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The Transient Lubrication Problem 
as a Generalized Hele-Shaw Type Problem 

G. Bayada, M. Boukrouche and M. El-A. Tailbi 

Abstract. The aim of this paper is to bridge the gap between Hele-Shaw theory and lubrica-
tion theory. A first generalization of the Hele-Shaw problem is considered for which existence, 
uniqueness and regularity theorems are given. Then taking shear effects into account, lubrica-
tion fluid mixture approach has to be used, inducing a new formulation of the initial problem. 
Connection of the two kind of problems are then given, establishing Ilele-Shaw phenomena as 
a particular case of lubrication problem on a mathematical basis. 
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0. Introduction 

The aim of this paper is to bridge the gap between Hele-Shaw theory and lubrication 
approach. Hele-Shaw theory is mainly concerned with flows between two closed fixed 
fiat surfaces while lubrication approach is used for devices with moving surfaces as jour-
nal bearing or seals. The preponderance of the shear viscous effects , in the lubrication 
approach prevents the introduction of full-air/full-fluid interface as in the Hele-Shaw 
theory and induces a new kind of free boundary problems. Relation between this ap-
proach and the classical Hele-Shaw problem one's will be clarified. 

The plan is as follows: 
We consider a first generalization of the Hele-Shaw problem taking squeezing effects 

and gap geometry into account. As for classical Hele-Shaw problem, using time integra-
tion change of variables (see, for example, 1 3 , 16, 20, 26]), we reformulate the problem as 
a variational inequality for which the existence and uiqueness follows from the classical 
theory of variational inequalities (see,--for example, [11] and [31]). But classical time 
regularity results are not sufficient to recover the properties of the unknown initial prob-
lem. We are able to prove some sup1ementary regularity results for a time dependent 
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vaiational inequality of the first kind, which allows us to recover the properties of the 
physical unknown and the strong formulation of the initial problem. 

If shear effects are to be taken into account, lubrication fluid-mixture approach [21] 
has to be used, inducing a new family of free boundary problems. The existence proof 
can be obtained in the same way as [22] and [19] does; uniqueness results are given for 
a particular case, using a second kind of variational inequality, initially introduced in 
Brezis [11]. Finally, we prove that the solutions of the weak formualtion of both Hele-
Shaw problems and shearless lubrication problem are the same, establishing Hele-Shaw 
phenomena as a particular case of lubrication problem on a mathematical basis. 

1. About the physical aspect and strong formulation 
of the classical Hele-Shaw theory 

Let f a given volume limited by S and 52, two fixed walls parallel to an (x 1 ,x 2 )-
plane, which are E apart, and lateral vertical boundaries. Initially we assume that 
fluid occupies a given bounded region ci C 11 and is injected through Si, a feed 
hole included in S, with 0S = r' 1 . For each r E (0, T) (T > 0), the boundary of 
the unknown region 9.c(r) containing fluid is denoted by Pe(r) and le(r) C	. We

consider the flow of incompressible viscous fluid subject to an exterior force density F. 

The real three-dimensional problem is for each r E (0,T) to find QE(r), a velocity 
field u(x,r) and a pressure pc (x , r) in Q-(T), with x = (x 1 ,x 2 ,x 3 ) so that 

9uc 
- - vtuC + Vpc = Fe 
ÔT

Div u = 0 
N = . N 

('9xi
ôue	

N, =(papC)N+H3x,
	p

in Qe(r)	 (1.1) 

in Ile(r) (1.2) 
on FC(r) (1.3) 

(i,j = 1,2,3). (14)

/7 
•/ 

X2	 .	 rr)  

Q(r) 

the hc. 

Figure 1: Real 3-D phenomena 
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Here v is a kinematic viscosity, N is the outward normal on rc(r) , v is the velocity of 
y is the coefficient of surface tension, 1Ff is the mean curvature of re (r) , p is the 

density of the fluid and Pa IS the exterior pressure. 
Other boundary conditions are to be given on the velocity and/or the pressure. 
At both surfaces S 1 and S2 we have u C = 0, except on the injection hole Si where 

the fluid is injected with the velocity u = (u,u,u) such that u = u = 0 and 
U =g(zi,x)°. 

Moreover, a supplementary condition, the wetting angle has to be given at the 
intersection of the free boundary re(r) and the surfaces S 1 and S2 . But the knowledge 
of this angle is very controversy, especially for transient phenomena, as Hele-Shaw one's. 

A discussion of equations (1.4) may be found, e.g., in [36: p. 451]. Some results of 
existence and uniqueness for free boundary Stokes problem appears in [2, 7, 8, 341, but 
in all of these cases, the free boundary does not touch the external sides, so the problem 
of the wetting angle does not inters. 

In Hele-Shaw model, in view of obtaining a two-dimensional model, it is assumed 
that the free boundary is vertical (the wetting angle is equal to 

Assuming the surface tension negligible, a dimensional analysis of the preceeding 
system for small E leads to the following conclusions (see [10]): 

a) a must be equal to 3. 

b) The dimensionless pressure is independent of x 3 , continuous at the free boundary, 
and satisfies Hele-Shaw two-dimensional system where p is the conveniently resealed 
function for the pressure and t is the conveniently rescaled time: 

	

Lp=0	in 
nVp•n on 

(Po)	 p=O	on 
Vpn=W	on 

	

p=0	on 

	

p:::0	in

(1.5) 
r(t)	 (1.6) 
r(t)	 (17) 
rl	 (1.8) 
rex=ac\ri	 (1.9) 

= ci \ Q(t)	 (1.10) 

where Q(t) and 1'(i) are the projections on the (x i ,x2 )-plane of the unknown region 
Q(t) and his boundary rc (t), respectively, n is the outward normal, r1 = aS1 while W 
is directly related to the injection flow through 17. 

At this stage, no reference has been made to the sign of the pressure, through this 
assumption plays a major role in the mathematical treatment of that system. 

2. Some mathematical results 

The first analytic treatment of the injection of a fluid appears to go back to Richardson 
(see [19) and [30]), who formulate the problem as a differential equation for the Riemann 
mapping function from the unit disc onto Q(t), identifying JR2 with C and assuming that 
Q(t) is always simply connected. But no proof-of existence or uniqueness of solutions 
of this differential equation is given in [29] and [30]. However, a partial (small time)
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existence and uniqueness proof for the same differential equation have ben given in [35]. 
Gustavsson [28] gives a more elementary proof of existence of solutions in the case where 
f() is a polynomial or a rational function. In that case the differential equation can 
be reduced to a finite system of ordinary differential equations in t and this system has 
a unique solution by standard theory. Here the unknown is an analytic function, no 
reference has been made to the sign of the pressure. A measure theoretical approach 
has been introduced by Sakai (see [32] and [331). 

