
Zeitschrift für Analysis und ihre Anwendungen 
Journal for Analysis and its Applications 

Volume 14 (1995), No. 1, 89-93 

Some Remarks 
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Abstract. This paper is concerned with a generalization of the Hildebrandt-Graves implicit 
function theorem building on a weaker acting condition for the derivative of the nonlinear 
operator involved. The abstract theorem is illustrated by means of an application to nonlinear 
singular integral equations where classical implicit function theorems do not apply. 
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The most prominent example of an implicit function theorem is the Hildebrandt . Graves 
theorem (see [6: p. 133]). In a standard formulation this theorem reads as follows (see 
[7: p. 671]).	. 

Theorem 1 (Hildebrandt-Graves). Let (A, p) be a metric space, X and. Y two 
Banach spaces, and = c1(A,x) some operator which is defined in the neighbourhood of 
.iome point (A 0 , x 0 ) E Ax X and takes values in Y. Suppose that the following conditions 
are satisfied: 

(a) (Ao,xo) = 0 and 1( . ,xo) is continuous at A0: 
(b) The operator 1 admits a partial (Fréchet or Giteaux) derivative V. which is 

continuous at (Ao,xo). 
(c) The bounded linear operator 4Ao,xo) E C(X,Y) is invertible. 

Then for any sufficiently small e > 0 there exists a 8 > 0 such that, for all A e A 
with p(A,Ao)	6, the equation 4'(A, x) = 0 has a unique solution x = x.(A) in the ball 
II X — xoII	E. 

It is well known that the hypotheses of Theorem 1 may be very hard to verify 
when applying this theorem to nonlinear operator equations with parameters in infinite 
dimensional Banach spaces. This is mainly due to the differentiability requirement in 
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Condition (b): For instance, already rather simple operators like nonlinear integral op-
erators of Hammerstein or Uryson type are usually differentiable only at single points, 
but not on open subsets, even if the generating kernel functions are very smooth (see, 
e.g., [1, 91 for a discussion of this phenomenon). Several authors have therefore con-
sidered certain modifications of the Hildebrandt- Graves theorem building on weaker 
notions of differentiability (see, e.g., [4, 8, 10 -.121). In this paper we propose such a 
new modification whose formulation is almost the same as that of Theorem 1 above, 
but which applies quite naturally to Hammerstein integral equations and, in particular, 
to singular nonlinear integral equations. 

We mention that a similar theorem may be found in [4, 8, 101, but our Theorem 2 
below applies more naturally to nonlinear integral equations (see Theorem 3). 

Let X°, X and Y, Yo be four Banach spaces such that X° is densely and continuously 
embedded in X and Y is continuously embedded in Y0 . Moreover, let (A, p) be a metric 
space as above. 

Theorem 2. Let 410 = (A, x) some operator which is defined in a neighbourhood of 
some point (.X, x 0 ) E Ax X and takes values in Y. Suppose that the following conditions 
are satisfied: 

(a) (Ao,xo) = 0 and 4( . ,xo) is continuous at A0. 
(b) The operator 1' : A x X° - Yo admits a partial derivative cI which takes its 

values in £(X, Y) and is continuous at (Ao,xo), considered as an operator from A x X 
into £(X, Y). 

(c) The bounded linear operator 40 0 , x0 ) E £(X, Y) is invertible. 
Then for any sufficiently small e > 0 there exists a 5 > 0 such that, for all A E A 
with p(A,Ao) <8, the equation (A, x) = 0 has a unique solution x = x. (A) in the ball 
Ii x — xoiIe. 

Proof. First of all, we point out that, under the hypotheses of Theorem 2, the 
operator 4(A 0 ,.) : X -* Y is differentiable at x = x0, but in general is not differentiable 
on an open subset of X. Let us denote by B(xo,r) and B°(xo,r) the closed ball li x - 
xoii < r in the spaces X and X°, respectively. To prove the existence and uniqueness 
of the solution branch x = x. (A) near (A0 , xo), we consider the usual Goursat operator 
T(A,.) defined by

T(A,x) = x -	Ao,xo)(A,x). 

For x 1 ,x 2 E B°(xo,r) and some suitable 9 E (0,1) we have (see [8: p. 20]) 

ii T( A , x i) - T(A,x2)ii 

li	(A ii , xo) — ' Ilil( A , ( 1 —9)x i +9x2)—	( Ao, xo)iIii x i —x2iI. 

