On a Comparison Theorem for Second Order Nonlinear Ordinary Differential Equations

Th. Rudek

-Abstract. We present a comparison theorem for second order nonlinear differential equations of the form

 $(R(t)w(x(t))x'(t))' + p(t)f(x(t)) = 0$ $(t \in [t_0, \beta), \beta \leq \infty)$

where p is a continuous function on $[t_0,\beta)$ without any restriction on its sign.

Keywords: *Second order nonlinear differential equations, oscillation theory* **AMS subject classification: 34 C 10**

0. Introduction

Consider the second order differential equation

$$
(R(t)x'(t))' + p(t)x(t) = 0, \qquad (t \in [t_0, \infty))
$$
 (D1)₁

 $p(x(t))x'(t)'+p(t)f(x(t)) = 0$ $(t \in [t_0, \beta), \beta \leq \infty)$

function on $[t_0, \beta)$ without any restriction on its sign.
 der nonlinear differential equations, oscillation theory

cation: 34 C 10
 R(t)x'(t)' + *p(t)x(t)* = 0, $(t \in [t_$ with given functions p and R on $[t_0, \infty)$. A function defined on an interval $[t_0, \beta)$, $\beta \leq$ $+\infty$, is said to be *oscillatory* at β if for every $a \in (t_0, \beta)$ it has an infinite number of zeros on the interval (a, β) , and otherwise it is said to be *non-oscillatory* at β . A differential equation of the form $(D1)_1$ is called oscillatory at β if all its solutions are oscillatory at β , and otherwise such an equation is called non-oscillatory at β . In the following we set $I_{\infty} = [t_0, \infty)$ and $I_{\beta} = [t_0, \beta)$. ($R(t)x'(t)$)' + $p(t)x(t) = 0$,

(with given functions p and R on $[t_0, \infty)$. A function c

+ ∞ , is said to be oscillatory at β if for every $a \in \{0\}$

of zeros on the interval (a, β) , and otherwise it is said

differen *nd R* on $[t_0, \infty)$. A function defined on an interva
latory at β if for every $a \in (t_0, \beta)$ it has an infi
 (a, β) , and otherwise it is said to be *non-oscillat*
he form $(D1)_1$ is called oscillatory at β if all

A fundamental problem concerning the oscillation theory of second order linear or nonlinear ordinary differential equations may be posed as follows.. Suppose *R* and p are functions on I_{∞} which make the differential equation $(D1)_1$ oscillatory at ∞ . Are there relations between the functions R and r as well as functions \dot{p} and q which ensure that the differential equation

$$
(r(t)x'(t))' + q(t)x(t) = 0 \qquad (t \in I_{\infty})
$$
 (D1)₂

is also oscillatory at ∞ ? A well-known relation for this linear case is the classical Sturm comparison theorem $[6: p. 2]$. Hille $[3]$ and Wintner $[8]$ extended Sturm's result in the following way.

Th. Rudek: Pädag. Hochschule, Inst. Math. und Inform., PF 307, D - 99006 Erfurt

ISSN 0232-2064 */* \$ 2.50 **©** Heldermann Verlag Berlin

Theorem 1 (Hille-Wintner comparison theorem). *Suppose* $R \equiv 1$ and $r \equiv 1$ *in equations* (D1)₁ and (D1)₂, *respectively. Let* $p, q \in C(I_\infty)$ *be functions such that* $\frac{1}{2}$ $P(t) = \int_t^{\infty} p(s) ds$ and $Q(t) = \int_t^{\infty} q(s) ds$ exist with $0 \le P(t) \le Q(t)$, for all $t \in I_{\infty}$. Then if the differential equation $(D1)_1$ is oscillatory at ∞ , then also the differential *equation* $(D2)_2$ *is oscillatory at* ∞ .

Taam [7] proved the following generalization of the Hille-Wintner theorem.

Theorem 2. Let $p, q, r, R \in C(I_\infty)$ be functions such that r is bounded from above **Theorem 2.** Let $p, q, r, R \in C(I_{\infty})$ be functions such that r is bounded from above
on I_{∞} , $P(t) = \int_{t}^{\infty} p(s) ds$ and $Q(t) = \int_{t}^{\infty} q(s) ds$ exist, $|P(t)| \leq Q(t)$ and $0 < r(t) \leq$
 $P(t)$ for all $t \in I$. Then if the differen $R(t)$, for all $t \in I_{\infty}$. Then if the differential equation $(D1)_1$ is oscillatory at ∞ , so also *the differential equation* $(D2)_2$ *is oscillatory at* ∞ . *d* the following generalization of the Hille-Wintner theorem
 Let $p, q, r, R \in C(I_{\infty})$ *be functions such that* r *is bounded fri*
 $p'(s) ds$ and $Q(t) = \int_{t}^{\infty} q(s) ds$ exist, $|P(t)| \leq Q(t)$ and 0
 n. Then if the different *(r)* $f(x) = \int_{0}^{\infty} f(x) dx$ (r) $f(x) = \int_{0}^{\infty} f(x) dx$ (r) $f(x) = \int_{0}^{\infty} f(x) dx$ and $Q(t) = \int_{0}^{\infty} f(x) dx$ and $Q(t) = \int_{0}^{\infty} f(x) dx$. Then if the differential equation (D1)₁ is oscillatory at ∞ , so also ition (D2)₂ is o

These and other Sturm-type comparison theorems hold for very general second order linear and nonlinear differential equations. Butler [1] obtained such a nonlinear extension of Theorem 2 for a certain class of equations.

