Diagonalizing "Compact" Operators on Hilbert W*-Modules

M. Frank and V. M. Manuilov

Abstract. For W[•]-algebras A and self-dual Hilbert A-modules \mathcal{M} we show that every selfadjoint, "compact" module operator on \mathcal{M} is diagonalizable. Some specific properties of the eigenvalues and of the eigenvectors are described.

Keywords: Diagonalization of "compact" operators, Hilbert W *-modules, W *-algebras, eigenvalues, eigenvectors

AMS subject classification: Primary 47 C 15, secondary 46 L 99, 46 H 25, 47 A 75

The goal of the present short note is to consider self-adjoint, "compact" module operators on self-dual Hilbert W^{*}-modules (which can be supposed to possess a countably generated W^{*}-predual Hilbert W^{*}-module, in general) with respect to their diagonalizability. Some special properties of their eigenvalues and eigenvectors are described.

A partial result in this direction was recently obtained by V. M. Manuilov [10, 11] who proved that every such operator on the standard countably generated Hilbert W*module $l_2(A)$ over finite W*-algebras A can be diagonalized on the respective A-dual Hilbert A-module $l_2(A)'$. The same was shown to be true for every self-adjoint bounded module operator on finitely generated Hilbert C*-modules over general W*-algebras by R. V. Kadison [5 - 7] and over commutative AW^* -algebras by K. Grove and G. K. Pedersen [4] sometimes earlier. M. Frank has made an attempt to find a generalized version of the Weyl-Berg theorem in the $l_2(A)'$ setting for some (abelian) monotone complete C*-algebras which should satisfy an additional condition, as well as a counterexample (cf. [2]). Further results on generalizations of the Weyl-von Neumann-Berg theorem can be found, e.g., in papers of G. J. Murphy [12], S. Zhang [15, 16] and H. Lin [9].

We go on to investigate situations where non-finite W*-algebras appear as coefficients of the special Hilbert W*-modules under consideration (Proposition 5), and where arbitrary self-dual Hilbert W*-modules are considered (Theorem 9). The applied techniques are rather different from that in [10, 11]. By the way, the results of V. M. Manuilov in [10, 11] are obtained to be valid for arbitrary self-adjoint, "compact" module operators on the self-dual Hilbert A-module $l_2(A)'$ over finite W*-algebras (Proposition 3). This generalizes [10] since in the situation of finite W*-algebras A the set of "compact" operators on $l_2(A)$ may be definitely smaller than that on $l_2(A)'$, and the latter

M. Frank: Universität Leipzig, Inst. Math., Augustuspl. 10, D - 04109 Leipzig

V. M. Manuilov: Moscow State University, Fac. Mech. Math., 117234 Moscow, Russia

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

may not contain all bounded module operators on $l_2(A)'$, in general. We characterize the role of self-duality for getting adequate results in the finite W^{*}-case (Proposition 4). The final result of our investigations is Theorem 9 describing the diagonalizability of "compact" operators on self-dual Hilbert W^{*}-modules in great generality.

We consider Hilbert W*-modules $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ over general W*-algebras A, i.e. (left) *A*-modules \mathcal{M} together with an *A*-valued inner product $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to A$ satisfying the following conditions:

- (i) $\langle x, x \rangle \geq 0$ for every $x \in \mathcal{M}$
- (ii) $\langle x, x \rangle = 0$ if and only if x = 0
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for any $x, y \in \mathcal{M}$
- (iv) $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ for any $a, b \in A$ and $x, y, z \in \mathcal{M}$

(v) \mathcal{M} is complete with respect to the norm $||x|| = ||\langle x, x \rangle||_A^{1/2}$.

We always suppose that the linear structures of the W^{*}-algebra A and of the (left) A-module \mathcal{M} are compatible, i.e. $\lambda(ax) = (\lambda a)x = a(\lambda x)$ for every $\lambda \in \mathbb{C}$, $a \in A$ and $x \in \mathcal{M}$.

