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Diagonalizing "Compact" Operators 
on Hubert W*Modu1es 

M. Frank and V. M. Manuilov 

Abstract. For W-algebras A and self-dual Hilbert A-modules M we show that every self-
adjoint, "compact" module operator on M is diagonalizable. Some specific properties of the 
eigenvalues and of the eigenvectors are described. 
Keywords: Diagonolization of "compact" operators, Hubert W *-modules, W *algeb, cigen-

values, etgenvectors 
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The goal of the present short note is to consider self-adjoint, "compact" module ope-
rators on self-dual Hubert W-modules (which can be supposed to possess a countably 
generated W*predual Hubert W*module, in general) with respect to their diagonali-
zability. Some special properties of their eigenvalues and eigenvectors are described. 

A partial result in this direction was recently obtained by V. M. Manuilov 110, 111 
who proved that every such operator on the standard countably generated Hubert W- 
module 12 (A) over finite W*algebras A can be diagonalized on the respective A-dual 
Hilbert A-module 12 (A)'. The same was shown to be true for every self-adjoint bounded 
module operator on finitely generated Hubert C*modules over general W'-algebras by 
R. V. Kadison [5 - 7] and over commutative AW'-algebras by K. Grove and G)K. Peder-
sen [4] sometimes earlier. M: Frank has made an attempt to find a generalized version 
of the Weyl-Berg theorem in the 1 2 (A)' setting for some (abelian) monotone complete 
C*algebras which should satisfy an additional condition, as well as a counterexample 
(cf. [21). Further results on generalizations of the Weyl-von Neumann-Berg theorem 
can be found, e.g., in papers of G. J. Murphy [12], S. Zhang [15, 16] and H. Lin [9]. 

We go on to investigate situations where non-finite W-algebras appear as coef-
ficients of the special Hubert W e -modules under consideration (Proposition 5); and 
where arbitrary self-dual Hilbert W*modules are considered (Theorem 9). The applied 
techniques are rather different from that in [10, 11]. By the way, the results of V. M. 
Manuilov in [10, 111 are obtained to be valid for arbitrary self-adjoint, "compact" module 
operators on the self-dual Hilbert A-module 12 (A)' over finite W-algebras (Proposition 
3). This generalizes [10] since in the situation of. finite W*algebras A, the set of "com-
pact" operators on 12 (4) may be definitely smaller than that on 1 2 (A)', and the latter 
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may not contain all bounded module operators on 12 (A)', in general. We characterize 
the role of self-duality for getting adequate results in the finite W-case (Proposition 
4). The final result of our investigations is , Theorem 9 describing the diagonalizability 
of "compact" operators on self-dual Hilbert W-modules in great generality. 

We consider Hilbert W*modules {M, (, )} over general W-algebras A, i.e. (left) 
A-modules M together with an A-valued inner product (.,.) M x M - A satisfying 
the following conditions: 

(i) (x, x) 0 for every x EM 

(ii) (x, x) = 0 if and only if x = 0 

(iii) (x, y) = (y , x)* for any x,y EM 

(iv) (ax + by, z) = a(x,z) + b(y, z) for any a,bEAand x,y,zEM 

(v) M is complete with respect to the norm lI x Il = ll(x,x)ll'2. 
We always suppose that the linear structures of the W-algebra A and of the (left) 
A-module M are compatible, i.e. A(ax) = (Aa)x = a(Ax) for every ..\ E C, a E A and 
x E M. 

Let us denote the A-dual Banach A-module of a Hilbert A-module {M, (•, .)} by 

M' = J,: M -' Al r is A - linear and bounded}. 

Hilbert W*modules have some very nice properties in contrast to general Hilbert C*- 
modules. First of all, the A-valued inner product can always be lifted to an A-valued 
inner product on the A-dual Hilbert A-module M' via the canonical embedding of M 
into M', x -+ ( . ,x), turning M' into a (left) self-dual Hilbert A-module, (M' = (M')'). 
Moreover, one has the following criterion on self-duality. 

Proposition 1 (see [1: Theorem 3.2]). Let A be a W* -algebra and {M, (., .)} be 
Hubert A-module. Then the following conditions are equivalent: 

(i) M is self-dual. 