We consider the differential equations

$$
(R(t)w(x(t))x'(t))' + p(t)f(x(t)) = 0 \t (t \in I_{\beta})
$$
 (D2)₁

$$
(r(t)w(x(t))x'(t))' + q(t)f(x(t)) = 0 \qquad (t \in I_\beta).
$$
 (D2)₂

Theorem 3 (see Butler [1]). *Suppose* $w \equiv 1$ and $\beta = \infty$ in equations $(D2)_1$ and (D2)₂. Let $p, q, r, R \in C(I_{\infty})$ be functions such that $P(t) = \int_{t}^{\infty} p(s) ds$ and $Q(t) =$ $\int_t^{\infty} q(s) ds$ exist, $|P(t)| \leq Q(t)$ and $0 < r(t) \leq R(t)$, for all $t \in I_{\infty}$. Assume that f is a *function on JR satisfying the following conditions:* rem 3 (see Butler [1]). Supp

et p,q,r,R $\in C(I_{\infty})$ be funct

s exist, $|P(t)| \leq Q(t)$ and $0 <$

on $\mathbb R$ satisfying the following

f $\in C'(\mathbb R),$ uf(u) > 0 and f'(

r

f' is non-increasing on $(-\infty, 0]$
 $\liminf_{u|\to+\infty} f'(u) >$

(a₀)
$$
f \in C'(R)
$$
, $uf(u) > 0$ and $f'(u) > 0$, for all $u \neq 0$

and either

 (b_0) *f'* is non-increasing on $(-\infty, 0]$ and non-decreasing on $(0, \infty)$ *or*

$$
(c_0)\liminf_{|u|\to+\infty}f'(u)>0\ \text{and}\ \int_{\pm 1}^{\pm \infty}\frac{du}{f(u)}\,du<\infty.
$$

Then if the differential equation $(D2)$ *is oscillatory at* β *, so also the differential equation* $(D2)_2$ *is oscillatory at* β *.*

Butler also showed that Theorem 2 holds without the restriction that *r is* bounded.

1. Preliminaries

To obtain the main result of the paper we need the following well-known three theorems.

Theorem 4 (see Rudek [5: Theorem 1]). *Consider the nonlinear differential equation (Retail equation (D2)*1 *is oscillatory at* β *, so also the differential equatory at* β *.*

showed that Theorem 2 holds without the restriction that r is boundaries

ain result of the paper we need the following well-k

$$
(R(t)x'(t))' + a(t)g(x'(t)) + p(t)f(x(t)) = 0 \qquad (t \in I_{\infty})
$$
 (D3)

where a, p, R are functions on I_{∞} satisfying the following conditions:

On a Comparison Theorem for Differential Equations 18'
\n(V1)
$$
a, p, R \in C(I_{\infty}), a(t) \ge 0
$$
 and $R(t) > 0$ for all $t \in I_{\infty}, R$ decreasing on I_{∞} ,
\n
$$
P(t) = \int_{t}^{\infty} p(s) ds \text{ existing for all } t \in I_{\infty} \text{ and } \liminf_{T \to +\infty} \int_{t}^{T} \frac{P(s)}{R(s)} ds > -\infty.
$$
\n(V2) $f \in C'(R)$ at $f(x) > 0$ and $f'(x) > 0$ for all $x \ne 0$ and $f(0) > 0$ for all $x \ne 0$.

(V2)
$$
f \in C'(R)
$$
, $uf(u) > 0$ and $f'(u) > 0$, for all $u \neq 0$, and $0 \leq g \in C(I_{\infty})$.

$$
\begin{aligned}\n\text{(V2)} \quad & \int \in C \text{ (H)}, \, u_f(u) > 0 \text{ and } f'(u) > 0, \\
\text{(V3)} \quad & \liminf_{|u| \to +\infty} f'(u) > 0 \text{ and } \int_{\pm 1}^{\pm \infty} \frac{du}{f(u)} < \infty. \\
\text{In the differential equation (D3) is oscillation} \\
\text{(V4)} \quad & \int_{t}^{\infty} \frac{1}{R(s)} \left(P(s) + \int_{s}^{\infty} \frac{(P_+(u))^2}{R(u)} du \right) ds\n\end{aligned}
$$

(V3)
$$
\liminf_{|u| \to +\infty} f'(u) > 0
$$
 and $\int_{\pm 1}^{\pm \infty} \frac{du}{f(u)} < \infty$.
\nThen the differential equation (D3) is oscillatory at ∞ if the condition
\n(V4) $\int_{t}^{\infty} \frac{1}{R(s)} \left(P(s) + \int_{s}^{\infty} \frac{(P_+(u))^2}{R(u)} du \right) ds = \infty$

is *satisfied.*

Theorem 5 (see Butler [1: Lemma 2.3]). *Consider the differential equation*

$$
x''(s) + p(s)F(x(s)) = 0 \t (s \in [0, \infty)). \t (D4)
$$

x (D3) is oscillatory at ∞ if the condition
 s) + $\int_s^{\infty} \frac{(P_+(u))^2}{R(u)} du$ $ds = \infty$
 B
 B
 B
 $x''(s) + p(s)F(x(s)) = 0$ (s $\in [0, \infty)$). (D4)
 x ists on I_{∞} , F be continuously differentiable with $uF(u) > 0$ *Let* $P(t) = \int_{t}^{\infty} p(s)ds$ exists on I_{∞} , F be continuously differentiable with $uF(u) > 0$ and (V4) $\int_{t}^{\infty} \frac{1}{R(s)} \left(P(s) + \int_{s}^{\infty} \frac{(P_+(u))^2}{R(u)} du \right) ds = \infty$

is satisfied.

Theorem 5 (see Butler [1: Lemma 2.3]). Consider the differential equat
 $x''(s) + p(s)F(x(s)) = 0$ (s $\in [0, \infty)$).

Let $P(t) = \int_{t}^{\infty} p(s)ds$ exists 00 *du* (x)).
 $entiable with uF(u) > 0$
 $F'(x) > 0$ and $\int_{\pm 1}^{\pm \infty} \frac{dx}{F(x)}$ r;y *<* 00. *Then the relation*

$$
\int\limits_{0}^{\infty}\left(|P(s)|+\int\limits_{s}^{\infty}P^{2}(u)\,du\right)\,ds=\infty
$$

is a necessary condition for the differential equation (D4) to be oscillatory at ∞ .

