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Preservatlon of the Exponential Stability
' under Perturbations of
Linear Delay Impulsive Differential Equations

L. Berezansky and E. Braverman

Abstract. Exponential stability of an impulsive functional-differential equation under per-
turbations is studied by means of a new method. . We transform a differential equation into
an operator equation. The method is based on the equivalence of exponential stability and
solvability of the operator equation in certain function spaces.
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1. Introduction

The paper deals with the preservatlon of the exponential stablllty under small pertur-
bations for the equation

i)+ Y Ar(alhe(D) = f(8)  (t€[0,00), z(t) € R™) . 0
k=1 :

() =»(§) (£<0)

satisfying the ixhpulsive conditions
z(7;) = Bjz(7; - 0) (2)

with limj_. 7; = o0. :

We consider perturbatlons of equation (1), prec1sely, of the functions Ay and hj
and caused by addition of new terms containing delay in the left-hand side of (1). It
turns out that the changing of parameters of problem (1),(2) on any finite segment does
not affect its exponential stability. In particular, the removal or the addition of a finite
number of impulses does not influence the stability.
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The stability preservation under various perturbations is one of the central problems
in stability. According to R. Bellman [4] the stability theory is a theory studying whether
properties of an.equation preserve under perturbations. The ‘basic.instrument in the
investigation of the stability preservation is the developed theory of differential and
integral inequalities (see [4, 10, 19]) as well as the method of Lyapunov functions and
functionals (see (8, 15 : 17, 20]).

If the functions hi in equation (1) cha.nge then the apphcatlon of the above meth-
ods is not so efficient. The method we propose, here is quite different. It is based on
the Bohl-Perron theorem (see {1, 6]) for impulsive delay differential equations. This
theorem connects the exponential stability and the solvability of the equation in certain
function spaces. So the preservation of the exponential stability can be reduced to the
preservation of the solvability of a linear equation. This problem is standard for linear
analysis. It may be reduced to the estimation of the norm of the difference of corre-
sponding operators.” In fact it is better to estimate the norm not of differential but of
transformed integral operators. This method for the stability investigation for differen-
tial equations without impulses’is developed in [5]. It is to be emphasized that results
obtained by the method in the present work are new for delay differential equations
without impulses as well. : . s

In conclusion we note the growing role of dlfferent solutlon represent.atlons in sta-
bility theory (see [3, 9]). We use the solution representation formula obtained in 1j.

2. Preliminaries

Let IR™ be the space of n-dimensional column vectors ¢ = col(z;,.:.,z,) with the
norm ||z|| = max;<i<n |Zi| (by the same symbol || - || we shall denote the corresponding
matrix norm), [E,, the n xn unit matrix and x. : [0,00) — IR the characteristic function
of the set e: x.(t) = 1if t € e and x.(t) = 0 otherwise. '

We consider the problem (1), (2) under the following assumptions:

(al) 0=17 <7 <73 < ... are fixed points with limj_.s 7; = 00

(a2) f and columns of Ax (k = 1,...,m) are integrable on each interval [0, b]

(a3) hi: [0,00) = IR are Lebesgue measurable with he(t) <t (k=1,...,m)
(a4) ( 00,0) — IR" is Borel measurable and bounded - N
(a5) B = sup, Bl <00 ' ‘ T

(a6) K= sup,’»0 —(-'L| i(t, s) >1})< o0 .

