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Gauss' and Related Inequalities 
S. Varoanec and J. Peari5 

Abstract. Let g : [a,b] -* JR be a non-negative increasing differentiable function and I [a,b] -. JR a non-negative function such that the quotient f/g' is non-decreasing. Then the 
function

Q(r) = (r+ 1)fg(x)'f(x)dx 

is log-concave. Ifg(a) = 0, b E (a,] and the quotient.f/g' is non-increasing, then the function 
Q is log-convex.	- 
Keywords: Gauss' inequality, Popomciu 's inequality, Holder's inequality, log-concave func-

tions, log-convex functions 
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1. Introduction 
The following result was mentioned by Gauss [4]: 

If f is a non-negative and decreasing function, then 

(7x21(x)dx)2	
(7w)
 ( 0

"0x41(X)dX).	 1) 

This inequality can be extended in different ways. For example, some generalization of 
(1) can be found in [1, 2, 8, 9, 12, 13]. Here,-we will restrict our attention to Pólya's 
inequality. We wish to investigate its connection with inequality (1) and give some new 
improvements. 

In [5: p. 166) or [11: Vol II, p. 1141 one can find the following statement. 

Theorem 1 (Pólya' s inequality:) Let f : [0,) - JR be a non-negative and 
decreasing function. If a and b are non-negative real numbers, then 

(

Jxa+bf(x) dx) 

O 
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<	
a — b 	/00	\ (

fooa++i)2)
  (Jx2af(x)dx 	 x2bf(x)dx)	(2)

\o 

if all the integrals exist. 

It is clear that for a = 0 and b = 2 we obtain Gauss' inequality (1). Also in the 
same book [11: Vol 1, p. 94] the following reverse statement is given. 

Theorem 2: Let f [0, 11 - JR be a non-negative and increasing function. If a 
and b are non-negative real numbers, then 

2 

Xa+bf(x)dX)

(3) \	/1 

^
(-(ai)

2)

 
(Jx2a f(x)dx) (JX2bf(X)dX). 

/ \o 

A. M. Fink and M. Jodeit Jr. [3] showed that inequality (3) is valid not only for 
non-negative numbers a and b, but for a,b > —1/2. It is obvious that inequalities 
(2) and (3) are related results and in this paper we shall give a unified treatment and 
extention with simple proofs of such results. 

2. Main results 

In this section we shall give an extension of Theorems 1 and 2. 

Theorem 3: Let g [a, b] - Rbe a non-negative increasing differentiable function 
and let f : [a, b] - JR be a non-negative function such that the quotient fig' is non- 
decreasing. Let p, (2* = 1,... ,ri) be positive real * numbers such that 1/p, = 1. If 
a 2 (i = 1,... ,n) are real numbers such that a 1 > —11p2 , then 

bb	 i/Pi 

fg(_ )ajI ... I a. f(x) dx > fl=1 m+l)'	(j(x1f(x)dx)	. (4) 

If g(a) = 0, then equality holds in (4) if and only if f/g' is a constant function. 
If g(a) = 0 and if the quotient function fig' is non-increasing, then the reverse 

inequality in (4) holds, with equality if and only if fig' is the characteristic function of 
an interval [a, b 1 ], a < b 1 < b. 

Proof: We will denote F = f/g'. First, suppose that F is a non-decreasing func-
tion. The inequality (4) reduces to an equality for F	0 and thus we may assume
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without loss of generality that F(b) > 0. Applying integration by parts we conclude 

(1 +	ai) Jg()O1+...+onf(x)dx 

= F(b)g(b) a 1+ l - F(a)g(a)a1++0n - fg(x)Q1+1dF(x) 

= F(b)g(b)° •"+' -	 _I ft((x)01)h/dF(x) 

b	 1/p, 

^ F(b)g(b)"' - F(a)g(a)a1+t	ft (Jg(x)1dF(x) 
i=I 

where in the last inequality, we use Holder's inequality. 
Let us consider the Popoviciu inequality (see [7: p. 118]) 

rn'	 n fm	\11P 

^ II wia) 
i=I	 j=1 i=1 

where
w1>0 and W2,...,Wm50 

a.>0 and P i >0 (i = 1,...,m;j='1,...,n) 

1/pi= 1 and	> (j1,...,n). 

Set rn = 3, w 1 = F(b) >0, w = —F(z), W3 —1 and 

a 1 = (g(b)°'')	a2 = (g(a)' +1 )	a3 

= (I )" 

for i = 1,. . , n. Using the Fopoviciu inequality we conclude 

b	 l/p, 

F(b)g(b)a1++1 - F(a)g(a)a1+	
T fi (I (xriPdF(x)) 

a=l 

6	 lfpi 

^ fT .(F(b)g(b)1 —(a)g(a)''- / 
I  (x)1dF(x)) 

= ft ((aiPi + I ) J g( x)f(x ) dx)
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and so, inequality' (4) is proven. 
If g(a) = 0 and if the quotient function f/g' is non-increasing, then we can use 

Holder's inequality for discrete case instead of Popoviciu's inequality and the proof is 
similar to the previous one. I 

When we know results of the previous theorem, it is easy to check the following 
statement. 

