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Products of Lower Densities 

N. D. Macheras and W. Strauss 

Abstract. We prove the existence of product-lower densities for products of arbitrary families 
of (possibly incomplete) probability spaces, thus generalizing the corresponding results for finite 
products. The proofs are based on permanence results for lower densities under projective limits 
of probability spaces. Relying on work of Grekas we discuss in particular Haar measures on 
compact groups. 
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0. Introduction 

In [10) and [11) the'existence of the so-called product lifting, i.e. of a lifting compatible 
with the product, has been established for the completed product of an arbitrary family 
of complete probability spaces. This raises the question what the position is for non-
complete probability spaces. Since it is known that for non-complete probability spaces 
liftings, in general, do not exist (see [151) we replace liftings by lower densities whose 
existence is garanteed by [4) for arbitrary probability spaces. 

In the main theorem of this paper (Theorem 2 of Section 3) we establish the existence 
of a product - lower density for arbitrary families of (possibly incomplete) probability 
spaces where we use the following terminology: 

Given a family ((1,,E 1 , YO) 11 of probability spaces and another probability space 
(, E, iz) satisfying

c=flcj, 
iEI	 iEI	 . iEI	tEl 

we then call a lower density ir for p a product - lower density of the lower densities co 
for p, (i E I) and we write ir = O iEI Wi if the equation 

(P) ir ( [A 1 , ... , Ai , 	=	(At, ) ... ço,,(Aj] 
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holds true for all i 1 ,. .. ,i E I and all A k E El k (k = 1,... ,n) where [A 11 ,..., A1] 
denotes the cylinder set fl Bi for Bi k = Ai, (k = 1,... ,n) and B, = Qi if i E 
I\{z1,...,i}. 

The proof of this basic existence result relies on the permanence theorem for lower 
densities under projective limits of Section 2 and is in so far quite different from the 
methods taken in [11] for the proof of the product-lifting theorem. 

Based on work of Grekas [5] we construct for the Haar measure on a compact group 
a lower density which is a product of lower densities for Baire (=Borel) probability 
measures supported by compact Lie (hence metrizable) groups (see Theorem 3 in 
Section 3). 

1. Notations 

For a given probability space (s), E, ) a set N E E with (N) = 0 is called a ,u-null 
set, and for sets A, B E E we write A = B -a.e. if ALB, the symmetric difference of 
A and B, is a -null set. The (Carathéodory) completion of (cl,E, ) will be denoted 
by (l,E,f2). When there is no danger of confusion we write E in place of EA . We 
use the notion of (lower) density (resp. lifting) in the sense of [7: Chapter III, Section 
1/Def. 4 (resp. Def. 3)] and for any probability space (I,E,j) we denote by 9(E,) or 
just by i9(y) (resp. by A(E, p) or just by A(y)) the system of all (lower) densities (resp. 
liftings). 

We denote by

(11Qi7(9F'i'®ui)	or 
iEI	iEI	iEI	 iEI 

the product probability space of the probability spaces (12, E, z) (i E I) and by 

or 
iEI	iEI	l€I	 iEI 

its (Carathéodory) completion. 
We use the notions of projective systems and projective limits of probability spaces 

in the sense of [14]. For a projective system (ci c , E, jz, f, I) of probability spaces a 
family of (lower) densities	E 9(z) (a E I) is called self-consistent if 

of =fo Q for all a,[3E1 with afl. 

If (ci, E, /i, (fo)ct) is the projective limit of the above projective system a (lower) 
density E i9(z) is called a projective limit of the self-consistent family ( CPQ)aEJ if 

°f' = f'° p0 for all aEI, 

in symbols W = proj0j limpa.
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We suppose throughout that all the canonical projections f from Q onto Q,, are 
surjective. All the densities used in this paper are lower densities so that for simplicity 
we will use the word "density" instead of "lower density". 

Throughout, X denotes a completely regular Hausdorif topological space, and 
Cb(X) is the space of all bounded continuous real-valued functions on X. The a-field 
of Borel sets 8(X) (respectively Baire sets Bo(X)) over X is the one generated by the 
open subsets of X (respectively by the zero sets of X). For a probability measure p on 
8(X) a lifting p E A(p) is called strong if C ç p(G) for any open subset G c X. 