(ii) The unit ball of M is complete with respect to the topology r 1 induced by the 
semi-norms {f((•, .))1/2} on M, where f runs over the normal states of A. 

(iii) The unit ball of M is complete with respect to the topology 72 induced by the 
linear functionals {f(( . ,x))) on M where f runs over the normal states of A and x 
over M. 

Furthermore, on self-dual Hilbert W*modules every bounded module operator has 
an adjoint, and the Banach algebra of all bounded module operators is actually a W*- 
algebra. And last but not least, every bounded module operator on a Hilbert W* -module 
{M, (., .)} can be continued to a unique bounded module operator on its A-dual Hilbert 
W-module M' preserving the operator norm. (Cf. (131.) 

We want to consider (self-adjoint) "compact" module operators on Hilbert W* 
modules. By G. C. Kasparov [8] an A-linear bounded module operator K on a Hilbert
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A-module {M, (., .)} is "compact" if it belongs to the norm-closed linear hull of the 
elementary Operators

{ 0, Y : 9,(z) = (z,x)y (x,y E M)}. 

The set of all "compact" operators on M is denoted by KA(M). By [13: Theorem 
15.4.21 the C-algebra KA(M) is a two-sided ideal of the set of all bounded, adjointable 
module operators End(M) on M, and both these sets coincide if and only if M is 
algebraically finitely generated as an A-module (cf. also [3: Appendix]). This will be 
used below. Since we are going to investigate single "compact" operators we make the 
useful observation that both the range of a given "compact" operator and the support 
of it are Hilbert C*-modules generated by countably many elements with respect to the 
norm topology or at least with respect to the ri -topology (cf. Proposition 1). Hence, 
without loss of generality we can restrict our attention to countably generated Hilbert 
W*modules and their W*dual Hilbert W'-modules. 

We are especially interested in the Hilbert W-module 

12 (A) = {{ai}1EN C A 1: ai a i converges with respect to	IA} 
i 0=01 

({a}, {b1 }) = II . IIA—)iab 
EN 

i^i 

and in its A-dual Hilbert W*module 

12 (A)' = {{ai}iEN C A sup	a ia t*D < 
N	

oo} 
EN  

N 
({a1 }, {b}) =w— lim 

N EN i= 1 

because of G. G. Kasparov's stabilization theorem [8], stating that every countably 
generated Hilbert C-module over a unital C'-algebra A is a direct summand of 12(A). 

Definition, 2. Let Abe a W*algebra and let {M, (., .)} be a self-dual Hilbert A-
module possessing a countably generated Hilbert A-module as its A-predual. A bounded 
module operator T on M is diogonalizable if there exists a sequence { zI}IEN C M of 
non-trivial elements such that the following conditions are fulfilled: 

(i) T(x i ) = A 2 x 5 for some elements A 1 E A. 

• (ii).The Hilbert A-submodule generated by {X}iEN inside M has a trivial orthog-
onal complement. 

(iii) The elements of { Xj }tEN are pairwise orthogonal and p = (x,, x 5 ) are projec-
tions in A. 

(iv) The equality A,p1 = A 1 holds for the projection p1.
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Note that the eigenvalues and the eigenvectors are not uniquely determined for the 
operator T since T(x) = Ax implies T(y) iVy for A' = uAu and y = ux for all 
unitaries u E A. Moreover, the eigenvalues of T do not belong to the center Z(A) of A, 
in general. Consequently, T(ax) a(Ax) A(ax), in general. That is, eigenvectors are 
often not one-to-one related to T-invariant A-submodules of the Hilbert A-module M 
under consideration. 

Now, we start our investigations decomposing A into components of prescribed type 
with respect to its direct integral representation. Denote by p that central projection of 
A dividing A into a finite part pA and infinite part (1 - p)A. That means, with respect 
to the direct integral decomposition of A the fibers are almost everywhere factors of 
type In (n < oo) or Il l inside pA and almost everywhere factors of type I C,, or 
or III inside (1 - p)A. Analogously, the-Hilbert A-module 12 (A) decomposes into the 
direct sum of two Hilbert A-modules 12 (A) = 12 (pA) 1((1 - p)A), and every bounded 
A-linear operator T on 12 (A) splits into the direct sum T = pT ED (1 - p)T, where each 
part acts only on the respective part of the Hilbert A-module non-trivially and at the 
same time as an A-linear operator. 