In hypothes1s (a6) i(t,s) is a number of pomts T belongmg to the mterva.l (s t)
Hypothesis (a6) is satisfied, for instance, 1f 7'_,.,.1 - T, >p>0. Denote M= max{B 1}
and [ = max{K,1}: '

The solution of the problem (1), (2) is a function z = x(t) absolutely cont.muous on
the interval [1;_,7;), rxght continuous in the points ;, satlsfymg equation (1), a.lmost
everywhere and satisfying the 1mpulswe conditions (2).
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By [1] under the hypotheses (al) - (a6) the problem (1), (2) with x(O) = a has one
and on]y one solution that. can be presented as

2(t) = X(t,0)(0) + / X(ta)(s)ds = [ X(t) Y Anshelha(elds ()
0 0 k=1

where ©(¢) = 0if ¢ > 0. The matrix X(t,s) is said to be a fundamental matriz of
the equation (1). For fixed s the matrix X(¢,s) as a function of ¢-is a solution of the
problem

. Z(t) +.,f: Ax()z[he(t)].=0 . (t>s, z(t) € R™*™)
k=1

#(£) =0 (£ < s;.2(s) = En)
z(rj) = Bjz(r; - 0)  (7; > s).

Definition: Problem (1), (2) is said to be ezponentially stable if there exist positive
constants Ny a.nd Bo such that for any solutxon z of the correspondmg homogeneous
problem

£(t) + Z At)elhi(t)] = 0 (t>0)

z(§) = ¢(¢) (£<0)
z(7;) = Bjz(r; =0) (5 € V)
the estimate A ‘
| lz(&)ll < No exp(~fot) (sgg le()ll + uz(O)n) @)
R : S
holds. ) )
In the sequel we use the following function spaces on the half-line:

L, (1:<p £ o) is the Banach space of Lebesgue-measurable functions z : [0,00) = R™
such that z” is integrable (z is essentially bounded on [0,00) for p = o0) on the
semi-axis with the usual norm. The same notation will be used for matrix-valued
functions.

D, (1 < p < 00) is the space of functions absolutely continuous on the interval [r;-,, 7;),
right continuous.in the points 7; satisfying (2) and satisfying the inclusions z € L,

and z € L,. This is a Banach space with the norm ||z|lp, = |iz||L, + [|IZ]lL, (see
1, 6)). o
Consider the following semi-homogeneous problem of problem (1), (2):
#(t) + E Ax(t)z[hi(t)] = f(i) (t €[0,00), z(t) € R")
5
x)=0 - <0z0=0 . O

z(rj) = Bjz(7; = 0). -
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Theorem 1 (see (1, 6]): Suppose the hypotheses (al) - (ab) hold and there ezists a
number § > 0 such that t — he(t) < 8. If there ezists a number p,1 < p < 0o, such that
for each function f € L, the solution z of problem (5) is in Dy, then the fundamental
matriz of problem (1),(2) has the ezponential estimate

IX(t,s)lf < Nexp [ - ﬂ(t - )] (6)

with posztwe constants N and 8. -

Conversely, the condition ¢ — hi(t) < § and the inequality (6) imply exponential
stability of the problem (1), (2) (see [1, 6]). ‘
We also need the following result from the papers [1, 6]. Consider the problem

#(2) + az(t) = 2(t) (t € [0,00), 2(t) € R")
z(0) =0 , (7)
. &(7;) = Bjz(; = 0).
Lemma 1 (see (1, 6]): Suppose the hypotheses (ab) and (a6) hold and v = a —

IlnM > 0. Then for any function z € L, the .solutwn z = z(t) of the problem (7) is in
D, and can be presented as

t

z(t) = (Wz)(t) = /exp [- a(t - s)] H Bj 2(s)ds (8)

0 s<r; <t

(we assume I_IS<T,'<¢ B; = IE, if the interval (s,t] does not contain points 7;). Be.ﬁdes,
the fundamental matriz X(t,s) of problem (7) has the estimate (6) with N = 1 and
B=v.

3. Perturbation on a finite interval or addition of new terms

Suppose the parameters of problem (1), (2) cha.nge on a finite mterval We con51der the
problem

a0+ Y Aalu] = f6) (1€ (0,00), 2(t) € RY)

k=1
(=9  (€<0) ©)
2(7) = Bj(#; - 0). ' |
Theorem 2: Sﬁ.ppose there ezists a number b >0 sﬁcix that
a) hy is measurable and hi(t) = hi(t) for t € [b, )
b) Ay is integrable on (0,b] and Ax(t) = Ax(t) for t € [b,00)
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c) 7j =17; and éj = Bj for tj > b.