Let us denote the A-dual Banach A-module of a Hilbert A-module $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ by

$$\mathcal{M}' = \left\{ r : \mathcal{M} \to A | r \text{ is } A - \text{linear and bounded} \right\}.$$

Hilbert W*-modules have some very nice properties in contrast to general Hilbert C*modules. First of all, the A-valued inner product can always be lifted to an A-valued inner product on the A-dual Hilbert A-module \mathcal{M}' via the canonical embedding of \mathcal{M} into $\mathcal{M}', x \to \langle \cdot, x \rangle$, turning \mathcal{M}' into a (left) self-dual Hilbert A-module, $(\mathcal{M}' = (\mathcal{M}')')$. Moreover, one has the following criterion on self-duality.

Proposition 1 (see [1: Theorem 3.2]). Let A be a W^* -algebra and $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ be a Hilbert A-module. Then the following conditions are equivalent:

(i) *M* is self-dual.

(ii) The unit ball of \mathcal{M} is complete with respect to the topology τ_1 induced by the semi-norms $\{f(\langle \cdot, \cdot \rangle)^{1/2}\}$ on \mathcal{M} , where f runs over the normal states of A.

(iii) The unit ball of \mathcal{M} is complete with respect to the topology τ_2 induced by the linear functionals $\{f(\langle \cdot, x \rangle)\}$ on \mathcal{M} where f runs over the normal states of A and x over \mathcal{M} .

Furthermore, on self-dual Hilbert W*-modules every bounded module operator has an adjoint, and the Banach algebra of all bounded module operators is actually a W*algebra. And last but not least, every bounded module operator on a Hilbert W*-module $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ can be continued to a unique bounded module operator on its A-dual Hilbert W*-module \mathcal{M}' preserving the operator norm. (Cf. [13].)

We want to consider (self-adjoint) "compact" module operators on Hilbert W^{*}modules. By G. G. Kasparov [8] an A-linear bounded module operator K on a Hilbert A-module $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ is "compact" if it belongs to the norm-closed linear hull of the elementary operators

$$\Big\{ \theta_{x,y}: \ \theta_{x,y}(z) = \langle z, x \rangle y \ (x,y \in \mathcal{M}) \Big\}.$$

The set of all "compact" operators on \mathcal{M} is denoted by $K_A(\mathcal{M})$. By [13: Theorem 15.4.2] the C^{*}-algebra $K_A(\mathcal{M})$ is a two-sided ideal of the set of all bounded, adjointable module operators $\operatorname{End}_A^*(\mathcal{M})$ on \mathcal{M} , and both these sets coincide if and only if \mathcal{M} is algebraically finitely generated as an A-module (cf. also [3: Appendix]). This will be used below. Since we are going to investigate single "compact" operators we make the useful observation that both the range of a given "compact" operator and the support of it are Hilbert C^{*}-modules generated by countably many elements with respect to the norm topology or at least with respect to the τ_1 -topology (cf. Proposition 1). Hence, without loss of generality we can restrict our attention to countably generated Hilbert W^{*}-modules and their W^{*}-dual Hilbert W^{*}-modules.

We are especially interested in the Hilbert W*-module

$$l_2(A) = \left\{ \{a_i\}_{i \in \mathbb{N}} \subset A \middle| \sum_{i=1}^{\infty} a_i a_i^* \text{ converges with respect to } \|\cdot\|_A \right\}$$
$$\langle \{a_i\}, \{b_i\}\rangle = \|\cdot\|_A - \lim_{N \in \mathbb{N}} \sum_{i=1}^N a_i b_i^*$$

and in its A-dual Hilbert W*-module

$$l_2(A)' = \left\{ \{a_i\}_{i \in \mathbb{N}} \subset A \middle| \sup_{N \in \mathbb{N}} \left\| \sum_{i=1}^N a_i a_i^* \right\| < \infty \right\}$$
$$\langle \{a_i\}, \{b_i\} \rangle = w^* - \lim_{N \in \mathbb{N}} \sum_{i=1}^N a_i b_i^*$$

because of G. G. Kasparov's stabilization theorem [8], stating that every countably generated Hilbert C^{*}-module over a unital C^{*}-algebra A is a direct summand of $l_2(A)$.

