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Holder Inequalities and Sharp Embeddings 
in Function Spaces of B q and F Type 
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Abstract. Besides assertions on sharp embeddings of B". and F q we give necessary and 
sufficient conditions on the parameters s, p, q,pi ,q l ,p2 ,q 2 for the Holder type inequalities 
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to hold. 
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1. Introduction and motivation 

1.1 Introduction. The classical Holder inequality for the Lebesgue spaces on 1R" is 
given by

(1.1.1) Lr Lr2 C Lr 

where
11 .	1 

1r 1 oo,	1r2007	—+—=–<l.  
' 1	'2	T 

Of course (1.1.1) is a short version of the pointwise multiplication inequality 

fglL r (lir)II	C 11f ILr, (R")11	gIL2(JRfl)  

where in that special case c = 1 may be chosen. With exception of Subsection 1.2, all 
spaces in this paper are defined on JR". This justifies to omit 1R' in the sequel. One 
of the main aims of the paper js to study the appropriate counterparts of (1.1.1) and 
(1. 1.2) for the spaces BP', and F q . That means for a given smoothness s we are looking 
for

B3 cB' piqi	p2q2	pq	 (1.1.4) 

F;,q, F 2q2 C Fp'g  
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interpreted similarly as in (1.1.3). Recall that the spaces B 9 and F;q cover some well- 
known spaces, such as the (fractional) Sobolev spaces, the classical Besov spaces, the 
Hölder-Zygmund spaces and the (inhomogeneous) Hardy spaces. These spaces have 
been studied systematically in [24, 26]. Our interest in inequalities of type (1.1.4) and 
(1.1.5) comes from some recent work on eigenvalue distributions of degenerate elliptic 
differential operators, where (1.1.1), (1.1.4) and (1.1.5) play a decisive role. We refer to 
[5]. In Subsection 1.2 we outline roughly this motivation for (1.1.4) and (1.1.5). 

.9

s= n s=n(-l) 
/i

 
Vi	 P3	P 

1	.1.1 
F1	 73	7	 P 

Figure 1 

If we plot s against i/p (see Figure 1), then the distinguished strip 

	

1	\	n D:	O<p<co, ni-  
\.P 

-li
1
 <s<- 
+ 

plays a crucial role. The lines of slope n indicate embeddings with constant differential 
dimension s - n/p. One of the main results of this paper reads as follows: 

Let S ,PI,P2 and pbe given as indicated in Figure l and let  <qj <00,0< q2 00 

andO<q<oo.Then 

(1) (1.1.4) holds if and only if 0 < q	r1 , 0 < q	r2 and q ^! max(q , q) 

(ii) (1.1.5) holds if and only if q ^: max(qi,q2) 

In other words, the classical Holder inequality (1.1.1) which corresponds to the bottom 
line s = 0 of the strip D in the way indicated in Figure 1 is shifted along the lines of 
slope n to the level of smoothness s. This situation justifies to denote (1. 1.4) and (1.1.5) 
under the just sketched values of the involved parameters as H61der inequalities. As a 
special case of (1.1.5) we have

H1 H 2 C H 

under the conditions indicated in Figure 1, where H; = F 2 are the (fractional) Sobolev-
Hardy spaces. In accordance with the limiting cases in (1.1.1), (1.1.2) we pay some 
attention to related limiting cases with respect to the strip D, that means 

s= - -	and	s=n(_i)  
Pi
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including especially the bottom line s = 0. These two limiting cases are connected with 
L, and L 1 , respectively. Inevitable linked with HOlder inequalities of type (1.1.4) and 
(1.1.5) are sharp embeddings with constant smoothness s of type 

' B;u cF; B q c P. 

and with constant differential dimension s - n/p. These embeddings correspond to the 
horizontal lines and the lines of slope n in Figure 1, respectively. We give final answers 
in these cases. In connection with the above sketched limiting cases (1.1.7) where L 
and L1 make their natural appearance we complement the just mentioned two sharp 
embeddings by sharp assertions under which the spaces Bp'q and Fp'q are embedded in L 
(which is known) and in LI1OC, respectively. Of course, the latter can be rephrased as the 
search for sharp conditions such that Bp'q and Fp'q consist solely of regular distributions. 
Some of the incorporated sharp embeddings are known, especially the "if"-parts. But 
we seal several gaps, mostly related to the "only if"-parts. 

The plan of the paper is the following. As mentioned above we provide in Subsec-
tion 1.2 motivations for inequalities of type (1.1.4) and (1.1.5).. Section 2 contains the 
necessary definitions and some preparations about paramultiplication. In Section 3 we 
present the results about sharp embeddings: with constant smoothness, with constant 
differential dimension, in L,,,, and in LOC. Section 4 deals with HOlder inequalities. In 
Subsection 4.1 we describe the necessary conditions for s and 1/p such that we have 
(1.1.4) and (1.1.5) (see Figures 3a and 3b). The cases of our interest correspond to the 
heavy lines. In Subsection 4.2 we formulate the HOlder inequalities, whereas Subsection 
4.3 deals with the indicated limiting cases. Finally Subsection 4.4 contains further re-
sults connected with the shaded areas in Figure 3 covering the region of necessity for 
the inequalities (1.1.4) and (1.1.5) treated in Subsection 4.1. It comes out that this is 
also the region of sufficiency with some peculiarities on the border lines. Proofs are 
presented in Section 5. 

We wish to thank Dr. Jon Johnsen (Copenhagen). His critical remarks helped us 
to improve the final version of this paper. 

1.2 Motivation. Let 1 be a bounded smooth domain in 1R'. Let A be the Laplacian 
and let

Au(x) = a(x)(zd - 1)a(x)u(x) in Q
u(x)=O	.	 on 

be a degenerate elliptic differential operator with non-smooth coefficients related to the 
Dirichlet problem. Assume that 

Bu(x) = b(x) (id —L)'b(x)u(x)	with b(x)=a'(x) € Lr(1l), 

where 2 < n < r , makes sense as the inverse of A. In accordance with well-
known classical assertions we obtained in [5] sharp assertions for the distribution of the 
eigenvalues At of A of type At k2/ ' based on two ingredients: 

(i) Sharp assertions for the entropy numbers of the compact embeddings 

id: Bqj(I)	Bp'°oqo(ç),	Sl — 
n 
- > So - 

n 
-, s1 > s0 

P1	Pa
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(and similarly with Fq(Il)). 

(ii) Sharp embeddings of type (1.1.1), (1.1.4) and (1.1.5). 

To describe the flavour of this approach we start with L2 (l), multiplication by b(x) 
brings us to L(), where we used (1.1.1). Then we apply (id - i) 1 . We arrive 
at H(Q). The embedding of H() into L(l) is compact since the slope of the 
corresponding line is steeper than n. Finally a second multiplication by b(x) brings us 
back to L2().

S 

1!JiI, ..-

Figure 2 

The compact embedding is the point where the entropy numbers comb in, whereas 
for the multiplications . by b(x) one needs inequalities of type (1:1.1) in the outlined case 
as sharp as possible. The interplay between the two ingredients is clear. Necessary 
explanations and details, especially about the role played by the entropy numbers, may 
be found in [5]. It is not necessary-to begin with L2 (l) as the-basic space. One can 
start with other suitable spaces in Figure 2. Then the triangle in Figure 2 is shifted, 
say in the distinguished strip D in Figure 1. Instead of the classical inequality (1.1.1) 
one has to work with the Holder inequalities (1.1.4) and (1.1.5). 

2. Definitions and preparations	. 

2.1 Definitions. In general all functions, spaces, etc. are defined on the Euclidean 
n-space II?. So we omit 1W' in notations. Further we shall use IN to denote the set of 
natural numbers, JN0 todenote iN U {O}, and a+ instead of max(a,O). 

Let S be the Schwartz space of all complex-valued rapidly decreasing infinitely 
differentiable functions. By 5' , we denote its topological dual, the space of tempered 
distributions. If	S, then

(2)fl/2J e '(e) de	( E.) 

denotes the Fourier transform Fp of p. As usual, F71 W means the inverse Fourier 
transform of p. Both, F and F' are extended to 5' in the standard way.
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Let 0 E S be a non-negative function with	 . . 
Ii	if lzI<1 

0	if lxi > 3/2: 

We define
= b(x) 

= b(x/2) - (x)
(x Eli?'2 ; k = 2,3,...).	(2.1.2) 

(pk(X) = 
For M E No it follows 

M	 00 

= (2—Mx)	and	(x) = 1 

SUPPj c {x:	lxi <3 . 2'' }	(j 	1,... ,n)	(2.1.3) 

and the implication	 . . 

2'  jxj	 V	k(X) = 6k,j (i E	; kE no) .	(2.1.4) 

LP are the usual Lébesgue spaces on 1'. 
Defintion 2.1.1. Let -oo < s < oo and 0 < q 

(i) IfO<p<oo,weput 

F;q	=	{ E S': llfiF9ll	
(j=o

2	F'[if]()) 

1/,	

<oo } 

(usual modification if q = oo).	.	. 

(ii) If 0 <poo, we put 

Bpsq	
__	 1/q 

{ E 5': lIfIBli = (2	
I[f]L9)	

<	} 
(usual modification if q = ). 