Theorem 6 (see Rudek [5: Theorem 2]). *Consider the differential equation* (D2)1. **Let p, R** $\in C(I_\beta)$, $R(t) > 0$ ($t \in I_\beta$), and assume that $\int_{\beta}^{\beta} \frac{du}{R(u)}$ and $\overline{P}(t) = \int_{t}^{\beta} |p(s)| ds$ *exist on Ig. Let further the following conditions be satisfied:*

The functions *f* and *w* are continuous, the product $(fw)(u) = f(u)w(u)$ $(u \in \mathbb{R})$ *is continuously differentiable,* $uf(u) > 0$ *and* $(w(u)f(u))' > 0$ *for all* $u \neq 0$ *. Let there exist* $s_0, S \in \mathbb{R}$ such that $0 < s_0 \leq w(u) \leq S$ holds for all $u \in \mathbb{R}$.

Then the differential equation $(D2)_1$ is non-oscillatory at β .

2. Main result

Let $\beta < \infty$ or $\beta = \infty$.

or

Main result
 $\beta < \infty$ or $\beta = \infty$.
 Theorem 7. Let $p, q, r, R \in C(I_{\beta})$ be such that there exist $\overline{Q}(t) = \int_{t}^{\beta} q(s) ds$ and
 $\beta = \int_{t}^{\beta} \ln(s) ds$ $\overline{P}(t) < \overline{O}(t)$ and $0 < r(t) < P(t)$ for all $t \in I_{\beta}$. Further let finit $\overline{P}(t) = \int_t^\beta |p(s)| ds$, $\overline{P}(t) \leq \overline{Q}(t)$ and $0 < r(t) \leq R(t)$, for all $t \in I_\beta$. Further let f, w be functions on \boldsymbol{R} satisfying the following conditions: Th. Rudek

in result
 ∞ or $\beta = \infty$.

orem 7. Let $p, q, r, R \in C(I_{\beta})$ be such
 $\binom{\beta}{t} |p(s)| ds$, $\overline{P}(t) \leq \overline{Q}(t)$ and $0 < r(t) \leq$

s on R satisfying the following condition
 $f, w \in C^1(R), u f(u) > 0, f'(u) > 0$ and
 v exi

(a)
$$
f, w \in C^1(\mathbb{R}), u f(u) > 0, f'(u) > 0
$$
 and $(w(u)f(u))' > 0$, for all $u \neq 0$.

Let there exist $s_0, S \in \mathbb{R}$ such that $0 < s_0 \leq w(u) \leq S$ for all $u \in \mathbb{R}$ and either

(b)
$$
\frac{f'(u)}{w(u)}
$$
 be non-increasing on $(-\infty, 0]$ and non-decreasing on $[0, \infty)$

(c)
$$
\liminf_{|u|\to+\infty} (w(u)f(u))' > 0
$$
 and $\int_{\pm 1}^{\pm \infty} \frac{du}{f(u)} < \infty$.

Then if the differential equation $(D2)$ *is oscillatory at* β *, so also the differential equation* $(D2)_2$ *is oscillatory at* β *.*

Proof. It will be convenient to separate the proof into the following three cases:

(i) Conditions (a), (b) and
$$
\int^{\beta} \frac{du}{r(u)} = \infty \text{ are fulfilled}
$$

Proof. It will be convenient to separate the proof into
\n(i) Conditions (a), (b) and
$$
\int^{\beta} \frac{du}{r(u)} = \infty
$$
 are fulfilled
\n(ii) Conditions (a), (c) and $\int^{\beta} \frac{du}{r(u)} = \infty$ are fulfilled

(iii) Condition $\int \frac{du}{r(u)} < \infty$ is fulfilled.

Case (i): Let the differential equation $(D2)$ be oscillatory at β . Suppose on the contrary, that the differential equation $(D2)_2$ is not oscillatory at β . Then there is a solution x of the differential equation $(D2)_2$ which is non-oscillatory at β . Without loss of generality, we may assume that *x x (i)* $\frac{du}{r(u)} = \infty$ are fulfilled
 z ∞ is fulfilled.
 x (*x*) *x (D2)₂* is not oscillatory at *β*. Suppose on the equation (D2)₂ is not oscillatory at *β*. Then there is a quation (D2)₂ which is (iii) Condition $\int^B \frac{du}{r(u)} <$
Case (i): Let the different
contrary, that the differential equalition x of the differential equality, we may assume the
of generality, we may assume the
In this case we show all assum
are oscillatory at β . Suppose on the
oscillatory at β . Then there is a
ion-oscillatory at β . Without loss
 I_{β} . (1)
f Tychonov's theorem [2: p. 405]
 $(t \in I_{\beta})$ (2)

$$
x(t) > 0 \qquad \text{for all} \quad t \in I_{\beta}.
$$
 (1)

In this case we show all assumptions of a corollary of Tychonov's theorem [2: p. 405]

time that
\n
$$
x(t) > 0
$$
 for all $t \in I_{\beta}$. (1)
\nassumptions of a corollary of Tychonov's theorem [2: p. 405]
\n
$$
z(t) = \frac{r(t)w(x(t))x'(t)}{f(x(t))}
$$
 $(t \in I_{\beta})$ (2)

we obtain from $(D2)_2$

$$
z(t) = \frac{r(t)w(x(t))x'(t)}{f(x(t))}
$$
 $(t \in I_\beta)$

$$
z'(t) = -\frac{f'(x(t))z^2(t)}{r(t)w(x(t))} - q(t)
$$
 $(t \in I_\beta).$

Then we have

On a Comparison Theorem for Differential Equations
\n
$$
z(t) = z(T) + \int_{t}^{T} q(s)ds + \int_{t}^{T} \frac{f'(x(s))z^{2}(s)}{r(s)w(x(s))}ds \qquad (t_{0} \leq t \leq T < \beta)
$$
\n(3)