Taking the positivity of the pressure into account and using Baiocchi transformation 
[3], Gustafsson [26] has investigated the weak (distributional) solutions of the problem, 
and the related moment problems, whose solutions turn out to be the same as Sakai's 
solutions. G. Coppoletta [17] considered the weaker problem in which he put the regu-
larized function 9.: 9 = 1 in Q(t) and 0 9 1 in Q \Q(t), in place of the characteristic 
function X(t) on Q(t). With Baiocchi transformation an elliptic variational inequality 
is obtained. The existence and uniqueness of the solution (p, 9) of the weaker problem 
is proved but he was unable to go back to the initial problem (p, x) 

H. Begehr and R. P. Gilbert have generalized the problem to li?. The injection 
of fluid takes place at certain discrete points which are given, :as well as the rates of 
injection at these points. They extend the results obtained by Gustafsson [26] for the 
Hele-Shaw flows in the plane to flows in 1R'. In [6] they investigate the problem where 
the flow rate u is related to the pressure gradient by an anisotropic tensor. In [23] 
R. P. Gilbert and Wen Guo Chun, using the same analytic treatment as Richardson 
[29], reduced the problem to an ordinary differential equation describing the solution of 
a moving boundary problem. S. D. Howison [27]considered cusp development. Other 
families of problems are obtained by taking Neumann condition on Fex (for example, 
[16], [20] and [24]), or by considering the sucking problem (W < 0) (for example, [18] 
and [25]). 

Previous generalizations are mostly mathematical ones. A more physical approach 
will demonstrate that the pressure must be associated with a particular elliptic operator 
(in divergence form): the evolutionary Reynolds equation, taking full account of the 
geometry of the gap and of the.boundary conditions of the surfaces. 

3. First generalization of the Hele-Shaw theory 
3.1 Statement of the problem and notations. We consider the , generalization of 
Hele-Shaw problem taking first squeezing effects and gap geometry into account. The 
effective gap is denoted by eh(t, x) wher h is a smooth function of time and space which 
does not depend on c.	 . 

Other conditions satisfied at the fixed and moving boundaries, like (32) - (3.5) are 
obtained in the same way as in the classical Hele-Shaw problem by asymptotic analysis 
for small e. The following problem yields:	- 

(Ps) Find for each t E (0,T) the pressure p E L2(0,T;H'(1)) (where ci is the projec-
tion on the (XI, X 2 )-plane of the limited volume ) and the free boundary F(t), 
such that

(-v) =	in	 S	 (3.1) 

12v	at
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h2 
---Vp n =v• 

12zi
n 

P 
h3 —Vp . ri = 
12v

W 

P
P

= o.

on r(t) (3.2) 

on r(t) (3.3) 

on	17 1 (3.4) 

on rex	ôi \ r 1	: (3.5) 

in	c?°(t) :=	l \ 11(t) (3.6) 
(3.7)

This problem differs from the classical one (F 0 ) in nature in that we have Poisson's 
equation. 

3.2 Assumptions and variational formulation. For values of time t e (0, T), the 
boundary of the region

11(1) = {x: t > m(x) 

containing fluid is denoted by r(t) and parametrically described by 

r(t) = {x: S(i,x) = t - m(x) = 0). 

Proposition 3.1 (Maximum Principle): Let p a solution of problem (Pt) such that 

(H.o) f(t) is sufficiently regular 

(H.1) W > 0 in r1 and	^ 0 in (O,T) x 11. at 

Then 
1°) p ^! 0 a. e. in 11 x (0, T) 

20) 11(i) c cl(t') for any t < t'. 
Proof: From conditions (3.1) and (3.4) and the strong maximum principle we de-

duce statement 1°. Since p ^! 0 in 11(t) and p = 0 outside 11(t), then	0 on 
Therefore from condition (3.2) we deduce n 0 on r(t), i.e. statement 2° follows. U 

We shall now show how this problem can be reformulated as a variational inequality. 
To this end, we assume that 

(H.2) h(t,x) = l(t)g(x) 

(H.3) h  C'([O,T] x l) and, for some a>0 and b> 0, h(t,x) E (a, b) for all 
(t, x) E [0,T] x ft	 .	S 

We consider the following change of unknown: 

z(t,x) =	fl3(r)p(,x)dr	and	Q( t,x ) = Ir,dr.	(3.8) 
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Remark 3.1: Since p ^! 0 in (0,T) x fl and p = 0 in fl° = f? \ Q(t), and because 
1(i) C Q(t') for any t <t', then the function z defined by (3.8) also satisfies 

z(t)>0 in fl	and	z(t)=O infl°(t) for any tE(0,T). 

Moreover, z( . , x) is increasing for any x, so that 

> 0 in (0,T) x fl	and	= 0 in Q°(t) for any t E (0,T). 

Formally deriving the differential equation satisfied by z, assuming condition (H.0) 
and the smoothness of p, we obtain, using conditions (3.1) - (3.3), 

Vz= — f 

M(Z) 

1 
12v

M(X)

13(r)Vp(r,x)dr - 
1  —13m(x)p(rn(x),x)Vm(x) 

12z.' 

1 3 (r)Vp(r,x)d7-	((t, X) E (m(x),T) x(Q\fIo)) 

and 

and

div(g3Vz)	f	/ h3 div (	VP(rx)) dT -	h(m(x),x)Vp(m(x),x)Vm(x) 

	

\ 12v	 12v 
m(x) 

=
 J

ah 
(r,x)dr+h(m(x),x) 

M(X) 

= h(t, x)	((i, x) E (rn(x), T) x (1 \ Q0)) 

div(g3Vz) J	h3	 I oh 
= div(VP(rx))dr=J .-(r,x)dr 

\l2zi 
0	 0 

= h(t,x) - h(0, x) = h(t,x) - ho(x)	((t, X) e (0,T) x 

Denoting by Xo the characteristic function of f1 0 , we obtain that z solves the linear 
complementarity problem 

div(9 3 vz) - xoho(x) + h(t,x)) >0 

z>0	in fl	 (3.9) 

(—div (g 3 Vz) - xoho(x) + h(t,x))z 0
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with boundary conditions

OZ 
= 0 on r(t).	(3.10) g 3	Q on r 1 ,	z = 0 on re.,	=an 

Let K be the closed convex subset of H I (Q) defined by 

K={ço€V:	>0a.e. inc} with V={EH'(c):	=oonr}. (3.11)


Then problem (3.9), (3.10) can be written as the following variational problem: 

(Ps) Find z(t) E K for each t € (0,T) such that 

f 9 3VZV( - z) 
2 1 

(oho(-) - h(t,x))( - z) +JQ ( - z) 

for all p E K. 