Consequently, we can proceed considering W-algebras A of coefficients of prescribed 
type. Our first goal is to revise the case of finite W*algebras investigated by V. M. 
Manuilov. There th set KA(12(A)') does not coincide with the set End A (12 (A)'), and 
there are always self-adjoint, bounded module operators T on 1 2 (A)' which can not be 
diagonalized. For example, consider a self-adjoint, bounded linear operator To on a 
separable Hubert space H_being non-diagonalizable (cf. Weyl's theorem). Using the 
decomposition 12 (A) = A 0 H one obtains a self-adjoint, bounded module operator 
• on 12 (A) by the formula T(a 0 h) = a ® To (h) (a E A, Ii E H). The operator 
• extends to an operator on 12 (A)', and T can not be diagonalizable by assumption. 
Surprisingly, V. M. Manuilov proved that every self-adjoint, "compact" operator on the 
standard countably generated Hilbert W* -module 12 (A) over finite W*algebras,A can 
be diagonalized on the respective A-dual Hilbert A-module 12 (A)'. A careful study of 
his detailed proofs at [10, 11] brings to light that for finite W*algebras with infinite 
center the continuation of the "compact" operators to the respective A-dual Hilbert 
A-module is not only a proof-technical necessity, but it is of principal character. Self-
duality has to be supposed to warrant the diagonalizability of all self-adjoint "compact" 
module operators on M C 12 (A)' in the finite case, and the key steps of the proof can 
be repeated one-to-one. Consequently, we give the generalized formulation of V. M. 
Manuilov's diagonalization theorem for the finite case, and we show additionally that 
self-duality is an essential property of Hilbert W-modules for finding a (well-behaved) 
diagonalization of arbitrary "compact" module operators on them, in general. 

Proposition 3 (cf. [10] and [11: Theorem 4.1]). Let A be a W*algebra of finite 
type. Them every self-adjoint, "compact" module operator K on 1 2 (A)' is diagonalizable. 
The sequence.of eigenvalues { A fl } flE N of K has . the property limn_IIA nII ,= 0. The 
eigenvalues An can be chosen in such a way that A 2 ... 0 ... A3 !^ A1. 
Moreover, for positive operators K without kernel the eigenvectors Xn may possess the 
property (x, x) = 1 A, in addition. 

For the detailed (but extended) proof of this proposition see [11] (see also [10]). The 
proving technique relies mainly on spTectral decomposition theory of operators and on
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the center-valued trace on the finite W-algebra A 

Proposition 4. Let A be a finite W*algebra with infinite center. Consider a 
Hubert A-module M such that 1 2 (A) C M C 12 (A)'. Then the following two statements 
are equivalent. 

(i) Jvl = 12 (A)', i.e. M is self-dual. 

(ii) Every positive "compact" module operator is duagonalizable inside M with eugen-
values being comparable inside the positive cone of A. 

Proof. Note that 12 (A) 12 (A)' by assumption. Denote the standard orthonorrnal 
basis of 12 (A) by {efl}flEN. If the center of A is supposed to be infinite dimensional, 
then one finds a sequence of pairwise orthogonal non-trivial projections { pn }nEN C Z(A) 
summing up to 'A in the sense of w-convergence. Fix a sequence of positive non-zero 
numbers f an }flEN monotonically converging to zero. The bounded module operator K 
defined by

/ 00 

	

K(el) = (	anPn en)	K(e) = ajpje i for j 1 

is a "compact" operator on 12 (A). It can be easily continued to a "compact" operator on 
M. As an exercise one checks that the eigenvalues of K are a 1 p 1 , a 2 p2 ,••• ,O,. . 
(ordering by sign and norm and taking into account conditions (iii) and (iv) of Definition 
2), and that the appropriate eigenvectors are 

