On Lower Semicontinuity and Metric Upper Semicontinuity of Nemytskii Set-Valued Operators

S. Rolewicz and Song Wen

Abstract. Sufficient conditions of lower semicontinuity and metric upper semicontinuity of Nemytskii set-valued operators N_F generated by a set-valued function $F: \Omega \times X \to 2^Y$, where X and Y are Orlicz-Musielak F-spaces are presented.

Keywords: Nemytski set-valued operators, lower semicontinuity, metric upper semicontinuity, superposition measurable set-valued operators

AMS subject classification: 47H04, 28C20, 54C60

In years 1933 - 1934 V. Nemytskii (see [10] and [11]) considered the operator F : $L^2[a, b] \to L^2[a, b]$ defined by $y(\cdot) = N_F(x(\cdot))$, where $y(t) = F(t, x(t))$. From that time the operator *NF* was generalized in several way and there is a lot of papers devoted to such subjects. Operators of this type are now called *Nemyiski operators.*

In last years new important applications of Nemytskii set-valued operators in the theory of differential and integral inclusions appear (see [1 - 4]). For these applications lower semicontinuity and metric upper semicontinuity of Nemytskii set-valued operators are important.

In [1] Appell, Ngyen and Zabrejko give sufficient conditions of lower semicontinuity of Nemytski set-valued operators acting in so-called *ideal spaces.* We shall not give the definition here. We want only to mention that ideal spaces are some spaces of functions defined on a measure space Ω admitting values in finite-dimensional spaces and it can be shown that each Orlicz space admitting values in a finite-dimensional space is an ideal space.

Thus the natural problem arose to give sufficient conditions of lower semicontinuity and metric upper semicontinuity of Nemytskii set-valued operators for spaces consisting of functions admitting values in infinite dimensional spaces.

In this paper sufficient conditions of lower semicontinuity and metric upper semicontinuity of Nemytskii set-valued operators acting in Orlicz-Musielak F-spaces are

ISSN 0232-2064 / \$ 2.50 ® Heldermann Verlag Berlin

S. Rolewicz: Polish Acad. Sci., Inst. Math., ul. Sniadeckich 8, skr. poszt. 137, P - 00-950 Warszawa. The paper is partially supported by the Polish Committee for Scientific Research under Grant No. 2 2009 9102.

Song Wen: Harbin Normal University, Department of Mathematics, Harbin, China

given.

Let X be a separable *F-space (i.e.* a complete linear metric space; basic properties can be found in [12]) with an F-norm $\|\cdot\|_X$ and (Ω, Σ, μ) a measure space with complete and σ -finite measue μ . A function $x = x(t)$ mapping Ω into X is called *measurable* if for every open set $Q \subset X$ the inverse image $x^{-1}(Q) = \{t \in \Omega : x(t) \in Q\}$ is measurable, i.e. if $x^{-1}(Q) \in \Sigma$. The set of all measurable functions defined on Ω with values in X we shall denote by $S(\Omega, X)$.

A closed-valued set-valued function $F = F(t)$ mapping Ω into subsets of X is called *measurable* if for every open set $Q \subset X$ the inverse image $F^{-1}(Q) = \{t \in \Omega :$ $F(t) \cap Q \neq \emptyset$ is measurable, i.e. if $F^{-1}(Q) \in \Sigma$. By a *measurable selection* of the set-valued function F we mean a (single-valued) function x_F such that $x_F(t) \in F(t)$ for all $t \in \Omega$.

Let $F = F(t, x)$ be a closed-valued set-valued function mapping $\Omega \times X$ into subsets of an F-space Y, i.e. into 2^Y . We say that F is *sup-measurable* if for any measurable function $x(\cdot): \Omega \to X$ the set-valued function $s \to F(s, x(s)) : \Omega \to 2^Y$ is measurable.

Given a sup-measurable closed-valued set-valued function $F: \Omega \times X \to 2^Y$. This set-valued function induces a set-valued operator N_F : $S(\Omega, X) \to S(\Omega, Y)$ defined by $y(\cdot) = N_F(x(\cdot))$, where $y(t) = F(t, x(t))$. The set-valued operator N_F is called *superposition operator* (or *Nemyiski operator)* generated by the set-valued function *F.* et-valued function mapping $\Omega \times X$ into subsets
hat *F* is *sup-measurable* if for any measurable
nction $s \rightarrow F(s, x(s)) : \Omega \rightarrow 2^Y$ is measurable.
End set-valued function $F : \Omega \times X \rightarrow 2^Y$. This
i operator $N_F : S(\Omega, X) \rightarrow S(\Omega, Y)$ def

Let $N = N(t, u)$ be a real-valued measurable function defined on $\Omega \times R$ such that for every $t \in \Omega$ the function $N(t, \cdot)$ is increasing and moreover $N(t, 0) = 0$ for all $t \in \Omega$. Then we can define on $S(\Omega, X)$ a *metrizing modular*

$$
\rho_{N,\mu}(x(\cdot)) = \int_{\Omega} N(t, \|x(t)\|_{X}) d\mu \tag{1}
$$

(see, e.c., Nakano ([7], $[8: p. 153]$ and $[9: p. 204]$), Musielak $[5: p. 1]$ and Rolewicz [12: p. 6]). The set of those measurable functions $x(\cdot) \in S(\Omega, X)$ that there is a positive *k* such that $\rho_{N,\mu}(kx(\cdot)) < \infty$ we shall denote by $N(L(\Omega,\Sigma,\mu;X))$. Recall that a *metrizing modular* on a linear space X is a function $\rho : X \to [0, \infty]$ having the following properties:

(md1) $\rho(x)=0$ if and only if $x=0$

 (md2) $\rho(ax) = \rho(x)$ provided $|a| = 1$

(md3) $\rho(ax + by) \leq \rho(x) + \rho(y)$ provided $a, b > 0$ and $a + b = 1$

(md4) $\rho(a_n x) \to 0$ provided $a_n \to 0$ and $\rho(x) < +\infty$

(md5) $\rho(ax_n) \rightarrow provided \rho(x_n) \rightarrow 0.$

We shall denote by (X, ρ) a linear space with a modular ρ and we shall call it *modular* space. Let (X, ρ) be a modular space with metrizing modular ρ . It is known that ρ induces in the space X an F-norm $\|\cdot\|_X$ by $b = 1$
and we shalar ρ . It

$$
\|x\|_X = \inf \left\{ \varepsilon > 0 \; \middle| \; \rho\left(\frac{x}{\varepsilon}\right) < \varepsilon \right\}.
$$
 (2)

The norm $\|\cdot\|_X$ is equivalent to the moduler ρ in the sense that, for any sequence ${x_n}$, $||x_n||_X \to 0$ if and only if $\rho(x_n) \to 0$ (see Musielak and Orlicz [6] and Musielak [5: p. 2]; see also Rolewicz [12: p. 8]). Observe that if the functions $x_n(\cdot) \in$ *x x* of Set-Valued Operators 741
 x the sense that, for any sequence

elak and Orlicz [6] and Musielak
 x $_n(\cdot) \in$
 x $_n(\cdot)$
 (3)
 A set-valued operator $\Gamma = \Gamma(x)$

$$
N(L(\Omega, \Sigma, \mu; X)) \quad (n \in \mathbb{N}) \text{ have disjoint supports, then}
$$
\n
$$
\sum_{n=1}^{\infty} \rho_{N, \mu}(x_n(\cdot)) = \rho_{N, \mu} \left(\sum_{n=1}^{\infty} x_n(\cdot) \right).
$$
\n(3)

Let (X, ρ_X) and (Y, ρ_Y) be two modular spaces. A set-valued operator $\Gamma = \Gamma(x)$ mapping (X, ρ_X) into subsets of (Y, ρ_Y) will be called *lower semicontinuous at a point* $(x_0, y_0) \in X \times Y$ if it is lower semicontinuous at this point in the metric induced by the Fnorms introduced above. In other words Γ is lower semicontinuous at (x_0, y_0) if for every $r > 0$ there is a number $q_{(x_0,y_0)}(r) > 0$ with the following property: for every $x \in X$ such that $\rho_{N,\mu}(x_0(\cdot)-x(\cdot)) < q_{(x_0,y_0)}(r)$ there is an $y \in \Gamma(x)$ such that $\rho_{M,\mu}(y_0(\cdot)-y(\cdot)) < r$. This is equivalent with the property that $\rho_{N,\mu}(x_0(\cdot) - x(\cdot)) < q_{(x_0,y_0)}(r)$ implies (c)) = $\rho_{N,\mu}\left(\sum_{n=1}^{\infty}x_n(\cdot)\right)$. (3)

(c)) = $\rho_{N,\mu}\left(\sum_{n=1}^{\infty}x_n(\cdot)\right)$. (3)

modular spaces. A set-valued operator $\Gamma = \Gamma(x)$

py) will be called *lower semicontinuous at a point*

inuous at this point in the met

$$
\Gamma(x) \cap Q \neq \emptyset \tag{4}
$$

where $Q = \{ y : \rho_{M,\mu}(y_0(\cdot) - y(\cdot)) < r \}.$

A set-valued operator Γ mapping (X, ρ_X) into subsets of (Y, ρ_Y) will be called *lower semicontinuous at a point* $x_0 \in X$ if it is lower semicontinuous at all the points (x_0, y_0) $(y_0 \in \Gamma(x_0)).$

Now we shall introduce a notion of global lower semicontinuity at x_0 , which is nothing else than an uniformization of lower semicontinuity on $\Gamma(x_0)$. More precisely, we say that a set-valued mapping Γ is globally lower semicontinuous at the point x_0 , if for every $r > 0$ there is a $q_{x_0}(r) > 0$ with the following property: for every $y_0 \in \Gamma(x_0)$ and for every $x \in X$ such that $\rho_{N,\mu}(x_0(\cdot)-x(\cdot)) < q_{x_0}(r)$ there is an $y \in \Gamma(x)$ such that $\rho_{M,\mu}(y_0 - y) < r$. This is equivalent with the property that $\rho_{N,\mu}(x_0(\cdot) - x(\cdot)) < q_{x_0}(r)$ implies $\langle r \rangle$.

pping (X, ρ_X) into subsets of (Y, ρ_Y) will be called
 $\rho_0 \in X$ if it is lower semicontinuous at all the points

tion of global lower semicontinuity at x_0 , which is

on of lower semicontinuity on $\Gamma(x_0)$.

$$
\Gamma(x_0) \subset B(\Gamma(x), r) \tag{5}
$$

where

$$
B(A,s)=\left\{y(\cdot):\inf_{y_1(\cdot)\in A}\rho_{M,\mu}(y_1(\cdot)-y(\cdot))
$$

The essential difference between lower semicontinuity and global lower semicontinuity is that in the first case $q_{(x_0,y_0)} > 0$ depends on x_0 and $y_0 \in \Gamma(x_0)$, while in the second case it depends on x_0 only.

Changing the role of x and x_0 in formula (5) we obtain a notion of metric upper semicontinuity. We say that the set-valued mapping Γ is metric upper semicontinuous *(Hausdorff upper semicontinuous)* at a point x_0 if for every $r > 0$ there is a $q_{x_0}(r) > 0$ such that $\rho_{N,\mu}(x_0(\cdot) - x(\cdot)) < q_{x_0}(r)$ implies F(x) $\left\{\n\begin{aligned}\n\frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 u}{\partial x \partial x} + \frac{\partial^2 u}{\partial$

$$
\Gamma(x) \subset B(\Gamma(x_0), r). \tag{6}
$$

The both notions are not equivalent. Indeed, it is easy to give an example of a set-valued mapping Γ which is globally lower semicontinuous at a point x_0 , but which is not metric upper semicontinuous at this point. Conversely, an example of a set-valued mapping Γ which is metric upper semicontinuous at a point x_0 but which is not globally lower semicontinuous at this point can be easily given too.