Remark 2.1.1. These types of spaces are studied systematically in [24, 26]. We 
always assume that the reader is familiar with it. Recall some special cases: 

FPO, =LP	<p < ) - Lebesgue spaces 

Fps, 2 =W	.(l<p<oo, sEe) - Sobolev spaces 

F 2 = H	(1 < p < , S E IR) - fraciwnal Sobolev spaces 

F ,2 =hP	(O.<p <.00) - inhomogeneous Hardy spaces 

B q	.	(1 < p < 00, 1 q 00, .s > 0) - classical Besov spaces 

B 8 00 = C3	(s > 0) - H451der-Zygmund spaces. 
CO
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2.2 Pointwise multiplication. Let i,b be the function defined in (2.1.1) and let {j)O 
be the corresponding system (cf. (2.1.2)). For brevity we put 

f,(x) = F' [(P().rf(e)] (x) 
f' (x) = rI [(2-).Ff(e)] (x)	(j e N0 ).	 (2.2.1) 

It is easily checked that 1' =s' f for any I E S'. Moreover, f is an entire 
analytic function of exponential type. Hence, the product f-' . g' makes sense for any j 
and any f, g E S'. We define

f . g =	limf'g' J-CO 
whenever this limit exists. Note that 

f g = urn cc  
(

9k>	
(	

) 

= >2 f)2 g +	1k 9k-2 +	1k 9j 
j=2	k=2	k=0 j=k-I 

= >2' (f, g) + >2" (1,9) + >2"u g)	(put g j 0). 

The advantage of such a decomposition is based on the inclusions

(2.2.2) 

suppF(fk_29) c {e 
(k+I 

supp.F >2 fk9) c {e 
j=k-I

•	el	2k-3 } 

<9k-i }

(2.2.3) 

(2.2.4) 

Remark 2.2.1. Recall the Fatou property of the underlying spaces. Let A q denote 
either B q or F q . If {f) g) } j is a Cauchy sequence in 5' with limit h and if 

sup fg)]Aq] = A <00, 

then it follows h E A q and IJhuI4 q JI cA, where c is independent off and g (cf. [7]). 
Remark 2.2.2. The operator 

Hj : 9 —+ >2fJ_2g. 

is called paramultiphcaiion operator. Estimates for this operator are the heart of several 
contributions to the problem of pointwise multiplication (see, e.g., [14, 20, 21, 24, 30 
- 32)). Further they are of importance in microlocal analysis and in the theory of 
Calderon-Zygmund singular integral operator's (see, e.g., [3, 16, 30 - 32]). 

The essence of the needed estimates are formulated in the following proposition, 
where we make use of the abbreviation h = L.
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Proposition 2.2.1. Let 0 <P1 <cc, 0 < p2 <00, L = +	and 0 <q 5 cc. 

	

P	Pt	P2 

(i) Let 0 < p < 00. Then

1/q 

(	
—' [ '(f,g)]	

g)

11q	
(2.2.5) 

	

II 

(k=O 
IlfI h 2Il II 	l9k(.)l 	L,

il 

where c is independent of f and g (usual modification if q co). 

(ii) Let 0 < p < oo. Then

Ill 
-F— I
	(1 )]

	

CO	 (.2.6) 

c max E llfk+II LP,il 119k+1+ilLp211  
—1<j<I I=-2 

if p> 1 and

'I, 

F 1 [k >I (f)] 

c max ( 2''IIfk+,lLp, IV 1I9k+1+iILP2 iE ) 
I=-2 

if p < 1, where c is independent off, g and k e No (put fr = g, = 0 if r < 0). 
(ill) Let 0< p < oo and s > n( — 1). Then 

sup 2'	—' [k .F>1 
I,, 

(f, g)] (.) LP 

c max M 	2k,/2 IfkI L, l 	2ks/2 
19k+il L2 

1^j^1	I	 Ii 	Ic 

where c is independent of f and g. 

Remark 2.2.3. In the scalar case of (i), given by 

	

.F' [k .FE'(f,g)] (.) LP	C I1f1 h 21I max igk+IL, II, 
—I<j:51 

also p = 00 is admissible. Part (iii) is taken from [30: Theorem 3.71, complemented by 
the use of the Holder inequality with respect to 1 =	+ -. Proofs of statements (i) 

P	Pi	P2 
and (ii) will be given in Subsection 5.5.	 . S
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3. Sharp embeddings 

3.1 Embeddings with constant smoothness. Here the sign C stands for continuous 
embedding. Recall that all spaces are defined on li?'1. 

Theorem 3.1.1. The following statements are true. 

(i) Lets E JR,O<p<co, O<q<cx), O<u 00 andO<v	. Then 

Bc F;q c PV 

if and only if

0 < u min(p,q)	and	max(p,q) v 00.	 (3.1.2) 

(ii)Let0<u<cxand0<v<c,o. Then 

	

BO C L 1 C	 (3.1.3) 

if and only ifo<u<l andv=c'o.

(iii) Let 0 < u <00. Then

	

FO,u C L 1	 (3.1.4) 

if and only if 0 < u 2. Furthermore

F,0.	.,	 (3.1.5) 

(iv)LetO<u<ooand0<v<oo. Then - 

BO c, ,u C L o C B o,v	S	 (3.1.6) 

if and only ifo .czu<1 and v=oo. 

Remark 3.1.1. Let C be the space of all complex-valued bounded and uniformly 
continuous functions on 1W' normed in the usual way. hi (3.1.6) one can replace L by 
C.

Remark 3.1.2. By (3.1.1) we know F10 C B 4O . The assertion (3.1.5) shows 
that the second inequality in (3.1.3) can not be improved by replacing B 4O by F,0. 

Remark 3.1.3. The "if"-parts of Theorem 3.1.1 are known (see [24: Proposition 
2.3.2/2, p.47, Proposition 2.5.7, p.89 and Theorem 25.8/1, p.92]). In other words, we 
have to complement these known assertions by the "only if"-parts and the proof of 
(3.1.5). 

3.2 Embeddings with constant differential dimension. Recall: that s - n/p is 
called the differential dimension both of B q and F q • It is a characteristic number 
which plays a crucial role in the theory of these spaces (see, for instance, Figure 1 and 
the accompanying remarks).
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Theorem 3.2.1. The following statements are true. 

(i) Let O<po<p<p1 !^oo,sE1R,so-=s-=s i --,0<q co, 0< 
u<ooand0<v<oo. Then

Bp'° u C Fpq	p' c B" v	 (3.2.1) 

if and only if
0<upv00.	 (3.2.2) 

(ii) Let O<p<p1 <oo,sE1R,
nn s - - = s 1 - -	 (3.2.3) 
P	pi 

and 0<q.00. Then
C Fp','q .	 (3.2.4) 

(iii) Let 0 < . p < 1 and 0 < q < oo. Then 

B 1?'' C L	 (3.2.5) 
Pq 

if and only ifO<q<1. 

Remark 3.2.1. The "if"-part of statement (i) is due to Jawerth and Franke (see 
[7, 10], [24: p. 131] and [25: p. 191]). Furthermore, statement (ii) is mentioned here 
for the sake of completeness (see [24: Theorem 2.7.1, P. .129]). Of course, by the 
monotonicity of the F,,-spaces, x in (3.2.4) can be replaced by any positive number. 
As mentioned in the Introduction, embeddings in L 1 and L,, deserve special attention. 
The L,-counterpart of (3.2.5) will be describedin the next subsection. 

3.3 Embeddings in L and in L0c. The space C has been defined in Remark 3.1.1. 

Theorem 3.3.1. The following statements are true. 

(i) Let s E .1R, 0 <p < oo and 0 <q :5 co. Then the following three assertions are 
equivalent 
(a) Fp'qCL 
(b) Fp'qCC 
(c) either s> 11 or S =	and 0 <p < 1. 

(ii) Let s E 1R, 0 < p 	and 0 < q < oo. Then the following three assertion.., 
are equivalent	 . 
(a) Bp'qCL 
(b) B;qCC 
(c) either s > 11 or s =	and 0 <'9:51. 	 (3.3.1) 

Remark 3.3.1. This theorem is known. We incorporate it both for sake of com-
pleteness and because it will be of great service later on in this paper. A proof of
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statement (i) may be found in [7]. As far as statement (ii) is concerned we refer to [24: 
Theorem 1, P. 133) (see also [24: Item 2.8.3, p. 146) and [25: Item 2.8.3, P. 211]). 

Remark 3.3.2. Let be either B 9 or F 9 . Then A q is called a multiplication 
algebra if A;9 A 9 C A 9 where the multiplication of two distributions is given by 
(2.2.2). Part (i) of the theorem can be complemented by statement 

(d) F 9 is a multiplication algebra. 

A corresponding assertion for B 9 is only "almost" true. More precisely : B 9 is a 
multiplication algebra if and only if 

(d) either s> 11 with 0 <p no or s = with 0 <p < no and 0 <q < 1. 

This assertion differs from (3.3.1) by the case s = 0, p = no. We refer to [7] and [23] 
(see also [24: Item 2.8.31, with the indicated correction as far as the case s = 0, p = no 
is concerned, and [20: p. 56]). The case B 9 will be established in Remark 4.3.5 in the 
indicated way: It is not a multiplication algebra. Although the study of multiplication 
algebras fits quite well in the framework of our paper we shall not stress this point in the 
sequel. We are mostly interested in multiplication with essentially unbounded function. 

