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Abstract. Sufficient conditions of lower semicontinuity and metric upper semicontinuity of 
Nemytskii set-valued operators NF generated by a set-valued function F: Q  X -* 2 ' , where 
X and Y are Orlicz-Musielak F-spates are presented. 
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In years 1933 - 1934 V. Nemytski (see [10] and 111]) considered the operator F 
L2 [a,b] - L2 [a,b] defined by y( . ) = NF(x( . )), where y(t) = F(t,x(t)). From that time 
the operator NF was generalized in several way and there is a lot of papers devoted to 
such subjects. Operators of this type are now called Nemyiski operators. 

In last years new important applications of Nemytskii set-valued operators in the 
theory of differential and integral inclusions appear (see [1 - 4]). For these applications 
lower semicontinuity and metric upper semicontinuity of Nemytskii set-valued operators 
are important. 

In [1] Appell, Ngyen and Zabrejko give sufficient conditions of lower semicontinuity 
of Nemytski set-valued operators acting in so-called ideal spaces. We shall not give the 
definition here. We want only to mention that ideal spaces are some spaces of functions 
defined on a measure space ci admitting values in finite-dimensional spaces and it can 
be shown that each Orlicz space admitting values in a finite-dimensional space is an 
ideal space. 

Thus the natural problem arose to give sufficient conditions of lower semicontinuity 
and metric upper semicontinuity of Nemytskii set-valued operators for spaces consisting 
of functions admitting values in infinite dimensional spaces. 

In this paper sufficient conditions of lower semicontinuity and metric upper semi-
continuity of Nemytskii set-valued operators acting in Orlicz-Musielak F-spaces are 
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given. 

Let X be a separable F-space (i.e. a complete linear metric space; basic properties 
can be found in [121) with an F-norm 11 lix and (f?, E, ) a measure space with complete 
and ti-finite measue z. A function x = x(i) mapping Q into X is called measurable if for 
every open set Q C X the inverse image x(Q) = It E Q : x(t) E Q} is measurable, 
i.e. if x'(Q) E E. The set of all measurable functions defined on Q with values in X 
we shall denote by S(, X). 

A closed-valued set-valued function F = F(t) mapping Q into subsets of X is 
called measurable if for every open set Q C X the inverse image F -1 (Q) = It E Q 
F(t) fl Q 54 O} is measurable, i.e. if F'(Q) E E. By a measurable selection of the 
set-valued function F we mean a (single-valued) function XF such that X F(t ) E F(t) for 
all t E ft 

Let F = F(t, x) be a closed-valued set-valued function mapping Q x X into subsets 
of an F-space Y, i.e. into 2 k'. We say that F is sup-measurable if for any measurable 
function x( . ) : Q - X the set-valued function s - F(s,x(s)) : 9 - 2'' is measurable. 

Given a sup-measurable closed-valued set-valued function F : Q x X - 2''. This 
set-valued function induces a set-valued operator NF : 5(11, X) -* S(11, Y) defined 
by y( . ) = NF( -T(')), where y(t) = F(t,x(t)). The set-valued operator NF is called 
superposition operator (or Nemyiski operator) generated by the set-valued function F. 

Let N = N(t, u) be a real-valued measurable function defined on 11 x R such that 
for every t E 11 the function N(t,.) is increasing and moreover N(t, 0) = 0 for all t E Q. 
Then we can define on S(fl, X) a metrizing modular 

pN,(x(.)) 
= 

IN (t,  ii x ( t)iix) d	 (1) 

(see, ex., Nakano ([7], [8: p. 153] and [9: p. 204)), Musielak [5: p. 11 and Rolewicz 
[12: p. 6)). The set of those measurable functions x( . ) E S(Q,X) that there is a 
positive k such that pN,,1(kx(.)) < oo we shall denote by N(L(fl, E, ,u; X)). Recall that 
a metrizing modular on a linear space X is a function p : X -* [0, ] having the 
following properties: 

(mdl) p(x)=0 if and only if  =0 

(md2) p(ax) = p(x) provided j al = 1 

(md3) p(ax+ by) :^p(x)+p(y) provided a,b>O and a+b=1 
(md4) p(anx) - 0 provided an - 0 and p(x) < +oo 

(md5) p(axn) -+ provided p(x n ) 0. 

We shall denote by (X, p) a linear space with a modular p and we shall call it modular 
space. Let (X, p) be a modular space with metrizing modular p. It is known that p 
induces in the space X an F-norm fi lix by 

ii x iix = inf {e > 0 p (f) <e }.
	

