11.\ <cn"'ll u Il,	(1 <— A <p).	 (4.21) 
Proof. The continuity of the operator L' : H" 1 - H" together with (4.4) and 

(3.4) gives	 S	 - 

II u - umfl,, <c ll L (u - u)II_i 

- Q)L(u - u )lli + llQ L(u - u )Il-)	(4.22) 

<c (n Il L(u - u )Ii + llQ(1 - Ln)unlli). 

The continuity of the operator L : H' - H'' and the stability (4.19) further yield 

II L(u - u )II_i :5 cu -	clIuIL1	 (4.23) 

and the consistency (4.15) with (4.19) implies 

	

llQ(L - L )u II_i <cn"un	cnu.	 (4.24) 

The assertion now follows from (4.22) - (4.24) I 
Having the optimal order estimates (4.21), one can show that the convergence is in 

fact exponential, if the solution and the boundary curve are analytic, see [9: p. 162] 
and [22].



692	S. Prössdorf and J. Saranen 

5. Appendix 
Here we derive the decompositions 

h,c (t, r) = —27rIx'(t)I — ' Ixo(t) - xo(r)I2 
+ a i (t,r)log xo(t) - xo(r)I + bi(t,r)	 (Al) 

d',(t,r) = a2(t,r)109 zO( t ) - xo(r)I + b2(t,7-) 

which were used in Section 3. We obtain by (3.2), (2.6) and (2.7) 

h K (t,r) = 
-irz 
2 

(zH')(z)h(t, r) - z2 H1 ' ( z)k(t, r))	 (A2) 

where z = ic l x (t) - x(r)I and 

h(t, T) = 
1

ôfl (t) Ofl ( ,. ) log Ix(t) - x(r)I --'(T)I 2ir 
1 flx(r) (z(t) - X(T))	z(i) (z(t) - x(r))Ix'(r)I k(t,r) = -  

27r	IX(t) - x(r)1 2	x(t) - x(r)12 

The latter function is infinitely differentiable, whereas the function h(t, 'r) is the kernel 
of the hypersingular potential operator and decomposes as (see [81) 

h(t, r) = ho(t, T) + h(t, r)	 (A3) 

where the main part ho(t, 7) has strong singularity, 

ho(t, r) = —27r1x'(t)I' Ixo(t) - zo(7-)I2, 

and the remaining part is smooth, 

h (t,r ) - 
- 1 (n t (x(t) - x(-r)))(x(t) - x(7 - ))) Ix'(T)I 
 -  Ix(t) - z(r)I 4 
- 1 x'(t) . x'( r ) I xo(i) - xo(T)1 2 - x(t) x (r ) I x( t ) - x(r)1 2	(A4) 

27r	Ix(t) - z (r ) 1 2 1 x0( t ) - xo(7-)121x'(t)I 
+ irlx'(t)I'. 

For the following we recall the expansions of the Hankel functions 

H 1 (z) 4(z) + iN(z)	(z-' € IN) 

where J1, and N are the Bessel and Neumann functions 
(_l)rn(f)v+2rn 

4(z)  m!(v + m)! 

	

2 z	1	' (ii Nv(z)=(.y+ log )Jv(z)_	
m!	() 

M=O 
00 

_(1)m(1Cm+V+L) z 2m-4-v 
Ir 

MO	
m!(zi + m)! (2)
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where ko=O,k:=1++...-F1 ( lEV), M=O =O for v=O, and 7 is the Euler 
constant [16: PP. 65 - 691. By the above formulas one easily derives 

7T2 (1) --zH1 (z) = 1 - zJ1 (z) log z + f3z2 + z4 Ej (z)	 (A5) 

where E1 is an analytic function in the whole complex plane, and j3 denotes the constant 

/3= (1+i7r+2 log 2-27). 

By (A2) and (A3) we obtain 

irz 
--zH1 (z)h(t, r) = ho(i, r) + a 1 (t, r) log zo(t) - xo(r)I + b 1 1 (t, r)	(A6) 

a ii (t,r) = —zJi (z)h(t,r)	 (A7) 

bii (t,r) = 13z2 h(t,r) - zJi(z)h(t,r)log ?c l x ( t ) - x(r)I	(A8) 
Ixo(i) - xo(r)I 

+ h(t, r) + Ixo(t) - xo(r ) 1 2F1( t , T) 

where F, (t, r) is a smooth biperiodic function. In particular, for the diagonal values 
one has

au(t,i) = 4 — I x ()I ir
/	

iclx'(t)I - 2/3) Ix'(t)I + b11 (t,t)	- (log 47r\	2ir 

Note that if t r (mod 1), the values a ii (t,r) are obtained by a direct substitution 
from (A7), and the values b11 (i, r) can be computed using (A4). Some additional effort 
is needed to calculate explicitly the diagonal values h(i, t) from (A4). However, it is 
straightforward and the (rather complicated) formula is not shown here. 

The discussion of the second term in (A2) is easier. We have 

2 ---z .F4' (z) = z2 Jo(z)logz +z2E2(z) 

where E2 is an entire function. From this we further obtain 

irt _z2 H 1) (z)k(t , r) = a 12 (t, r) log Jz O (t) - xo(r)I + b12 (t, r)	(A9) 

where a12 and b12 are smooth functions such that 

a12(t, r) = z 2 .Jo(z)k(t, r) .	and	a12(t, t) = b 12 (t, t) = 0. 

The non-diagonal values of b12 (t, r) should be computed from (A9). To conclude, we 
have determined the first decomposition (Al) with a i = all + a 12 , b1 = b11 + b12.
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Now, we turn to consider the kernel of D'. Using (2.5) and (3.2), we obtain 

irz d(t,r) = —zH1(z)d'(t,7-) 
2 

d'(t,_!_ 
72z(t) (x(t) - X(T)) Ix'(T) 

- 27r	x(t) - x(012 

where d'(t, T) is the kernel of the adjoint to the double layer potential operator. Using 
(AS) again, we get 

d(t, r)	d'(t, r) - zJ1 (z)d'(t, r) log Ixo(t) - xo(T)I + Ixo(t) - xo( 7- ) 1 2F2( t , r) 

with a smooth function F2 (t, r). Thus the second equation (Al) holds with 

az(t,T) = —zJi(z)d'(t,r) 
b2 (t, T) = d'(t, T) + xo(t) - xo(r)12F2(t, r). 

In particular, a2 (t,t) = 0 and b2 (t,t)	d'(t,t). The non-diagonal values of b2(t,r) 
should be calculated from (Al). 
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