Let the hypotheses (al) - (ab6) hold and let ezist a number § > 0 such that t — he(t) < 6.

If the fundamental function X(t,s) of the problem (1),(2) has the ezponential esti-
mate (6), then the fundamental function X(t,s) of the problem (9) has a similar estimate
with positive constants N and j .

Proof: Let s < b. The matrix X(¢,s) as a function of ¢ for fixed s is a solution of
the problem

i(t) + 3 Aw(O)z[he()] = 0 (t € [5,00), z(t) € R™*™)
k=1

2(€) =0 (€ <s; &(s) = En) -0

(7)) = Bj(; =0)  (7; > ).
Let t > b > s. Then the problem (10) under the hypotheses of the theorem can be
rewritten as

z(t)+ZAk(t)I(hk(t)) = ZAk(t)x(hk(t)) (t€[b,00))

k=1 .
z(§) = - ' (€ < b z(b) =‘5(§))
z(7;) = Bj(r; - 0) (rj > b)

where # is a solution of the problem (10) for ¢ < b and Z(¢) = 0 if £ > b (here Z is
treated as initial function). The solution of this problem can be presented as

2(t) = X(t,5)3(6) - / X, s)ZAk(s)z(hk(s))ds

k 1

where X(t, s) is the funda.mental functxon of problem (1), (2) Smce z[hk(t)] = 0 for
t> b+ 46, then
c.o- : b+4

izl < QIX (¢, b)If + / X (¢, 9)lIQ ds

b

= sup HO|| (1+ [sup Z”Ak t)ll)

By applying the estimate (6) of X(t s) we obtain
LR

=l S QN éxp [~ At~ 8)) + QN [ exp [ p(2 - )] ds
b

where

< QNexp [ - (¢~ b)) + L exp [ Bt - B] { exp(88) — 1}
= Q) exp [ - B(t - b)]
< Qrexp[—B(t—s)]
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with Q, = Q,eP?, where the constant Q, does not depend on ¢t and s. Thus for ¢ > b
and s < b we have the estimate .

IS S Qaexp [ - B(E - 9).

Let now s < b and t < b. Denote

N = ,5up IIX(t s)|| exp [B(t — S)]

,8<

Then ) i
1X(t, )|l < Nexp [ — B(t — s)]

for 0 < t,s < b. Finally, let t,s > b. Then X(t,s) is a solution of the problem (10)
for s > b. Thus in (10) Ay = Ak, hx = hi, T« = T and B = Bj. Therefore
X(t,s) X(t,s), i.e. (6) is the exponential estimate of X(t,s) as well. ®

Consider the following perturbation of the problem (1), (2):

#(0) + Y Ae@®zlha(t)] + D Ax()z(ha(®)] = f(2) (2 €[0,00), 2(t) € ")
k=1 k=1

11

() =pl6) (E<0) av
(7;) = Bjz(r; - 0).

We suppose that the hypotheses (al) - (a6) hold, the columns of Apx are integrable on

each interval (0,8 (b > 0), the functions hx are Lebesgue measurable, hx(t) < t and

there exists a number § > 0 such that t — hg(t) < 6. By X(t s) we agam denote a
fundamental matrix of the perturbed problem (11). .

Theorem 3: Suppose that in addition to the above assumptions for the fundamental

matriz X(t,s) of the problem (1) (2) the estimate (6) is valid. There ezists a number
n > 0 such that if
t+1°

li Ai(s)ll ds <, 1
xgs;;p/Zu Klds < (12)

then the fundamental mat‘r:z X(t, s) of the perturbed problem (11) kas an e:tponentml
estimate of the form (6), with certain constants N >0 and 3 > 0.