In the sequel we shall add some assumptions about the functions $N(t, u)$ and $M(t, u)$. Namely, we assume that the function $N = N(t, u)$ satisfies the following condition

(A) For every $\epsilon > 0$ there are numbers $\alpha > 0$ and $\delta > 0$ such that for every measurable set $E \subset \Omega$ with $\mu(E) > \delta$ we have $\int_E N(t,\varepsilon) dt \geq \alpha$.

Observe that in Orlicz spaces, i.e. in the case when $N(t, u) = N_0(u)$ depends only on *u*, the condition (A) is satisfied. Further, we assume that the function $M(t, u)$ satisfies the following condition

 $f(\Delta_2)$ There are a constant $k\geq 1$ and a non-negative function δ such that $\int_E M(t,\delta(t))\,d\mu$ $< +\infty$ and for almost all *t*, if $u \geq \delta(t)$, then $M(t, 2u) \leq k M(t, u)$.

The condition (Δ_2) plays an essential role in the theory of Orlicz-Musielak spaces. Observe that if the function $M(t, u)$ satisfies condition (Δ_2) , then from the fact that $\rho_{M,\mu}(x) < +\infty$ and $\rho_{M,\mu}(y) < +\infty$ it follows that $\rho_{M,\mu}(ax + by) < +\infty$ for all real a and *b*. We conclude that $M(L(\Omega,\Sigma,\mu;Y))$ is the set of those measurable functions $y(\cdot)$ with values in the space X, that $\rho_{M,\mu}(y) < +\infty$ (see [5: p. 52] and [6]).

Theorem 1. Let X, Y be two separable F_5 spaces, (Ω, Σ, μ) a measure space with *complete non-atomic and* σ *-finite measure* μ *, and* N_F *a Nemytskii set-valued operator mapping of a modular space* $(N(L(\Omega,\Sigma,\mu;X)),\rho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega, \Sigma, \mu; Y)), \rho_{M,\mu})$ induced by a sup-measurable set-valued function $F(t, u): \Omega \times$ $X \rightarrow 2^Y$. Suppose that

- (i) the function $N = N(t, u)$ satisfies condition (A)
- (ii) the function $M = M(t, u)$ satisfies condition (Δ_2) .

If the function $= F(t, u)$ is globally lower semicontinuous with respect to u for almost all $t \in \Omega$, then the operator N_F is globally lower semicontinuous.

Proof. Suppose that the operator *NF is* not globally lower semicontinuous. This implies that there are a number $r > 0$ and sequences $\{x_n(\cdot)\}, \{y_n(\cdot)\}$ with $y_n(\cdot) \in$ $N_F(x_0(\cdot))$ such that that the operator N_F is not globally lower set
 i a number $r > 0$ and sequences $\{x_n(\cdot)\}, \{p_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \to 0$
 $\inf_{z(\cdot) \in N_F(x_n(\cdot))} \rho_{M,\mu}(z(\cdot) - y_n(\cdot)) > r \quad (n \in \mathbb{N}).$ that the operator N_F is not globally lower semicontinuous. Thi
 re a number $r > 0$ and sequences $\{x_n(\cdot)\}, \{y_n(\cdot)\}$ with $y_n(\cdot)$
 $y_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \to 0$

inf
 $y(\cdot) \in N_F(x_n(\cdot))} \rho_{M,\mu}(z(\cdot) - y_n(\cdot)) > r$ ($n \in \mathbb{N}$).

and

$$
\rho_{N,\mu}(x_n(\cdot)-x_0(\cdot))\to 0
$$

inf

$$
x(\cdot)\in N_F(x_n(\cdot))\rho_{M,\mu}(z(\cdot)-y_n(\cdot))>r \quad (n\in\mathbb{N}).
$$

By [2: Theorem 8.24 and Corollary 8.23], for arbitrary $\eta > 0$ there is a sequence $\{z_n(\cdot)\}$ of measurable selections $z_n(\cdot) \in N_F(x_n(\cdot))$ such that, for almost all $t \in \Omega$,

$$
||y_n(t) - z_n(t)||_Y < (1 + \eta) d_Y(y_n(t), F(t, x_n(t)))
$$
\n(7)

where $d_Y(y, A) = \inf_{z \in A} ||z - y||_Y$ denotes the distance of a point y to a set *A* in the norm $\|\cdot\|_Y$. We denote $u_n(t) = \|y_n(t) - z_n(t)\|_Y$. Since $z_n(\cdot) \in N_F(x_n(\cdot))$, then

On Lower Semicontinuity of Set-Valued Operators
\n
$$
(y, A) = \inf_{z \in A} ||z - y||_Y
$$
 denotes the distance of a point y to a set A in the
\n $||y$. We denote $u_n(t) = ||y_n(t) - z_n(t)||_Y$. Since $z_n(\cdot) \in N_F(x_n(\cdot))$, then
\n
$$
\int M(t, u_n(t)) d\mu \ge \inf_{z(\cdot) \in N_F(x_n(\cdot))} \rho_{M, \mu}(z(\cdot) - y_n(\cdot)) > r \qquad (n \in \mathbb{N}).
$$
 (8)₁

The convergence $\rho_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \rightarrow 0$ implies that the sequence $\{x_n(\cdot) - x_0(\cdot)\}$ contains a subsequence ${x_{n_k}(\cdot) - x_0(\cdot)}$ such that