For each t € (0, T), the existence and uniqueness of a solution z € L (0, T; H'(11)) 
of problem (P',) follows from the classical theory of variational inequalities (see [11) 
and [31]). As already mentioned this regularity is not sufficient to recover the initial 
properties of p given in problem (P'0). 

To go back to the initial problem (P'o), supplementary results are needed for the 
properties of the time dependent variational inequality (P',). 

3.3 Some regularity results for a
'
time dependent variational inequality of 

the first kind. Let F and G such that 

(H-E) F € C'(0,T;H'(1)) flL(fl x (0,T))'and C € C 1 (i x [0,T]) 

and let us consider the following problem: 

(P 2 ) Find v(t) € K for each t € (0,T) such that a(v, W - v) 2 (F,p - v) + (G ) - u) 
for all €K and v(0)=O. 

Here K and V are defined in (3.11), a( . ,.) is the bilinear continuous and coercive form 
on V defined by'', 

a(v,p) =	faij?_±_dx	(ib EH1(1))' 

with a 3 = a 1 € C2(i) and A the associated second order operator 

2 a	a ) ,
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(.,.) denotes the usual inner product 

(F,W)=jFPdx	(i,bEL2(1)) 

in L2 (l) and (.,.) defines the duality product 

(G, '.1') 
= j 

G  d	('.1' E L2(r1)) 

in L2 (I' 1 ) with r1 fl fex = 0. 
Existence and uniqueness for v satisfying problem (P2 ) is obvious. In order to study 

the time regularity of v, we consider the following penalised problem (see [31: p. 276]): 

Av+eH(v)=F+e on 

v = 0 on	and	ajLcos(n,xj) = G on 171 

where e = e(t,x) is a parameter function.

Let us introduce the assumption 

e  C1(0,T;H'()) nL°°( x (0,T)) 
(He)	Oe	 5(F+e) 

e>0,	<0, F+e>0,	>O.
at 

For example, e(t,x) = (1 - o)h(t,x), F(t,x)= oho(x) - h(t,x) for some regular 
function h0 = h(0, x) and He is an approximation of the Heaviside graph H as, for 
example,

(1	ifs^c 
H, (S) = s/c if 0 < s < E 

110	ifs<0. 
In the following we need also the supplementary assumptions 

(HG) G>0 and >0 at - 

(HGF)	>G and (+_F_e)?0. 

Theorem 3.1. Assuming (HE), (He) and (HG), there exists a unique solution 
v E K to problem (Pfl, for every c > 0, and v(t) strongly converges in H 1 (), as 
c tend to zero, to the solution v(t) of problem (F2 ), for each t E (0,T), and the error 
estimate

liv - vcllH 1 () < CVC where C =	
1 f edx	 (3.12) 

infa, n 
is true. 

Proof. We have, for w E V, 

	

a(ve,cp) + (eH(v),p) = (F + e, p) + (G, v)	 (3.13) 

as F + e > 0 and C > 0. Multiplying (3.13) by v leads to v; = 0, i.e. v E K. Taking 
= v - v in (3.13) p = v in problem (F2 ) and adding we deduce the statement. N



The Transient Lubrication Problem	67 

Supplementary regularity results are given in the following 
Theorem 3.2. Assuming (HE), (He) and (HG), the solution v of problem (P2 ) is 

such that
E W"(O,T;H'(cz))	 (3.14) 

^ 0 a.e.on [0,T]	 (3.15)

s true. 

	

Proof. Let t,s E [0, T]. Putting 	= v(i) - ye(s) and subtracting (3.13) for s

from (3.13) for I we obtain - 

a(W,p) + (e(t)H(v)) - e(s)H€(V(s),co)	
(3.16)
= (F(t) + c(t) - F(s) - c(s), ço) + (G(t) - G(s), ) 

for all V E V. Choosing p E  in (3.16) we have 
a(IV,IV) + (c(i)H(v(t) - H(v(s)),W) + ((e(t) - c(s))H(z(s))jV)


= ((F + e)(t) - (F + -Fe)(s),W) + (G(i) - G(s),W) 
and, as

(He(ve(i)) - H(v(s)))W > 0	and	e > 0 
we have

a(W,W) < - s I (2 e(t) - c(s) + F(t) - F(s) 
 t—s	L2ffl) 

+	
- G(s)	

) II L2(r1) 

and from assumptions (H.E) and (He) we get 
II v (i) - ve (s)I6 (0)	C i t - s i	((t, S) E [0,T] X [0,T])	 (3.17) 

where
cl 

=.	
sup (2 II c II C1(OTH 1 () ) + II FIIcI(OT. H1(fl) ) + IlGIIl(10)) 

with a constant c 1 depending only of Q. 
While passing to the limit on e in (3.7) we obtain 

II v ( i ) - v(s)I jq1 (fl) < Ct - S I	for all (t, s) E [0,T] x [0,T].	(3.18) 
We deduce (3.14) as a consequence of (3.18). From (3.17) if we put u. Ov/ôt so u 
is a solution of the problem 

AU + eH(v(i))u =	-	He(v(t)) +	 (3.19)

with boundaries conditions

2
aG U, = 0 on rex	and	a13 au,

cos(n, z,) =	on I'. 

Multiplying (3.19) by u, using assumptions (He) and (HG) and the fact that H ^! 0,


	

we obtain u = 0, i.e. ^ 0, and, as	-	weakly in L2 (0,T;H'), then	^ 0
at 

a.e. in L2(0,T;H'). 0
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Theorem 3.3. Assuming (HE), (He) and (HFG) we have 

Ov {x E cl v(t,x) > o} = {x E cl:	(t,x) > o} a. e. on(0,T]. 

Proof. From the penalized problem (P), we have 

Av=-eH(v)+F+e in H1(Q) 

and by derivation we get

ave Oe OF 

A () 
= -H(v) — eH(v)--- +	+	in H'(cl). 

Putting Ue	'- vC —	— we obtain 

AU =	— H(v)) — eH(v) 
Ov
--- + - OF - + eH(v) — F — e. 

Using the Green formula we gain 

aG 
a(U, U)=(_G, U)+((e_) H(v), u) 

Ot 

Ov,	\ "OF Oc 
— 

	

(eH; (V,) N , U) +	+ — F — e,    u). 