Theorem 4: Let f and g be functions satisfying the assumptions of Theorem 3. If 
the quotient f/g' is non-decreasing, then the function 

	

Q(r) = (r + 1)1 g(x)r f(x)dx	 (5) 

is log-concave, i.e. log Q is concave. 
If g(a) = 0, b e (a, 00] and the quotient f/g' is non-increasing, then the function Q 

is log-convex, i.e. logQ is convex. 

Now, using some well-known properties of convex and concave functions we have 
the following statement.  

Theorem 5: Let f and g be defined as in Theorem 3, the quotient f/g' be non-
decreasing and p, q, r, s, t be real numbers from the domain of definition of the function 
Q(r) = (r + 1) .1! g(x)

rf (x) dx. 

a) li p > q >r, then 
p—r 

( (q + 1)1 g(x)f(x) dx) 

	

p—g	 b	 q—r	(6) 

> ((r+1)j9(xYf(x)dx)	((P+1)f(x)Pf(x)dx) 

b) If p> q, r > s and p> r, q> s, then 

(( + I) f g(x)P f(x) dx 1/(p—r)
	

((q + 1) fa' g(x)f(x) dx  

(r+1)fg(x)rf(x)dxJ	- (s+1)fg(x)3f(x)dx) 

c) If r >0 and r 1 ,. .. , r >0, then 

((r +1)! g(x) r f(x) dx)

b 

	

x (ri+ ... +rn +r+1)fg(xy1++ f(x)dx	(8) 
a 

<(rj +r+1) ... (rn+r+1)flJg(x)rf(x)dx.
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d)Ifq>s>r>pandp<j<q,then 

((P+ 1)f(x)Pf(x)dx) ' (q+ 1)1(x)f(x)dx) 
qp 

^ ((r + 1)J9(x)'f(x)dx) 

.-r 

((s + 1)1 g(x)3f(x)dx) 

If g(a) = 0 and the quotient f/g' is non-increasing, then in all statements a) - d) reverse 
inequalities hold. 

Proof: a) This is a consequence of Theorem 4 and the following inequality for a 
concave function H (see [7: p. 1]): 

H(p) H(q) H(r) 
P	q	r	SO	for p>q>r. 
1	1	1 

b) For any concave function H the inequality 

H(p) - H(r) H(q) - H(s) 
5	 for p^:q and r?s p — r	q — s 

holds (see [7: p. 2]). Therefore, (7) is a simple consequence of the previous inequality 
if we set H = log Q. 

c)Settingin (7) r =s, p=ri+...+r,,+r and q=r+r wehave 

(r i + ... + rn + r + 1) f g(x)n1++mn+nf(x)dx\ i/(ri+...+r) 

(r+1)f,'g(x)'f(x)dx 

/ (r + r + 1) Jab g(x)rf(x)  
(r+1)fg(x)rf(x)dx dx) 

i.e.	
((ri + + rfl + r + 1) f g(x)rI+...+r±rf(x)dxTh1+n) 

(r + 1) .r: g(x)'f(x) dx	) 

< 
(r1 + r + 1) f g(x)''f(x) dx 

-	(r + 1)f,g(x)'f(x)dz 
for z = 1, ..., n. Multiplying all these inequalities we obtain statement (8). 

d) This is a consequence of Narumi's inequality (see [91) 

+ —H(q) ( —H(r) + —H(s) 

where Hisa concave function, q>s>r>p and p<<q, I
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3. The case g(x) = x 

In the remainder of this paper we assume the function g to be the identity. So, we have 
the following statement. 

Theorem 6: Let the function f : [a, b] —* 1R be non-negative and non-decreasing. 
Let p (i = 1,.. , n) be positive real numbers such that En 1/p = 1. If a, (i = 
1,. , n) are real numbers such that a, > -1/pi, then 

Ixal++anf(x)dx?	 A (If(x) 1/Pi•	

(10) 

If a = 0, then equality holds in (10) if and only if f is a constant function. 
If a = 0 and f is a non-increasing function, then the reverse inequality holds, with 

equality if and only if f is the characteristic function of an interval [0, b i ], 0 < b 1	b. 

Remark 1: For n = 2, p = P2 = 2,. a = 0, b = 1 and a 1 ,a2 > —1/2 we have the 
inequality (3). 