Proof: For a fixed s the function X(, s) is a solution of thf’ problem
i(t) + ) Ax(elhi(t)] = = Y A(®)zlhe(t)]  (t € [0,00), 2(t) € R™™)
k=1 T = e

() =0 . (<55 z(s).= En)
2(;) = Bjz(r; - 0) (15 >.8).
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By applying the solution representation (3) of problem (1), (2) with s being an initial

point, we obtain

X(t,s) = X(t,s) - /X(t, 7)Y Ax(T)X [he(r), 8] dr.
s k=1 ) .

Therefore the estimate (6) gives

IIX(t,s)ll < Nexp [—B(t - s)]

é

48[ exp [ = p(e = D) S 1AW max X6, 9l dr.
Y : k=1 ’ -

Hence

Jmax IX(E9) < Nexp [~ ft - - 6)]

+N/ exp[— Blt—7-6 ]ZnAk(r)u 7 1X(E 9 dr.

k=1 —6<€<r
If we denote y(t) = max,_s<e<t ||)-((§,s)||, then we obtz«.:.i'n' the inequéli.ty
y(t) < N exp(B8)exp [ - B(t - 5)]

. t ™ L _
+ Nexp(8)  exp [ - At = 1) 3 IAx(Dlu(r)dr.
S k=1
By applying the inequality (2.5) from [10] we obtain the estimate

y(t) < Nexp(B8)exp [ — B(t - s)] exp(NeXP(ﬂ5)/Z llﬁk(T)ll.df) - (13)
. k=1

Let (12) be satisfied. Then, f_c'Jr a certain b > 0,

Tt

sup / S lldr<n © (14)

By Theorem 2 the functions A m'ay be changéd on the éegmeht [0, ] and it does not
influence the existence of the exponential estimate for X (t s). Therefore we assume
that instead‘of (14) we have the inequality -

t+1

sup / Zn/i;(}')n dr < 1. (15)
0 k=1 | .
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Then (13). and (15) imply the estimate
IX(t,)Il < Nexp 88 + Nnexp(86)] exp{ - [8 - Nnexp(88)](t - 5)}.

Therefore if 0 < 5 < 7% exp(—/6), then the fundamental matrix X (¢, s) of the problem
(11) has an exponential estimate of type (6) with the constants

N = Nexp [ﬂ6 + Nnp exp(ﬁ&)] | aﬁd B=1p- N exp(B6)n.

The proof of the theorem is complete. B

Remark: The scheme of the proof is similar to the proofs of the same assertions
for delay differential equations without impulses (see, for example, {14]).

Theorem 3 immediately implies the following two assertions.

Corollary 1: There ezists a number n > 0 such that if the inequality

hm supz Akl < n
2 k=1

holds, then the estimate (6) for the fundamental function of problem (1),(2) implies a
umtlar estimate far the problem (11)

Corollary 2: Suppo.se that at least one of the conditions
r f oo r
limsup Y [|Ak(t)]| = 0 and /Z 1A(7)| d7 < o0
tmee L _ 2 k=1

hold. Then an estimate of type (6) is valid either for both the fundamental matrices of
problem (1),(2) and problem (11) or for none of them.

4. Stability with reépect to perturbations of delay

In this section we apply Theorem 1 using the following scheme. An original and a
perturbed equation are transformed into operator equations Tz = f and Tz = fin
L,, respectively. Here if the original equation is exponentially stable, then the operator
T: L, — L, is invertible. Then for the norm ||T — T'|| being small enough the operator
T . L, — L, is also invertible. If T is invertible, then Theorem 1 gives exponential
stability of the perturbed equation.

Consider the following perturbation of the problem (1), (2):

i+ ARl = 10 (t€(0,00), 2() € RY)
k=1

2(6) = 9(€) (€ <0) (16)

2(75) = Byz(r; - 0).
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We assume that the parameters of the problem (16) also satisfy the hypotheses (al) -
(ab).