(2)
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The norm ii lix is equivalent to the moduler p in the sense that, for any sequence 
{x}, Ii x,,x - 0 if and only if p(x) - 0 (see Musielak and Orlicz [6] and Musielak 
[5: p. 21; see also Rolewicz [12: p. 8]). Observe that if the functions x() E 
N(L(cz,E,p;X)) (n E IN) have disjoint supports, then 

	

i PNp(Xn()) = PN,p (
	

x( . )).	 (3) 

Let (X, p) and (Y,py) be two modular spaces. A set-valued operator I' = r(x) 
mapping (X, px) into subsets of (Y, py) will be called lower ,emicontinuous at a point 
(x0 , yo) € X x Y if it is lower semicontinuous at this point in the metric induced by the F-
norms introduced above. In other words r is lower semicontinuous at (x 0 , yo) if for every 
r > 0 there is a number q(z0y0) (r) > 0 with the following property: for every x E X such 
that pN,p(xO()-.x()) < q ,0 (r) there is any E r(x) such that pM,1L(yo()y()) < r. 
This is equivalent with the property that pN,p(xO( • ) - x( . )) < q(10,y0) (r) implies 

	

r(x)nQø	 (4) 

where Q = {y : pMjs(YO() - y( . )) < r}. 
A set-valued operator F mapping (X, px) into subsets of (Y, py) will be called 

lower semicontinuous at a point x 0 E X if it is lower semicontinuous at all the points 
( X0 ' Yo) (Yo € F(xo)). 

Now we shall introduce a notion of global lower semicontinuity at x 0 , which is 
nothing else than an uniformization of lower semicontinuity on F(xo). More precisely, 
we say that a set-valued mapping F is globally lower semicontinuous at the point x 0 , if 
for every r > 0 there is a q__ 0 (r) > 0 with the following property: for every yo E F(xo) 
and for every x € X such that pN,(xo()—x()) <qx0 (r) there is any € x) such that 
PM,,i(yo - y) < r. This is equivalent with the property that pN,(xo() - x( . )) <qx0(r) 
implies

F(xo) C B(F(x),r)	 (5) 

where

B(A,$) = {(.). inf PM,(Yi() - y( . )) <}. 
yi()EA 

The essential difference between lower semicontinuity and global lower semiconti-
nuity is that in the first case > 0 depends on x 0 and Yo € F(x 0 ), while in the 
second case it depends on x 0 only. 

Changing the role of x and Xo in formula (5) we obtain a notion of metric upper 
semicontinuity. We say that the set-valued mapping F is metric upper semi continuous 
(Hav.sdorff upper semicontinuous) at a point x0 if for every r > 0 there is a q,, 0 (r) > 0 
such that PN,p(XO() - z( . )) < q.0 (r) implies 

F(x) C B(F(xo),r).	 (6) 

The both notions are not equivalent. Indeed, it is easy to give an example of a 
set-valued mapping F which is globally lower semicontinuous at a point xo, but which is
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not metric upper semicontinuous at this point. Conversely, an example of a set-valued 
mapping r which is metric upper semicontinuous at a point x 0 but which is not globally 
lower semicontinuous at this point can be easily given too. 

In the sequel we shall add some assumptions about the functions N(t, u) and M(t, u). 
Namely, we assume that the function N = N(t, u) satisfies the following condition 

(A) For every e > 0 there are numbers a > 0 and 5 > 0 such that for every measurable 
set E C Q with (E) >5 we have fE N(t ,e) dt > a. 

Observe that in Orlicz spaces, i.e. in the case when N(t,u) = No(u) depends only on 
u, the condition (A) is satisfied. Further, we assume that the function M(t, u) satisfies 
the following condition 

(z 2 ) There are a constant k > 1 and a non-negative function S such that fE M(t, 5(t)) d1z 
< +oo and for almost all t, if u 5(t), then M(t, 2u) <k M(t, u). 

The condition (L 2 ) plays an essential role in the theory of Orlicz-Musielak spaces. 
Observe that if the function M(t, u) satisfies condition (/.2), then from the fact that 
PM, M (X ) < +00 and pM,(y ) < +oo it follows that pM,(ax + by) < +00 for all real a 
and b. We conclude that M(L(cl, E, i; Y)) is the set of those measurable functions (.) 
with values in the space X, that pM,,(y) < +00 (see (5: p. 52) and [61). 