On Lower Semicontinuity of Set-Valued Operators 743
\n
$$
\in A \parallel z - y \parallel_{Y} \text{ denotes the distance of a point } y \text{ to a set } A \text{ in the}
$$
\ne $u_{n}(t) = ||y_{n}(t) - z_{n}(t)||_{Y}$. Since $z_{n}(\cdot) \in N_{F}(x_{n}(\cdot)),$ then
\n
$$
|d\mu \geq \inf_{z(\cdot) \in N_{F}(x_{n}(\cdot))} \rho_{M,\mu}(z(\cdot) - y_{n}(\cdot)) > r \qquad (n \in \mathbb{N}).
$$
\n(8)₁
\n
$$
(x_{n}(\cdot) - x_{0}(\cdot)) \rightarrow 0 \text{ implies that the sequence } \{x_{n}(\cdot) - x_{0}(\cdot)\} \{x_{n_{k}}(\cdot) - x_{0}(\cdot)\} \text{ such that}
$$
\n
$$
\sum_{k=1}^{\infty} \int_{\Omega} N(t, ||x_{n_{k}}(t) - x_{0}(t)||_{X}) d\mu < +\infty. \qquad (9)_{1}
$$
\n\nuence $\{x_{n}(\cdot) - x_{0}(\cdot)\}$ by the subsequence $\{x_{n_{k}}(\cdot) - x_{0}(\cdot)\}$ we can
\ngenerating that
\n
$$
\sum_{n=1}^{\infty} \int_{\Omega} N(t, ||x_{n}(t) - x_{0}(t)||_{X}) d\mu < +\infty. \qquad (10)_{1}
$$

Thus replacing the sequence $\{x_n(\cdot) - x_0(\cdot)\}$ by the subsequence $\{x_{n_k}(\cdot) - x_0(\cdot)\}$ we can assume without loss of generality that

$$
\sum_{n=1}^{\infty} \int_{\Omega} N(t, \|x_n(t) - x_0(t)\|_X) d\mu < +\infty. \tag{10}_1
$$

Now we have the following two possibilities: either (1) $\mu(\Omega)$ is finite or (2) $\mu(\Omega)$ is infinite.

Case (1): $\mu(\Omega)$ is finite. We shall construct by induction a sequence of positive numbers $\{\varepsilon_k\}$, a sequence of measurable sets $\{\Omega_k\}$ $(\Omega_k \subset \Omega)$ and a subsequence $\{x_{n_k}$ x_0 such that the following conditions are satisfied:

(a) $\varepsilon_{k+1} < \frac{\varepsilon_k}{2}$

(b)
$$
\mu(\Omega_k) \leq \varepsilon_k
$$

(c)
$$
\int_{\Omega_k} M(t, u_{n_k}(t)) d\mu > \frac{2}{3}r
$$

(d) $\int_D M(t, u_{n_k}(t)) d\mu < \frac{1}{3}r$ for any set $D \subset \Omega_k$ such that $\mu(D) \leq 2\varepsilon_{k+1}$.

We put $\varepsilon_1 = \mu(\Omega), x_{n_1} - x_0 = x_1 - x_0$ and $\Omega_1 = \Omega$. Suppose that $\varepsilon_k, x_{n_k} - x_0$ and Ω_k have been constructed. Since N_F is a Nemytskii set-valued operator mapping of the modular space $(N(L(\Omega,\Sigma,\mu;X)),\rho_{N,\mu})$ into subsets of the modular space $(M(L(\Omega,\Sigma,\mu;Y)),\rho_{M,\mu}),$ by property $(\Delta_2),$

$$
\int\limits_{\Omega_k} M(t,u_{n_k}(t))\,d\mu<+\infty.
$$

Thus the function $M(t, u_{n_k}(t))$ is absolutely continuous. Hence it is easy to find ε_{k+1} satisfying conditions (a) and (d). Since the function $N = N(t, u)$ satisfies condition (A) and $\rho(x_n(\cdot) - x_0(\cdot)) \to 0$, the functions x_n tend to x_0 in measure. Replacing eventually the sequence $\{x_{n_k} - x_0\}$ by its subsequence, we can assume without loss of generality that $x_{n_k}(t)$ tends to $x_0(t)$ almost everywhere. By the global lower semicontinuity of $F(t,x)$, we obtain that $d_Y(y_n(t),F(t,x_n(t)))$ tends to 0 almost everywhere.

Since $\mu(\Omega) < +\infty$, for the sequence $\{z_n(\cdot)\}\$ of measurable selections chosen at the beginning of this proof such that (7)₁ holds, there are an index n_{k+1} and a set $E_{k+1} \subset \Omega$ such that, for $t \in E_{k+1}$, *Marian* $\{z_n(\cdot)\}\$ of measurable selections chosen at the $(7)_1$ holds, there are an index n_{k+1} and a set $E_{k+1} \subset \Omega$
 $M(t, u_{n_k}(t)) < \frac{r}{3\mu(\Omega)}$ (11)
 $\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1}.$ (12) *z*(*z*_n(*c*) of measurable selections chosen at the T)₁ holds, there are an index n_{k+1} and a set $E_{k+1} \subset S$
 $f(t, u_{n_k}(t)) < \frac{r}{3\mu(\Omega)}$ (11)
 $f(t) = \frac{F}{3\mu(\Omega)}$ (12)
 $f(t) = \frac{F}{2\mu(\Omega)}$ (12)
 $f(t) = \frac{F}{2\mu(\Omega)}$ (12

$$
M(t, u_{n_k}(t)) < \frac{r}{3\mu(\Omega)}\tag{11}_1
$$

and

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1}.\tag{12}_1
$$

Let $\Omega_{k+1} = \Omega \setminus E_{k+1}$. Observe that (12)₁ implies condition (b). By (8)₁ and (11)₁, we obtain