Further we need a function that is often used when investigating equations with
compositions z[h(t)] (see [2, 7, 11 - 13, 18]). Let h : [0,00) — IR be a Lebesgue
measurable function. We assume that for any ¢ > 0

mes h~!(e)

eC[0,c] mese

< 00

where mese is the Lebesgue measure of the set e, mese > 0. We define a set function
pc(e) = mes{h~1(e) N[0,c]} for a Lebesgue measurable set e C (0,c]. The measure
u(e) is absolutely continuous [13] with respect to the Lebesgue measure, therefore by
the Radon-Nikodym theorem there exists a function g, € L;[0, ¢} such that

uee) = [ uis)ds.

Let e = [0,t] C [0,c]. Then

t

mes {h_l [0,¢]n|o, c]} = /;t'c(s) ds.

0

Consequently, P
' _ -1
pe(t) = 2 mes {h 0,40 [o,c]}. 17)

The basic propefty of this function is expreséed in the following substitution formula

(see [11 - 13]) valid for z € Loo[0, ¢}:

z(h(s))ds = /z(s)ﬂi(s) ds for all e C [0, ¢].

h=1(e)N[0,c] . e

If h is a monotone function,-then the function u' is easily calculated and coincides
with the derivative of the inverse function A~!. Properties of the function yx' and its
application to the investigation of delay differential equations are presented in the works
of M. Drakhlin [11, 12].

Denote

i colt) = Somes {h(0,1]}.

: Theorem 4: Suppose that for the problems (1),(2) and (16) the hypothesea (al) —
(a6).hold, Ax € Lo, ||Bj|l > b:> 0 and there ezist numbers o, p,6 > 0.such that

p<T]—‘r11<a : t—hk(t)<5 . t—hk(t)<5,

and
¢’ = maxlimsup |u} o (t)] < co.
k>0 '
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There ezists a number A > 0 such that if

max lim sup || Ak (t) — fik(t)” <A and maxlimsup|hk(t) — ;lk(t)| < A,,
k t— 00 k t—oo0
then the ezponential estimate (6) for the fundamental function of the problem (1),(2)
implies a similar estimate for the fundamental function X(t s) of the problem (16).

Proof: Without loss of generality we can assume that m =1 and, by Theorem 2,
A - A@)| <A and . |R(t)-h(t)| < A

for any t € [0,00). Let v =a — IlnM > 0. We substitute z = Wz, where the operator
W is defined by (8), in the semi-homogeneous problem (5) and the corresponding semi-
homogeneous problem (16) (¢ = 0 and z(0) = 0). After denoting by £ and £ the
left-hand sides of the equations (5) and (16), respectively, we obtain (see Lemma 1)

.t.

(LW z)(t) = 2(¢) - a/exp [—a(t-s)] H B;z(s)ds

s<r; <t
: h¥ (1) . (18)
+ A(?) / exp [ — a(h(t) - s)] H B;z(s) de
S | s<ngh()
and
(CWz)(t) =z(t) — a/exp [- q(t - s)] H Biz(s)ds
X o s<r; <t
Rt ( . (19)
+ A(t) / exp [ — a(h(t) — s)] H . ,B;z(s)d.s; :
s<ri<h(t)
where at = max{a,0}.

* Consider the operator Hz = (CW —L£W)z.' By Lemma 1 the operator W : L; — DY
is invertible, where D} = {r € D, : 'z(0) = 0}. The exponential estimate of the
funda.menta.l function X(t, s) of problem (1), (2) implies that the operator £ : D} — L,
is invertible (see [6]). Therefore the operator LW : L; — L; is also invertible. Thus it
is sufficient to prove that

lim |H L, ~x, =0
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for obtaining the invertibility of the operator LW : L, — L; for small A. To this end

ht(e)
(Hz)(t) = A(t)/ (exp — a(h(t) - s)] H B; - exp [- a(h(t) - s)] H B.) z(s)ds