From assumption (H.E) we have (e —) > 0, thus 
at 

	

aG	Ov	\ 
a(U,U)^! (

Pt - 
G, U,-	( ) 

OF Oe 

Using now assumption (H G F), the inequality 

	

,U) 
< ( '
	Ov,	

= f	Ov, 
a(U — eH(v)--,U ,, 

is obtained where E = [0< j& <v <e]. In Ewe have 

H(v(i)) <	and	U = v	
OVC 

—	<C.

at -

 Therefore U'-'- <e2. So a(U, U) CE. And from the coerciveness of the bilinear 
form a( . ,.) we deduce that U.- —* 0 in L2 (cl), but 

f Ov,	\	COv \ 
- v) 	— v)	weakly in L2(cl). 
at 

 Therefore, ( 2-u- -v) = 0 a.e. in L2 (Q). Moreover, as	> 0 a.e. on (0,T) (see Theorem 
3.2), if v(t,x) = 0, we deduce that v(T,x) = 0 for all r E (0,t]. Then	(7-, x) = 0 for at 

all r E (0,t], i.e. 21 = 0. U at
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3.4 Application to the generalized Hele-Shaw problem (P). In the following, 
we will show how the preceding results in Subsection 3.3 can be used to give regularity 
results for the generalized Hele-Shaw problem (Ps). 

	

Theorem 3.4. If the function h satisfies the assumptions (H.2) and (H.3),	0 
in (0, T) x ci, and if the function Q E C'([O, T] x ci) satisfies Q > 0 and	^ 0, then
at 
the unique solution z of the variational problem (P i ) is such that 

z E W I00 (0 , T; H'(ci)) n L(0,T; H 2 (1l) n V)	and  
CIZ 
 5i ^! 0 a. e. 

Moreover, assuming (H.0), W > Q and ( + h0 - h)o 0 we deduce that 12v13 af 
satisfies the initial problem (Ps), where Q(t) = {x E ci : z(t, x) > 01 for any t >0. 

Proof. Let F = oho - h, G = Q, a(z, 'I') = fn g 3 VzV'F and e = (1 - xo)h. As 
F + e = (h - ho)o E L2 (ci), we deduce, from the classical theory of elliptic equations 
(see [1]) that the solution v of the problem (P) belongs to H2 (Q) and there exists a 
constant C depending on ci such that 

I ve( t )II11 2 () 5 C 
(
2 1 1 ejjc1 (0,TL2) + II F II, (0,T;L2(n)) + 11611 C , (o,T;H1(a))) 

for any lift C of G in H'(ci) such that C = Q on r1 and C = 0 on rex, which induces 
a weak convergence in L OO (0,T; H2 (1l)) of a subsequence of v. 

The previous choice of 1, G and e obviously satisfies the assumptions (He), (H E) 
and (HG) and allows to apply Theorem 3.1. So (3.12) is valid. So v strongly converges 
to v in L(0,T;H'(ci)), which is also the weak limit of v in L°°(0,T;H2(ci)), and 
using Theorem 3.2 the first part of the present theorem follows, in particular for the 
unique solution z of the problem (P). 

To prove the second part, we remark first that Q(t) defined above is a well defined 
open set as z(t) E H2 (ci). Taking first w = z ± e'P with 'P in D(1l(t)) - the usual space 
of C functions with compact support in Q(t) - in the variational problem (P'1 ), we 
obtain

a(z, 'I') = (f, 'F) + (Q, 'F) in Q(t). 

Using the Green formula, we have 

—div(g 3 Vz) = f = Xoho - h in Q(t). 

Putting  = ci x (0,T),Q = Q(t) x (0,T) and Q0 =Q \Q we have 

—div(g 3 Vz) = f = Xoho - h	in Q 

and by derivation we gain the equation (3.1) in Q

\	oh. —div (93v (s)) = —div (j_v (12L/l_ 3 )) = --	in Q.
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Taking V E D(Q) and using the duality (.,.) between the spaces D'(Q) and D(Q), we 
have

(div (93v()) ,) = (g3V 
( )

'
VIP)	 .

at 

=Jg3V()Vcp 

= J_div (g3 V ( 'Z ) ) W+ f g 3 _ (aZ) ^O

5n at 
E 

where E = uE(O,T)r(t) and 

a(hX), 
1P Olt	

[oh -	-	
-J -+Jhcos(nt). 

E 

And using the above equation we gain 

1 0 (Oz\ 

J
g	.)co=fhcpcos(n,t). 

E 

Therefore

0 (c9z '\	 h3 a /	30z\ 
g	= hcos(n,t)	thus-

12v
-- (12u1	

) = - 
hvn 

on E and so (3.2) follows. By time derivation of the first equality in (3.10) and of (3.8) 
we gain (3.4). Finally (3.3), (3.5) and (3.6) follow from Theorem 3.3. I 

Remark 3.2. For the classical Hele-Shaw problem (P 0 ), It and W have constant 
values. Then from Theorem 3.2, the unique solution z of the variational problem 

(P 1 ) Find z(t) € K for each t E (0,T) such that 

JVzV(a - z) J(xo - 1)(,P z) +JtW( - z)	( IP € K) 

satisfies the following properties: 

z € W100 (0 , T;H 1 (1)) fl L00 (0,T;H2 (ç) fl v) 
Z(0) = 0,	z 2 0,	a- > 0 a.e. 

K 

Moreover, assuming (H.0), W 2 0 and i < 1 we deduce that f a t the initial 
problem(Po)/(1.5)-(1.9)whre 1(t) ={x € cl: z(i,x) > 01 fort >0.



The Transient Lubrication Problem	71 

4. Flow between closed surfaces with shear effects: 
The lubrication approach 

In this case, as for example in a journal bearing, the surface S 1 has a horizontal velocity, 
while S2 has only a vertical motion so that shear effects are propitious. It is not possible 
to assure the assumption of a vertical free boundary which would be attached, one of 
the ends to S i , and the other end to S2. 

Experimental results [21: p. 151 makes the occurence of two distinct areas, one full 
of fluid which will be named lc(r) (where Stokes equation is valid and p> 0), the other 

\ e (r) is the cavitated zone, where the pressure is constant (p = 0) and appears to 
be a mixture of fluid and air. 

S2 

Si' - " •	 _______________________________ 

Mushy region	 Mushy region 

Figure 2: The cavitation phenomenon 

Two approachs have been used to cope with this phenomena. One of them [21: p. 
37] homogenizes the phenomena and considers it as a two-dimensional phenomena by 
introducing 8, the lubricant concentration. The other one [14] takes full account of the 
three-dimensional character of this phenomena, with the appearance of bubbles of air 
and introduces in \ l e (r) the relative height as a, supplementary unknown. We use 
here the first approach. Both approaches lead to the same mathematical problem. 