1	 1 
p2(el + e 2 ), 7 p3 ( e i + e3),  

1	 1' 
J(1  - pn)en}nEN, . . , 7zrp(e i - e3 ), 7p2(ei 

The only way of making the eigenvalues comparable inside thepositive cone of A preser-
ving Definition 2/(iii)-(iv) is to sum up the positive and the negative eigenvalues sepa-
rately. But then the resulting eigenvector 

/	/	1\	1	1	1 

corresponding to the only positive eigenvalue	 pn=l a,,,, of K does not belong to 14 
any longer by assumption. This shows one implication.' The converse implication follows 
from Proposition 6 I  

The second big step is to investigate the case of infinite W y -algebras as coefficients 
of the Hubert W-modules under consideration. The result is characteristic for the 
situation in-self-dual Hilbert W*modu1es over infinite W-algebras, and quite different 
from that in the finite W*case, and elsemore, from the classical -Hilbert space situation.
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Proposition 5. Let A be a W*algebra which possesses infinitely many pairwise 
orthogonal, non-trivial projections p (i E N) equivalent to 1A and summing up to 'A 
in the sense of w-convergence of the sum >, p t = 'A Then the Hubert A-module 
12 (A)' equipped with its standard A-valued inner product is isomorphic to the Hubert 
A-module {A,( • ,) A}, where (a,b) A = ab. 

Proof. Suppose, the equivalence of the projections p (i E N) with 'A is realized 
by partial isometries u 1 : p = u,u and 1 A = uu 1 . Then the mapping 

	

5: 12 (A)' — A,	{a} — w — urn	a1u 
finite number 

with the inverse mapping

S : A	—+ 12 (A)',	a — {au1} 

realizes the isomorphism of 12 (A)' and A as Hubert A-modules due to Proposition 1 I 
Corollary 6. Let A be a W-algebra of infinite type. Then every bounded module 

operator T on 12 (A)' is diagonalizable, and the formula 

T({a 1 }) = 

holds for every {a 1 } € 12 (A)', some AT € A and the partial isometrics u 1 € A described 
in the previous proof. 

Proof. Every W*algebra of type I, II or III possesses a set of partial isometries 
with properties described in Proposition3. The same is true for W-algebras consisting 
only of parts of these types. Now, translate the operator T on 12 (A)' into an operator 
STS' on A and vice versa using Proposition 3, and take into account that every 
bounded module operator on A is a multiplication operator with a concrete element 
(from the right) U 

Corollary 7. Let A be a W* -algebra without any fibers of type In (n < oo) and II, 
in its direct integral decomposition. Let M be a self-dual Hilbert A-module possessing a 
countably,, generated A-predual Hubert A-module. Then every bounded module operator 
T on M is diagonalizable, and the formula 

T(x) = (x,u)ATu 

holds for every x E M, some AT € A and an eigenvecior u € M being universal for all 
T.

Proof. Since M has a countably Hilbert A-module as its A-predual, M is a direct 
summand of the Hilbert A-module 12 (A)' by G. G. Kasparov's stabilization theorem 
[8]. Hence, one has to show the assertion for the self-dual Hilbert A-module 12 (A)' only. 
For further use denote the projection from 12 (A)' onto M by P. Consider the direct 
integral decomposition of A over its center. Therein every fiber is a W-factor of type 
I, II,,, or III by assumption. Putting it into the 1 2 (A)'-context one obtains that A is 
isomorphic to 12 (A)' either applying Corollary 6 fiberwise or constructing a suitable set 
of partial isometries u 1 E A to make use of Proposition 5. Then in the same way as 
there the, diagonalization result turns out for arbitrary boundedmodule operators T on 
12 (A)'. To get the formula T(x) = (x,u)ATu one has only to set u = P({u}) 1
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Remark. Let A be an I.-factor, for example. Then there are self-adjoint elements 
A T in A which can not be diagonalized in a stronger sense. More precisely, there is 
no way of representing any such operator as a sum > AP1 with A, E C = Z(A) and 
P1 = P P E A because of Weyl's theorem. Therefore, the Corollaries 6 and 7 are 
the strongest results one could expect. 