Theorem 1. Let X, Y be two separable F-spaces, (Q, E, ) a measure space with 
complete non-atomic and or-finite measure M , and NF a Nemyiski set-valued operator 
mapping of a modular space (N(L(1,,p;X)),pN,,) into subsets of a modular space 
(M(L(l, , p; Y)), pM,,) induced by a sup-measurable set-valued function F(t, u) : Q x 
X - 2'. Suppose that 

(i) the function N = N(t, u) satisfies condition (A) 

(ii) the function M = M(t, u) satisfies condition (z2). 

If the function = F(t, u) is globally lower semicontinuous with respect to u for almost 
all t e Q, then the operator NF is globally lower semicontinuous. 

Proof. Suppose that the operator NF is not globally lower semicontinuous. This 
implies that there are a number r > 0 and sequences {x( . )}, { y,( . )} with y,( . ) E 
NF(xo( . )) such that

- xO( . )) ... 0 
inf	PM,z(Z() - yn()) > f (n E z(•)ENp(zn( )) 

By [2: Theorem 8.24 and Corollary 8.23], for arbitrary i > 0 there is a sequence {z(.)} 
of measurable selections z( . ) e Np(x( . )) such that, for almost all t E S2, 

y(t) - zn(t)IIy < (1 + t7)dy (y(t), F(t, x(t)))	 (7)
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where dy(y, A) = inf:EA 11  - y liv denotes the distance of a point y to a set A in the 
norm ii 11 y. We denote u(t) = ll y () - z(i)IIy. Since z( . ) E NF(x ( • )), then 

JM(t,u(t))d ^!	inf	pM,(z() - yn()) > r	(nEW).	(8) 
fi 

The convergence pN,,(xn() - x 0 ( . )) —i 0 implies that the sequence {x( . ) - Xo()} 
contains a subsequence {x( . ) - x0 ( . )} such that 

	

fN(t, Ii x ( t) - xo( t )IIx) d < +oo.	 (9) 
k=1 

Thus replacing the sequence {x( . ) - x0 ()} by the subsequence {x,( . ) - x 0 ( . )} we can 
assume without loss of generality that 

	

fN(t, II x ( t) - xo(t)iix) d < ±00.	 (10)1 
n=10 

Now we have the following two possibilities: either (1) (1) is finite or (2) z(l) is 
infinite. 

Case (1): /t() is finite. We shall construct by induction a sequence of positive 
numbers {Ek }, a sequence of measurable sets { lk } (cik C 1) and a subsequence {x, - 
x0 ) such that the following conditions are satisfied: 

(a) Ek+1< 

(c) j - M(t,u flk (t)) du > 

(d) J'DM(t,unk(t)) d,i < 1 r for any set DC 1k such that p(D) <2Ek+1. 
We put e 1 = 41l),x,,, - xo = xi - xo and Q1 = Q. Suppose that E k, Zn, - XO 
and Qk have been constructed. Since NF is a Nemytski set-valued operator map-
ping of the modular space (N(L(c1,E,p;X)),pN,) into subsets of the modular space 
(M(L(fZ,Y,p;Y)),pM), by property (2), 

IM (t, u ., (t)) d <+00. 
Ok 

Thus the function M(t, ufl k (t)) is absolutely continuous. Hence it is easy to find ek+1 
satisfying conditions (a) and (d). Since the function N = N(t, u) satisfies condition (A) 
and p(xn( • ) - ro( . )) - 0, the functions x,, tend to x0 in measure. Replacing eventually 
the sequence {x, - x 0 } by its subsequence, we can assume without loss of generality 
that x,(i) tends to xo(t) almost everywhere. By the global lower semicontinuity of 
F(t,x), we obtain that dy(y(t),F(t,x(t))) tends to  almost everywhere.
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Since u(Q) < +00, for the sequence {z( . )} of measurable selections chosen at the 
beginning of this proof such that (7) holds, there are an index nk+1 and a set Ek+I C 
such that, for t E Ek+I,

	

M(t, uflk(t)) < 3(e) .	 (11) 

and
z(cl\Ek+I) <	 ( 12) 

Let k+i = 1i\ Ek+I. Observe that (12) implies condition (b). By (8) and (11), we 
obtain 

J M(t,u,(t)) d = fM(tuflk+I (i)) dp - J M(t,uflk+I (i)) d> r. 