where, for $T \rightarrow \beta$,

where

\n
$$
f(t) = z(T) + \int_{t}^{T} q(s)ds + \int_{t}^{T} \frac{f'(x(s))z^{2}(s)}{r(s)w(x(s))}ds \qquad (t_{0} \leq t \leq T < \beta)
$$
\n
$$
T \to \beta,
$$
\n
$$
\int_{t}^{T} q(s)ds \longrightarrow \overline{Q}(t) \qquad \text{and} \qquad \int_{t}^{T} \frac{f'(x(s))z^{2}(s)}{r(s)w(x(s))}ds \longrightarrow k
$$
\n
$$
\leq \infty. \text{ Hence we have}
$$
\n
$$
\lim_{T \to \beta} z(T) = b \qquad \text{where} \quad -\infty \leq b < \infty.
$$

with $0 < k \leq \infty$. Hence we have

$$
\lim_{T \to \beta} z(T) = b \quad \text{where} \quad -\infty \leq b < \infty.
$$

Now we show that $0 \leq b < \infty$. Suppose that $-\infty \leq b < 0$. Then choosing T sufficiently large, say $T \geq \overline{T}$, we have $r(T)x'(T) < 0$. If there exists an $\varepsilon > 0$ such that $r(T)x'(T) \leq$ large, say $T \geq \overline{T}$, we hav
 $-\varepsilon$ for all $T \geq \overline{T}_1$, then

The right-hand side ten

we have $\limsup_{T \to \beta} r(T$

Next we choose a se

all $T \in [\overline{T}, T_n)$, we have
 $-\frac{1}{n}$ $-\varepsilon$ for all $T \geq \overline{T}_1$, then we obtain ~ 100 km s $^{-1}$

$$
(T) = b \qquad \text{where} \quad -\infty \leq b < \infty.
$$
\nSuppose that $-\infty \leq b < 0$. Then choosing T

\n $\int x'(T) < 0$. If there exists an $\varepsilon > 0$ such that $r(0)$

\nchain

\n
$$
x(T) - x(\overline{T}_1) \leq -\varepsilon \int_{\overline{T}_1}^T \frac{ds}{r(s)}.
$$

The right-hand side tends to $-\infty$ if $T \to \beta$. This contradicts $x(t) > 0$ $(t \in I_\beta)$. Thus we have $\limsup_{T\to\beta}r(T)x'(T) = 0$. $x(T) - x(\overline{T}_1) \le -\varepsilon \int_{\overline{T}_1} \frac{ds}{r(s)}$.

The right-hand side tends to $-\infty$ if $T \to \beta$. This contradicts $x(t) > 0$ ($t \in I_\beta$). Thus

we have $\limsup_{T \to \beta} r(T)x'(T) = 0$.

Next we choose a sequence $(T_n)_{n \ge 1} \subseteq I_\beta$ such that, f

Next we choose a sequence $(T_n)_{n \geq 1} \subseteq I_\beta$ such that, for sufficiently large *n* and for all $T \in [\overline{T}, T_n)$, we have

$$
-\frac{1}{n} = r(T_n)w(x(T_n))x'(T_n) > r(T)w(x(T))x'(T)
$$

and therefore $\lim_{n\to\infty} T_n = \beta$. Let *n* be sufficiently large. Integrating the differential equation (D2)₂ from *T* to *T_n*, we have

$$
0>\int\limits_{T}^{T}q(s)f(x(s))\,ds.
$$

Integration by parts yields

$$
0 > \int_{T} q(s) f(x(s)) ds.
$$
\n
$$
V(T) < \int_{T}^{T_n} H(s) V(s) ds \qquad (\overline{T} \leq T < T_n)
$$

where

 $\overline{}$

$$
V(T) < \int_{T}^{T_n} H(s)V(s)ds \qquad (\overline{T} \leq T < T_n)
$$
\n
$$
V(T) = f(x(T)) \int_{T}^{T_n} q(u) du \qquad \text{and} \qquad H(T) = -\frac{x'(T)f'(x(T))}{f(x(T))}.
$$

 $\sim 1\,\mu$

From (1), condition (a) and $x'(T) < 0$ we get $H(t) > 0$ ($t \in [\overline{T}, T_n)$). Setting

) and
$$
x'(T) < 0
$$
 we get $H(t) > 0$ $(t \in [\overline{T},$

$$
W(T) = \int_{T}^{T_n} H(s)V(s)ds \qquad (T \in [\overline{T}, T_n))
$$

we obtain $W'(T) = -H(T)V(T) > -H(T)W(T)$. Then we have

$$
\tau
$$

\n
$$
= -H(T)V(T) > -H(T)W(T).
$$
 Then we have
\n
$$
\frac{d}{dT}\left(W(T)exp\left(\int_{\overline{T}}^{T} H(s) ds\right)\right) > 0 \quad (T \in [\overline{T}, T_n))
$$

which implies that

$$
W(T) exp \left(\int_{\overline{T}}^{T} H(s) ds \right)
$$

is strongly increasing on $[\overline{T}, T_n)$. Considering $W(T_n) = 0$ we obtain that the function *W*, and hence the function *V*, is negative for every $t \in [\overline{T}, T_n)$, and, consequently, it is easy to see that $W(T)exp\left(\int_{\overline{T}}^{T} H(s) ds\right)$
 b. Considering $W(T_n) = 0$ we obtain that the function
 s negative for every $t \in [\overline{T}, T_n)$, and, consequently, it is
 $\int_{\overline{T}}^{g} q(s) ds < 0$,
 r of $\overline{Q}(t)$ for all $t \in I_{\beta}$. Now we have

$$
\int\limits_{\overline{T}}^{\beta}q(s)\,ds<0,
$$

contradicting the non-negativity of $\overline{Q}(t)$ for all $t \in I_{\beta}$. Now we have