Of course, LI10C stands for the collection of all complex-valued functions which are 
locally integrable in .1'. It is interpreted here as the set of all regular distributions on 
.1W'.

Theorem 3.3.2. The following statements are true. 

(i) Let SE in, 0< p < no and- .0 < q no. Then the following two assertions 01) 
and (i2 ) are equivalent: 
(i 1 ) F 9 CLl10 

02 ) either 0 <p < 1, .s n( — i) , 0 < q no	 (3.3.2) 
or 1p<oo, .s>0, 0<q<no 
or 1 <p < no, .s = 0, 0 < q < 2.  

(ii) Let s E ff1, 0 <p no and 0 < q no. Then the following two assertions (iii) 
and (ii 2 ) are equivalent: 
(ii1) B 9 c LI10C 

(ii2) either 0<p<no, s>n(_1), 0<qoo 

or O<p<l, s=n(_1), 0<q1 
or 1 <p< no, .s =0, 0< q <min(p,2).	 (3.3.4) 

Remark 3.3.3. Ifs > n( —1)+, then it is well-known that B q and F q consist of 
regular distributions. In other words, the interesting part of Theorem 3.3.2 is the final 
classification what happens in the limiting case s =  

We compare the above Theorem 3.3.2 with the sharp embeddings described in Sub-
sections 3.1 and 3.2. The case p = no plays a special role. Without going in details we 
mention	 .

Bo	L'O 
oo,2 '- oo,2 — IIW
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(see [24: pp. 37, 50 and 93 1 for definitions and explanations; as far as the spaces F,g 
are concerned we refer also to [8, 14]). 

Corollary 3.3.1. The following conclusion3 are true. 
(i) Let s E IR, 0 < p < oo and 0 < q :5oo. Let A q be either B q	F;,. Then 

the following two assertions (i 1 ) and (i2 ) are equivalent 
(L 1 ) A q C LOC 

(6) A q C L, with ji = max(1,p).	 '	 (3.3.6) 

(ii) Let s E 11? and 0 < q 5 oo. Then the following two assertions (ii i ) and (ii2) 
are equivalent 
(iii) B 3oq C L!10C 
(112) B q C bmo.	 (3.3.7) 

Proof. Part (ii) is covered by (3.3.5) and the above Theorem 3.3.2, especially 
(3.3.4). The F-case of part (i) related to (3.3.2) follows from (3.2.4), (3.2.3) and (3.1.3): 

Fpq 11 '	C B ,1 C L1	(p < 1). 

The F-case related to (3.3.3) is clear since F° 2 = L (1 <p < oo) and 

F10 2 = h 1 C L 1 .	 (3.3.8) 

The B-case of part (i) follows immediately from the above Theorem 3.3.2, (3.2.5), (3.1.1) 
and (3.3.8). U 

Remark 3.3.4. Let again A q be either B q or F q and let 

A;q C L.	,	 (3.3.9)

Let 0 be a C°°-function with O(x) = 0 near the origin and I(y) = 1 if, say, 1111 ^! 1. Let 

	

ri :' f[(e)	Ff(e)] (.)	(j = 1,. . . , n)
ifl 

be the inhomogeneous Riesz transforms. Recall that the (inhomogeneous) Hardy spaces 
h 1 = F ,2 can also be characterized, as the collection of all f E L1 with ri f E L1 if 

= 1,... ,n(See [24: pp. 93/94]). Since rj A q C A q we can improve (3.3.9) by 
A q C h. In other words, if p = 1, then (3.3.6) can be strengthened by A ,q C h. Now 
(3.3.7) looks a little bit more natural since brno = h'1. 

Remark 3.3.5. For better reference we formulate one consequence of Theorems 
3.1.1, 3.2.1 and 3.3.2, Remark 2.1.1 (first item) and (3.3.8) once again. Let .s > 0, 0 < 
p<o and 0<q.If12—>0,then 

	

B;q CLr	0<qr. 

A corresponding assertion for F 9 holds without restrictions on q.
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4. Holder inequalities 

4.1 Necessary conditions for s and p. Let s E in, 0 <P1 co, 0 <P2 <00 , 0 < 
p 00, 0 < q i 5 oo, 0 <q2 S 00 and 0 <q oc. We ask under which conditions 

B; ,q, Bpq2 C B;q	 (4.4.1) 

F3 F3 CF3	 442 piq,	p2q2	 pq 

hold, where in case of (4.1.2) we assume, in addition, 
p' oo, p2 oo and p 54 co 

Theorem 4.1.1. If either (4.1.1) or (4.1.2) hold under the indicated general con-
ditions for the parameters, then 

/1 1\	 1 
max ( -, -	-

1 -
1 + -	 (4.1.3) < 

PI P2 	P P1 P2 

	

2s > n(-- +	- i)	 (4.1:4) 

	

(	+	- ).	
(4.1.5) 

Remark 4.1.1. Of course, (4.1.5) can be rewritten as 

n	n	n 
s--<s--+s--.	 (4.1.6) 

P	Pi	P2 

Recall that s - is the differential dimension both of BP' 
q 

and F, q . In other words, 
the differential dimension of the target spaces in (4.1.1). or (4.1.2) has to be less than 
or equal to the sum of the differential dimension of the spaces on the left-hand sides of 
(4.1.1) and (4.1.2). In the Figures 3a and 3b we summarized the above restrictions in 
dependence on whether + - I or + > 1. 

S

7fl (+ *_ ) 

B 
.LJ..I	-L+.J	1 
'I '3 '9193	91 92	 p 

Figure 3a

= srn(—t) 

'I 

I I \II I	IIII —	P t	92	P 
I	I	I?	I, 

•	I	I 

• I	I .
I	I	I 

i 
I	I	I	I 

I	I
,= n	I

	(+*-1) .

 

I	I	It 
I	I I 

I	I 
I	I	I

l 
I 

I 
I	I	I 

I	I
I 

I I	I	. 
I	I 

I

I 
I 

I 
I	I	I	 I 

• • I	t—b I 11 1+1 . 
r j r3 r ;;	 p

Figure 3b 
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If one compares Figures 1, 3a and 3b, then we are mainly interested in those cases, 
where we have equality in (4.1.5) and (4.1.6). This corresponds to the heavy lines in

	

Figures 3a and 3b and in that case (4.1.6) is identical with 1 =	+	in Figure
1. The limiting cases (1.1.7) correspond to the points A and B in Figures 3a and 3b, 
respectively. However in the final Subsection 4.4 we sketch briefly what happens inside 
of the shaded regions. 

4.2 The main results. Recall that all the spaces are defined on 1R'. Furthermore, 
the Holder inequalities we are looking for are characterized by the situation sketched in 
Figure 1 and indicated by the heavy lines in Figures 3a and 3b. There is a significant 
difference between B-spaces and F-spaces acting as pointwise multiplier spaces which 
can be clearly seen by the theorem below and which will be prepared by the following 

	

proposition.	 .	S 

Proposition 4.2.1. Let s E ff, 0 <P1 <00, 0 < p2 < 00, 0 < p < 00, 0 <q 
cxJ,0<q2 o0andO<qoo. Let 

	

•1	1	s	 •1	1•1 
and	—+—=–.	 (4.2.1) 

	

r 1	P1	n	 P2	r 1	p 

Let independently 

	

A; 2 q2 be either B 2q2	 A3 or F 2q2	and	pq be either B q or Fq. 

If
B9 A;2q2 C A3	 (4.2.2) piqi	 pq' 

then
q	r 1 .	 (4.2.3) 

Remark 4.2.1. If one replaces the pointwise multiplier space B 1q1 by F, q,, then 
the restriction of type (4.2.3) simply does not occur (see the Theorem 4.2.1 below). As 
far as r1 is concerned we refer to Figure 1. If r2 and r are defined in a similar way, 
then the second part of (4.2.1) can be reformulated as 1 =-I-- + which coincides 
with Figures 1, 3a and 3b. However it is not assumed that the involved spaces are 
characterized by the points within D, where D is given by (1.1.6). 

Theorem 4.2.1. Lets > 0, 0 < p' < 00 , 0 <P2 < 00 , 0 < P <  00 , 0 < q ^ 
oo,0<q2 <_ooand0<q00. Let 

1	1	5	 1	1	S	 1	1	1	is - - - - > 0,	- = - - - > 0,	- + - = - = - - - < 1. (4.2.4) 
r 1	p	n	r2	P2	n .	r1	r2 .	r	p	n 

(i) Then there holds	 S 

B,8 , q , B;2q2 C B;q	 S	 S 5 (4.2.5) 

if and only if	 S 

	

0< q i	r,	0< q	r2 ,	: > q ^!max(ql,q2).	(4.2.6)



n 
.5 = - 

P1
(4.3.1) 
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(ii) Then there holds	
F'F'	 (4.2.7) p iqi p2q2 

if and only if
oo>q>max(qi,q2).	 (4.2.8) 

Remark 4.2.2. Both (4.2.5) and (4.2.7) are the Holder inequalities in the distin-
guished strip D in (1.1.6) we are looking for. The situation described in Figure 1 is 
the same as in (4.2.4). Compared with Figures 3a and 3b condition (4.2.4) corresponds 
to the heavy lines where the endpoints A and B are excluded. Furthermore, (4.2.4) 
is connected with embeddings with constant differential dimensions, see Theorem 3.2.1 
and the broken lines in the Figures 3a and 3b ending at - , -, and .r2	r 

Remark 4.2.3. One can try to mix B-spaces and F-spaces in (4.2.5) and (4.2.7). 
We do not go into detail. By the above proposition it is quite clear what can be expected. 