By definition, the value of 8 is one on (r) and lies between zero and one in the 
mushy region. The incompressibility condition (1.2) of the fluid is replaced by the mass 
conserving condition

ao 
Tr 

+div(8u e )=0	.	 (4.1) 

which is valid on the whole V. Boundary conditions for the velocity are 

on S1:

aH on S2 : u=0(i=1,2)andi4= 

where gj are known functions of r, x i and x 2 .	- 
As in the previous subsection, an asymptotic analysis leads [10] to the following limit 

system as e goes to zero, with the assumption that ce = 3 and r = t and introducing
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C

Op	02u 
- axi =ii--j-	(z = 1,2)	in	)(t) (4.2)a 

ap 
FY

= 0	 in	c(t) (4.2)i 

= 0 and p = 0.	in	^ \ 1(t) aY2 (4.3) 

where p and u are rescaled functions. As p is independent of y, integrating (4.2) a with 
respect to y and taking into account the boundary conditions we obtain (see [15:	p. 25))

Ui	 1	Op	y = — y(y - h)— + g. 

Integrating u % with respect to y between 0 and h, arid using the mass conserving con-
dition (4.1), we have, for any (x 1 ,x 2 ) E	\ S1, 

•80h	o(]	

) 
+8tz,=0 

(/
(4.4) at	axi 

as
Oh I	h3Op	h 

u 3 h =. -	and	j u,dy=----------g1_.
 12v	

xi

Then from (4.4) the 2D Reynolds equations yields 

h 3	.	OGh •	
div (_Vp)=	+ div(OhV) 

12v	at 

where V =	(gi (t, x 1 , x2), gZ(t, x 1 , x 2 )). Finally we get the following strong formulation: 

div ( j_Vp) =	+div(hV),	0 =1 . 	 in	(t) (4.5) 

O(Oh) + div(OhV) = 0	 in	l°(t) =	\ Q(t) (4.6) 

•	on	i(t ) 12v	n
(4.7) 

(P3)	
p = 0	 on r(t) (4.8) 

V 0 W= 
12v On

_?.h9l/.n	on r1 (4.9) 
P 	 •	 on F=O\1'1 (4.10) 

p(1-0)=O	in (4.11) 
•	 •	

•	 •	 at	t=0. (4.12)
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Before stating a weak formulation of this problem (F3 ), we define 

Q = x (0, T)	 E1 = F1 x (0, T) 
.Qt = Qx {t} for t E [O,T]	 ex = re. X (0,T) 

E={pEH'(Q): =0 on Eex.att=0andt=T} 

and we assume that 

(H.5) V € (H'(Q) x H'(Q)) n (L'(Q) x 

The weak formulation of the problem (P 3 ) is: 

(P4 ) Find a pair (p,8) satisfying 

p E L2(0,T;H'(l)), 8€ L°°(Q) fl H'(0,T;H'())	 (4.13) 

0 <8 1, p(1-0)=0	 a.e in 	(4.14) 

P 0	 on Eex	(4.15) 

feh - _f h 3 VV+J9hVV +w = 0 V € E	(4.16)
12v  

OLO=00	 in H 1 (l) (4.17) 

In [22] and 1191 Gilardi and El-Alaoui studied a problem very similar to the problem 
(F4 ). Main difference being related with the boundary conditions. They proved the 
existence of a solution for this kind of problem by way of an approximation by an 
elliptic problem. Exactly the same procedure can be performed for the problem (F4) 
with only minor changes so that we obtain the following theorem. 

Theorem 4.1. There exists at least one solution to the problem (F4). 

Moreover, the following maximum principle holds. 

Theorem 4.2. If W > 0 on r1 x [0,T] and 80 0, then p 0 a. e. in Q x [0, T) 

Proof. Following [19], we build the sequence (ps) of solution of the problems 

±Pe = p	on [0,T]	 (4.18)
at
p(T) = 0 (4.19) 

in the Banach space H (Q). From the classical Cauchy-Lipshitz-Picard theorem [12: p. 
104], there exists a unique solution p E C'([O,T];H'(Q)) of problem (4.18) - (4.19). 
Multiplying (4.18) by Pt and	and integrating over  we obtain at 

II	II L 2 (Q)	I	1 L2(Q)	 (4.20)
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and
ape 

11	:5 lip-11L2(Q)1 .	(4.21) 
at 

LI(Q)JI 

respectively. Differentiating (4.18) with respect to x, multiplying by Vp and then 
integrating over Q we get

VPeML2(Q)	VPL2(Q)*	 (4.22) 

From (4.20) - (4.22) we deduce that there exist P E L 2 (0, T; H1 () and (E L2 (Q) such 
that

Pc	weakly in L2 (0, T; H 1 (Q))	 (4.23) 

(	weakly in L2(0,T;H'()).	 (4.24) 

From (4.23), CPe -i 0 in L2 (0,T; H 1 (fZ)), therefore ( = 0. Passing to the limit in (4.18), 
we deduce that j5 = p a.e. in Q. Taking now Pc as a test function in (4.16) and passing 
to the limit over C, we deduce

__Jh3 IVp_I 2 > f Wp— 

as W >0, therefore p = 0 a.e. in Q, i.e. p > 0 a.e. in Q. U 

5. About the uniqueness of problem (P4) 

5.1 Partial results of uniqueness. Partial results of uniqueness appeared in [13]. 
They are. valid, however, only when the-solution is a limit solution of parabolic regular-
ized formulation.	 - 

Using a similar Hele-Shaw problem approach, we will prove a uniqueness result for 
problem (P 4 ) in the particular case where V = 0, with no conditions, neither about the 
sign of -, nor on the regularity of the free boundary. For this, we first give an other at 

equivalent weak formulation of the problem (F 4 ). Then we will introduce in Theorem 
5.1 a second variational approach. 

5.2 An other equivalent weak formulation of the problem (P 3 ). The purpose 
of this subsection is the study of a new formulation of the problem (F 3 ) which enables 
us, when shear effects are cancelled to obtain a uniqueness result. 

Remark 5.1. As H(0,T;V) is dense in L2 (0,T;V), with V = {ça E H'(Q) 
= 0 on re.}, we can write (4.16) in the form 

aOh	3VP 'W	
. 

W=jw^'W )' + 12v h V	OhVV 
I

(REV)
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in (0, TI. 
Remark 5.2. Using Remark 5.1, the problem (P 4 ) is equivalent to the following 

problem 

(P5) Find a pair (p, 0) E L2 (O,T; V) x (L°°(Q) fl H'(O,T; H -1 (c))) satisfying, for all 
E V;.