By properties (a) and . (b), we get 

Qk+I 
U Q 	 (cl3)

 j=k+1	j=k+I 

Thus we have constructed a sequence of positive numbers {Ek }, a sequence of measurable 
sets {clk}, Qk C Q, and a subsequence {xfl k - x0 } such that conditions (a) - (d) hold. 

Now we shall continue the proof. Let 

Dk = Qk \ (c)	(k E IV). 
j=k+1 

Define functions 0, Oo, Yo, z in the following way: 

f x fl (s) ifs E D k (k E IV) 

	

ifsU.1D	 (14) 1 
fxo(s) ifsED k (kEJTV) 

	

ifsU.1D	 (15) 

f Yfl k ( s) ifs E Dk (k e IN) 

	

ifsU1D	 (16) 

1 Z fl (S) ifs E Dk (k e Z(S) - 
- 1()	ifsU.1D	 (17 )' 

where w( . ) and v( . ) belong to NF(0) (i.e. these are measurable selections of F(s,O)). 
From conditions (c), (d) and inequalities (l1), (13) it follows that 

J M(t, IIyo(t) - z(t)II) dz =f M(t,u(t)) 

= f M(t,u flk (i)) dji - J M(t,ufl k (t))di	(18) 
Qk 

1 
> r.
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Observe that 7ko e N(L(l,E,j;X)) and, by (10), also V, E N(L(1Z,E,ji;X)). It is 
easy to see that yo() E Np(bo( . )) and z( . ) E NF(t,b(•)). 

On the other hand, 

f M(t, IIyo(t) - z ( t )II) dz>	J M(t, IIyo(t) - z ( t )II) di = 
k=1D 

which contradicts the fact that NF is a set-valued operator mapping of the modular 
space (N(L(SI, E , .U ; X)) , pN, M ) into subsets of the space (M(L(f, E, ,u; Y)), pM). This 
finishes the proof of the case when (l) is finite. 

Case (2): iu(Q) is infinite. We will consider the following two subcases: 

(2a) There are a subset Slo C Q with finite measure ii(Ilo) and a number /9 E (0,r) 
such that fo. M(t, u(t)) d,u 2 /3 (n E EN). 

(2b) There are a subsequence {tL,(t)} and a sequence of measurable sets {Dk } such 
that

(e) p(Dk ) < +oo and Di fl E) = 0 for i 0 j 

(f) fD, M(t,u flk (t))d.z 2 1 r (k E iN). 

In the subcase (2a) the consederation can be reduced to that of Case (1) with replacing 
r by /3. In the subcase (2b) we define functions by formulae (14) - (17). 
As in Case (1) we obtain that 0, V50 E N(L(S,E,/L;X)), and that z( . ) e Np(t,b( . )) and 
simultaneously yo() E NF(00()) . On the. other hand, by properties (e) and (f) we 
obtain that z(t) - yo (t) (M(L(1,E,;Y)),pM,), which leads to a contradiction U 

Theorem 2. Let X, Y be two separable F-spaces, (fl, E, j) a measure space with 
complete non-atomic and a-finite measue p, and N F a Nernytskiz' set-valued operator 
mapping of a modular space (N(L(f,,/.t;X)),pN) into subsets of a modular space 
(M(L(c,E,,.;Y)),pMM) induced by a sup-measurable set-valued function F = F(t,u) 

x X -* 2". Suppose that 

(i) the function N = N(t, u) satisfies condition (A) 

(ii) the function lv! = M(t, u) satisfies condition (62). 

If the function F = F(t, u) is lower semicontinuous with respect to u for almost all 
t E Q, then the operator NF is lower semicontinuous. 

Proof. Suppose that the operator NF is not lower semicontinuous at some point 
(x0(.),y0(.)) with yo (-) E NF(xo( . )) . This implies that there are a number r >0 and a 
sequence {x( . )} such that 

PN,(X n() - -0 0) .. 0 
inf	pM,(Z() - yo()) > r	(ri E 

:()ENF(x,,( ))
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By [2: Theorem 8.24 and Corollary 8 . 231, for arbitrary ij > 0 there is a sequence {z(.)} 
of measurable selections z( . ) E NF(x ( • )) such that, for almost all t e 

II yo(t) - -n(t)II < (1 + i7)dy (yo(t), F(t, x(t)))	 (7)2 

where as before dy(y, A) denotes the distance of a point y to a set A in the norm	k'