4.3 Two limiting cases. We discuss two limiting cases connected with the point A in 
Figures 3a and 3b and point B in Figure 3a. First we assume s = -. In agreement with 

Pi 
(4.2.1) we have r 1 = cc and p2. = p. However it comes out that (4.2.3) is no longer the 
natural condition. In contrast to Proposition 4.2.1 we have now to handle the B-spaces 
and the F-spaces separately. 

Proposition 4.3.1. The following statements are true. 

( i) LetO < pi<cc,O<p<oo,O<q 1 <cc,i<q2 <ccando<q<cc Let 

If
B' B' cB' Bp'  pq 2	pq'	 (4.3.2) 

then
qj	1.	 (4.3.3) 

(ii) LetO<p 1 <oo,0<p<cc,0<q 1 !^oo,O<q2 <oo andO<q<oc. Lets 
be given by (4.3.1). If	

F' F 	F	 (4.3 .4) pjqj pg2	pq' 

then
< 1.	 (4.3.5) 

Proof. If (4.3.2) holds, then it follows by the same arguments as in [7: pp. 38/391 
that Bp' 1q1 C L. Similarly, if (4.3.4) holds, then we have necessarily Fp'1q, c La,. Now 
(4.3.3), respectively (4.3.5) follow immediately from Theorem 3.3.1. I 

Theorem 4.3.1. Let 0 <p < cc, 0 <p < cc, 0 < q	cc, 0 < q ^ cc and
O<qcc.Let

n	 is	1 S 	and	0<---=—<1. 'p n	r
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() Then there holds	
B' B'	B' p i g i pq	pq 

if and only if

0< 91 5 1,0 <q2 r	and	co > q max(ql,q2). 

(ii) Then there hold.,
F' F'F' p,q, pg	pg 

if and only if

	

O<pi 1	and	x1>q?max(ql,q2). 

Remark 4.3.1. This theorem is connected with the points A in the Figures 3a 
and 3b. The formulation is chosen in such a way that it can-be compared immediately 

	

with Theorem 4.2.1. Instead of (4.2.6) with the expected 0 < qj	cc wehave now 
0 < qj 1, and (4.2.8) must now be complemented by 0 <p ^ 1. 

The second limiting case is connected with the point B in Figure 3a, that means 
with s=0 and 1=L+ L <-1. 

P	P1	p2 - 

Theorem 4.3.2. Let O< qi cc, 0 <q2oo and 0< q cc. Let 

-	 l<Pi -,	lp2<cc,	–=—+-1. 
P P1	P2 

Let independently
A° p i gj 

A0 2

 A° pg 

(we assume A° = B° i pi q i	pigi

	

be either B°	or F° 

	

p,qi	pig, 

	

be either B°	or F° 

	

p 2 q z	 p2q2 

	

be either B°	or F° 

	

pg	 pg 

= oo). Then there holds 

A°A°	C A°	-	 (4.3.6 P, q1	p2g2	pg	 S 

if and only if
A°p,gj c L 1 ,	A°p2g2 C L 2 ,	.L C A°pq .	 (4.3.7) 

Remark 4.3.2. We compare the above assertion with the classical HOlder inequal-
ity L 1 L 2 c L. Then Theorem 4.3.1 states that, within the scales B g and FP', with 
s 0, the classical HOlder inequality is not improvable. 

As a consequence of Theorems 4.3.2 and 3.1.1 and F0,2 = L (1 < p < oo) we 
obtain the following corollary. 

	

Corollary 4.3.1. Let 0 < qj :5 cc, 0 < q	cc and 0 < q cc. Let 

l<pl<cO,	l<P2<00,	–=—+—<1. 
-	 P	Pi	P2 

(i) Then there holds
B01 91 	CBp0g P i g ,	p2g2



120	W. Sickel and H. Triebel 

if and only if q ( min(pi ,2), q2 min(p2 ,2) and q ^! max(p,2). 
(ii) Then there holds

Fp01q1 Fp°2q2 C Fp°q	 (4.3.8) 
if and only if qi!^2, q2 <2 and q>2. 

Remark 4.3.3. In case 1 < P1 <00, 1 5 P2 <00 and = + = I Theorem 
P	Pi	P2 4.3.2 yields: there do not exist q , q2 and q such that (4.3.8) holds. This follows from 

(3.1.5). 
Remark 4.3.4. Of special interest is also the situation in case p1 = cc. Let 

1 <p < cc, 0 < q :5 cc and 0 < q :5 cc. By (4.3.7) and Theorem 3.1.1 we have 
B,oq1 B q C B q	 ..	(4.3.9)

if and only if 0< q, 1 and  = q = 2 (that means B° 2 = L2)and 

Booqi F° pq C F;q 

if and only if 0 < q . 1, 1 <p < cc and q =. 2 (that means F, 2 = Lv). Hence, 
with the obvious exception of L the space L is not contained in the set of pointwise 
multipliers of these spaces, which was proved earlier in [8]. Inclusion (4.3.9) improves 
also some results of Bourdaud [4]. 

Not as a consequence of Theorem 4.3.2 but as a consequence of the proof of this 
theorem one obtains the following corollary. Here b q denotes the closure of S in Bq, 
equipped with the same quasi-norm as Bq. 

Corollary 4.3.2. Let 0 < q	cc, 0 <q2 00 and 0 < q< cc. Then there holds 
jO	O	O qi 

if and only if b°ooqj C Loo, b°,q2 C L00, and L c b. 

Remark 4.3.5. Because of b°,q 34 , L cc, one consequence of Corollary 4.3.2 is the 
fact that bO.,is not a multiplication algebra (cf. Remark 3.3.2). But this implies that 
also B q can not be an algebra with respect to pointwise multiplication. 

4.4 Further results. We complement our previous considerations by collecting some 
further results, mostly connected with the shaded areas in the Figures 3a and 3b. We 
refer also to Subsections 3.3 and 4.3, where we characterized the conditions under which 
B q or F, q are multiplication algebras. 

Theorem 4.4.1. Let 0< p' <cc, 0< p2< cc,0 <q, -oo, 0< q	00 and
0 <.q < cc. Let (s, ) be a point in the interior of the shaded areas in Figures 3a and 
3b, that means

(1 i)	1	1	1 max	<— < - + --	 (4.4.1)
Pi P2

2s>n (+_ i)	 (4.4.2) 

>
 n(P I

- + — — - .	 (4.4.3) 
 P2 P1
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Then there holds 

if and only if 

and 

if and only if

B3 B;2q2 C B3 p,gj	 pq	 (4.4.4) 

q ^! max(qI,q2)	 (4.4.5) 

F3 F3 CF3 p i q i	p2q2	pq	 (4.4.6) 

q ^: max(qi,q2).	 (4.4.7)

In case of the B-spaces P1 = oc and P2 = oc are admitted in (4.4.4). 

Remark 4.4.1. We used the same notations as in Theorem 4.2.1 and it is immedi-
ately clear that the above assertion complements that theorem, where we are now not 
restricted to the strip D. The necessity of (4.4.5) and respectively (4.4.7) is proved in 
[7].

Remark 4.4.2. The above theorem has a lot of forerunners. Without going into 
detail we refer to [1, 2, 7, 9, 12 - 15, 17, 20 - 24, 29 - 34]. 

Remark 4.4.3; Again let us cast a look on the Figures 3a and 3b. The results 
given so far answer the question of the existence of inequalities of type (4.4.4) and (4.4.6) 
in the interior of the shaded area (yes) and partly also on the boundary. Whereas on 
the vertical lines the answer is again yes in any case, except maybe the points A and 
B itself (these claims can be proved by suitable modifications of the proof of the above 
theorem given in Subsection 5.7 (cf. Remark 5.7.1)) the answer on the horizontal line 
2s.= + - 1) may be yes or no. A partly positive answer for the existence of 
(4.4.6) on. this line is given by [7]. A negative answer for the existence of (4.4.4) one 
obtains in case -+ .. < 1 by replacing the simple counterexample used in proof of 
(4.1.4) by a more sophisticated one (cf. [11) or [18: Lemma 4.3.1/3]). 

5. Proofs 

5.1 Proofs of the assertions in Subsection 3.1. 
Proof of Theorem 3.1.1. Step 1. Proofs of the "if"-parts of statements (01 (ii) 

and (iv) may be found in [24: Proposition 2.3.2/2, p. 46 and Proposition 2.5.7, p. 89]. 
The "if"-part of statement (iii) is an immediate consequence of the identity F 2 = 
(cf. [24: Theorem 1, p. 92)). So in what follows we restrict ourselves to the "only 
if"-parts and to the proof of (3.1.5). 

