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Gauss’ and Related Inequalities

S. Varosanec and J. Peéarié

Abstract. Let g : [a,b] — IR be a non-negative increasing differentiable function and f :
[a,b] = IR a non-negative function such that the quotient f/g' is non-decreasing. Then the
function

b
Q) =(r+1) / o(z) f(z) dz

is log-concave. If g(a) = 0, b € (a, c0] and the quotient .f/g’ is non-increasing, then the function
Q is log-convex.
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1. Introduction

The following result was mentioned by Gauss [4]:
If f is a non-negative and decreasing function, then

szﬂf(z)d; 2;’ g Zf(zjd% Zﬁf(;)ah 3 W

This inequality can be extended in different ways. For example, some generalization of
(1) can be found in [1, 2, 8, 9, 12, 13]. Here, we will restrict our attention to Pélya’s
inequality. We wish to investigate its connection with inequality (1) and give some new
improvements.

In [5: p. 166] or [11: Vol II, p. 114] one can find the following statement.

Theorem 1 (Pdlya’ s inequality:) Let f : [0,00) — IR be a non-negative and
decreasing function. If a and b are non-negative real numbers, then
2

7/ oo
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5(1_(%)2) 7»1:(2“f(:c)dx 7z2"f(z)d:c (2)

if all the integrals ezist.

It is clear that for a = 0 and b = 2 we obtain Gauss’ inequality (1). Also in the
same book [11: Vol I, p. 94] the following reverse statement is given.

Theorem 2: Let f: [0,1] — IR be a non-negative and increasing function. If a
and b are non-negative real numbers, then . .

(/ f“*”f(z)dx)z :

° . 1 (3)
> (l - (;—i;—f_l)Q) (/ zz“f(:z:)d:z:) (/ szf(a:)d:v) . |

A. M. Fink and M. Jodeit Jr. [3] showed that inequality (3) is valid not only for
non-negative numbers a and b, but for a,b > —1/2. It is obvious that inequalities
(2) and (3) are related results and in this paper we shall give a unified treatment and
extention with simple proofs of such results.

2. Main results

In this section we shall give an extension of Theorems 1 and 2.

Theorem 3: Letg: [a,b] — R be a non- negative increasing differentiable function
and let f : [a,b] — IR be a non-negative function such that the quotient f/g' is non-
decreasing Let p; (i =1,...,n) be positive real numbers such that 3 ;_, 1/p; = 1. If

i (i=1,...,n) are real numbers such that a; > —1/p;, then

b

1% (a: . 1/pi ™ . t Ve

a;
=1 " i=
a 1=1

If g(a) = 0, then equality holds in (4) if and only if f/g' s a constant function.

If g(a) = 0 and if the quotient function f/g' is non-increasing, then the reverse
inequality in (4) holds, with equality if and only if f/g is the characteristic function of
an interval [a,by], a < b <b.

Proof: We will denote F = f/g'. First, suppose that F is a non-decreasing func-
tion. The inequality (4) reduces to an equality for F = 0 and thus we may assume
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without loss of generality that F(b) > 0. Applying integration by parts we conclude

. n : b- . : .
(143 a) [store- e oy
. a . R )
— F(b)g(b)a}-}-...-}-a.‘-{-] _F(a).g(a)a1+...+a,f+l _ /g(x)°'+"'+a”+ldE($)

a

. ) o
= F(b)g(b)* 1t tant1 _ F(a)g(a)“‘.+"'+'."'+l _ /H(g(x)n‘mﬂ)l/p"dF(z)
’ a =1

n b l/Pi_
> F(3)g(b)*+-+on+1 = Fla)g(a) o1 _ ]| ( / g(d:)“""“dF(z))

=1 \3 o

where in the last inequality we use Holder’s inequality. :
Let us consider the Popoviciu inequality (see [7: p. 118])

me nofm 1/p;
E w.'an---a.'nZH E wid;;
i=1 1=1 \i=1

w; >0 and wa,...,w, <0

where

a; 20 and pi>0 (i=1,...,mpj=1,..,n):

n

i=1 B =1 .

Set m = 3, wy = F(b) >0, w, = —F(a), ws = —1 and

: R b C NP
ai = (907 *) ™, e = (gay ), g = ( / g(x)“f"‘“df(é))
fore=1,..., n.A U;ing the Popéviéiu inequality we (;ohéludé .
N " b A lY/P.‘
F(b)g(b)r+-+2¥! — F(a)g(a)*r+-Font? — H(/ g(x)",‘."?“’dF(x))
i=1
n o b : 1/pi
> H~(1"(1’)9(b)‘”"‘+l;—,?‘“(a)g(0)"."”‘+1 —./.9,(”)"""'“‘15'(1))
i=1 ’ a

n

b 1/pi
=11 ((a,-p.. +1),[ g(z)éjf-‘f(z)dx) .