$$
0 \le b = \lim_{T \to \beta} z(T) < \infty. \tag{4}
$$

Letting $T \rightarrow \beta$ it follows from (3) that

function *V*, is negative for every
$$
t \in [1, I_n)
$$
, and, consequently, it is
\n
$$
\int_{\overline{T}}^{\beta} q(s) ds < 0,
$$
\nnon-negativity of $\overline{Q}(t)$ for all $t \in I_{\beta}$. Now we have
\n
$$
0 \leq b = \lim_{T \to \beta} z(T) < \infty.
$$
\n(4)\n
\nallows from (3) that
\n
$$
z(t) = b + \overline{Q}(t) + \int_{t}^{\beta} \frac{f'(x(s))z^{2}(s)}{r(s)w(x(s))} ds \qquad (t \in I_{\beta}).
$$
\n(5)\n
\n*estitution* $x(s) = u$ we have

By (2) and the substitution $x(s) = u$ we have

$$
0 \le b = \lim_{T \to \beta} z(T) < \infty.
$$
\n(4)
\nfrom (3) that
\n
$$
b + \overline{Q}(t) + \int_{t}^{\beta} \frac{f'(x(s))z^{2}(s)}{r(s)w(x(s))} ds \qquad (t \in I_{\beta}).
$$
\n(5)
\n
$$
\lim_{\epsilon} x(t) = u \text{ we have}
$$
\n
$$
\int_{c}^{x(t)} \frac{w(u)}{f(u)} du = \int_{t_{0}}^{t} \frac{z(s)}{r(s)} ds \qquad (t \in I_{\beta})
$$
\n(6)
\nfollows from (1), (4) and (5) that $z(t) \ge 0$ for $t \in I_{\beta}$. Thus it
\nfunction x is increasing on I_{β} . We define
\n
$$
\Omega(x) = \int_{c}^{x} \frac{w(u)}{f(u)} du \qquad (x \ge c).
$$
\n(7)

where $c = x(t_0) > 0$. It follows from (1), (4) and (5) that $z(t) \ge 0$ for $t \in I_\beta$. Thus it follows from (2) that the function x is increasing on I_{β} . We define

$$
\Omega(x) = \int_{c}^{x} \frac{w(u)}{f(u)} du \qquad (x \ge c).
$$
 (7)

The function Ω is strongly increasing on $D(\Omega) = [c, \infty)$. Let Γ be the inverse function of Ω which is also monotone increasing. $D(\Omega)$ is an interval, and therefore the function Γ is continuous. From (6) and (7) we get

On a Comparison Theorem for Differential Equations
motion
$$
\Omega
$$
 is strongly increasing on $D(\Omega) = [c, \infty)$. Let Γ be the inverse
which is also monotone increasing. $D(\Omega)$ is an interval, and therefore the
intinuous. From (6) and (7) we get

$$
x(t) = \Gamma(\Omega(x(t))) = \Gamma\left(\int_c^{x(t)} \frac{w(u)}{f(u)} du\right) = \Gamma\left(\int_c^t \frac{z(s)}{r(s)} ds\right) \qquad (t \in I_\beta).
$$

$$
G(z, r; t) = f'\left(\Gamma\left(\int_c^t \frac{z(\tau)}{r(\tau)} d\tau\right)\right) / w\left(\Gamma\left(\int_c^t \frac{z(\tau)}{r(\tau)} d\tau\right)\right)
$$
ws by (5) that

Using

$$
G(z, r; t) = f' \left(\Gamma \left(\int_{t_0}^t \frac{z(\tau)}{\tau(\tau)} d\tau \right) \right) / w \left(\Gamma \left(\int_{t_0}^t \frac{z(\tau)}{\tau(\tau)} d\tau \right) \right)
$$

(5) that

$$
z(t) = b + \overline{Q}(t) + \int_{t}^{\beta} \frac{z^2(s)}{\tau(s)} G(z, r; s) ds \qquad (t \in I_{\beta}).
$$

and side defines a map M by

$$
(Mu)(t) = b + \overline{Q}(t) + \int_{t}^{\beta} \frac{u^2(s)}{\tau(s)} G(u, r; s) ds \qquad (t \in I_{\beta}).
$$

(8)
sin of this map M be the set C_z of all continuous functions u on I_{β} with

it follows by (5) that

$$
r(t) = f'\left(\Gamma\left(\int_{t_0}^t \frac{1}{r(\tau)} d\tau\right)\right) / w \left(\Gamma\left(\int_{t_0}^t \frac{1}{r(\tau)} d\tau\right)\right)
$$

nat

$$
z(t) = b + \overline{Q}(t) + \int_{t_0}^{\beta} \frac{z^2(s)}{r(s)} G(z, r; s) ds \qquad (t \in I_{\beta}).
$$

The right-hand side defines a map *M* by

$$
(Mu)(t) = b + \overline{Q}(t) + \int\limits_t^\beta \frac{u^2(s)}{r(s)} G(u,r;s) \, ds \qquad (t \in I_\beta).
$$
 (8)

Let the domain of this map M be the set C_z of all continuous functions *u* on I_β with the restriction $0 \le u(t) \le z(t)$ ($t \in I_\beta$). Then *M* is a map of C_z into itself. Since Γ and $f'w^{-1}$ (condition (b)) are increasing it is easy to see that $0 \leq (Mu)(t) \leq z(t) = (Mz)(t)$ for every $u \in C_z$. side defines a m
 $(Mu)(t) = b + t$
 $0 \le u(t) \le z(t)$
 $0 \le u(t) \le z(t)$
 $\sum_{k=1}^{n}$
 $(Lm)(t) = b + \overline{F}$
 $0 \text{ of } L$ be the set *m*₂ (*t*) = $b + \overline{Q}(t) + \int_{t}^{B} \frac{u^2(s)}{r(s)} G(u, r; s) ds$ (*t* $\in I_{\beta}$). (8)
 *m*² (*t*) = $b + \overline{Q}(t)$ (*t* $\in I_{\beta}$). Then *M* is a map of *C_z* into itself. Since Γ and