Step 2 (Proof of (3.1.1)). First note that it will be sufficient to prove (3.1.1) in case 
of a fixed s. By well-known lifting properties (cf. [24: Theorem 2.3.8, p. 58]) it can be 
extended to arbitrary s afterwards. 

Substep 2.1. Let 0 E S such that 

SuPPC{: e ^0, ^II^2}.
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For given complex numbers aj and e = (1,0,... ,0) we put 

f  = 

CO

 
ajeA1(c) '(x). 

j=3 

Then

=a (1)(e - 

Choosing A, =2' —2 (j =3,4,...) we arrive at 

F_1 [p	f](x) = aj e' (ex) 

where we have used (2.1.3), (2.1.4) and (5.1.1). Consequently we have 

1/q	 I/u 

IfIqII = c (
	

iaii)	and	IIfI B II = c (
	) 

The monotonicity of the 1 q -norms gives

q 5 v.  

Substep 2.2. We wish to prove the counterpart of (5.1.2) with p instead of q. For 
this purpose we use local means (cf. [26: Subsections 1.8.4 and 2.5.3]). Let k0 , k° E S 
such that

.Tk0(0) 0 0, Tk°(0) 54 0 

suppkoC{y: I y I:5 l }, suppk°C{y: IyI'}. 

Define
N 

k(y) = jNk9(y) (E	) 
k°(y) 

with N E W. We introduce the local means by 

	

k(t,f)(x) = f k(y)f(x +ty)dy	(t >0)	 (5.1.3) 

and similarly ko(t, f) . Recall, for N large enough we have 

/	 1/u 

fI BPu3 II	II ko( 1 ,f)()IL II + (	2m3k(2m, f)( . )LII u)	.	(5.1.4) 
\m=I
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Let W E S be non-trivial with a compact support near the origin. Let 1 be an integer. 
Then we have

k(2 1 , LNy)(z) 

= f ANko(y)(LN2)(x + 2'y) dy 

= 2 21N J k°(y) (2N)(x + 2 1y) dy 

= 2-21N J A2NkO(y)(x + 2'y)dy. 

In other words, we have 

Ik(2',L)(x)I <cN2 2111'	(1 E X, NE iN)	(5.1.5)
and similarly

ko(21,N)(x)	C\'22'	(1 E iN0 , NE iN).	(5.1.6) 

Now we put

=
a ( N ) (2)(x - x'))	 (5.1.7) 

with aj E C and, say, x = c (j, 0,... , 0) where c > 0 is a suitable positive number. 
We insert f into (5.1.3) and calculate 

00 

k(2m,f)(.)IL P1
1

1
1'
 -	au	k(2_m,(LY/p)(2i(. -	 I LpIIP	 (5.1.8) -

j=0 

where we used the construction of the local means and the fact that the supports of 
the terms of f have a sufficiently large distance from each other. For the term with 
j=mE1Vwehave 

Il
k (2_m,(Ly,)(2m . _2x))L " = 2"' k(1,L)L '	(5.1.9) 

where we may assume that the last factor on the right-hand side is positive. Of course 
we have an obvious counterpart of (5.1.8) with ko(1,f) instead of k(2 m ,f) and of 
(5.1.9) for the term j = m = 0. Hence, by (5.1.4) we have 

	

IIIIB 0 II U ^: c E 2mau 12_ mn/P amlu	 (5.1.10) 

for some c> 0. To prove the converse estimate we apply (5.1.5) with 1 = j - m to the 
corresponding term in (5.1.8), and (5.1.6) with 1 = j to the ko-counterpart of (5.1.8). 
For sake of convinience we put a3 = 0 for —j E N. Then (5.1.5) and (5.1.8) yield 

	

IIk(2_ m ,f)( . )lLfl J < c	2_3'ajI2_2N1i_mlP 

< C' sup I2-" I ajI _ a li-mi p 
j 

S C'	 2- a lj--1 
.7
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for 0 < a < 2N and appropriate c > 0 and c' > 0. We choose N and afterwards a 
sufficiently large such that 

	

2 u 11k(2_ m , f)(-)IL MU	C	
2j-'u 12—jn/p a3 2	1,-m1 U	 (5.1.11) 

3 

with 3 = a— IsI >0. Now we insert (5.1.11) and its ko-counterpart into (5.1.4), change 
the order of summation and arrive at the converse of (5.1.10). Hence we have 

	

llflBlI U	2	2 —mn/p am I U .	 (5.1:12) 

On the other hand, by the localization property of F 9 (cf. [26: Subsection 2.4.7)) we 
have

IfIF;qII	>	a	N)(2) . _2'x')F q .	 (5.1.13) 

To estimate the last factors we use the counterpart of (5.1.4) for the F q -space (see 
again [26: Subsection 2.4.6)). By (5.1.5), (5.1.6) and the same technique as above we 
have

_2x)jF;9	2j(s—n/p) 

We insert this result into (5.1.13) and arrive at 

2m3P 12 _ mn/P am I .	
( 5.1.14) 

Now (3.1.1), (5.1.12) and (5.1.14) yield u < p < v. Together with (5.1.2) this proves 
(3.1.2). 

Step S (Proof. of (3.1.6)). Taking the characteristic function XQ of the cube Q = 
{x : Ix,) < 1 (1 = 1,... ,n)} it is well-known that 

XQ E B 9	q =oo	 (5.1.15) 

(cf. [23: pp. 142 - 145]). There the one-dimensional case is treated only but the general 
result can be deduced by using some tensorproduct arguments. From the equivalence 
(5.1.15) it follows ) = oo. The remaining implication 

B U CL	: u<1	 S 
CC)

can be derived from the existence of essentially unbounded functions in B0 u (u > 1) 
(cf. [23: pp. 134/135]). This proves (3.1.6). 

Step 4 (Proof of (3.1.3)). The proof of (3.1.3) ("only if"-part) can be reduced to 
(3.1.6) by using duality arguments. Suppose 

C L 1 C	for some 1 <u < oo and/or v < oo.
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Then this would imply (cf. 124: Subsection 2.11.2, p.178)) 

Bo,cL00cB,	(+-=+-=i).0000

This contradicts (3.1.6). Hence, (3.1.3) is proved. 

Step 5 (Proof of (3.1.4)). The proof of Fi°q L 1 (q> 1) we postpone to the proof 
of the stronger implication F1', , c LOC	q <2 (cf. Subsection 5.3). 

Step 6 (Proof of (3.1.5)). To prove (3.1.5) we apply again duality arguments. Let 
f° be the closure of S in F,0 . Assuming L 1 C F1 we cdncludé L 1 C f10 using 
the density of S in L 1 . This yields

= F 1 C L.	 (5.1.16) 

(cf. [14]). But this is false since F ,1 contains essentially unbounded functions. This 
can be derived from the embedding 

B n /p C 

	

P	
F°	(0 < p < oo)	 (5.1.17) 

(cf. again [14] and Theorem 3.3.1) U 

Remark 5.1.1. To avoid the technical difficulties occurring in Substep 2.2 one 
can use the following elegant argumentation. Let n 2. If s is large enough, then the 
trace on JR"1 ( x,, = 0) makes sense. Suppose (3.1.1). Then it follows 

B 1/P(JR'') c B 1/P (1R') c Pu 

(cf. [24: Theorem 2.7.2, p. 132)). This proves u p v, unfortunately in case n > 2 
only. 

5.2 Proofs of the assertions in Subsection 3.2. 

Proof of Theorem 3.2.1. Step 1. The proof of (3.2.5) ("only if"-part) will be 
postponed to the proof of the stronger implication B'1 ' C = q :5 1 given in 
Subsection 5.3. The "if"-part of (3.2.5) follows from B'h'' ) C B (see [24: Theorem pq 

2.7.1]) and (3.1.3). Furthermore, as pointed out in Remark 3:2.1, both statement (ii) 
and the "if"-part of statement (i) are known. 

Step 2 (Proof of the "only if"-part of (3.2.1)).; Let f be given by (5.1.7). We put 
bj =	 Since s — 2 =-	= si -	we find by (5.1.12) and (5.1.14)Pi 

	

P	 PO

	

00	 00	 00 

lU	
"f'B" 

liv	bj"	IlfIF' li p	'b ' Iii	p 0 ull	I ii	II	I	p,viI	 '	II	 .	 pqIl	 I 

	

j=O	 j=O	 j=O 

Then (3.2.1) implies u <p and p < v U
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5.3 Proofs of the assertions in Subsection 3.3. 
Proof of Theorem 3.3.2. Step 1. The implications (i 2 ) = ( i 1 ) and (ii 2 ) = (ii1) 

are known and follow directly from the sharper embeddings B q C L,, arid F q C L,5 with 
= max(1,p) (see Theorems 3. 1.1 and 3.2.1, Remark 2. 1.1 and the proof of Corollary 

3.3.1). 