Definition 2. Let A be a W^{*}-algebra and let $\{\mathcal{M}, \langle \cdot, \cdot \rangle\}$ be a self-dual Hilbert Amodule possessing a countably generated Hilbert A-module as its A-predual. A bounded module operator T on \mathcal{M} is *diagonalizable* if there exists a sequence $\{x_i\}_{i \in \mathbb{N}} \subset \mathcal{M}$ of non-trivial elements such that the following conditions are fulfilled:

(i) $T(x_i) = \Lambda_i x_i$ for some elements $\Lambda_i \in A$.

(ii) The Hilbert A-submodule generated by $\{x_i\}_{i \in \mathbb{N}}$ inside \mathcal{M} has a trivial orthogonal complement.

(iii) The elements of $\{x_i\}_{i \in \mathbb{N}}$ are pairwise orthogonal and $p_i = \langle x_i, x_i \rangle$ are projections in A.

(iv) The equality $\Lambda_i p_i = \Lambda_i$ holds for the projection p_i .

Note that the eigenvalues and the eigenvectors are not uniquely determined for the operator T since $T(x) = \Lambda x$ implies $T(y) = \Lambda' y$ for $\Lambda' = u \Lambda u^*$ and y = ux for all unitaries $u \in A$. Moreover, the eigenvalues of T do not belong to the center Z(A) of A, in general. Consequently, $T(ax) = a(\Lambda x) \neq \Lambda(ax)$, in general. That is, eigenvectors are often not one-to-one related to T-invariant A-submodules of the Hilbert A-module \mathcal{M} under consideration.

Now, we start our investigations decomposing A into components of prescribed type with respect to its direct integral representation. Denote by p that central projection of A dividing A into a finite part pA and infinite part (1-p)A. That means, with respect to the direct integral decomposition of A the fibers are almost everywhere factors of type I_n $(n < \infty)$ or II₁ inside pA and almost everywhere factors of type I_{∞} or II_{∞} or III inside (1-p)A. Analogously, the Hilbert A-module $l_2(A)$ decomposes into the direct sum of two Hilbert A-modules $l_2(A) = l_2(pA) \oplus l_2((1-p)A)$, and every bounded A-linear operator T on $l_2(A)$ splits into the direct sum $T = pT \oplus (1-p)T$, where each part acts only on the respective part of the Hilbert A-module non-trivially and at the same time as an A-linear operator.

Consequently, we can proceed considering W^* -algebras A of coefficients of prescribed type. Our first goal is to revise the case of finite W*-algebras investigated by V. M. Manuilov. There the set $K_A(l_2(A)')$ does not coincide with the set $\operatorname{End}_A(l_2(A)')$, and there are always self-adjoint, bounded module operators T on $l_2(A)'$ which can not be diagonalized. For example, consider a self-adjoint, bounded linear operator T_0 on a separable Hilbert space H being non-diagonalizable (cf. Weyl's theorem). Using the decomposition $l_2(A) = \overline{A \otimes H}$ one obtains a self-adjoint, bounded module operator T on $l_2(A)$ by the formula $T(a \otimes h) = a \otimes T_0(h)$ $(a \in A, h \in H)$. The operator T extends to an operator on $l_2(A)'$, and T can not be diagonalizable by assumption. Surprisingly, V. M. Manuilov proved that every self-adjoint, "compact" operator on the standard countably generated Hilbert W*-module $l_2(A)$ over finite W*-algebras A can be diagonalized on the respective A-dual Hilbert A-module $l_2(A)'$. A careful study of his detailed proofs at [10, 11] brings to light that for finite W*-algebras with infinite center the continuation of the "compact" operators to the respective A-dual Hilbert A-module is not only a proof-technical necessity, but it is of principal character. Selfduality has to be supposed to warrant the diagonalizability of all self-adjoint "compact" module operators on $\mathcal{M} \subseteq l_2(A)'$ in the finite case, and the key steps of the proof can be repeated one-to-one. Consequently, we give the generalized formulation of V. M. Manuilov's diagonalization theorem for the finite case, and we show additionally that self-duality is an essential property of Hilbert W^{*}-modules for finding a (well-behaved) diagonalization of arbitrary "compact" module operators on them, in general.