(*t*) $\leq z(t)$ (*t* $\in I_{\beta}$). Then *M*

Now we consider the map *L* defined by

$$
\begin{aligned}\n\mathbf{F}_z \\
\mathbf{F}_z \\
\mathbf{F}_z\n\end{aligned}\n\text{subject to the map } L \text{ defined by}
$$
\n
$$
(Lm)(t) = b + \overline{P}(t) + \int_t^B \frac{m^2(s)}{R(s)} G(m, R; s) ds \qquad (t \in I_\beta).
$$
\n
$$
\text{where } \mathbf{F}_z \text{ and } \mathbf{F}_z \text{
$$

Let the domain of *L* be the set D_z of all continuous functions *u* on I_β with $\overline{P}(t) \leq$ $u(t) \leq z(t)$ ($t \in I_\beta$). Then *L* is a map of D_z into itself.

In the following we need the Fréchet space $C_{\rho}(I_{\beta})$, i.e. the linear, locally convex,
pact space $C_{\rho}(I_{\beta})$ of continuous real-valued functions on I_{β} . The corresponding
ology ρ is defined by the metric
 $\rho(x,$ compact space $C_{\rho}(I_{\beta})$ of continuous real-valued functions on I_{β} . The corresponding topology ρ is defined by the metric

$$
\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \left(\frac{p_i(x-y)}{1+p_i(x-y)} \right) \qquad (x,y \in C_{\rho}(I_{\beta})). \tag{10}
$$

Here $\{p_i\}_{i>1}$ is a family of seminorms with

$$
p_i(x - y) = \sup_{t \in [t_0, t_i]} |x(t) - y(t)|
$$

192 Th. Rudek
\nwhere
\n
$$
t_i = \begin{cases} \beta - \frac{\beta - t_0}{i + 1} & \text{for } \beta < \infty \\ t_0 + i & \text{for } \beta = \infty. \end{cases}
$$
\n(11)
\nFrom (10) and (11) it follows that D_z is a closed, convex subset of the Fréchet space
\n $C(L)$. In the following we show that the function belongs to the Tréchet space

 \sim

From (10) and (11) it follows that D_x is a closed, convex subset of the Fréchet space $C_{\rho}(I_{\beta})$. In the following we show that the functions belonging to *L(D_z*) are uniformly bounded and equicontinuous on compact subintervals of I_{β} . Let $T \in (t_0, \beta)$ and $m \in D_z$. There exists a constant $k \in \mathbb{$ bounded and equicontinuous on compact subintervals of I_β . Let $T \in (t_0, \beta)$ and $m \in D_z$. There exists a constant $k \in \mathbb{R}$ with $|z(t)| \leq k$ for all $t \in [t_0, T]$, and therefore we have $|(Lm)(t)| \leq k$ for all $t \in [t_0, T]$ and all $m \in D_z$. Thus there follows the uniform

boundedness of
$$
L(D_z)
$$
 on compact subintervals of I_{β} . From $m(t) \leq z(t)$ $(t \in I_{\beta})$, (8)

\nand (9) it follows for $s, t \in [t_0, T]$ that, for all $m \in D_z$,

\n
$$
\left| (Lm)(t) - (Lm)(s) \right| \leq \int_{s}^{t} |p(u)| \, du + \left| \int_{s}^{t} q(u) \, du \right| + |z(s) - z(t)|. \tag{12}
$$
\nLet $\varepsilon > 0$ and $|t - s| < \delta(\varepsilon)$. By virtue of the estimations

\n
$$
\int_{s}^{t} |p(u)| \, du \leq \frac{\varepsilon}{3}, \qquad \left| \int_{s}^{t} q(u) \, du \right| \leq \frac{\varepsilon}{3}, \qquad |z(t) - z(s)| \leq \frac{\varepsilon}{3}
$$
\nfor $|t - s| < \delta(\varepsilon)$ and (12) we obtain that the functions in $L(D_s)$ are equicontinuous.

Let $\varepsilon > 0$ and $|t - s| < \delta(\varepsilon)$. By virtue of the estimations

$$
\int_{s}^{t} |p(u)| du \leq \frac{\varepsilon}{3}, \qquad \left| \int_{s}^{t} q(u) du \right| \leq \frac{\varepsilon}{3}, \qquad |z(t) - z(s)| \leq \frac{\varepsilon}{3}
$$

for $|t - s| < \delta(\varepsilon)$ and (12) we obtain that the functions in $L(D_z)$ are equicontinuous
on compact subintervals of I_β . By the Arzela-Ascoli theorem; it follows that $L(D_z)$ is
pre-compact on closed subintervals of I_β . on compact subintervals of I_β . By the Arzela-Ascoli theorem; it follows that $L(D_x)$ is pre-compact on closed subintervals of I_β . Now we show that the map L is continuous on *D.* Using

$$
\Phi(m;s) = \frac{m^2(s)}{R(s)}G(m,R;s) \qquad (s \in I_\beta)
$$

it follows by (9) that

$$
(Lm)(t) = b + \overline{P}(t) + \int\limits_t^\beta \Phi(m; s) \, ds.
$$

Let the sequence $(m_n)_{n\geq 1} \subseteq D_z$ be such that $m_n \to m$ $(m \in D_z)$, uniformly on compact subintervals of \bar{I}_{β} . Let $\epsilon > 0$ be given. There exists a $T \in (t_1, \beta)$ such that

$$
\int\limits_T^\beta \frac{z^2(s)}{r(s)} G(z,r;s)\,ds < \frac{\varepsilon}{3}.
$$

On the other hand, there exists an $n_0(\varepsilon)$ such that

$$
\int_{T} \overline{r(s)} \, G(z, r; s) \, ds < \frac{\pi}{3}.
$$
\nd, there exists an $n_0(\varepsilon)$ such that