	

O91 and p(1-0)=O	a.e. inZx[O,T) (5.1) 

	

() 
+	- 

f 
OhVVp =J WW a.e. in [0, T]	(5.2) 

	

= 90	in H 1 (Z).	(5.3) 
Theorem 5.1. Let W 2 0 and h = l(t)g(x). If (p,O) is a solution of problem 

(F 5 ) with V = 0, then z (given by the definition (3.8)) is a solution of the following 
variational problem: 

(P6) Find z E K such that, for all 7P E K,

\ \ 

	

Jg3vzv	
5z 

-	
2 I(Ooho - h) (b -

	
+ f Q (V) - az

 r, 
Z(0) =0 

where Q is given by the definition (3.8). 

Proof. As V = 0, equation (5.2) reduces to 

W ) 
+	h3VpV =Jw	a.e. in [0, T]


ri 

for all p e V. Then by time integration 

	

t	
' jj 	if 88h 'P)'+j—vpvcp T	 wc çJ  

'0	 0 	 or, 

for all 0 E V as h = l(i)g(x) and, using (3.8), we obtain 

(Oh - Oo ho, p) + J 93vzVço = J Qcp 

ri 

for all E V. Putting now cp = i,1' -	 1' af for all € V yields 

J3 g VzV(i,b_) fQ(ib_) +f(Ooho_h)(ib_)
 atat

ri 

+f(i_9)h(_ )
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and as
az 

f(1_9)h(_)=J(1_9)h	(0t4'EV) 

we deduce the required inequality

	

/	Oz\ Jg3vzv ( -
	

2f(Ooho - 
h) - .) 

+ I Q ( - az) 
at 

r i 0	 0 

for all 0 E K. Moreover, the definition of z (see (3.8)) gives z(0) = 0. U 

In the following subsection, we will prove the uniqueness of the solution of such 
problem by studying a more general formulation. 

5.3 A second abstract variational approach. Let f = 11 + f2 with Ii e L(l) 
and 12 e C'(i x f0, T]) and G  C'([O,T) x ) with 2 0. Consider the following 
problem 

(PZ) Find z C C°(0, T; V) such that f C L2 (O, T; V) fl K and, for all we V, 

(Z'^O 
3z\

	( 'Z )	(
 

Ot	 at	Yt	at 

-	 z(0)=0 

where
'K

{O	forE K for	K={€V	0} - +oo forK 

a( . ,.) is the bilinear continuous symmetric and coercive form on H'(1) with the asso-
ciated second order operator A defined for problem (P2), (.,) denotes the usual inner 
product in L 2 (cl) and (,) defines the duality in L2(r1). 

To prove the existence and uniqueness of the solution of problem (PZ), we hope 
to apply in the space V Proposition 11.9 of [11]. The linear form defined by b 
(f(),) + (G(t),) from V to .11? is continuous. Using the density of V in L2 () and 
the Riesz theorem, there exists a unique function F C L 2() such that 

(1( t ), ') + (G(t), ) = (F(t), II') for all 0 C V. (5.4)a 

But the required assumption F e V is not satisfied as in our initial problem f = xoho 
and this is a characteristic of our problem. To cope with, we regularize Ii using the 
convolution between fi and the mollifiers functions (see, for example, [12: p. 66]). 
Let f1 = * f so that f lies in H'() fl L°°() and f -* Ii as E —* 0. We define f 
byf=f+f2 and Fby 

(Fe (t), b) = (fe( t ), ,b) + (G(t), ,b)	(0 C V)	 (5.4)b 

Let us consider first the following approximation problem:
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(PZ) For e E (0, 1) find z E C°(0, T; V) with ft- E L2 (0, T; V) fl K such that, for all 
y E K,

a	
-	

^(F,-
	

a.e. in (0,T) 

z(0) = 0. 

Here F E C°(0,T;H1()) and fr E L2(0,T;H'()). Then from a theorem of 
Kato, appearing in (11: p. 80], there exists a unique solution z e C°(0,T; H 1 (1)) of 
problem (PZe), such that z has right derivative in all t E [0,Tj and 

	

J	(s) 
ôZe

	
L I (Q)

ds. I ^ 
 Hl(n) 

	

However, Ii and f1e are not functions of the time, so	=v(s). Therefore 
at 

IIp' t9Ze
 

	

L I (Q) < 
f --(s)Il	ds	 (5.5) 

IIH'(fl)  0 

and from [11: Proposition 11.91 

E L°°(ö,T;H'(Il))	for all 6 E (0,T).	 (5.6)


Thus the statement is proved. I. 

The following propositions give some a priori estimates for Ze(t). 

Proposition 5.1. If z is the unique solution of problem (PZ), then the estimate 

T
II' 

	

ze( t )IIHI () <t J --(s)	ds	 (5.7) 
H'(ci) 0 

is true. 

Proof. We have

T 

Vze(t) 
= J ( . (s)) ds	where V 

= G — ;) 
0 

Using the Cauchy-Schwarz inequality we obtain 

Vze(t)12 
= 

(i v ((s)) ds) <t	V (!()) 
2 

ds)
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so

	

l	II 
Vz(t) 2 dt <t J - aze 

-(s) 
2 

f  0MHI(CI) 

Using (5.5) we deduce 

• Il ze( t)Ml ( n ) <t j(1	dr) ds 
H'(Il)

 
1^ LF 

<t (]s) (J(r)dr)2at 

thus

IIze(t)IIl(ci) <t2 (J	(r)	dr). 
H' (l) 

Taking the square root of the two members of this inequality we get the result. U 

Proposition 5.2. If z is the unique solution of the problem (PZ), then the inclu-
sion

	

z(t) E H 2 (l)	 (5.8) 

is true. 

Proof. Following [11: P. 120] we consider the problem 

z(t) + rAz(t) = z(t)	in 
Z 17 (t ) = 0	on rex 

I aij 2-(t)cos(n , xj ) = G(t)	on r1	 (5.9) 

Z 17 ( 0) = 0 

where z is the unique solution of problem (PZ). As J'- e L2(0,T;H1()) we have 
az E L 2 (0,T;H 2 (cl)) and at 

• 

	

+ Y7A (2-) =	in Q, a.e. in (0, T) aj-

= 0	on •r	 (5.10) 
2	 (ôz,\. 

	

a— --) 
cos(n,x) = --	on 1'1. 

1,3=1
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Since %9 ^ 0 'on F 1 and L 0 in ci, a.e. in (0,T), then by the maximum principle 
we have	0 in ci, a.e in (0, T). Consequently, we can use	as a test function in

problem (PZE), so 

a (
	

az	c9z	
) > 

(F^	 a,a	 )--(s) --(s),	-	(5.11) 
at	_5T

as

- z(t), z(t) - ze(t)) 

(Z" (s) - zr(s), 
ôz,	- äz _(s)) ds ,	

'	(5.12) 
0

i	 i 

J a (z,,	 ,7ôz	
) ds f a (	

8z	9z  (s), --(s) - --	 - (s)	-	zr(s), --(s) -	_(s)) ds. 
o	 o 

Then taking (5.11) in (5.12), we get 

a (z ( t ) - z ( t ) ,z ( t ) - z(t)) 

	

i	 '	 i 

< J a (z,	 Oz	

ds f (	
aze \(s), --(s) - __(s))	-	Fe(s), _d_(s) -	 (s)) ds. 