Let X1 and X2 be two topological spaces. A mapping g : X 1 - X2 is called Bare 
measurable if it is (80 (X1 ) - 50(X2)) -measurable. A Baire measurable bijection g is 
said to be a Baire isomorphism if g is also Baire measurable. 

For unexplained notions of measure theory or of topological groups we refer to 
Halmos [6] or to Montgomery and Zippin [13], respectively. 

2. A permanence result 

The main theorem of this section is the following permanence result for densities under 
projective limits. It is basic for the main theorem of the next section, but may also be 
of some interest in its own. 

Theorem 1. Let (Q, E, p, (f)') be the projective limit of a projective system 
of probability spaces. Suppose that (coa),r,EJ is  self-consistent fam-

ily of densities CPa E 0 (pa) . Then there exists a E 19(p) which is a projective limit of 
(coa)aeJ. 

Proof. For every a E I we set	= f (Es ) and	= I E, and define a density

for (Q,E,p) by 

	

p(f(A)) = f(CP0( A))	for every A E Ea. 

For all a,/3 E I with a	we have E,*,, c	and	I	= ço,. Indeed, for every 

A E E

r-lI A\ - r-lir-ii A\\	v' 
Jo, V')Jp Jo,V))'- 

because f(A) E Ep and so 

cp (fo, (A)) = f ((f; (A)))	f (f;, ((A))) 

=	(CPo,( A)) = Jo 

We-distinguish two cases. 

(i) There is. a countable cofinal subset J C I. Then E is the a-algebra generated 
by Uo,j and by [3: Lemma 1] there exists ço e 9(p) such that CP = for every 
aE I, i.e. CP is a projective limit of (çoo,)o,j. 

(ii) There is no countable cofinal subset of I. Then E = Uoj	and the desired 
density CP for It is given by w(A) = CP( A) if A E E,*, and a E 1 2
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There are projective systems of probability spaces for which self-cons istént families 
of densities arise naturally (see [9: Remark 2.2]). The next proposition exhibits another 
such class of spaces in a very general situation. As a preparation we need the following 
lemma which is an analogue of [8: Lemma 2.11. 

Lemma 1. Let be given two probability spaces (X, E, p) and (Y, ®, ii) and a 
measurable map f: X— * Y satisfying z(f'(B)) = .v(B) for all 13 E ®. Then for any 
9 E 19(v) there exists a 1P E 79() such that W of' = f 09. 

Proof. Let B be the a-subalgebra of E generated by f' (0) U u for u = { N E E: 
z(N) = O}. Define a density o for ft : B by (po(A) f'(9(B)) for A E B and 
B E 0 with A = f(B) ft-ac. Now using arguments similar those in Traynor's proof 
(see [16: Theorem 6]) of the theorem of D. Maharam [12] we conclude that po has an 
extension o E z9(.t). We have only to apply Lemmas 1 and 2 of [4] instead of Theorem 
4 and Lemma 5 of [16], respectively, and to consider the set 

£ = {(A,co) I A a-algebra in X with 8  A CE and p E i9(t I A)} 
instead of the set fl used in 116: Theorem 6]. The standard argument using Zorn's 
lemma completes the proof I 

In the next proposition we shall identify a cardinal r, with the initial ordinal of that 
cardinal. 

Proposition 1. For an at least countably infinite cardinal ,c let be given a projective 
system (Xa , Ea, y., f, c) of probability spaces with projective limit (X, E, t, (fc,, )a€sc) 
such that, for any limit ordinal ) < ic, 

(XA ,E A , A ) = proj<jlim(Xc,Ea,ta) 

holds true. Then there exists a self-consistent family (Pa)aE,c of densities (p ' E 19(IL01) 
for a E ic and a p E t9(t) which is a projective limit of the family ((pa),E,c. 