=1
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and so, inequality-(4) is proven.

If g(a) = 0 and if the quotient function f/g' is non-increasing, then we can use
Holder’s inequality for discrete case instead of Popoviciu’s inequality and the proof is
similar to the previous one. B

When we know results of the previous theorem, it is easy to check the following
statement.

Theorem 4: Let f and g be functions satisfying the assumptions of Theorem 8. If
the quotient f/g' is non-decreasing, then the function

b

Q) = (r+1) [ o(a) f(2)do o ®)

13 log-concave, s.e. log Q is concave.
If g(a) =0, b € (a,00] and the quotient f/g' is non-increasing, then the function Q
i3 log-convez, i.e. log Q i3 convez.

Now, using some well-known properties of convex and concave functlons we have
the following statement. : :

Theorem 5: Let f and g be defined as in Theorem 3, the quotient f/g' be non-
decreasing and p, q, r, s, t be real numbers from the domain of definition of the function

Q(r) = (r + 1) f2 g(2) f(z) dz.
a) Ifp>gq>r, then

b p=r
((q +1) [ g(z)qf(x>dz)
’ b P—9 b q-r
2((r+1) / g(z)'f(:v)dr) ((p+1) / g(x)”f(x)dx) .

b) Ifp>q, r>sandp>r, ¢>s, then

((p+ D g(z)ﬂf(x)dac)”“" <(q +1) [2 o(2)f(a) dz )”("—’). @
(r+1) [0 g(z) f(z)dz (s +1) [} g(z)* f(z) de
c)Ifr>0andry,...,rn >0, then

b n—1
| (<r +1) / g(r)’f(z)dz)
b

x (rl 4+ ... 4rptr+ l)/ g(z)"+"'+'"+."f(§:)'d.x (8)

a

(6)

. n b
S(ritr+1)-(ratr+ I)H/g(z)"*'f(:c)dz..
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d)Ifg>s>r>pandp<t<gq, then

b 13
(@ +1) / 9(2)° f(2) dz) ((q +1) / g(z)"f(x)dx)
b —r b ‘
< ((r+ 1) / o(z) f(z) dz) ((s+1) / y(z)’f(z)dx)

i izp
=P

Lt 4

t=r
a-r

179

(9)

If g(a) = 0 and the quotient f/g is non-increasing, then sn all statements a) - d) reverse

inequalities hold.

Proof: a) This is a consequence of Theorem 4 and the following mequa.hty for a

concave function H (see [7: p. 1]):

H(p) H(q) H(r)
p ¢ T
1 1 1

<0  for p>q>'r.>

b) For any concave function H the inequality

H(p) - H(r) _ H(q) - H(s)
p—r - qg—s

for p>q and r> s

holds (see [7: p. 2]). Therefore, (7) is a simple consequence of the previous inequality

if we set H = log Q.
c) Setting in (7)r =s,p=r; +... +rn+r and ¢ = r; + r we have

1/(ri+...4rn)
((rl +.+ratr+1) f:g(z)"+"'+""""f(z)dz) '

(r+1) [} 9(z)" f(z) dz

< ((T-' +r+1) [ g(x)"“f(z)dx) i
- (r+1) [ g(z) f(z)dz

1e.

< (11 + ot 41+ 1) [ g(z)rrt+mmtr f(z) dz:) r/ritetrn)
(r +1) [, 9(2) f(z) dz
< (r,- +r+ 1) f: g(z)"*7 f(z)dx
T+ D) e() f(z)dz

for : = 1,...,n. Multiplying all these inequalities we obtain statement (8)

d) This is a consequence of Narumi’s inequa.fity (see [9])

g-—t
.mﬂ()

where H is a concave function, ¢ > s >r > pand p < t <gq. N
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3. The case g(x) = x
In the remainder of this paper we assume the function g to be the identity. So, we have
the following statement.

Theorem 6: Let the function f: [a,b] — IR be non-negative and non-decreasing.
Let p; (i = 1,...,n) be positive real numbers such that 3 1/pi = 1. Ifa; (i =

1,...,n) are real numbers such that a; > —1/p;, then
b . y : b 1/pi
" (aip; 1)Y/p n .
a1+...4a, dz > I_It_l(a'p‘ + / aipi d .
/:c .. f(x) z > Z;“:) Py .1;11 %P f(x) J (10)

If a = 0, then equality holds in (10) if and only if f 1s a constant function.
If a = 0 and f is a non-increasing function, then the reverse inequality holds, with
equality if and only if f is the characteristic function of an interval [0,b:], 0 < by < b.