Proposition 3 (cf. [10] and [11: Theorem 4.1]). Let A be a W^* -algebra of finite type. Then every self-adjoint, "compact" module operator K on $l_2(A)'$ is diagonalizable. The sequence of eigenvalues $\{\Lambda_n\}_{n\in\mathbb{N}}$ of K has the property $\lim_{n\to\infty} ||\Lambda_n|| = 0$. The eigenvalues Λ_n can be chosen in such a way that $\Lambda_2 \leq \Lambda_4 \leq ... \leq 0 \leq ... \leq \Lambda_3 \leq \Lambda_1$. Moreover, for positive operators K without kernel the eigenvectors x_n may possess the property $\langle x_n, x_n \rangle = 1_A$, in addition.

For the detailed (but extended) proof of this proposition see [11] (see also [10]). The proving technique relies mainly on spectral decomposition theory of operators and on

the center-valued trace on the finite W^* -algebra A.

Proposition 4. Let A be a finite W^* -algebra with infinite center. Consider a Hilbert A-module \mathcal{M} such that $l_2(A) \subset \mathcal{M} \subseteq l_2(A)'$. Then the following two statements are equivalent.

(i) $\mathcal{M} = l_2(A)'$, i.e. \mathcal{M} is self-dual.

(ii) Every positive "compact" module operator is diagonalizable inside M with eigenvalues being comparable inside the positive cone of A.

Proof. Note that $l_2(A) \neq l_2(A)'$ by assumption. Denote the standard orthonormal basis of $l_2(A)$ by $\{e_n\}_{n\in\mathbb{N}}$. If the center of A is supposed to be infinite dimensional, then one finds a sequence of pairwise orthogonal non-trivial projections $\{p_n\}_{n\in\mathbb{N}} \subset Z(A)$ summing up to 1_A in the sense of w*-convergence. Fix a sequence of positive non-zero numbers $\{\alpha_n\}_{n\in\mathbb{N}}$ monotonically converging to zero. The bounded module operator K defined by

$$K(e_1) = \left(\sum_{n=1}^{\infty} \alpha_n p_n e_n\right), \qquad K(e_j) = \alpha_j p_j e_1 \quad \text{for } j \neq 1$$

is a "compact" operator on $l_2(A)$. It can be easily continued to a "compact" operator on \mathcal{M} . As an exercise one checks that the eigenvalues of K are $\alpha_1 p_1, \alpha_2 p_2, \dots, 0, \dots, -\alpha_2 p_2$ (ordering by sign and norm and taking into account conditions (iii) and (iv) of Definition 2), and that the appropriate eigenvectors are

$$p_1e_1, \frac{1}{\sqrt{2}}p_2(e_1+e_2), \frac{1}{\sqrt{2}}p_3(e_1+e_3), \cdots, \\ \{(1_A-p_n)e_n\}_{n\in\mathbb{N}}, \cdots, \frac{1}{\sqrt{2}}p_3(e_1-e_3), \frac{1}{\sqrt{2}}p_2(e_1-e_2).$$

The only way of making the eigenvalues comparable inside the positive cone of A preserving Definition 2/(iii)-(iv) is to sum up the positive and the negative eigenvalues separately. But then the resulting eigenvector

$$x = \left(1_A + \left(1 + \frac{1}{\sqrt{2}}\right)(1_A - p_1), \frac{1}{\sqrt{2}}p_2, \frac{1}{\sqrt{2}}p_3, \cdots, \frac{1}{\sqrt{2}}p_n, \cdots\right)$$

corresponding to the only positive eigenvalue $\sum_{n=1}^{\infty} \alpha_n p_n$ of K does not belong to \mathcal{M} any longer by assumption. This shows one implication. The converse implication follows from Proposition 6