Step 2. Let p 1 and s = n(1/p, - 1). We shall prove the implication 

B' 111 C .	q	1.	 (5.3.1) pq 

Let 'p be a non-vanishing C 00-function with support near to the origin and F'p(0) = 0. 
Let

f 
=

Aj2 42ix - x')	(xi E	Ix'I	1)	(5.3.2) 

where we assumed that the functions 'p(2 3 x - x i ) have disjoints supports. Then (5.3.2) 
is an atomic representation of f with

00 
II (	 <	 (5.3.3) II	I	pq 

(see [8] or [26: Subsection 1.9.2]). On the other hand we have 

A2'p(2• —xi) 
I 
L, = c E Aji	(c 0 0).	(5.3.4) 

If 1 < q < oo, then we find numbers A, with (5.3.3) such that (5.3.4) diverges. Hence f 
does not belong to L 1 . This proves (5.3.1). 

Step 5. Let 1 p < oo. We shall prove that Fp0q C L 0C implies q 2. Assume 
q > 2. For technical reasons we switch temporarily to the one-dimensional periodic 
case. Let T' be the 1-torus. Let {ak}k V 12 . Immediately it follows: 

(i) The lacunary series E k ak el2kt belongs to Fp°q (T 1 ) if and only if {ak)k E 1, (cf. 
[19: Subsections 3.5.1 and 6.4.2]). 

(ii) f V L 1 (T'), hence f is not a regular distribution on the 1-torus (cf. [6: Subsec-
tions 15.3.1 and 15.3.2]). 

This yields the result in the one-dimensional periodic case. The same argumentation 
works in the general non-periodic case if we start with 

g(x)=f(xi)x(x)	(x=(xi,...,xn)). 

Here x denotes a compactly supported C°°-function in .IR'1 which is identically 1 in the 
cube [—ir, 7r]'. One can prove this claim by using the characterization of F,,-spaces via 
local means with kernels having a product structure (cf. [26: Subsection 1.8.4]).
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Step 4. Let 1 < p < on. The same machinery as in the preceding step can be 
applied to prove that Bp°q C L"' implies q 5 2. 

Step 5. Let 1 < p ç 00. It remains to check the implication 
Bp°q C LOC	;	0 < q 5 p.	 (5.3.5) 

We shall prove the existence of a singular distribution in Bp°q (1 p < q on). 
Substep 5.1 (Preparations). Let f be a smooth function, non-trivial, supported 

around the origin, If(x)I 1 and ff(x)dx = 0. Let a> 1. Define 

= 0	and	r j =	1' (log(l + i))	(j E W).. 

Since a > 1, there exists a real number ic with .c —* K if j —* on. Further we put 

R = { = ( x 1 ,. . . , x):	—1 < x 1 < ij, 0 <x, < 1 (1 = 2,... ,n)} 

for j E If'!. Next we subdivide B, by 

N = 2'	[2j_1 (log(j + i))] 

where [ ] denotes the integer part into cubes of side-length 2—' and centered at xi". 
Substep 5.2. The announced singular distribution is given by 

Ni 

g =	(log(j + i)) f(2i+I (x — 
j=1 r=I 

To see this, first note that 2"' f(2)U (x xi')) is an atom. More exactly, it is an 
(Q.,,r, 0, p)-atom (cf. [26: p. 62]) where Q,,r is an appropriate cube with volume 
and located around x''. Using the characterization of Besov spaces via atoms, due to 
Frazier and Jawerth (cf. [26: Theorem 1.9.2, p.63]), we obtain 

CO	
q/p 

<c	_,(f/P)q (log( 	i))	
(	

) 

: : 

j9/P (log(j + 

since q > p. Hence,
9 E Bp° q	if 1 p < q < on.	 (5.3.6)

By construction g has compact support. Furthermore 

fIg(x)Idx=	J gx)Idx	>(log(j+1)) RjI=>j' oo. 
j=1	 j=I 

Hence,
g V LOC.	 (5.3.7) 

The formulas (5.3.6) and (5.3.7) prove that g has the required properties, which gives 
(5.3.5). U
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5.4 Proofs of the assertions in Subsection 4.1. 
Proof of Theorem 4.1.1. Step 1 (Proof of (4.1.3)). The right-hand side of this 

inequality was proved in [20: p. 51]: We prove the left-hand side and assume that 
(4.1.1) holds. Then we have

IIfI B qII c [f IBiqi II (5.4.1) 
for all I E B 1q1 with compact support, say, in the unit cube. Assume that I is non-
trivial and smooth and fxf(x)dx = 0 for 1,31 < L. If L is sufficiently large, then 

f(2'x) are atoms in B, qj (see [26: Subsection 1.9.2]). Then If(21)IB9II 
2,( h IP) . Similarly, for B, q,. Then (5.4. 1) yields	I. By (3.1.1) the assumption
that (4.1.2) holds yields a corresponding assertion of type (4.1.1). Hence we have again 
P1 - P 

Step 2 (Proof of 4.1.4)). The necessity of s > 0 is proved in [7]. So it remains 
to check 2s > -+ - - n. Let p, be the functions defined in (2.1.2). Consider the Pi	P2 
sequences

H(x) = 2' Fçcj(x)
(j ë IN).	 (5.4.2) 

G(x) 2	 x) 
Obviously,

IIHjI,q, II JjGjjB3,q211	23(28_2)+2n__).	(543) 

Let us assume 2s < IL +	n. Then we can choose a 1 + a2 <n such that Pi	P2 

2s - (a i + a2 ) + 2n - -- - .- = 0.	 (5.4.4) 
P1	P2 

Next we consider the sequence (G,'. H)(), where W is taken from S. We find 

(G . H)() = I Gi (x) Hj (x) v (x) dx 

= 2 2 ) 2 
2inff 

(r) ( - r) dr F(2i) d. 

We choose such that F> 0,	1R and F() = 1 (II 1). Then it follows 

• H)(	> C23(12)) 

for some appropriate positive constant c. From the continuous embedding B q C SI 

(cf. [24: Theorem 2.3.2, p. 48]) and (5.4.3), (5.4.4) we obtain a contradiction to 
(4.1.1). Since (5.4.3) remains true if we replace the B-spaces by F-spaces the same 
argumentation works also in this case. 

Step S (Proof of (4.1.5)). Again we can make use of the sequences defined in (5.4.2). 
Now it will be sufficient to take a 1 = a2 = 0. Observe that 

JIG . H I B Il 2 2js F'
(5.4.5) 

2 2ja 22mn 2 —jn/p	.—I [w, (w * p, )] (x)Lpll. 

Comparing (5.4.5) with (5.4.3) the necessity of (4.1.5) in case (4.1.1) follows. As in the 
preceding step the same proof can be taken over to the case of F-spaces. •
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Remark 5.4.1. Let A, qj denote either B jq , or F, 9, and similar A 2q2 and Aq. 
Without any changes the above proof can be taken over to the more general problem 
whether

A3A3 CA3 p,q, pq,	pq	 (5.4.6) 

holds or not. Then as above from-(5.4.6) thenecessity of (4.1.3) - (4.1.5) will follow. 

Remark 5.4.2. There is a difference between (4.1.4) and (4.1.5). Whereas (4.1.5) 
is necessary to keep the product inB 4O , (4.1.4) saves the membership of the product 
to S1. 

5.5 Proofs of the assertions in Subsection 4.2. 

Proof of Proposition 4.2.1. For sake of simplicity we always assume n = 1. 
Otherwise one has to modify the following in an obvious way. 

Step 1 (Preparations). We construct a smooth counterpart of Rademacher functions. 
To this end, let go be a C°°-function supported near 1 and identical 1 in a certain 
neighbourhood of 1. Then we put Lo, (x) = êo(x) - 0 (x - 1). Consequently f p 1 (x) dx = 
0. Next we define 02 (x) = p 1 (x) - ei(x - 2). This function &2 has now two vanishing 
moments

JL
02(x)dx = 0 

Jx92 (x)dx = 
I 

X 60 1 W dx - I(x - 2)Qi(x - 2)dx = 0. 

Iteration of this construction yields a family-of functions Uk having the following prop-
erties:

supp Uk c [0, 2k + 
and

IFek(e)I	ck I Cl	 (IlI	1)  

Ck,K IIK	(II ^! 1)	 (5.5.2) 

for arbitrary K and suitable constants ck and Ck,K . Both k and K are at our disposal 
Step 2. We fix some k and denote the corresponding function Uk simply by Lo. In 

what follows we investigate linear combinations of some sealed versions of this function. 
Let e'(x) = (2'x) (1 E IN). Recall that {k}k denotes the decomposition of unity 
defined in (2.1.2) and 0 the function from (2.1.1). Let E S be a function with 

suppI' C[_4_] u [-1 ,4]	and	''(x) = 1 on suppi. 