J<T-<"(') . s<r.<h(k)
h+(t) ¢ X
A(t) / exp [ — a(h(t) - s)) H B;z(s)ds
h+(0) . a<r;$l-l(t)
h* (1)
+ [A(t) - /i(t)] / exp [ — a(h(t) - s)] H Biz(s)ds.
0 .. s<ri<h()

The operator H can be written as sum
H=H, +H,+ H;
and we will evaluate the norms of the summands H,,H, and H3 in L;. .
Step 1: For H, we have
h* (1)

/

exp [~ a(h(t) — 5))] H B;

1H: 2l < 1Al /
. 0

s<r; <h(t)
~exp[—a(h(t)-s)] [ Bi|liz(s)lldsdt
s<r.~5l-i(t)
<l [ [|exel-ao-9) TI B
’ !rzF a<J!;u)
—exp[—ah(t)—s) IT  Bi|llz(s)lidsdt.

s<r.$h(t)

By inverting the order of integrating we obtain

512l < [|AlL.. 7(7

0 s

exp[—a(h(t)—s)] ‘ H - B

s<T; <h(t)

dt) ll2(s)\| ds.

éxp[—a(h(t')Qs H B; —exp[—a(h(t)—-s)] H B;

s<ri <h(t) a<r.<h(t)

" exp [— a(iz(t) - s)] H B;

s<r; <h(1)

Let

oo

° =

s

dt.
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We assume A < p. Denote

( Ti—1 < h(t) <7

€

={te[s,00)| and
Tic1 < h(t) < 7
Till < h(t) < 7 < h(t) < Tip ‘

e] ={te€[s,00)| or

Tic1 < h(t) < 7 < A(t) < Tiga

Denote e’ = U;e; and " = U;e!. Then mes {e'Ne’'} = 0and A < plmplles mes {[s,00)\

eue'} =0. Hence
a9)= [+,

H B; = H Bi,

s<r; <h(t) a<r.~$ix(t)

If t € ¢, then

therefore by Lemma 1

dt

I »

s<r; <h(t)

II 5

s<r;<h(Y)

/ < 7| exp [ - a(h(t) —.S)J —exp [ — a(iz(t) - s)]l

dt

< / |’exp [a|h(t) ~ R(t)|] - 1‘ exp [ — a(ﬁ(t) -

< [exp(al) ~ 1] /ex? [ — v(h(t) — s)] dt (20)

oo

[exp(al) - 1] /exp [—v(t—s)]exp [v(t - h(t))] dt

I

3

f/\

1 exp(:)é)[eicp(aA) - 1].

If t € e}, then the products HKr <h(t)B and HKr <h(1) B; may differ by one
factor only, prec:sely, by By. Denote '

p(t) = max [h(t),h(t)] and A(t) = min [A(t), h(t)]

_{Bk if h(t) > h(t) . 4 ~_{1«3,, if h(t)>‘i}(z)
e i e <ho) AR % if h(t) < A1),



Preservation of the Exponential Stability 169

Then
/ = exp(as)/ exp [ - ah(t)] H B; —exp [ - ah(t)] H B;||dt
ey s<r; <h(t) s<r; <h(1)
< exp(as)/exp( ~ ap(t)) ” exp [a(p(t) — h(t))]ck

24

(21)

— exp [a(p(t) — h(t))]é dt

11 »

J<T.’<ﬁ(t)

< (B + 1)exp(as) exp(aA) / exp [ — ap(t)]

dt.

II B

s<r; <p(t)

The set e} can be written as
ey = {t € [s,oo)‘ h(t) < 7k < h(t) or h(t) < 7% < iz(t)}

Since the inequality |h(t) - k()] < A implies h(t) > h(t) — A and h(t) > h(t) — A, we
have

ehc{te [s,oo)‘ h(t) = A < 7 < h(t) or h(t) < 7e < h(t) +A}
= {tels, )| ht) - & < s < h(1) + ) (22)
= {t € [s,oo)’ T — A<h(t) <7 +A}.