The second big step is to investigate the case of infinite W*-algebras as coefficients of the Hilbert W*-modules under consideration. The result is characteristic for the situation in self-dual Hilbert W*-modules over infinite W*-algebras, and quite different from that in the finite W*-case, and elsemore, from the classical Hilbert space situation. **Proposition 5.** Let A be a W^{*}-algebra which possesses infinitely many pairwise orthogonal, non-trivial projections p_i $(i \in \mathbb{N})$ equivalent to 1_A and summing up to 1_A in the sense of w^{*}-convergence of the sum $\sum_i p_i = 1_A$. Then the Hilbert A-module $l_2(A)'$ equipped with its standard A-valued inner product is isomorphic to the Hilbert A-module $\{A, \langle \cdot, \cdot \rangle_A\}$, where $\langle a, b \rangle_A = ab^*$.

Proof. Suppose, the equivalence of the projections p_i $(i \in \mathbb{N})$ with 1_A is realized by partial isometries u_i : $p_i = u_i u_i^*$ and $1_A = u_i^* u_i$. Then the mapping

$$S: l_2(A)' \to A, \qquad \{a_i\} \to w^* - \lim \sum_{\substack{\text{finite number} \\ \text{of summands}}} a_i u_i^*$$

with the inverse mapping

$$S^{-1}: A \to l_2(A)', \quad a \to \{au_i\}$$

realizes the isomorphism of $l_2(A)'$ and A as Hilbert A-modules due to Proposition 1

Corollary 6. Let A be a W^* -algebra of infinite type. Then every bounded module operator T on $l_2(A)'$ is diagonalizable, and the formula

$$T(\{a_i\}) = \langle \{a_i\}, \{u_i\} \rangle \Lambda_T\{u_i\}$$

holds for every $\{a_i\} \in l_2(A)'$, some $\Lambda_T \in A$ and the partial isometries $u_i \in A$ described in the previous proof.

Proof. Every W^{*}-algebra of type I_{∞} , II_{∞} or III possesses a set of partial isometries with properties described in Proposition 3. The same is true for W^{*}-algebras consisting only of parts of these types. Now, translate the operator T on $l_2(A)'$ into an operator STS^{-1} on A and vice versa using Proposition 3, and take into account that every bounded module operator on A is a multiplication operator with a concrete element (from the right)

Corollary 7. Let A be a W^* -algebra without any fibers of type I_n $(n < \infty)$ and II_1 in its direct integral decomposition. Let \mathcal{M} be a self-dual Hilbert A-module possessing a countably generated A-predual Hilbert A-module. Then every bounded module operator T on \mathcal{M} is diagonalizable, and the formula

$$T(x) = \langle x, u \rangle \Lambda_T u$$

holds for every $x \in M$, some $\Lambda_T \in A$ and an eigenvector $u \in M$ being universal for all T.

Proof. Since \mathcal{M} has a countably Hilbert A-module as its A-predual, \mathcal{M} is a direct summand of the Hilbert A-module $l_2(A)'$ by G. G. Kasparov's stabilization theorem [8]. Hence, one has to show the assertion for the self-dual Hilbert A-module $l_2(A)'$ only. For further use denote the projection from $l_2(A)'$ onto \mathcal{M} by P. Consider the direct integral decomposition of A over its center. Therein every fiber is a W*-factor of type I_{∞} , II_{∞} or III by assumption. Putting it into the $l_2(A)'$ -context one obtains that A is isomorphic to $l_2(A)'$ either applying Corollary 6 fiberwise or constructing a suitable set of partial isometries $u_i \in A$ to make use of Proposition 5. Then in the same way as there the diagonalization result turns out for arbitrary bounded module operators T on $l_2(A)'$. To get the formula $T(x) = \langle x, u \rangle \Lambda_T u$ one has only to set $u = P(\{u_i\})$

Remark. Let A be an I_{∞} -factor, for example. Then there are self-adjoint elements Λ_T in A which can not be diagonalized in a stronger sense. More precisely, there is no way of representing any such operator as a sum $\sum \lambda_i P_i$ with $\lambda_i \in \mathbb{C} = Z(A)$ and $P_i = P_i^* = P_i^2 \in A$ because of Weyl's theorem. Therefore, the Corollaries 6 and 7 are the strongest results one could expect.