Proof. We construct a self-consistent family ( (Pa )"Ex of densities by induction on 
a ,c: Fora = Owe choose Wo E 19(to) by [4: Theorem 11. If  /3+1< n and 
Wp E 19(/2,3) is known, we choose by Lemma 1 a (pi Ei9(p+ 1 ) such that 

of =fo.	 (1) 

Since (pof1 =f1 o for all S < O we get	o f i = f 1 o from (1), i.e. ((p)< 
is self-consistent. For a limit ordinal a	r, we find by Theorem 1 a ço, E 19(,z,) such 
that	= proj <0 lim (p$ . i.e.	is self-consistent. Thus the induction can be

pushed through to obtain a self-consistent family ()a<,c. In particular (coa)o,c is 
self-consistent and (p = proj<,pa if (p	(p,c I 

Remark 1. From the proof of the above proposition it follows that one of the 
can be pre-assigned or even more of them, i.e. under the assumptions of Proposition 
1, if((p a )<fl (/3 < ic) is a pre-assigned self-consistent family of densities w,, E 
then there exist a self-consistent family ((p.y)<.).< of (p-'E 19(iz.) and a (p e 19(z) such 
that (p is a projective limit of ()a<,c. In particular for /3 = 0 we have that for a given 
Wo El9(o) there exist a self-consistent family	of V. E 9() and a (p E 19(p)

such that (p is a projective limitof
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3. The, product-density theorem 

The next theorem is the "product-density theorem" which generalizes Theorem 3 from 
[10: Section 2]. 

Theorem 2. Let be given probability spaces	and	 for i E I, I

a non-empty index set, such that 

	

ci=flci,	®E10E,	 =®Mi. 
iE1	 iEI	iEI 

Fix on an 20 E I. Then for any V io E 19 (/2 i) there exist Wi E 0(z,) for i e I \ { i 0 } and 
ir E 19(ii) such that ir = ®IEJ (pi-

Proof. Let C be the family of all triples (M,(p)%EM,p) where M is a subset of I 
with i 0 E M, p i, = E i9(j,) for every i e M,p E t9(9jEM0 and P =®1EMPi. 
Define an order relation on C by 

	

(M,(p1)eM,p)	(N,(r)Xpj,r) 

	

MCN, r,=p % for all iEM, roi	=?rM'NOp 

where JTMN : IIiEN Z -p [LEM li denotes the natural projection. 
If ( Ma, ( p ) IEM0,pa) EA is a totally ordered subfamily of C, we set M = UaEAMQ 

and p = p for every i E Ma and ci E A. Further, identifying the projective limit of 

( II ci, ® E, ® 11:7rMM$A) 
tEM0	iEM,	iEM,. 

with

( H Qi®EiØ/1i(7TMM)aEA)


	

xEM	iEM	iEM 

by Theorem 1 of Section 1 we find p E 9(®iEMj) such that po1rj M = M. mop,, for ev-
ery ci E A. It is clear that (M,(p1).EM, p) is an upper bound of (Ma,(p)jEM , 
in C. Thus C is inductively ordered and by Zorn's lemma there exists a maximal element 

(Wi)iE 	of C. 
We claim that M = I. Indeed, if M were a proper subset of I and j E I \ M, by 

[10: Section 2/Theorem 31 we could choose Wj E 0(,z) and 0 E 29(0IEMu{j}/1i) such 
that b = (p( j . But then (Mu {3* },((p$)EMU{},0) would be an element of C strictly 
greater than (M,((p)EM,ço), which is a contradiction. 

Finally, as in the proof of Lemma 1 of Section 2, we find it E 19(i) extending (p U 
Remark 2. It follows from the proof of Theorem 2 that the singleton i 0 € I can 

be replaced by any subset of I. More precisely, if J I, Wi e 0(j) for every i E J and 
(p E 19(®EJI2i) such that p = &E JW6 then there exist Wi € 0(p) for every i E I\ J 
and it E t9(t) such that it =
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Remark 3. The product-density theorem might raise the following question. Given 
probability spaces	and densities p i E 19() (i E I 54 0), does there always 
exist a y E t9() such that	®,j cp i holds true if (, E, j.t) is a probability space such 

that

c=flcl, ®E1c, 
iEI	iEI	 I iEI	iEI 

Consider the product space (flEJ1l6®jE1>j,ØIEJpj), where I is a non-empty index 
set, Q i is a compact extremally disconnected space (i.e. Q i is compact and the closure 

of an open subset C of Q, is open), E 1 = 8(X,), y i is a diffuse (i.e. without atoms) 
probability measure, and ,(G) = i(G) for all G E Ti , 7; the topology of Q i ( i E I). 
Such spaces are given by the hyperstonian space derived from a diffuse probability space, 
e.g. the hyperstonian space of the Lebesgue measure space on [0, 1] will do (see [3]). It 
is well known that such spaces have a unique strong lifting at E A(,). 