	

0	 0 

Using the Green formula we have

\ 

J fAz ti(s) ((s) - 11z'-(s)) dxds 
on

\ " +)JG- JJF(s) (si(s) - aze _(s)) dxds (!^Z'7 (S) _ 3ze _(s))drds 

on	 0 r 

^ a(z(t) -z(t),z(t) - z, (t)) 

and from (5.4)b, this inequality becomes 
t	 t

\ 
Jf Az,1 (s) ((s) -	s)) dzds - ff fe(s) (ti (s) - -_(s)) dzds 
on	 on 

> a(z(t) - z(t), z ( t ) - z(t)) > 0 

whence

11 (-	)) (() -	()) dxds 0.	,	(513)



80	G. Bayada, M. Boukroucheand M. El-A. Talibi 

Putting now
—Az,1 + h	 (5.14) 

and using (5.10) we have

az,, a -	ôf.	
5 at	ôt\at	at (5.1) 

From (5.13) - (5.15) we get

fat
( a-p',

--
	dxds <0.	 (5.16)
at 

011 

Therefore

> 

= f dx - f	(0)12 dx 

so

II,1,e(t)IIL2(11)	II,1,C(0)IIL2() 

+ ] 
II,1,e (S)II L2(Q)	(s) 

L 2 (
ds. 

1l)  
0 

Remember the following Gronwall inequality (see [9: p. 15]): 

Let I C lie, p E C(I; li?) and t E	 such that 

	

(t)2 <()2 + f(r)(r)dr	for all s,t E I,s <t. 

Then

W(t) <p(s) +	0(7-) d7 for all ,t E I,s	t. 

Using this inequality, the previous one gives 

I,1,C (t)II 2(fl)	I,1,C(0)II2() + 

j	IILIIas 
(s)	ds	(t E (0, T)). 

l 2(1^) 
0
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As ft (s) = f + f(s) with ff E H I (Q) and 12 E C' (U x (0,T)) and .z,,(0) =0, then 

II,e(042() :5 11f(0)IL	+ I	(s)	ds	(t E (0, T)).	(5.17) 

0 

J
	

as	I1L2(0) 

So from (5.14) we get

II 

	

I—Az + feII L 2 (fl) 5 11h(0)HO(n) +
	

512  f ----(s)	ds	(t E(0,T)). 
L2(fl) 

0	 - 

Then II z IIH 2 ())	Cj IIAzI L 2 ( ç ) :5 C2 , where C1 and C2 are constants independent of 
77. Then z,(i) weakly converges in H2 (f). Moreover, from (5.9) an 	we can write 

Z,7(t ) - z(t) = i4',7, (t) - iif(t). 

Then
11z'1(t) - ze( t )II L 2 ()	1in0 77 II'I 7,e(t )II L 2 (fl) = 0 

So the H 2 (Q) weak limit of z,,(t) is exactly z(t) which completes the proof. I 
Theorem 5.2. There exists a unique solution z of problem (PZ). 

Proof. From problem (PZ) we have 

a (z., ^o — 'z,
5T	-5T 

	

 (Fe_ !)	for all W EK,ae in (0,T) 

which is equivalent to 

•	(	8z'\	(	Sz'\ 
a I\ZC	

) 
=	

S	

(5.18) 
at	at 

a(z,cp)	(F. , w) for all W , e K, a.e. in (0,T).	(5.19)


From (5.7) there exists z(t) €L2 (0,T;H 1 (1l)) such that z, (t) tends towards z(t) with 

(z,) ^: (F,).	•	 -.	 (5.20)


Moreover, from (5.5) we deduce that, for all w E D(0, T; L2(IZ)), 

lim z
/8z \	/ 8\	/ O'\ /Oço

at 
lin 

S\__'/ .T\':/	
_\Z/	

. at

In the previous line (.,) deno,tes the duality between the spaces D(0,T; L (fl)) and 
whence 

lifn( 

Ẑ-- W) -=('	for all soED(O,T;L2 (1Z)).	•	(5)
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And from (5.18) and (5.4)b we have 

I ô\ 	a\ ( Oz\ 0. 

Then
A + f,	= 0.	 (5.22) 

As  

	

lim(—Az +fe,,b ) = lima(ze,iI')+(f,)	(' E D'(cfl) 

from (5.7) there exist z(t) E L'(0, T; H' (c?)) such that, for all b E D'(), 

lim(—Az +	= a(z,t) + (f,') = (—Az + f,i,b).	 (5.23) 
c—.O 

From (5.21) and (5.5),' . tends strongly towards	in L2(), thus (5.23) and (5.22)at

 gives (—Az + f,) = 0. Then by the Green formula we get at

(z,
 Oz\ 	

'z )
/

 'z ).
 = 

Thus by (5.4)a yields

	

(t)) = (F(t)
*

 (t))	 (5.24)a (z(t)  

From (5.20) and (5.24) we deduce that z satisfies the variational inequality 

\ 
a (z(t), - ôz (t) ^

ôz
	(F(t ) ,co -	(t))	( E V)	(5.25) 

with
Z(0) = 0.	 (5.26) 

Using now [11: Proposition 11.9]. As FE L2 (0,T;L2 (l)) there exists one and only one 
z E Co (0, T; L2()) which is :solutjón of the variational problem (5.25) - (5.26), such 
thatf E L2 (0,T;V). Consequently, as C°(0,T;V) c C°(0,T;L2(l)), we have both 
existence and uniqueness for z E C°(0, T; V) as solution of problem (5.25) - (5.26), 
such that f E L2 (0, T; V) And by (5.4)a the problem (5.25) - (5.26) is the variational 
problem (PZ). I 

5.4 Application to the particular problem (P6). The results of the last subsection 
enables us to conclude about the existence of solution for problem (P 6 ), and then for 
problem (P4 ) - (P5 ) when V = 0, which is nothing else than a particular case of problem 
(PZ). 

Theorem 5.3. Let W > 0 and h = l(t)g(x). Then there exists a unique z E 
C°(0,T;V) withf EL2 (0,T;VnK), which is solution of the problem (P6). 

Proof. Choosing 1 = Ooho, 12 = —h, C = Q and a(z, ) = f, g 3 VzVo in problem 
(PZ), the result follows immediately from the previous subsection. I
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Theorem 5.4. Let W > 0 and h = l(t)g(x). Then there exists a unique solution 
(p, 0) of problem (P 4 ) - (P 5 ) with V = 0. 