From (5.5.1) and (5.5.2) one derives 

II() (Fe)(2''.)W	< Cm 2	'"	 (5.5.3) 

II'() (.ê)(2 . )W	5Cm 2	 (5.5.4)
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for any m >O and Cm does not depend on j E IN0 andl E JiVo. Here a > 0 is at our 
disposal. The Fourier multiplier theorem (see [24: Subsection 1.5.2]) and (5.5.3) yield 
in case j > 0 

.F'] (.) 
I
L ,, 11

= 2-1+j(1	
() 4(e) .F(23 ')] (. ) Lp 11 

<	 ('e)(2')IW'	I F '92 I ILPM	
(5.5.5) 

< c' 2" 2	li-11	 V 

where m has to be suffiently large. In case j = 0 one has to apply (5.5.4) instead of 
(5.5.3) and obtains

F' [o F'] (.)ILM < c2_0.	 (5.5.6) 

Both (5.5.5) and (5.5.6) lead to 

T	[cp, .Fê'] ( . )ILpI < c2(3_ '/7) 2_0 )11	 (5.5.7) 

which may be assumed to be an equivalence if j = 1. We introduce 

= E al e'(x - x,)	 (5.5.8) 

where the points xj are chosen such that 1(. - x,) have disjoint supports (that is not 
important in this step but it will be used later on). Next we wish to calculate IIIqII 
We have

11F'	
L] (.)ILPIIm1fl(IP) 

^ I a1I"	[çoi Fyi ] (.)ILPImmn(lP) 

-	aImn(1,p) 1V' [SOj Fü'] (.)lLPIIm(lP) 

lj 

if L > j. Using (5.5.7) this leads to 

2'' min(1,p) I.T 1 [(pj 1\L] (.)ILPMmID(lP) 

^! ciIajImi(12i(3_hh/1) min(1,p) 

- C2 E IaiImi11)21(J_hu1) min (1,p) 2° 1i1 min(1,p) 

ijdj
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where c1 and C2 are positive constants independent of j and 1. This implies 

11
A 	

jmin(I ,pq) 

L	 \ (hg) min(1pq) / 
;	j(-11p)q aj 

j=O

	

 lal	21(s min(hp) 

j=O I0j
9/min(1,p)\ (11q) miu(1,p,q) 

) 

Choosing a large we may assume that the second term on the right-hand side can be 
estimated from above by, say,

2'"	iaii
(1/q) min(1,p,q) 

i	

) 
2 

Then we obtain

	

IL	
\h/q 

) t IB;q ^ c (	
J(a_h/p)q	

)	
(5.5.9) 

/	fl 

for an appropriate positive constant c. The reverse inequality to (5.5.9) can be derived 
in a similar way, again based on (5.5.7). Hence we have 

	

/ L	
\h/q 

	

2j(81p)q	
)	 (5.5.10)

I, 

and the corresponding constants do not depend on L and the sequences {a,} 3 and {x}. 

Seep S. Let 1 = 0,. . . , L and j > L. Then we can choose points t' (r 1,... , c 23') 
such that supp'( . - t') C It : 0 1 (t) = 1) and the supports of (. - t') and (. - 
t) (r 54 m) have a mutual distance of at least c'2' for some positive numbers c and 
c'. We put

p4 (x) =	Qi( - 

Such functions are studied in [28) (for partial results see also 
.
121]). By the theorem in 

[28: p. 1831 it follows

11 pflF 2q211	11141B;2q211	233—h/P2.	•
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Step 4 . Of course, the results of Step 3 remains unchanged replacing ' by p'( - x'). 
We put

	

1:1Aj =b, yj(x - x').	 (5.5.11) 

Then all the ingredients have mutually disjoint supports. Moreover, from [28] we know 
that

L	 I/p2 

IIIZ1 I 212 II	II/I Bp 2 q 2 II	(>	2-1/p2 bl I P2 )	.	 (5.5.12) 

Step 5. We multiply AL from (5.5.8) by 1zi from (5.5.11). By construction 

z3 (x) AL(x) 

=b
i aj pj (x - 

By (5.5.12) it follows

L	 1/p 

liz' ALIF;qll	liz' \ L IB;q ll	2' (
	

I2' b, a t I l')	.	 ( 5.5.13) 

Step 6. Assume (4.2.2) holds. Then by (5.5.13), (5.5.12) and (5.5.10) (with p' 
instead of p and qi instead of q) 

fL	 \1/P 

2'/P b, 
10  

L	.	 1/P2	L	
11q,	(5.5.14) 

c	2-l/p2 blIP2)	
(	

21(s-1/pi)qi 

(1=0 

 

with c independent of L and a,, b,. Let 91 = 211' 2 b, and at= 2 1 " a t (see (4.2.1)). 
Applying (4.2.1) then (5.5.14) yields 

L	 1/7	 L	1/p2	L	
11q, 

(	 ( 

Let /9, = oil = 1. Then L11 <	l/p2-I-1/q1 and hence	+	=	+ - from
which (4.2.3) follows. I 

To prove Theorem 4.2.1 we need Proposition 2.2.1. Therefore we start to prove 
Proposition 2.2.1 first.
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Proof of Proposition 2.2.1. Step 1 (Proof of statement (i)). We shall use (2.2.3), 
(2.1.1),(2.1.3) together with a Fourier multiplier assertion (cf. [24: Theorem 1.6.3, 
p.31]). This gives 

(	h-.' ['u,] or	L	c	fk2 gkI) 
/00	 )1/	 11(00 

k=2 

Applying H"older's inequality and 11 SUN ifk (x)I IL 2	c iifI h 2 11 (cf. [24: p.37]) we
arrive at (2.2.5). 

Step 2 (Proof of statement (ii)). We shall apply the identity 

00

	1 
U? 

r' [Wk F(	(f,g))] (x) = 	E .T' [Sok.F(fk+I .gk+I+,)](x).	(5.5.15)
l=-2 j=-1 

Here we have used (2.2.4), (2.1.1) and (2.1.3). First, let p 2 1. By the Michlin-
Hörmander-Fourier multiplier theorem, the triangle inequality and Holder's inequality 
we get

1100	1	 II 
'I, 

.F' [ok .7	(f, g)] (.)LpV :5 cII	 .1'	 gk+I+j)](.)LpiI 

II1=2 j=—I	 II 

00 c max E 11fk+II LP1 ii iigk+l+jiLp II. — —1<j<1 I=-2 

This proves (2.2.6). 
Let p < 1. Let 1 2 —2. Proposition 1.5.1 and Remark 1.5.2/3 in [24: p. 25/28] give 

p_1 [ckF(fk+: . g )] (.) Lp	2'1"' iIfk+l 9k+I1LPII. 

Again we use (5.5.15). Hence 

V' [Wk	"(f,g)]	.	S 

CO

9k+l+i)] (.)ILp 
l=-2  

C max	2'''iifk+:iLp1 lip 
I=-2  

This completes the proof of Proposition 2.2.1. I
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Proof of Theorem 4.2.1. Necessity part. After application of Proposition 4.2.1 
it remains to prove q ^! max(q i , q). But this is stated in a more general context in . (7]; 

Sufficiency part. Step 1 (Proof of 4.2.5). Therefore we use the preparations made 
in Subsection 2.2. 

Substep 1.1 (Estimate of  s"). Our assumptions in (4.2.4) and (4.2.6) imply 
the embeddings Bp',,, C Lrj and B 2q2 C L,.2 (cf. Remark 3.3.5). Hence, we may use 
Proposition 2.2.1/(i) to obtain 

1i1'(f,g)] (.)ILpM	
c (2' s IIgIL;II) IIfI hri II.	(5.5:16) 

11 
2j '9 1F	[1r " (f, g)] ( . )L	c (2	11f IL, II) IIgIhr2 II.	(5.5.17) 

Taking the q-th power and summing up the desired estimates of .' and " follow, 
where we used h r 1 Lrj D Bp3 1q1 and hr2 = Lr2 D B2q2. 

Substep 1.2 (Estimate of >"). Let 1 = + . We assume 0 < q min(1, t) t	Pi	P2 

Using Proposition 2.2.11(u) we derive 

(f,g)B 2, 
q 

iq 

C rrx	 2ksq. 	2(1(u_1)u IIfk+: . 

'I2	

(5.5.18) 
2'(n(1/u-1)-23)q  

22(k+t)q 
IIfk+11 Lp1 j j q II9 k+:+L 2 1 1q.

 

Because of	
(71) =n	+ 	(±,—.i)	 (5.5.19) n. 

t	Pi	P2	p 

(cf. (4.2.4)) and .s > 0 we have 2s > n ( — i) and hence the right-hand side can be 
estimated from above by In addition we have the embedding 
B c B q . This follows from Theorem 3.2.1 and (4.2.4) (see also (5.5.19)). This proves 
(4.2.5) in case 0 <q 5miri(1, t). If q > min(1, t), one has to modify the above estimate 
by using the triangle inequality in	Estimates (5.&16) - (5.5.18) together with
(2.2.2) prove (4.2.5). 

Step 2 (Proof of (4.2.7)). Substep 2.1 (Estimate of >2 ' >2") . Because of F, , , 1 c 
Lri = hr1 and F;2q2 C Lr2 = hr2 without restrictions on q, q (cf. Theorem 3.2.11(u) 
and Remark 2.1.1/first item) we may apply Proposition 2.2.1/(i) to obtain 

' (f, g)IF	c II 9 I1'p2q II 11f Ih ri 11 15 g  III p	II'' I P1 gill 

	

F3	"If IF3	II •	(5.5.20)
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Here we have used in addition q ^! q. Similar one derives 

M"(f,g)IF q	C IIgIFp32q , 11111 I Fptqi3	II .	 (5.5.21) 

Substep 2.2 (Estimate of s") . Again we put 1 =	+ i-. As in Substep 1.2 we 
know that 2s > n	- 1) (cf. (4.2.4) and (5.5.19)). This ensures the applicability of 
Proposition 2.2.1/ 0. and we arrive at

	

:5 
C If IFpjq , II 11g1F2q2 II.	 (5.5.22) 

The embedding F, C F q (cf. Theorem 3.2.11(u) and (4.2.4)) complementsthe esti- 
mate of E "'. Now (4.2.7) follows from (5.5.20) - (5.5.22). I 
5.6 Proofs of the assertions in Subsection 4.3. 