Remark : Letting b —	we have the inequality 

fxa1++0f(x)dx <
	

H 
( 00

X a jPf(x)dx) "	(11) 

where f is a non-negative and non-increasing function, a, and p2 are real numbers 
satisfying the conditions from Theorem 3, and all integrals exist. Now, it is obvious 
that for n = P1 = p2 = 2 we have the inequality (2), but with condition a 1 ,a2 > —1/2 
what is stronger than condition "a 1 and a2 are non-negative numbers" from Theorem 
1.

Remark 3: A special case of (11), namely for n = 2 and a 1 ,a2 >0 was proved by 
V. N. Volkov (see [6: p. 269] or . [12]). 

Remark 4: If  is a non-negative and non-increasing function and f > f(x) dx = 1, 
then substituting r = .s = 0, a = 0, b = oo and g(x) = x in the reverse of (7) we obtain 

(P+1)JxPfx)dx) '^ ((q+ 1)1

CO 

 
xf(x)dx) 

1/q	

(12) 

for p > q. This is the well-known Gauss-Winckler inequality (see [1: p. 4551 or [131). It 
is an improvement of (1). The first proof of (12) was due to Faber (see [2: pp. 9 - 11]). 

In the following theorem monotonicity is replaced with concavity.
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Theorem 7: Let f be a non-negative differentiable function on (0, 1] with non- 
increasing first derivative. Let p (z = 1, , n) be positive real numbers with 1/pi 
= 1. If a, (i = 1,... ,n) are real numbers such that a> 1/p, then

1/p. [I n 1 ((ap + 1)(a p +2))"	x0Pf(x)dx) Ixat++anf(x)dx	
a + i)(	a + 2) 

0	 i=1 ks0 
Remark 5: This theorem deals with a concave function I defined on [0, 11, and it 

is still true if we replace the unit interval [0, 11 by any other interval[O, b], b > 0. 

Proof of Theorem 7: By using the well-known inequality between geometric and 
arithmetic means we have 

n ((,ip, 

+ 1) (ap + 2) ]xf(x) "n' 

I (ap + 1)(ap + 2)Jxf(x)dx. 
i=1 Pt	

0 

Integrating by parts we get 

J
—(ap + 1)(ap + 2)xaipi f(x)dx 

: 1 
0

1(1)	a,p, =	(E I ( + 2)) - f'(l) (
	) +/ (

I: Pt 
	X.ipi+2) df'(x) 

at+2)	

1-/n 

= 1(1) (E	- f'(l) + I (	Ix9+2) df'(x) 

1 

<1(1) (E at+2 - f'(l) + I H x(aiP+2)/Pdf1(z 
)	

) 

0 

= 1(1) (E a + 2) - fl(l) 
+ /	

a+2)dfI(X) 

a +2) ( a +1) 
I	

a,) f(x) dx 

where inequality between geometric and arithmetic means is again used in the last 
inequality. I 

Using the result of Theorem 7 and properties of a concave function we have the 
following statement.	 -
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Theorem 8: If f is a non-negative differentiable function on [0, 11 with non-in-
creasing first derivative, then the function 

fr + 2\ dx 2 )Jx7(x) 
0 

is log-concave and the following inequalities hold: 

a) li p > q >. r, then 

((
q+2 

1

	

	 p—r 

2 
)fxQf(x)dx) 

0
p—q 

((r P+2)	
q—r 

+2)jrfd)	
2	fxPf(x)dx) 

0	 / 

b)Ifp^!q,r>sandp>r,q>s,then 

p+z\ j

1 xPf(x)dx\ I/(p—r) 
2 

( 2
r+2 )fxrf(x)dx)

q2' 1 xf(x) d \ 
1/(q—a) 

(

2 )fo 

(
s+2\ I 'f(x)dxx) 2 )f0X 

c) If r > 0 and r 1 ,... , r, > 0, then

n—i 
((r+2) 

]xnf(x)dx) 

x (r, + + rn + r + 

2	
2)fxnI++mn+rf(x)dx 

0 

(r,+r+2) 
••• 

(rn+r+2)fjJr+rfd 
2	 ? 

d)Ifq>s>r>pandp<t<q, then 

' 
P 

((P+2) )xPf(x)dx) /  q+2 
(	

)fxf(x)d) 
0 

<((r±2) I x7(x)dx)	((s+2) I x3f(x)dx) 

Finally, to complete this section we shall state the following result.
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Theorem 9: Let f : [0, oo) - in be a non-increasing function such that (_i)'f( 
are positive for k = 1, 2, ..., N. Then the function 

Qk(x) = (
r + k) 

fx7(x)dx 

is log-convex fork = 1,2,...,N. 

The proof and consequences of this result one can find in [1: pp. 455 - 4561, [8] and 
[10] 
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