The formulas (21) and (22) give

/ < (B + 1)exp(as) exp(aQ)

"
€k

o0

x /eXP [ = ap(t)] X{ri -2, re+ 4] (A(E))

s

< (B + 1) max {B, %} exp(as) exp(ad)

dt

I 5

s<1; <p(t)

(23)

dt.

II 5

[
X clingo/exp [ - ah(t)]X[r. —a,n+a)(h(1))
A s<r; <h(1t)

where x(q 4] is the characteristic function of the segment [t,s). By applying the Radon-
Nikodym theorem to the integral on the right-hand side of (23) and by Lemma 1 we
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obtain (we recall that u! is defined by (17))

/ < (B + 1) max {B, %} exp(as) exp(al)

[

€
xlim [ ew(-atxin-ansa@@l TT Bifa
h(s,c)N|0,c] s<r; <t
+4.
' 1 :
© (B+1)max{B,z}exp(aA) / eéxp( a(t—s) H B;
ri—A s<r; <t
A . : Cnta .
< #'(B.{.l)ma.x{B,z}exp(aA) / exp(—v(t —s)) dt
Tg—A
, 1 1
< p'(B + 1) max {B, 3} exp(vs) exp(aA); exp(~vTx) [exp(x/A) - exp(—uA)] .
Therefore

/s 4'(B + 1)max {B., %}

et

X exp(aA)% [exp(uA) —Aexp(—VA)] exp(vs) Z exp(—vTi).

TV >

The inequality 7; — 7,y > p implies (1; — s) — (7i_1 —s) > p, hence 7; — s > (¢ — k)p,
where 74_; < s < 7. Thus

Z exp(—vTi) = exp(—wvs) Z exp [ —v(ri — s)]

Ti>Ss Ti>s
oo
< exp(—vs) Zexp [ —vp(i — k)]
: i=k .
‘ 1
= exp(—us)m.

Hence

/ #'(B + 1)max{B, } } exp aA)[exp(uA) — exp(—vA)] .

v[1 — exp(—vp)] (24)

et

By comparing (20) and (24) we obtain ||®|lL,, — 0 as A — 0. Since | Hy L, —L, AS
AL [®llLe > then lima o [ Hy|lL,—L, =0. - ‘
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Step 2: Now we estimate the norm of the operators H,. To this end

h¥ (1)

|Ha2lle, < / A / exp [ - a(h(t) - 5)]

h+(1)

I »

s<r; <h(1)

[|z(s)|| ds| dt

< 14|t //exp [ - a(A(t) - 8)) xtsc0).pen($)12(s)]| H B;|(dsdt

s<ri <h(t)

where the functions § and p are defined above. By inverting the order of integrating we

obtain
dt) ll2(s)ll ds.

II Bifat

s<r;$l_l(()

I =

s<r<h(t)

| H2z|lx, < IIAIIL“,/(/GXP[ - a(h(t) = 5)]x(3(0) o) (8)

0

3

Denote
o0

¥(s) = /exp [ — a(h(t) = $)) xi3(ep.pe ()

s

As [h(t) — h(t)| < A, then [B(t),p(t)] C [A(t) — A, h(t) + A]. Therefore
Xi50,p1(5) S Xia)y-8,h(0+41(8) = X{a—a,s+a](h(1)).

Hence

¥(s) < max {B, %} exp(al)

X hm /exp [— a(h(t) - 5)]X[s N s+A](h(t)) di.

H B;

s<r; <h(1t)

By applying the Radon-Nikodym theorem we obtain
¥(s) < max {B, %} exp(al)

dt.