Consequently, for sufficiently small r > 0 and S > 0 we obtain in X° the Lipschitz 
condition 

ii T( A , x i) - T(A,x2)11 < kx i - X 211	(x1,x2 E B°(xo,r),p(A,Ao)	8) 

with any Lipschitz constant k E (0, 1). Since X° is dense in X, this Lipschitz condition 
holds on the ball B(xo,r) as well. Finally, for sufficiently small 6 > 0 the operator
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T(.\,.) maps the ball li x - roll < r into itself: in fact, by Conditions (a) and (b) we 
know that

lNI'(Ao,xo)—'ll 111(A,xo)ll < (1 - k)r 

for p(A,Ao) 8, hence 

llT( A , x ) - roll	IIT( A , x ) - T(A,xo)ll + IIT( A , xo) - roll 

< kr+ I V.  
< kr + (1 - k)r 
= r 

for x E B(ro, r). The assertion follows now from the classical Banach-Caccioppoli fixed 
point principle. I 

The proof of Theorem 2 almost litterally repeats the usual proof of Theorem 1. How-
ever, Condition (b) in Theorem 2 is weaker than Condition (b) in Theorem 1, since the 
differentiability of 4(A,.) between X° and Yo is less restrictive than its differentiability 
between X and Y (even if the derivative is supposed to belong to £(X, Y) C £(X°, Y0)). 
Formally this difference may appear rather harmless, but it considerably enlarges the 
applicability to nonlinear integral equations. In fact, our Theorem 3 below covers more 
general integral equations than those which may be treated by applying the Hildebrandt-
Graves theorem (see, e.g., [5: Chapter V, §7]). 

To illustrate this, let us consider a Hammerstein integral equation with parameter 
A E 11?, i.e.

X(t)	/ k(t, s)f(A, s, x(s)) ds.	 (1) 

Equation (1) may be written as operator equation x KF(A,r), where K is the linear 
integral operator

Ky(t)= Jk(ts)(s)ds	 (2) 

generated'by the kernel k, and F(A,.) is the nonlinear superposition operator 

F(A,x)(s) = f(A,s,r(s))	 (3) 

generated by the function f . We suppose that both operators (2) and (3) map some 
Holder space C (0 < a < 1) into itself, and that the integral operator (2) acts also from 
some Lebesgue space L into some Lebesgue space L (1 q p :^ oo). Moreover, we 
assume that the function A '- f(A, .s, u) is continuous for all (s, u) E Q x lii, the partial 
derivative g(A, s, u) = f(,\, s, u) of the nonlinearity f with respect to the last argument 
exists, and the superposition operator G(A,.) defined by 

G(A, x)(s) = g(A, .s,x(s)) (4) 

also maps the space C° into itself.
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Theorem 3. Suppose that the above hypotheses on kJ, and g are satisfied, and 
that

xo(t) =
	
k(t, s)f(Ao, s, xo(s)) ds 

for some N, xo) E JR x C . Assume that the operator (4) is continuous at (Ao,xo), 
and 1 does not belong to the spectrum of the linear integral operator L defined by 

Lh(t) = j k(t, s)g(Ao, s, xo (s))h(s) ds	 (5) 

in the space C. Then for any sufficiently small e > 0 there exists a 6 > 0 such that, 
for all A E A with p(,\, \o) 6, equation (1) has a unique solution x= x(A) in the ball 
11xxo11 

Proof. To apply Theorem 2 we put X = Y = C , X° = C and Yo = L q , and 
consider the operator defined by 

4(A, x) = x - KF(A, x).	 (6) 

The continuity requirement on the function f( . , s, u) implies that Condition (a) of The-
orem 2 is true. Moreover, it is not hard to see that , considered as an operator from 
JR x X° into }"o, has a partial derivative I which is given by 

(A, x)h(t) =
	
k(t, s)g(A, s, x(s))h(s) ds.	 (7) 

Consequently, Condition (b) is satisfied. Finally, our assumption on the spectrum of 
the operator L = I(Ao,xo) implies Condition (c). Thus the assertion follows from 
Theorem 2. I 

We make some comments on Theorem 3. Although the differentiability of the oper-
ator (6) is required only between the Hölderspace C° and the Lebesgue space Lq , the 
linear operator (7) should map Ca into itself, by Condition (b) of Theorem 2. A typical 
example for such a situation is when the kernel k is singular, e.g. of the form 

k(t,$)= l(t,$) 
It_sim 

where I is a function bounded on ci xci, and the number m is equal to the dimension of Q. 
Interestingly, in this case it suffices to assume just the existence of the partial derivative 
g = f of 1, but no regularity of g. For example, the operator (4) may map JR x C° into 
C even if the function g is discontinuous in u 1 3] . Moreover, even if the operator (4) 
maps C into itself and is bounded on bounded sets, it may be discontinuous in the norm 
of C [2] (a detailed account of the "pathological" properties of superposition operators 
in Holder spaces is contained in Chapter 7 of the monograph [1]). Roughly speaking, 
Theorem 3 may be viewed as a continuation theorem for HOlder continuous solutions of 
singular nonlinear integral equations under "formal" differentiability hypotheses on the 
nonlinearity involved.	 .	.
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