Remark 1: Forn=2, py =p, =2,,a=0, b=1 and a;,a; > —1/2 we have the
inequality (3).

Remark 2: Letting b — oo we have the inequality

C oo 1/p:

a1+...4+an H?:l(aipi+l)l/p‘ - T a;p; 3
/x + + f(z)dz < ST a E a/x Pif(z)dz (11)

a

where f is a non-negative and non-increasing function, a; and p; are real numbers
satisfying the conditions from Theorem 3, and all integrals exist. Now, it is obvious
that for n = p; = p2 = 2 we have the inequality (2), but with condition a;,a; > —1/2
what is stronger than condition ”a; and a; are non-negative numbers” from Theorem
1. :

Remark 3: A special case of (11), namely for n = 2 and a,,a; > 0 was proved by
V. N. Volkov (see [6: p. 269] or [12]). '

Remark 4: If f is a non-negative and non-increasing function and f0°° f(z)dz =1,
then substituting r = s = 0, a =0, b = oo and g(z) = z in the reverse of (7) we obtain

((p'+~1) [ i@ s

for p > ¢. This is the well-known Gauss-Winckler inequality (see [1: p. 455] or [13]). It
is an improvement of (1). The first proof of (12) was due to Faber (see [2: pp. 9 - 11]).

1/p

) oo 1/q
> (q+1)/z"f(x)dz) SRR G

In the following theorem monotonicity'is replaced with concavity.
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Theorem 7: Let f be a non-negative differentiable function on (0,1] with non-

increasing first derivative. Let p; (i = 1,...,n) be positive real numbers with 3"\ 1/p;
=1. Ifai (i=1,...,n) are real numbers such that a; > 1/p;, then

l ) N Up ) 1/pi
/za|+...+a,.f(z) dz > [1ic 1((“!?: +1)(aipi + 2)) ’ H (/ z%P f(z) dz) .
° 0

(Cimiai+1)(2L, ai +2) i=1

Remark 5: This theorem deals with a concave function f defined on [0, 1], and it
is still true if we replace the unit interval [0,1] by any other interval'[0,8], 6 > 0. -

Proof of Theorem 7: By using the well-known inequality between geometric and
arithmetic means we have

1 1/pi
H ((a.p. +1)(aip;i +2) /z“""f(x)dz) g

=1 0
1

< Z .p. +1 a iDi + 2) /z“""f(:t) dz.

0

Integrating by parts we get

/ (i (@i + 1) (api+ 2>) J(z)dz
21 , "1 s 1 aipit2 ) ge
= f(1) (Z o, (aipi +2)) - f(1) (_Z ;_) +O/<Zj e )df (=)

i=1 =1 =1

= f(1) (Z a; +2) - ')+ / <Z _;_ixﬂ-'m+2> df'(z)

=1 =1

< (1) (Z a; + 2) - f()+ / Hx“’""'“”’"df’(z)

i=1

_ <g) (z) 0/z<:'.;, S de

where inequality between geometric and arithmetic means is aga.m used in the last
inequality. B :

=f(1)<zaf+2>—f'(1)+/x Zie*2)gf (2

Using the result of Theorem 7 and properties of a concave function we have the
following statement. : . .
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Theorem 8: If f is a non-negative differentiable function on [0,1] with non-in-
creasing first dersvatsve, then the function

Qu(r) =" +A2) / 2" f(z)da

18 log-concave and the following inequalities hold

a) Ifp>gq>r, then

(¢ fero)”

0

> ((r-;—2) /lx'f(z)dz) B ((p;2) jzpf(z)dz) q_r.

b)Ifp>q,r2sandp>r, ¢>s, then

(("22) s = f(z) dz) e ((”’;’) s I"f(r)dx> e
("3 fo = f(=)da T\CP) fo = f(@) e

c) Ifr>0andr,..

.3Tn > 0, then

S n—1
(¢29)me)
0
1
x (7‘ +. +7‘n+7‘+2) /1‘"+"'+r"+rf(1)d_1:
0

< (n +2r+2) ‘ (r,, +.r+2) ﬁ/lx"*"f(z)dx.

i=1

d)Ifg>s>r>pandp<t<gq, then

(¢5)frron)” (37 fores)
< ((’;'Z)j;rf'(odz) —((;2>/]’(z)dz)_

Finally, to complete this section we shall state the following result
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Theorem 9: Let f: [0,00) = IR be a non-increasing function such that (—1)* f(¥)
are positive for k =1,2,...,N. Then the function

Qu(z) = (' “; k) 7:7(,—.)4:

13 log-convez for k = 1,2,...,N.

The proof and consequences of this result one can find in [1: pp. 455 - 456], [8] and
(10].
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