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1}.\tag{12}
$$
\n
$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1}.\tag{13}
$$
\n
$$
\int M(t, u_{n_{k+1}}(t)) d\mu = \int M(t, u_{n_{k+1}}(t)) d\mu - \int M(t, u_{n_{k+1}}(t)) d\mu > \frac{2}{3}r.\tag{13}
$$
\n
$$
\mu(\bigcup_{j=k+1}^{\infty} \Omega_j) \leq \sum_{j=k+1}^{\infty} \mu(\Omega_j) \leq \sum_{j=k+1}^{\infty} \varepsilon_j < 2\varepsilon_{k+1}.\tag{13}
$$
\n
$$
\mu(\Omega \setminus \Omega) \leq \sum_{j=k+1}^{\infty} \mu(\Omega_j) \leq \sum_{j=k+1}^{\infty} \varepsilon_j < 2\varepsilon_{k+1}.\tag{14}
$$
\n
$$
\text{thus we have constructed a sequence of positive numbers } \{\varepsilon_k\}, \text{ a sequence of measurable}
$$
\n
$$
\text{ts } \{\Omega_k\}, \Omega_k \subset \Omega, \text{ and a subsequence } \{x_{n_k} = x_0\} \text{ such that conditions (a) - (d) hold.}
$$
\n
$$
\text{Now we shall continue the proof. Let}
$$
\n
$$
D_k = \Omega_k \setminus \bigcup_{j=k+1}^{\infty} \Omega_j \qquad (k \in \mathbb{N}).
$$
\n
$$
\text{effine functions } \psi, \psi_0, y_0, z \text{ in the following way:}
$$
\n
$$
\psi(s) = \begin{cases} x_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ 0 & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \\ 0 & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases}
$$

By properties (a) and (b) , we get

$$
\mu\bigg(\bigcup_{j=k+1}^{\infty}\Omega_j\bigg)\leq \sum_{j=k+1}^{\infty}\mu(\Omega_j)\leq \sum_{j=k+1}^{\infty}\varepsilon_j<2\varepsilon_{k+1}.
$$

Thus we have constructed a sequence of positive numbers $\{\varepsilon_{\bm k}\},$ a sequence of measurable sets $\{\Omega_k\}, \Omega_k \subset \Omega$, and a subsequence $\{x_{n_k} - x_0\}$ such that conditions (a) \cdot (d) hold.

Now we shall continue the proof. Let

a sequence of positive numbers
$$
\{\varepsilon_k\}
$$
,
subsequence $\{x_{n_k} - x_0\}$ such that of
the proof. Let

$$
D_k = \Omega_k \setminus \left(\bigcup_{j=k+1}^{\infty} \Omega_j\right) \qquad (k \in \mathbb{N}).
$$

Define functions ψ , ψ ₀, y ₀, *z* in the following way:

$$
\psi(s) = \begin{cases} x_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ 0 & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \tag{14}_1
$$

$$
i_{k+1} \qquad j=k+1 \qquad j=k+1
$$
\nd a sequence of positive numbers { ε_k }, a sequence of measurable
\na subsequence { $x_{n_k} - x_0$ } such that conditions (a) - (d) hold.
\nuue the proof. Let
\n
$$
D_k = \Omega_k \setminus \left(\bigcup_{j=k+1}^{\infty} \Omega_j \right) \qquad (k \in \mathbb{N}).
$$
\n
$$
v_0, z \text{ in the following way:}
$$
\n
$$
\psi(s) = \begin{cases} x_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ 0 & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (14)_1
$$
\n
$$
\psi_0(s) = \begin{cases} x_0(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ 0 & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (15)_1
$$
\n
$$
y_0(s) = \begin{cases} y_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ w(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (16)_1
$$
\n
$$
z(s) = \begin{cases} z_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ v(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (17)_1
$$
\n
$$
y_0 = \begin{cases} z_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ v(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (17)_1
$$
\n
$$
y_0 = \begin{cases} z_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ v(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \qquad (18)_1
$$
\n
$$
y_0 = \begin{cases} z_{n_k}(s) & \text{if } s \in D_k
$$

$$
y_0(s) = \begin{cases} y_{n_k}(s) & \text{if } s \in D_k \ (k \in I\!\!N) \\ w(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases}
$$
 (16)₁

$$
z(s) = \begin{cases} z_{n_k}(s) & \text{if } s \in D_k \ (k \in \mathbb{N}) \\ v(s) & \text{if } s \notin \bigcup_{j=1}^{\infty} D_j \end{cases} \tag{17}_1
$$

where $w(\cdot)$ and $v(\cdot)$ belong to $N_F(0)$ (i.e. these are measurable selections of $F(s,0)$). From conditions (c), (d) and inequalities $(11)_1$, $(13)_1$ it follows that

e
$$
w(\cdot)
$$
 and $v(\cdot)$ belong to $N_F(0)$ (i.e. these are measurable selections of $F(s,0)$).
\nconditions (c), (d) and inequalities (11), (13), it follows that
\n
$$
\int_{D_k} M(t, \|y_0(t) - z(t)\|) d\mu = \int_{D_k} M(t, u_{n_k}(t)) d\mu
$$
\n
$$
= \int_{\Omega_k} M(t, u_{n_k}(t)) d\mu - \int_{\Omega_k \setminus D_k} M(t, u_{n_k}(t)) d\mu \qquad (18),
$$
\n
$$
> \frac{1}{3}r.
$$

Observe that $\psi_0 \in N(L(\Omega,\Sigma,\mu;X))$ and, by (10)₁, also $\psi \in N(L(\Omega,\Sigma,\mu;X))$. It is easy to see that $y_0(\cdot) \in N_F(\psi_0(\cdot))$ and $z(\cdot) \in N_F(\psi(\cdot)).$

On the other hand,

that
$$
\psi_0 \in N(L(\Omega, \Sigma, \mu; X))
$$
 and, by $(10)_1$, also $\psi \in N(L(\Omega, \Sigma, \mu; X))$. It is that $y_0(\cdot) \in N_F(\psi_0(\cdot))$ and $z(\cdot) \in N_F(\psi(\cdot))$.