% cl-i—ongo / €xp [ —a(t - S)] X[s—A,g+A](t)|/t::(t)| H B;
h({s,d)A(0,¢] , i<t
Consequently
. 1 s+ A
¥(s) < p' max {B, 3} exp(al) / exp [ — v(t — s)] dt
' s—A R

= u' max {B, ! } % [exp(uA) — exp(— VA)] exp(aA).



172 L. Berezansky and E. Braverman

Thus
1 , 1
[[H2llL,—L, ;||A||L°°p max § B, 3 [exp(VA) —exp(—vA)| exp(ad).

Hence lima ¢ || H2||L, -1, = 0.
Step 3: Now we shall evaluate the norm of the operator Hs in L;. To this end by
applying Lemma 1
= h*(1)
| Hsz|lL, < / |At) - A@)|| / exp[—a(h(t)=s)] [I NBillllz(s)ll dsdt
0 0

s<r.’<i1(t)

<||A- "i”Lm //exp [- v(h(t) - s)|Nz(s)l dsdt

=||A- §||Lw /A-/exp [v(t - R(t))] exp [ — v(t — s)] ||2(s)]| dsdt

v

< Aexp(vé) //exp [—v(t- s)] [lz(s)]| dsdt

= Aexp(u&)/ /exp [—v(t—s)]dt] |lz(s)ll ds
0 s .
< S Aexp(d)lal.

Hence |H3||L, —~L, < LAexp(vé) and therefore lima o || H3||L, -1, = 0.

- v

Now the inequality

||H||L1—’L1 < ”H1”L1—°L| + ||H2|IL1_"L1 + "H3“L1—"Ll

implies
[lkiTO ”'H”Ll_’L\ =0.

Therefore for A being sufficiently small the operator LW : Ly — L, is invertible. Thus
for such A the equation LWz = f has a solution z € L;, if f € L;. By Lemma 1 the
solution of the semi-homogeneous problem (16) z = Wz is in D;. By Theorem 1 the
fundamental matrix of problem (16) has an exponential estimate, &

Consider two special cases of the problem (1), (2). First let (1) be an ordinary
differential equation, i.e. m = 1 and h(¢) = ¢t. Since in this case p'(t) = 1 Theorem 4
implies the following assertion.
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Corollary 1: Consider the problems

z(t) + A(t)z(t) = £(t) (t €[0,00), z(t) € R") i
(25)
z(7;) = Bjz(r; - 0)
and _ :
z(t) + A(t)z[h(t)] = f(2) (te[0,00), z(t) € R")
z(€) = v(§) (€ <0) (26)

z(7;) = Bjz(r; - 0).
Suppose that for these problems the hypotheses (al) - (ab) hold, A € Lo, I1Bjll >b6>0
and 0 < p < 7; —1;_; < 0. There ezists a number A > 0 such that if

limsup || A(t) — fi(t)“ <A and limsup (t — ;l(t)) < A,
t—oco L t—oo

then the ezponential estimate (6) for the fundamental function of problem (25) implies
a similar estimate for the fundamental function of problem (26).

The second special case is a delay differential equation without impulses. The result
obtained is new for this equation.

Corollary 2: Consider the problems

2(t) + Y Axz[hi(t)] = £(8)  (t € [0,00), z(t) € R)
Pt _ (27)

() =wle)  (€<0)
and

30+ Y AOela(®] = 10 (te [0,00), 2(t) € BY)
k=1 ) (28)
z(§) =¢(§)  (£<0).
Suppose that for these problems the hypotheses (a2) - (ad) are satisfied, Ax € Loo, there

exists a number & > 0 such that t — hi(t) < 6 and t — hi(t) < 6, and suppose that
p' < oo, u' defined in Theorem 4. There ezists a number A > 0 3uch that if

mfxlim sup || Ak(t) - fik(t)” <A and mflxlimsup Ihk(t) - Bk(t)| < A,
t—oo t—oo

then the exponential estimate (6) for the fundaméntal function of problem (27) implies
a similar estimate for the fundamental function of problem (28).
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