\n
$$
\max \left| \Phi(m_n; t) - \Phi(m; t) \right| \le \frac{\varepsilon}{3|T - t_0|} \qquad (n \ge n_0).
$$

Then for all $t \in [t_0, T]$ and $n \geq n_0$ we obtain

$$
(Lm_n)(t) - (Lm)(t)
$$

\n
$$
= \left| \int_t^\beta \left(\Phi(m_n; s) - \Phi(m; s) \right) ds \right|
$$

\n
$$
\leq \left| \int_t^\tau \left(\Phi(m_n; s) - \Phi(m; s) \right) ds \right| + \left| \int_t^\beta \left(|\Phi(m_n; s)| + |\Phi(m; s)| \right) ds \right|
$$

\n
$$
\leq \left| \int_t^\tau \left(\Phi(m_n; s) - \Phi(m; s) \right) ds \right| + 2 \int_t^\beta \frac{z^2(s)}{r(s)} G(z, r; s) ds
$$

\n
$$
< \varepsilon.
$$

Thus $Lm_n \to Lm$ as $n \to \infty$, uniformly on compact subintervals of I_β .

Finally we need that $L(D_x)$ is pre-compact on I_β . Here we show that every sequence $(L(m_j))_{j\geq 1} \subseteq L(D_z)$ has a subsequence being a Cauchy sequence. Choosing $\varepsilon_1 > 0$ we set $\mu_1 > 0$ such that

$$
\frac{\mu_1}{1+\mu_1}\leq \frac{\varepsilon_1}{2}.
$$

There exists a number $\overline{T}_1 \in I_\beta$ such that, for all $t \in [\overline{T}_1, \beta)$,

$$
1 + \mu_1 \stackrel{?}{=} 2
$$

re exists a number $\overline{T}_1 \in I_\beta$ such that, for all $t \in [\overline{T}_1, \beta)$,

$$
\left| (Lm_n)(t) - (Lm_k)(t) \right| \le \int_t^\beta \left(|\Phi(m_n; s)| + |\Phi(m_k; s)| \right) ds \le 2 \int_t^\beta \Phi(z; s) ds < \mu_1
$$

$$
\sup_{t\in[\overline{T}_1,\overline{t}_i]} \Big| (Lm_n)(t) - (Lm_k)(t) \Big| \leq \mu_1
$$

where

There exists a number
$$
1 \in I_{\beta}
$$
 such that, for an $t \in [1], p$,

\n
$$
\left| (Lm_n)(t) - (Lm_k)(t) \right| \leq \int_{t}^{\beta} \left(|\Phi(m_n; s)| + |\Phi(m_k; s)| \right) ds \leq 2 \int_{t}^{\beta} \Phi(z; s).
$$
\nindependently of n and k . Therefore, we obtain the inequality:

\n
$$
\sup_{t \in [\overline{T}_1, \overline{t}_i]} \left| (Lm_n)(t) - (Lm_k)(t) \right| \leq \mu_1
$$
\nwhere:

\n
$$
\overline{t}_i = \begin{cases}\n\beta - \frac{\beta - t_0}{i + j_1} & \text{for } \beta < \infty \\
t_0 + i + j_1 - 1 & \text{for } \beta = \infty \text{ and } j_1 = \min \{i : t_i > \overline{T}_1 \}.\n\end{cases}
$$
\nThus, we have for all n, k .

\n
$$
\sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\sup_{t \in [\overline{T}_1, \overline{t}_i]} \left| (Lm_n)(t) - (Lm_k)(t) \right|}{1 + \sup_{t \in [\overline{T}_1, \overline{t}_i]} \left| (Lm_n)(t) - (Lm_k)(t) \right|} \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\mu_1}{1 + \mu_1} \leq \frac{\varepsilon}{2}
$$
\nSince $L(D_z)$ is pre-compact on the interval $[t_0, \overline{T}_1]$, the sequence $(Lm_j)_{j \geq 1}$ or $[t_0, \overline{T}_1]$ being a Cauchy sequence. It follows:

Thus we have for all *n, k*

$$
\begin{aligned} \left| \begin{array}{ll} t_0 + i + j_1 - 1 & \text{for } \beta = \infty \text{ and } j_1 = \min\left\{ i : t_i > T_1 \right\}. \end{array} \right| \\ \text{have for all } n, \ k \end{aligned}
$$
\n
$$
\sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\sup_{t \in [\overline{T}_1, \overline{t}_i]} \left| (L m_n)(t) - (L m_k)(t) \right|}{1 + \sup_{t \in [\overline{T}_1, \overline{t}_i]} \left| (L m_n)(t) - (L m_k)(t) \right|} \le \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\mu_1}{1 + \mu_1} \le \frac{\varepsilon_1}{2}
$$

Since $L(D_x)$ is pre-compact on the interval $[t_0, \overline{T}_1]$, the sequence $(Lm_j)_{j\geq 1}$ has a convergent subsequence $(Lm_j^{(1)})_{j\geq 1}$ on $[t_0, \overline{T}_1]$ being a Cauchy sequence. It follows that

$$
\sup_{t\in [t_0,\overline{T}_1]} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right| \le \frac{\varepsilon_1}{2}
$$

holds if $n, k \geq n_1$. We obtain

h. Rudek
\n
$$
k \ge n_1. \text{ We obtain}
$$
\n
$$
\rho\left(Lm_n^{(1)}, Lm_k^{(1)}\right) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\sum_{t \in [t_0, \bar{t}_i]}^{t_0} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right|}{\sum_{t \in [t_0, \bar{t}_i]}^{t_0} \left| (Lm_n^{(1)}(t) - (Lm_k^{(1)})(t) \right|)}
$$
\n
$$
\le \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\sum_{t \in [t_0, \bar{T}_1]}^{t_0} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right|}{\sum_{t \in [t_0, \bar{T}_1]}^{t_0} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right|}
$$
\n
$$
+ \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\sum_{t \in [\bar{T}_1, \bar{t}_i]}^{t_0} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right|}{\sum_{t \in [\bar{T}_1, \bar{t}_i]}^{t_0} \left| (Lm_n^{(1)})(t) - (Lm_k^{(1)})(t) \right|}
$$
\n
$$
\le \varepsilon_1
$$