\nother hand,

\n
$$
\int_{\Omega} M(t, \|y_0(t) - z(t)\|) d\mu \geq \sum_{k=1}^{\infty} \int_{D_k} M(t, \|y_0(t) - z(t)\|) d\mu = +\infty
$$
\n(19)

which contradicts the fact that N_F is a set-valued operator mapping of the modular space $(N(L(\Omega,\Sigma,\mu;X)), \rho_{N,\mu})$ into subsets of the space $(M(L(\Omega,\Sigma,\mu;Y)), \rho_{M,\mu})$. This finishes the proof of the case when $\mu(\Omega)$ is finite.

Case (2): $\mu(\Omega)$ is infinite. We will consider the following two subcases:

- (2a) There are a subset $\Omega_0 \subset \Omega$ with finite measure $\mu(\Omega_0)$ and a number $\beta \in (0, r)$ such that $\int_{\Omega_n} M(t, u_n(t)) d\mu \geq \beta$ $(n \in \mathbb{N})$.
- (2b) There are a subsequence ${u_{n_k}(t)}$ and a sequence of measurable sets ${D_k}$ such that
	- (e) $\mu(D_k) < +\infty$ and $D_i \cap D_j = \emptyset$ for $i \neq j$
	- *(f)* $\int_{D_1} M(t, u_{n_k}(t)) d\mu \ge \frac{1}{2} r \ (k \in \mathbb{N}).$

In the subcase $(2a)$ the consederation can be reduced to that of Case (1) with replacing *r* by β . In the subcase (2b) we define functions ψ , ψ_0 , y , z by formulae (14)₁ - (17)₁. As in Case (1) we obtain that $\psi, \psi_0 \in N(L(\Omega, \Sigma, \mu; X))$, and that $z(\cdot) \in N_F(\psi(\cdot))$ and simultaneously $y_0(\cdot) \in N_F(\psi_0(\cdot))$. On the other hand, by properties (e) and (f) we obtain that $z(t) - y_0(t) \notin (M(L(\Omega,\Sigma,\mu;Y)),\rho_{M,\mu})$, which leads to a contradiction

Theorem 2. Let X, Y be two separable F-spaces, (Ω, Σ, μ) a measure space with *complete non-atomic and a-finite measue p, and N F a Nernytskiz' set-valued operator mapping of a modular space* $(N(L(\Omega,\Sigma,\mu;X)),\rho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega,\Sigma,\mu;Y)),\rho_{M,\mu})$ induced by a sup-measurable set-valued function $F = F(t,u)$: $\Omega \times X \rightarrow 2^Y$. Suppose that

- (i) the function $N = N(t, u)$ satisfies condition (A)
- (ii) the function $M = M(t, u)$ satisfies condition (Δ_2) .

If the function $F = F(t, u)$ is lower semicontinuous with respect to u for almost all $t \in \Omega$, then the operator N_F is lower semicontinuous.

Proof. Suppose that the operator N_F is not lower semicontinuous at some point $(x_0(\cdot), y_0(\cdot))$ with $y_0(\cdot) \in N_F(x_0(\cdot))$. This implies that there are a number $r > 0$ and a sequence $\{x_n(\cdot)\}\$ such that

se that the operator
$$
N_F
$$
 is not lower semicontin $y_0(\cdot) \in N_F(x_0(\cdot))$. This implies that there are a n
uch that

$$
\rho_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \to 0
$$

in f

$$
x(\cdot) \in N_F(x_n(\cdot)) \rho_{M,\mu}(z(\cdot) - y_0(\cdot)) > r \qquad (n \in \mathbb{N}).
$$

By [2: Theorem 8.24 and Corollary 8.23], for arbitrary $\eta > 0$ there is a sequence $\{z_n(\cdot)\}$ of measurable selections $z_n(\cdot) \in N_F(x_n(\cdot))$ such that, for almost all $t \in \Omega$, *of* $\int f(x) \, dx \leq \int f(x) \, dx$
 o(t) - $\int f(x) \, dx \leq \int f(x) \, dx$ for arbitrary $\eta > 0$ there is a sequend
 $\int f(x) \, dx = \int f(x) \, dx$
 $\int f(x) \, dx = \int f(x) \, dx$
 o(t) - $\int f(x) \, dx$ is the distance of a point *y* to a set *A* in the no
 \int

$$
\|y_0(t)-z_n(t)\|_Y < (1+\eta)d_Y(y_0(t),F(t,x_n(t)))
$$
\n(7)₂

of measurable selections $z_n(\cdot) \in N_F(x_n(\cdot))$ such that, for almost all $t \in \Omega$,
 $||y_0(t) - z_n(t)||_Y < (1 + \eta)d_Y(y_0(t), F(t, x_n(t)))$ (

where as before $d_Y(y, A)$ denotes the distance of a point y to a set *A* in the norm $||\cdot||$

We denote u *k'* We denote $u_n(t) = ||y_0(t) - z_n(t)||_Y$. Since $z_n(\cdot) \in N_F(x_n(\cdot))$, then

$$
\|y_0(t) - z_n(t)\|_Y < (1 + \eta)d_Y(y_0(t), F(t, x_n(t))) \tag{7}_2
$$
\nbefore $d_Y(y, A)$ denotes the distance of a point y to a set A in the norm $\| \cdot \|_Y$.
\nthe $u_n(t) = \|y_0(t) - z_n(t)\|_Y$. Since $z_n(\cdot) \in N_F(x_n(\cdot))$, then\n
$$
\int_{\Omega} M(t, u_n(t)) d\mu \ge \inf_{z(\cdot) \in N_F(x_n(\cdot))} \rho_{M, \mu}(z(\cdot) - y_0(\cdot)) > r \quad (n \in \mathbb{N}). \tag{8}_2
$$