Proof of Theorem 4.3.1. Concerning the sufficiency part one can follow the same 
arguments as in proof of Theorem 4.2.1, where one has to use now Theorem 3.3.1. The 
necessity part is covered by Proposition 4.3.1 and [7], where the last reference is used 
to prove q^!max(ql, q2) I 

Proof of Theorem 4.3.2. We have to prove the "only if"-part only (cf. Remark 
4.3.2);	 .. 

Step 1. Let I E A°p1qj and assume to have (4.3.6). Then the operator Tj : g —i f•g 
is bounded from A°p2q2 into A°pq . Using Fourier multiplier assertions (cf. [24: Theorem 
2.3.7 1 p. 57]) one derives that Tfj yields a uniformly bounded family of those operators, 
where f' is given by (2.2.1). 

Let g' E L 2 . Then g  E L 2 and I g 'IL 2II	cIIgILp2 II with c independent of g 
and k. Note that the Fourier image of g C e2&2, is concentrated near II	2' if.c is
large enough (cf. (2.2.1) and (2.1.3)). Let k > j. Then the same is true in case of 
p g  e2k21. Hence

If	= jjfj 9 k ejc2k 
ILII 

9 k etc2klI I A° I' I	pqil 

C IIf''A°	II gk gic21 'A° 92 1 I	J2 1 -	I p,qjll 

:5 c f IA°	
gk	

IL3Il. p i qj 

Consequently we have IIf 9 IC ILPII c(f) IIgIL, 2 1I for all g E L 3 . Let j be fixed. 
Then for k —* cc we get lIP g lL lI c(f) II g I L 21I using the Fatou lemma. By stan- 
dard arguments we conclude that fJ E L, and moreover, by (5-6. 1) we conclude that 
IIf'lL 1I1 S c(f)	c IIfl A 11 II . Let 1 <P1 <cc. Then using again Fatou'slemmawe 
obtain I E L 1 . The case P1 = cc can be covered by a Lebesgue point argument. If
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pi = 1, then 11 fu lL i 11 in the above inequality can be replaced by. II fJ 1 h ,ll (cf. Remark 
3.3.4). Then again by Fatou's lemma we obtain that I E h 1 C L 1 . Hence 

	

Ap1qj C L, 1 .	 ( 5.6.2) 

Step 2. It remains to check	
L C.	 (5.6.3) 

We may assume q < 00. In case q = oo nothing more is to prove with the exception of 
AO , = FO,.. The latter case will be considered in Substep 2.5. Further, observe that 
Step 1 implies q < Co. 

Subsiep 2.1. Let A0p2q2 = Bp°2q2 and A q = Bp0q . By duality (cf. [24: Theorem 
2.11.2, p.178]) (4.3.6) leads to A°p1q1 Bp0 q C	(we put q' =	if q	1). As in Step
1 this yields

	

Bp0q C Lv ..	 (5.6.4) 

Using either Bp° q C L,, if and only if q' min(1,2), p 5k 1 or	C L if and only 
if q'	1, (5.6.4) gives L C B°9 (cf. Theorems 3.1.1 and 3.3.2) which is (5.6.3) in our 
case here. 

Subsiep 2.2. Let A°p2q2 = Fpq2 and A0pq = F;q and assume p> 1 and p2 > 1. To use 
the duality argument is a little bit more complicated than in Substep 2.1. Temporarily 
we restrict us to 1 < q < 00 and 1 < q < 00. Under. these conditions the duality 
argument works (cf. again [24: Theorem 2.11.2, p.178]) and we arrive at AO, q1Fpq C 

By Step 1 this implies F,,°, 9, C L,, ' which gives (5.6.3) by using again duality. If P2 2
1. and/or q	1, then (4.3.6) yields A, qj B°292 C Fp°q (cf. Theorem 3.1.1). By 

duality we find Fp°1q1 (Fp°q )' C Bp° g • Step 1 gives (Fp°q )' C L. Using the monotonicity 
of the F-spaces with respect to q, (5.6.3) follows. 

Substep 2.3. Let A 2q2 = Fp02q2 and A°pq = Fi°,q . The proof runs the same way as 
in Step 1 and Substep 2.2 if one takes into account (F ,q )' = Fgoq (1 q < 00) and 
( •Fi°,q )' = BO 7 (0 <q	1) (cf. [8, 14) and [24: p.180]). Furthermore 

1 9 k ,c2kxj 'F°	"	gkBO I	q' II	.11 

where the latter one follows from B° C F° C B° ooq'	ooq'	OO 

Subsiep 2.4. Let 
-

	AO .q. 	F° and A°pq 
pig,	oo,q,

Fi°q with q < oo. Then necessarily we p 2 q2 - FO 
have A° - B°	We use that (4.3.6) implies 

B° B° ooq,	1,min(1,q2) C F ,q .	 ( 5.6.5) 

Now we can argue as in Substep 21. 
Subsiep 2.5. It remains (5.6.5) with q = 00. Restricting to completions of S in the 

involved spaces we may replace F10 ,, by f° (see the end of Subsection 5.1). Then we 
can use the arguments in (5.1.16) and (5.1.17) which disprove this possibility. U



1(n	\	1	1 
— l--1 <-<- n\pi	1+	r i	Pi

(5.7.2) 
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Proof of Corollary 4.3.1. Theorem 3.1.1 and Corollary 3.3.1 imply 

B q CLp	 q:5 min(p,2) 

FcL	q2 pq 

In view of these equivalences the corollary is a reformulation of Theorem 4.3.2. I 

Proof of Corollary 4.3.2. Our method in proving Theorem 4.3.2 depends on the 
duality procedure. If we switch from Bp°q to b q , the closure of S in Bp° q , then the 
restriction P2 < no becomes superfious (cf. [24: Remark 2.11.2/2, p. 1801). The result 
is formulated as a consequence of (5.6.2) and (5.6.3). I 

5.7 Proofs of the assertions in Subsection 4.4. 

Proof of Theorem 4.4.1. Step 1 (Proof of (4.4.4)/sufficiency part). Sub3tep 1.1 
(Estimate of '(f,g) and >2"(f,g)). Thanks to Proposition 2.2.1 we know 

2" .F	{(01'(f, )1 (.)LM	C (2" II g I L 2II) IIfI hl ri II	(5.7.1) 

where =	+ -. Theorems 3.1.1 and 3.2.1 tell us that we can apply (5.7.1) with P	P2

in the same wayas in proof of Theorem 4.2.1 given in Subsection 5.5. Similar we obtain 

	

' {jr>"(f, g )] (.)LpD	(2" IIfIL 1 II) IIgIhr2 II	(5.7.3) 

and now =	+	holds. As above we derive the restrictions 

1/n	\	1	1 
- I - - s • < - < -.	 (5.7.4) 
fl \2	J	r2 P2 

for 1r2 . Relations (5.7.2) and (5.7.4) yield that (5.7.1) and (5.7.3) are applicable 
simultaneously if

	

(n	\	 1	1	1 maxI—(--sl + —j<—< + ——. 

	

ioi\n \P	. 1+ .P 	P	Pi	P2 

But this is ensured by (4.4.1) and (4.4.3). 
Sub step 1.2 (Estimate of	f, g)). Let =	+	We put min(1, t) = u. Since 

	

i	Pt	P2 
2s > n( - 1) (cf. (4.4.2)) we derive as in (5.5.18) 

(1 g)B 1'	c IIfI B , II IIgIB,q2 II.
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Because of B C Bp', (cf. Theorem 3.2.1 and (4.4.3); see also (5.5.19)) this proves the 
desired estimate in case of >"(f g). This completes the proof of (4.4.4). 

Step 2 (Proof of (4.4.6)/sufficiency part). The proof is similar to that given in Step 
1 (cf. also the proof of Theorem 4.2.1/(ii) in Subsection 5.5). Proposition 2.2.1/(i) and 
q ^! max(q1,q2) yield 

	

>2'(f g )I F,'q	IIF' 3	ii 1 1fIhlrl 11 < c I g I .F'p2q2 II I F' II	I 

	

" (f, g)IF,	1111 p	II 
F3 qj I II g I h r2 II	c 11f IFPI, II II 9 IF 2q, II 

if (5.7.5) holds, which is guaranteed by (4.4.1) and (4.4.3). To estimate >" we may 
apply (5.5.22) once again. U 

Remark 5.7.1. The proof shows that (4.4.4) and (4.4.6) remain valid not only in 
the interior of the shaded area in Figures 3a and 3b, they are true also on the vertical 
lines of the boundary, may be with exception of the endpoints (note that (4.4.1) is used 
only to establish (5.7.5)). With the help of Theorems 3.1.1 and 3.2.1 one has to check 
under which conditions < in (5.7.2), (5.7.4) and (5.7.5) can be replaced by < (cf. [11] 
and [18] for a more detailed explanation). 
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