Example 8. Consider the C^{*}-algebra A of all 2×2 -matrices on the set of complex numbers. Set $\mathcal{M} = A^2$ with the usual A-valued inner product. Consider the ("compact") bounded module operator $K = \theta_{x,x} + \theta_{y,y}$ for

$$x = \left(\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \quad \text{and} \quad y = \left(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right)$$

Eigenvectors of K are $x, y \in A^2$, for example, and the respective eigenvalues are

$$\Lambda_x = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$$
 and $\Lambda_y = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$.

Remark that one can not compare these eigenvalues as elements of the positive cone of A. But, making another choice one arrives at that situation described in Proposition 6:

$$x_1 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
ight)$$
 and $x_2 = \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
ight)$.

Then the respective eigenvalues are

$$\Lambda_1 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \qquad \text{and} \qquad \Lambda_2 = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$$

and they can be ordered, as well as the eigenvectors x_1, x_2 are units. Last but not least, dropping out condition (iv) of Definition 2 one can correlate K-invariant submodules of \mathcal{M} and eigenvectors of K. Simply, set

$$x_1 = \left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right)$$
 and $x_2 = \left(\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right)$.

In this case the corresponding eigenvalues are

$$\Lambda_1 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$
 and $\Lambda_2 = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$.

They can be ordered in the positive cone of A. But, the eigenvectors corresponding to the K-invariant submodules of \mathcal{M} can not be selected to be units any longer.

Theorem 9. Let A be a W^{*}-algebra and \mathcal{M} be a self-dual Hilbert A-module. Then every self-adjoint, "compact"-module operator on \mathcal{M} is diagonalizable. The sequence of eigenvalues $\{\Lambda_n\}_{n\in\mathbb{N}}$ of K has the property $\lim_{n\to\infty} ||\Lambda_n|| = 0$. The eigenvalues Λ_n $(n \in \mathbb{N})$ of K can be chosen in such a way that $\Lambda_2 \leq \Lambda_4 \leq ... \leq 0 \leq ... \leq \Lambda_3 \leq \Lambda_1$, and that Λ_n $(n \geq 3)$ are contained in the finite part of A.

40 M. Frank and V. M. Manuilov

Proof. Both the τ_1 -closure of the range and of the support of K are self-dual Hilbert C*-modules possessing countably generated A-predual Hilbert A-modules because of the "compact"ness of K. Hence, without loss of generality one can restrict the attention to self-dual Hilbert W*-modules with countably generated W*-predual Hilbert W*-modules formed as the τ_1 -completed direct sum of range and support of K. As usual, on the kernel of K one has the eigenvalue zero and a suitable system of eigenvectors.

Now, gluing Corollary 4 and Proposition 6 together the theorem turns out to be true in the special case $\mathcal{M} = l_2(A)'$ (cf. the remarks at the beginning of the present note). The only loss may be that the eigenvectors are not units, in general. Because of G. G. Kasparov's stabilization theorem [8] \mathcal{M} possesses an embedding into $l_2(A)'$ as a direct summand by assumption. Therefore, every self-adjoint, "compact" module operator Kon \mathcal{M} can be continued to a unique such operator on $l_2(A)'$ preserving the norm, simply applying the rule $K|_{\mathcal{M}^{\perp}} = 0$. The eigenvectors of this extension are elements of \mathcal{M} . The Hilbert A-module \mathcal{M}^{\perp} belongs to its kernel. This shows the theorem

Remark. For commutative AW^* -algebras A Theorem 9 is still true by [4]. The general AW^* -case is open at present because of two crucial unsolved problems in the AW^* -theory:

(i) Are the self-adjoint elements of $M_n(A)$ $(n \ge 2)$ diagonalizable for arbitrary (monotone complete) AW^{*}-algebras A, or not?

(ii) Does every finite (monotone complete) AW*-algebra possess a center-valued trace, or not?