Then we continue the proof step by step in the same way as in the proof of Theorem 1 replacing $y_n(\cdot)$ by $y_0(\cdot)$. The only difference is to show the existence of a subsequence ${u_{n_k}}$ such that the inequalities *t*) $||_Y < (1 + \eta)d_Y(y_0(t), F(t, x_n(t)))$

as the distance of a point *y* to a set *l*
 M(*Y*). Since $z_n(\cdot) \in N_F(x_n(\cdot))$, then
 $\inf_{y \in N_F(x_n(\cdot))} \rho_{M,\mu}(z(\cdot) - y_0(\cdot)) > r$

p by step in the same way as in the

p by step in the same way as $\inf_{\mathcal{N}_F(x_n(\cdot))} \rho_{M,\mu}(z(\cdot) - y_0(\cdot)) > r \qquad (n \in \mathbb{N}).$ (8)₂

y step in the same way as in the proof of Theorem 1

difference is to show the existence of a subsequence
 $(t, u_{n_{k+1}}(t)) < \frac{r}{3\mu(\Omega)}$ (11)₂
 $u(\Omega \setminus E_{k+1}) < \vare$

$$
M(t, u_{n_{k+1}}(t)) < \frac{r}{3\mu(\Omega)}\tag{11}_2
$$

and

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1} \tag{12}_2
$$

hold. In order to do this we replace the global lower semicontinuity of Γ by its lower semicontinuity. Since the function $N = N(t, u)$ satisfies condition (A) and $\rho_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \rightarrow 0$, the sequence $\{x_n(\cdot)\}\)$ tends to $x_0(\cdot)$ in measure. Thus by the lower semicontinuity of $F(t, x)$ with respect to x, $d_Y(y_0, F(t, x_n(t)))$ tends to 0 in measure. wer semico
 u) satisfie

to $x_0(\cdot)$ in
 $d_Y(y_0, F(t,$

: selections
 $k+1$, the in (12)

uity of Γ by it

mdition (A) an

easure. Thus b

())) tends to 0 is

()) there are a

alities

(11) replace the global lower semicontinuity of Γ by its
function $N = N(t, u)$ satisfies condition (A) and
uence $\{x_n(\cdot)\}$ tends to $x_0(\cdot)$ in measure. Thus by
with respect to x , $d_Y(y_0, F(t, x_n(t)))$ tends to 0 in
quence of mea

Since $\mu(\Omega) < +\infty$, for the sequence of measurable selections $\{z_n(\cdot)\}\$ there are an index n_{k+1} and a subset $E_{k+1} \subset \Omega$ such that, for $t \in E_{k+1}$, the inequalities

$$
M(t, u_{n_{k+1}}(t)) < \frac{r}{3\mu(\Omega)}\tag{11}_2
$$

 \mathbf{and} .

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1} \tag{12}_2
$$

hold. The remained part of the proof can be continued in the same way as presented in the proof of Theorem 1 **^U**

Theorem 3. Let X, Y be two separable F-spaces, (Ω, Σ, μ) a measure space with *complete non-atomic and* σ *-finite measue* μ *, and* N_F *a Nemytskii set-valued operator mapping of a modular space* $(N(L(\Omega,\Sigma,\mu;X)),\rho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega,\Sigma,\mu;Y)), \rho_{M,\mu})$ induced by a sup-measurable set-valued function $F = F(t,u)$: $\Omega \times X \rightarrow 2^Y$. Suppose that $\frac{1}{2}$

(i) the function
$$
N = N(t, u)
$$
 satisfies condition (A)

(ii) the function $M = M(t, u)$ satisfies condition (Δ_2) .

If the function $F = F(t, u)$ is metric upper semicontinuous with respect to u for almost all $t \in \Omega$, then the operator N_F is metric upper semicontinuous.

Proof. Suppose that the operator N_F is not metric upper semicontinuous. This lies that there are a number $r > 0$ and sequences $\{x_n(\cdot)\}$ and $\{y_n(\cdot)\}$ with $y_n(\cdot) \in$
 $x_n(\cdot)$ such that $\rho_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \to 0$
inf implies that there are a number $r > 0$ and sequences $\{x_n(\cdot)\}\$ and $\{y_n(\cdot)\}\$ with $y_n(\cdot) \in$ $N_F(x_n(\cdot))$ such that On Lower
operator N_F
er $r > 0$ and
 $(x - x_0(\cdot)) \rightarrow 0$
 $\rightarrow \rho_{M,\mu}(z(\cdot))$ *If* the operator N_F is not metric upper semicontinuous. This
 If $n, \mu(x_n(\cdot) - x_0(\cdot)) \to 0$
 $\inf_{\{y_n(x_n(\cdot) - x_0(\cdot))\}} \rho_{M,\mu}(z(\cdot) - y_n(\cdot)) > r$ ($n \in \mathbb{N}$).
 $\{a_n\}$ and Corollary 8.23], for arbitrary $\eta > 0$ there is a seque

$$
\rho_{N,\mu}(x_n(\cdot)-x_0(\cdot))\to 0
$$

$$
\inf_{z(\cdot)\in N_F(x_0(\cdot))}\rho_{M,\mu}(z(\cdot)-y_n(\cdot))>r \qquad (n\in\mathbb{N}).
$$

By [2: Theorem 8.24 and Corollary 8.23], for arbitrary $\eta > 0$ there is a sequence $\{z_n(\cdot)\}$ of measurable selections $z_n(\cdot) \in N_F(x_0(\cdot))$ such that, for almost all $t \in \Omega$,

$$
\|y_n(t)-z_n(t)\|_Y < (1+\eta)d_Y(y_n(t),F(t,x_0(t)))
$$
\n(7)₃

where as before $d_Y(y, A)$ denotes the distance of a point y to a set A in the norm $\|\cdot\|_Y$. We denote $u_n(t) = ||y_n(t) - z_n(t)||_Y$. Since $z_n(\cdot) \in N_F(x_0(\cdot))$, then

$$
||y_n(t) - z_n(t)||_Y < (1 + \eta)d_Y(y_n(t), F(t, x_0(t)))
$$
\n
$$
\text{before } d_Y(y, A) \text{ denotes the distance of a point } y \text{ to a set } A \text{ in the norm } || \cdot ||_Y.
$$
\n
$$
\text{the } u_n(t) = ||y_n(t) - z_n(t)||_Y. \text{ Since } z_n(\cdot) \in N_F(x_0(\cdot)), \text{ then}
$$
\n
$$
\int\limits_{\Omega} M(t, u_n(t)) d\mu \ge \inf_{z(\cdot) \in N_F(x_0(\cdot))} \rho_{M, \mu}(z(\cdot) - y_n(\cdot)) > r \qquad (n \in \mathbb{N}). \tag{8}_3
$$