Example 8. Consider the C 0 -algebra A of all 2 x 2-matrices on the set of com- 
plex numbers. Set M = A2 with the usual A-valued inner product. Consider the 
("compact") bounded module operator K = 9 + 0Y,Y for 

fo o\	\ 

	

=(( 3)' o O o))	and	y=	o)' 
2 o
o 2)) 

Eigenvectors of K are x, y E A2 , for example, and the respective eigenvalues are 

A=(	
)	

and	A=(	
). 

Remark that one can not compare these eigenvalues as elements of the positive cone of 
A. But, making another choice one arrives at that situation described in Proposition 6: 

	

(('o'\ (0o'\\)
	and	X2= (( 0 o\(1

Xi=0 o)'o i) 0 i)'o o 

Then the respective eigenvalues are 

A=(	
)	

and	A2=(	
) 

and they can be ordered, as well as the eigenvectors x1, x2 are units. Last but not least, 
dropping out condition (iv) of Definition 2 one can correlate K-invariant submodules of 
M and eigenvectors of K. Simply, set 

xi=(	
/10 i)' ( 10))C	0	and	X2 

)	 i  

In this case the corresponding eigenvalues are 

	

(1 o\	 (4 0 A 1	 and	A 

	

=0 4)	 2=0 

They can be ordered in the positive cone of A. But, the eigenvectors corresponding to 
the K-invariant submodules of M can not be selected to be units any longer. 

Theorem 9. Let A be a We -algebra and M be a self-dual Hubert A-module. Then 
every self-adjoint, "compact "-module operator on M is diagonalizable. The sequence 
of eigenvalues {A} TI EN of K has the property IIAII = 0. The eigenvalues 
A (nEN)ofK can be chosen in such a way that A2_<A4...<0 ... A3_<Ai, 
and that A (n > 3) are contained in the finite part of A.
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Proof. Both the Ti -closure of the range and of the support of K are self-dual Hubert 
C'-modules possessing countably generated A-predual Hubert A-modules because of the 
"compact"ness of K. Hence, without loss of generality one can restrict the attention 
to self-dual Hubert W*modules with countably generated W*predual Hubert W*- 
modules formed as the ri -completed direct sum of range and support of K. As usual, 
on the kernel of K one has the eigenvalue zero and a suitable system of eigenvectors. 

Now, gluing Corollary 4 and Proposition 6 together the theorem turns out to be true 
in the special case M 12 (A)' (cf. the remarks at the beginning of the present note). 
The only loss may be that the eigenvectors are not units, in general. Because of G. G. 
Kasparov's stabilization theorem [8] M possesses an embedding into 12 (A)' as a direct 
summand by assumption. Therefore, every self-adjoint, "compact" module operator K 
on M can be continued to a unique such operator on 12 (A)' preserving the norm, simply 
applying the, rule K IM = 0. The eigenvectors of this extension are elements of M. 
The Hubert A-module M belongs to its kernel. This shows the theorem I 

Remark. For commutative AW-algebras A Theorem 9 is still true by [4]. The 
general AW-case is open at present because of two crucial unsolved problems in the 
AW*theory: 

(i) Are the self-adjoint elements of M(A) (n > 2) diagonalizable for arbitrary 
(monotone complete) AW-algebras A, or not? 

(ii) Does every finite (monotone complete) AW-algebra possess a center-valued 
trace, or not? 

Remark. One can extend the statements of Theorem 9 to the case of normal, 
"compact" module operators dropping out only the ordering of the eigenvalues. To see 
this note that for normal elements K of the C*algebra KA(M) there exists always a 
self-adjoint element K' E KA(M) such that K is contained in the C*subalgebra of 
EndA(M) generated by K' and the identity operator. Applying functional calculus 
inside the W'-algebra End A(M) the result turns out. Beside this, it would be interest-
ing to investigate some more general variants of the Weyl-von Neumann-Berg theorem 
for appropriate bounded module operators on (self-dual) Hilbert W*submodu1es over 
(finite) W*algebras A as those obtained by H. Lin,.G. J. Murphy and S. Zhang. 
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