Proof. From Theorem 4.1, 5.1 and 5.3 we have existence and uniqueness result for 
p. Moreover, if (p, 81) and (p, 62) are two solutions of problem (P 4 ) - (P 5 ) with V = 0, 
then from (5.2) we have (9 - 02 )h), = 0 a.e in [0, T]. By time integration 
between 0 and t E (0,T1 and using (5.4), this implies ((91(t)-92(t))h(t),ço) = 0 so that 
9 1 =92 in V. U 

6. Connection between the two variational approachs 
(P 2 ) and (PZ) 

The next section allows us to prove that the two variational formulations introduced in 
the previous sections are indeed related with the same solution. 

Theorem 6.1. If z is the solution of problem (P 2 ), then z satisfies the inequality 

IÔF (az 'V	a - z(t))	--,v - Z(t) + (G,v - z(t))	 (6.1) 

for all v E K and is also the solution of the variational inequality with constraint on at 
i9z' 

(Z , IP
c9z	

>	 (6.2) a_ ) +Ik (Cp)—Ik	- 

0 ifpEK for allE V where	 {oo ifK. 

Proof. To show inequality (6.1) we will first establish the inequality 

a(z(t) - Z ( S ) ' W - Z(S))
(6.3) 

<(F(t) - F(s), w - z(s)) + (G(i) - C(s), - z(s)) 

for all p E K and for 0 s t <T. To do that, we choose 'p - ze(s), where Ze is the 
unique solution of problem (PZ), as test function in (3.16). Then 

a(ze(t) - ze(s), 'p - ze(s)) + (e(t)He(ze(t)) —e(s)He(ze(s)), (p - ze(s)) 

(F(t) + e(t) - F(s) - e(s), 'p - zr(s)) + (G(t) - G(s), 'p - zr(s)) 

which can be rewritten as 

a(ze(t) - ze(s), lp - Z' (S) 

= ((F(t) - F(s),'p - zr(s)) + (G(t) - d(s),'p - z. (s)) 

+ ((e(s) - e(t)) (H(z(s)) - 1),'p - z. (s)	 (6.4) 

+ (_e(t)(He(ze(t)) - H(z(s))),'p - z(s)) 

= A + B + C.
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Let us consider the following partition of l: 

= (Z' (S) > e) u ((ze(s) <) fl ( > z(s))) u (W	Z' (S) <e) 

where on (zr (s)'> E)

He(ze(S)) - 1 = 0 
H(z(t)) - H(z(s)) = 0 

and on (z.(s) <	n (	> zr(s)) 

(He (ze (s)) - 1) (,	zr(s)) (e(s) - e(t))	0 
e(t)(He(ze)) - H. (z(s))) (o - z. (s))> 0. 

So

B <
	f	(He (ze (s)) —1) (e(s) - e(t)) (	- ze(s)) <f 4E (e(s) - e(t)) 

z.(s)<c) 
C	J	e(i)H(z(t)) - He(ze())I I	- z(s) <j4ee(t) 

(p<z.(s)<e) 

and (6.4) can be rewritten now as 

z(s), W —ze(s)) <A+f4(e(s) - e(t)) +f4ee(t). 

Letting e - 0, we obtain (6.3). Dividing (6.3) by t - .s and letting t - s we get 

a (
a+z ,v - z(i))	( 

IF 
i (t),v - z(i)) + (G,v - z(i)) It 

for all v E K and a.e. in [0, T] as	=	a.e. in [0,T]. Then (6.1) is gained. 
From (6.1) with v = 0 and v = 2z(t) we have 

(Oz	(OF'	\	I OG	\ a	,z(t)\ =	--,z(t)	+	--,z(t) 
Ot

(6.5) 

and from problem(P 2 ) we get, for all W E K, 

a(z,)	(F,) +(G,) (6.6) 
a(z,z) = (F, z) + (G, z). (6.7) 

From (6.7), by time derivation, we have 

(Z' 
Oz \	I	Oz \	(OF	)	/ OG\/Oz\2a)=	+ (6.8) 

Then (6.5) and (6.8) give

/	Oz\ 	(F, i3z\/Oz
,

a (z)= 	
) + çG,

and with (6.6) we gain (6.2). 1 
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Theorem 6.2. Assume (H.0) - (H.3), V = O,W > Q and ( + ho . — h)o 0. 
Then if 80 = Xo, the solution of problem (P5 ) is also solution of the problem (Ph) and 
9 = x a. e. in Q x (0,T). 

Proof. From Theorem 5.1, if (p, 0) is the unique solution of problem (P 5 ), then z 
defined by (3.8) is the unique solution of problem (P 6 ). Using the fact that 8 = Xo and 
Theorem 6.1, we find that z is also the unique solution of problem (P,'), and Theorem 
3.4 end the proof. U 

7. Conclusions and remarks 

As problem (PZ) has been deduced from a physical model using both 8 and p as un-
knowns while problem (P 2 ) has been deduced directly from another model of Hele-Shaw 
type when 8 does not appears, the connection between them is precised; which enables 
us to establish Hele-Shaw problem as a particular case of lubrication in the last theorem. 

In Theorems 5.1 and 5.4 we have neither a condition on	nor on the regularity of 
at 

the free boundary r(t). 

Theorem 7.1. Assuming (H.0) - (H.3), if(p,8) is solution of problem (P4 ) - (P5), 
then z is the unique solution of the following variational problem: 

(P') Find z(t) € K for each t € (0,T) such that 

a(z, p - z) ^! (f , p - z) + (Q, cp -z)	(w E K)
(7.1) 

z(0)=0 

with f = 80 h0 - h. 

The proof of this statement is similar to that of Theorem 5.1, by choosing = 1' - z. 

Theorem 7.2. If z is the unique solution of the above variational inequality of 
first kind, then z € W l0 (O , T;H l (12)) fl L°°(0,T;H2() fl V), z	0 and f € 
L(0,T;H'(cl)flK). Moreover, assume (HO) - (H.3), W > Q and (+ho—h)80 <0. 

at 

Then we deduce that 

(	i/ôz '\	 Ii 	in. l(t) 
12	8 

T3 jj	 with °.l(90h0)/h inçl°(t) =c\l(t) 

satisfies the problem (P3 ) with V = 0. 

Proof. The proof is similar to that of Theorem 3.4. To prove that the 8 so defined 
satisfies problem (P 3 ) with V = 0, we choose	t.'+ z in (7.1) with 0 < 0 E 
H(Z°(t)). U	 .	 ,.
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