We denote u(t) = II yo( i) - z(t)IIy. Since z( . ) E NF(x ( . )), then 

J M(t,u(t)) dp>	inf	pM,(z() - yo()) > r	(n E	).	(8)2 - 

Then we continue the proof step by step in the same way as in the proof of Theorem 1 
replacing y() by yo( . ).'The only difference is to show the existence of a subsequence 
{ufl k } such that , the inequalities

M(t, uflk+l(t)) < 3(ç)	 (11)2 

and
t(ul \ Ek+1) < C -f	 (12)2 

hold. In order to do this we replace the global lower semicontinuity of F by its 
lower semicontinuity. Since the function N = N(t,u) satisfies condition (A) and 
PN,t(Xn() - x0( . )) -+ 0, the sequence {x( . )} tends to x 0 ( . ) in measure. Thus by 
the lower semicontinuity of F(t,x) with respect to x, dy(y0,F(t,x(t))) tends to 0 in 
measure. 

Since 4l) < +, for the sequence of measurable selections {z( . )} there are' an 
index flk-4-1 and a subset Ek+I c Q such that, for t E Ek+l, the inequalities 

M(t)unk+I(t)) < 3,(c)	 ,	 (11) 

and
t(I \ Ek+I) <	 ( 12)2 

hold. The remained part of the proof can be continued in the same way as presented in 
the proof of Theorem 1 U 

Theorem 3. Let X, Y be two separable F-spaces, (cl, E, i) a measure space with 
complete non-atomic and or-finite measue ji, and NF a Nemytski set-valued operator 
mapping of a modular space (N(L(1,!,;X)),pN) into subsets of a modular space 
(M(L(cl, E, ,a; Y)), pM,) induced by a sup-measurable set-valued function F = F(t, u) 

x X - 2's'. Suppose that 

(i) the function N = N(t, u) satisfies condition (A) 
(ii) the function M = M(t, u) satisfies condition (2). 

If the function F = F(t, u) is metric upper semicontirjuous with respect to u for almost 
all t E 1, then the operator N F is metric upper semi continuous.
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Proof. Suppose that the operator NF is not metric upper semicontinuous. This 
implies that there are a number r > 0 and sequences {x( . )} and {y,( • )} with y,() E 
Np(x()) such that

-	—4 0 
inf	PM,s(Z() - yn()) > r	(n E IV). 

By [2: Theorem 8.24 and Crollary 8.23], for arbitrary i > 0 there is a sequence {z()} 
of measurable selections z( . ) E Np(xo( . )) such that, for almost all i E ci, 

	

Iyn(t) - zn(i ) M < ( 1 + ri)dy (y(t), F(t, xo(t)))	 (7)3 

where as before dy(y, A) denotes the distance of a point y to a set A in the norm IIy. 
We denote u(i) = 11y(i) - z ( t )II y. Since z( . ) E NF( xo( . )), then 

J M(t,un(t)) dp > 
z()E 

inf	pM,(z(.) - y,( . )) > r	(n E IV).	(8)3 
-	NF(zo()) 

Then we continue the proof step by step in the same way as in the proof of Theorem 
1. The only difference is to show the existence of a subsequence {ufl k } such that the 
inequalities

	

3()	 (11)3 

and
(1l\Ek+I) < Ej-	 (12)3 

hold. In order to do this we replace the global lower semicontinuity of r by its met-
ric upper semicontinuity. Since the function N = N(t, u) satisfies condition (A) and 
pN(Xn() - x0 ( . )) -i 0, the sequence {x( . )} tends to x 0 ( . ) in measure. Thus by the 
metric upper semicontinuity of F(t,x) with respect to x, dy(y,F(t,x0(t))) tends to  
in measure. 

Since ,z(cI) < +, for the sequence of measurable selections {z( . )} there are an 
index flk+1 and a subset Ek+I C ci such that, for t E Ek+I, the inequalities 

r 
M(t

)
u flk+I (t)) < 31,(Q) (11)3 

and
/4l \ E,+) < C--	 (12)3 

hold. The remained part of the proof can be continued in the same way as presented in 
the proof of Theorem 1 U 

Theorem 3 generalizes Theorem 1 of [3], where it is proved for Banach spaces X, Y 
and for functions N(i,u) = uP,M(t,u) = u9 with - 1 < p q < +oo under some 
estimation assumptions warranting that a Nemytskii operator NF induced by a sup-
measurable set-valued function F = F(t,u) maps the space LP(ci,,;X) into the 
space L(1l, E, p; Y).
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