Assume that there exists a product density	= ® iEICt E 9(,jj1,). Then the 
map w :	-*	defined by ço(AAN) = o(A) for any A E ®EI E 1 and

N c N1 with 1 ji(N1 ) = 0, is clearly a density and = ®$ EJ Yj E t9(iE!/2i). 

The canonical projections fi from fl;EI l, onto Q, are (7 - 'T.)-continuous, where 
and T,*, are the density topologies for	and a 1 , respectively (see [7: Chapter V,


Section 11 for the definition). In face for any A E T,,*, it holds true that A C c 2 (A) hence 

fI'(A) c fI 1 (o 1 (A)) = (f(A)),	i.e. fr 1 (A) e	for each i E I. 

Therefore for the product topology fltEJ 7; we get fuEl 7; c	c ®iElEi, which is a

contradiction according to [3]. 

So the answer to the above question is to the negative (even if all the a i are strong 
liftings) and this raises the question "under which conditions can more than one of the 

, E i9(z,) be pre-assigned, in particular, when can all of them be pre-assigned". 

Given a compact group C of uncountable weight w(G) = c there exists by [5: 
Lemma 2.2] a family (H.y ).y < c, of closed normal subgroups of G with fl.1< H.1 {e}, e 
the unit element of G, such that for every 7 < 

(i) HcH.1for7<<a 

(ii) H.1 /H..l+l is Lie 

(iii) H.1 = fl<.1 H$ if y is a limit ordinal. 

It follows from the above result that X.1 := H.1 /H.1+I = ( G1H.1+ 1 )1(G1H.1 ) for > 0 
and X0 := C/H1 are Lie (hence metrizable) compact groups. 

Theorem 3. Let C, (H.1).1<Q and (X.1).1<a be as above. Then the following state-
ments are true: 

(i) For any Baire probability measure p on C there exist a self-consistent family 
of densities .1 E 19(z.1 ), where /.1 : Q 1,1.1 the canonical projection from G onto 
G/H.1 ( y <) and a E i9() which is a projective limit of (cp.1).1<Q.
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(ii) There exist a family ( L'. ),<Q of Baire (=Borel) probability measures, each v, 
supported on X, &. € i9(zi.) (y < o) and t,b E t9(A), A the (normalized) Haar measure 
on G such that i' can be represented as the product-density 

Proof. (i) For any limit ordinal y < a the family (G1Hfl , ffl6 ,c) where fsa is 
the canonical projection from C/H6 onto G/Hfl , is a projective system. There exists 
a natural continuous homomorphism from C onto proj fl< limG/Hp whose kernel is 
np <,H ,6 and fl< H = H by relation (iii) preceeding Theorem 3. So 'there exists a 
continuous algebraic isomorphism of the compact group C/H-,, onto proj < ,, urn G/Hfl 
which must therefore be a homeomorphism. Thus 

C/H-,, = proj<,, lim G/H, 

(cf. [2: Proof of Lemma 9]). Now applying relation (i) preceeding Theorem 2 we get 


G = G1 (el proj.,<0limG/H.,,. 

But then according to [1: Theorem 2.31 we have 

(C, 13 0 (G), z) = proj,, < lim(G/H.,, 130(G/H..,,), i) 

and, for any limit ordinal < a, 

(C/H.1 , 130(C/H.1),) = proj < lim(G/H, 130(G/Hp), 

Hence all the assumptions of Proposition 1 of Section 2 are fulfilled and so there exist 
a self-consistent family of densities p.,, € 10() (-y < ) and a p € 19() which is a 
projective limit of 

(ii) By [5: Theorem 2.3] there exist a family (v.,,) .y<a of Baire (= Borel) probability 
measures, each zi- supported on X.,,, and a Baire isomorphism qG from XG := fl,,<0 X.1 
onto C such that AGoq ' = A where Ac :=	By Theorem 2 we find u,.,, € 19(v.1) 
and a product- densi tity 0. € i9(A). Therefore the density 1' :=	o qG 

I € i9(A) is the

desired one. 
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exposition and of the proofs of this paper. 
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