Then we continue the proof step by step in the same way as in the proof of Theorem 1. The only difference is to show the existence of a subsequence $\{u_{n_k}\}\$ such that the inequalities that, for almost all
 $(y_n(t), F(t, x_0(t)))$
 $\in N_F(x_0(\cdot)),$ then
 $(\cdot) - y_n(\cdot)) > r$

same way as in the f a subsequence
 $\frac{r}{3\mu(\Omega)}$
 $(k+1)$ $\inf_{F(x_0(\cdot))} \rho_{M,\mu}(z(\cdot) - y_n(\cdot)) > r$ $(n \in \mathbb{N})$. (8)₃
y step in the same way as in the proof of Theorem
the existence of a subsequence $\{u_{n_k}\}$ such that the
 $t, u_{n_{k+1}}(t)$ $< \frac{r}{3\mu(\Omega)}$ (11)₃
 $(\Omega \setminus E_{k+1}) < \varepsilon_{k+1}$

$$
M(t, u_{n_{k+1}}(t)) < \frac{r}{3\mu(\Omega)}
$$
 (11)₃

and

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1} \tag{12}_3
$$

hold. In order to do this we replace the global lower semicontinuity of Γ by its metric upper semicontinuity. Since the function $N = N(t, u)$ satisfies condition (A) and $\rho_{N,\mu}(x_n(\cdot) - x_0(\cdot)) \to 0$, the sequence $\{x_n(\cdot)\}$ tends to $x_0(\cdot)$ in measure. Thus by the metric upper semicontinuity of $F(t, x)$ with respect to x, $d_Y(y_n, F(t, x_0(t)))$ tends to 0 in measure. *(t, x)* with respect to x , $d_Y(y_n, F(t, x_0(t)))$ tends to 0
 (t, x) with respect to x , $d_Y(y_n, F(t, x_0(t)))$ tends to 0

quence of measurable selections $\{z_n(\cdot)\}$ there are an
 Ω such that, for $t \in E_{k+1}$, the inequalitie

Since $\mu(\Omega) < +\infty$, for the sequence of measurable selections $\{z_n(\cdot)\}\$ there are an index n_{k+1} and a subset $E_{k+1} \subset \Omega$ such that, for $t \in E_{k+1}$, the inequalities

$$
M(t, u_{n_{k+1}}(t)) < \frac{r}{3\mu(\Omega)}\tag{11}_3
$$

and

$$
\mu(\Omega \setminus E_{k+1}) < \varepsilon_{k+1} \tag{12}_3
$$

hold. The remained part of the proof can be continued in the same way as presented in the proof of Theorem 1

Theorem 3 generalizes Theorem 1 of [3], where it is proved for Banach spaces X, *Y* and for functions $N(t, u) = u^p, M(t, u) = u^q$ with $1 \leq p \leq q < +\infty$ under some estimation assumptions warranting that a Nemytskii operator N_F induced by a supmeasurable set-valued function $F = F(t, u)$ maps the space $L^p(\Omega, \Sigma, \mu; X)$ into the space $L^q(\Omega, \Sigma, \mu; Y)$.

References

- [1] Appell, J., Nguyen, H. T. and P. P. Zabrejko: *Multivalued superposition operators in ideal spaces* of *vector functions.* Parts I and II. Indag. Math. (N. S.) 2 (1991), 385 - 395 and 397 - 409.
- [2] Aubin, J. P. and H. F'rankowska: *Set-Valued Analysis* (Systems and Control: Vol. 2). Boston et al: Birkbäuser Verlag 1990.
- [3] Cellina, A., Fryszkowska, A. and T. Rzezuchowski: Uppersemicontinuity of Nemytskij *operators.* Ann. Mat. Pura AppI. 160 (1991), 321 - 330.
- [4] Goncharow, V. V.: *On the existence of solutions of a class of differential inclusions on a compact set* (in Russian). Sib. Math. Zhur. 31(1990)5, 24 - 30.
- [5] Musielak, J.: *Orlicz Spaces and Modular Spaces.* Lect. Notes Math. 1034 (1983), 1 222.
- [6] Musielak, J. and W. Orlicz: *On modular spaces.* Stud. Math. 18 (1959), 49 65.
- [7] Nakano, H.: *Modulared linear spaces.* J. Fac. Sd. Univ. Tokyo (Section I) 6 (1950), 85 131.
- [8] Nakano, H.: *Modulared Semi-Ordered Linear Spaces.* Tokyo: Maruzen Co. 1950.
- *[9] Nakano, H.: Topology and Linear Topological Spaces.* Tokyo: Maruzen Co. 1951.
- [10] Niemytzki, V.: Sur les équations integrales non-linéaires. C. R. Acad. Sci. Paris 196 (1933),836 - 838.
- *[11] Niemytzkij, V.: Théorèmes d'existence et d'unicite des solutions de quelques equations integrales non-linéaires.* Matem. Sbornik 41(1934), 421 - 438.
- [12] Rolewicz, S.: *Metric Linear Spaces.* Dortrecht: D. Reidel 1985, and Warszawa: Polish Sci. PubI. 1985.

 \mathcal{L}_{eff}

Received 22.02.1994