Remark. One can extend the statements of Theorem 9 to the case of normal, "compact" module operators dropping out only the ordering of the eigenvalues. To see this note that for normal elements K of the C*-algebra $K_A(\mathcal{M})$ there exists always a self-adjoint element $K' \in K_A(\mathcal{M})$ such that K is contained in the C*-subalgebra of $\operatorname{End}_A(\mathcal{M})$ generated by K' and the identity operator. Applying functional calculus inside the W*-algebra $\operatorname{End}_A(\mathcal{M})$ the result turns out. Beside this, it would be interesting to investigate some more general variants of the Weyl-von Neumann-Berg theorem for appropriate bounded module operators on (self-dual) Hilbert W*-submodules over (finite) W*-algebras A as those obtained by H. Lin, G. J. Murphy and S. Zhang.

Acknowledgement. The second author thanks for partial support by the Russian Foundation for Fundamental Research (grant no. 94-01-00108a) and by the International Science Foundation (grant no. MGM 000). The research work was carried out during a stay at Leipzig which was part of a university cooperation project financed by Deutscher Akademischer Austauschdienst. We are very appreciated to the referees for their helpful remarks on the first version of the present note.

References

- Frank, M.: Self-duality and C^{*}-reflexivity of Hilbert C^{*}-modules. Z. Anal. Anw. 9 (1990), 165 - 176.
- [2] Frank, M.: Hilbert C^{*}-modules over monotone complete C^{*}-algebras and a Weyl-Berg type theorem. Preprint. Universität Leipzig, NTZ, Prepeint 3/91 (1991), 1 - 28. To appear in Math. Nachr.
- [3] Frank, M.: Geometrical aspects of Hilbert C^{*}-modules. Preprint. Københavns Universitet, Matematisk Institut, preprint 22/93 (1993), 1 - 27.
- [4] Grove, K. and G. K. Pedersen: Diagonalizing matrices over C(X). J. Funct. Anal. 59 (1984), 64 - 89.
- [5] Kadison, R. V.: Diagonalizing matrices over operator algebras. Bull. Amer. Math. Soc. 8 (1983), 84 - 86.
- [6] Kadison, R. V.: Diagonalizing matrices. Amer. J. Math. 106 (1984), 1451 1468.
- [7] Kadison, R. V.: The Weyl theorem and block decompositions. In: Operator Algebras and Applications/Vol. 1 (ed.: D. E. Evans) (London Math. Soc. Lect. Note Ser.: Vol. 135). Cambridge: Univ. Press 1988, pp. 109 - 117.
- [8] Kasparov, G. G.: Hilbert C^{*}-modules: The theorems of Stinespring and Voiculescu. J. Oper. Theory 4 (1980), 133 - 150.
- [9] Lin, H.: The generalized Weyl von Neumann theorem and C^{*}-algebra extensions. In: Algebraic Methods in Operator Theory (eds.: R. Curto and P. E. T. Jørgensen). Boston
 Basel - Berlin: Birkhäuser Verlag 1994, pp. 135 - 146.
- [10] Manuilov, V. M.: Diagonalization of compact operators on Hilbert modules over W^{*}algebras of finite type (in Russian). Uspekhi Mat. Nauk 49 (1994)2, 159 - 160.
- [11] Manuilov, V. M.: Diagonalization of compact operators on Hilbert modules over W^{*}algebras of finite type. Annals Global Anal. Geom. (submitted).
- [12] Murphy, G. J.: Diagonality in C*-algebras. Math. Z. 199 (1988), 199 229.
- [13] Paschke, W. L.: Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443 - 468.
- [14] Wegge-Olsen, N. E.: K-Theory and C*-Algebras a Friendly Approach. Oxford New York - Tokyo: Oxford Univ. Press 1993.
- [15] Zhang, S.: Diagonalizing projections in the multiplier algebras and matrices over a C^{*}algebra. Pacific J. Math. 145 (1990), 181 - 200.
- [16] Zhang, S.: K₁-groups, quasidiagonality and interpolation by multiplier projections. Trans. Amer. Math. Soc. 325 (1991), 793 - 818.

Received 28.06.1994; in revised form 04.11.1994