for all $n, k \geq n_1$. This process can be repeated infinitely often setting $\varepsilon_m = \varepsilon_{m-1}/2$ and using successively μ_m, T_m, j_m and n_m $(n = 2, 3, ...)$. Then the diagonal sequence

$$
\leq c_1
$$
\nis can be repeated infinitely on

\nand

\n
$$
n_m \quad (n = 2, 3, \ldots).
$$
\nThus

\n
$$
\left(L(m_j^{(j)}) \right)_{j \geq 1} \subseteq \left(L(m_j) \right)_{j \geq 1}
$$
\n
$$
\left(L(m_j^{(j)}) \right)_{j \geq 1} \subseteq C_{\rho}(I_{\beta})
$$

is a Cauchy sequence. Since

$$
\left(L(m_j^{(j)})\right)_{j\geq 1}\subseteq C_\rho(I_\beta)
$$

this Cauchy sequence is convergent. Therefore $L(D_z)$ has a compact closure on I_β . By the corollary of Tychnov's Theorem (see [2: p. 405]), *L* has a fixed point $\bar{n} \in D_z$, $L\bar{n}=\bar{n}$. Then

s convergent. Therefore
$$
L(D_z)
$$
 has a con-
nov's Theorem (see [2: p. 405]), L has
 $x(t) = \Gamma\left(\int_{t_0}^t \frac{\overline{n}(s)}{R(s)} ds\right) > 0$ $(t \in I_\beta)$

is a non-oscillatory solution of the differential Equation $(D2)_1$ which contradicts the suppusition.

Case (ii): Let the differential equation $(D2)_1$ be oscillatory at β and x a solution of the differential equation $(D2)_2$. By using

Tychnov's Theorem (see [2: p. 405]), *L* has a fixed point
$$
\overline{n} \in D_z
$$
,
\n
$$
x(t) = \Gamma \left(\int_{t_0}^t \frac{\overline{n}(s)}{R(s)} ds \right) > 0 \qquad (t \in I_\beta)
$$
\nory solution of the differential Equation (D2)₁ which contradicts the
\net the differential equation (D2)₁ be oscillatory at β and x a solution
\nI equation (D2)₂. By using
\n
$$
s = \int_{t_0}^t \frac{d\tau}{r(\tau)w(x(\tau))}, \qquad y(s) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(s) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$
\n
$$
y(t) = x(t(s)) \qquad (t \in I_\beta)
$$

 $\bar{\mu}$, $\bar{\nu}$

we transform the differential equation $(D2)_2$ into the equation

$$
y(s) = x(t(s)) \qquad (t \in I)
$$

differential equation (D2)₂ into the equation

$$
\frac{d^2y}{ds^2} + r(t(s))q(t(s))w(y)f(y) = 0 \qquad (s \in [0, \infty)).
$$

 \sim

On a Comparison Theorem for Differential Equa

\nWe set

\n
$$
a(s) = r(t(s))q(t(s)) \qquad \text{and} \qquad F(y(s)) = w(y(s))f(y(s))
$$
\nand obtain the differential equation

and obtain the differential equation

 \mathbf{r}

On a Comparison Theorem for Differential Equations 195
\n
$$
f(t(s))q(t(s))
$$
\nand\n
$$
F(y(s)) = w(y(s))f(y(s))
$$
\nntial equation\n
$$
\frac{d^2y(s)}{ds^2} + a(s)F(y(s)) = 0 \quad (s \in [0, \infty)).
$$
\n(14)

By (13) we get

initial equation

\n
$$
\frac{d^2y(s)}{ds^2} + a(s)F(y(s)) = 0 \quad (s \in [0, \infty)).
$$
\n(14)

\n
$$
A(s) = \int_{s}^{\infty} a(\tau) d\tau \ge 0 \quad (s \in [0, \infty)).
$$

Hence we have the set of the set of

$$
A(s) = \int_{s}^{\infty} a(\tau) d\tau \ge 0 \qquad (s \in [0, \infty)).
$$

$$
\int_{T}^{\infty} A(s) ds \ge \frac{1}{S^2} \int_{t(T)}^{\beta} \frac{\overline{Q}(u)}{r(u)} du
$$

$$
\int_{T}^{\infty} \left(\int_{s}^{\infty} A^2(\tau) d\tau \right) ds \ge \frac{1}{S^4} \int_{t(T)}^{\beta} \frac{1}{r(u)} \left(\int_{u}^{\beta} \frac{\overline{Q}^2(v)}{r(v)} dv \right) du.
$$

$$
= \int_{t_0}^{t} \frac{d\tau}{R(\tau)w(x(\tau))} \qquad \text{and} \qquad y(s) = x(t(s)) \qquad (t \in I_{\beta})
$$

the differential equation (D2)₁ into the equation

$$
\frac{d^2y(s)}{ds^2} + \overline{a}(s)F(y(s)) = 0 \qquad (s \in [0, \infty)) \qquad (14)'
$$

$$
R(t(s))p(t(s)). \qquad \text{The oscillation properties of the differential equations}
$$

$$
= \int_{t_0}^{t} R(t(s))p(t(s)) \qquad \text{the oscillation properties of the differential equations}
$$

$$
= \int_{t_0}^{t} R(t(s))p(t(s)) \qquad \text{the oscillation properties of the differential equations}
$$

$$
= \int_{t_0}^{t} R(t(s))p(t(s)) \qquad \text{the oscillation properties of the differential equations}
$$

Using

 $\gamma=30$

 $\bar{\mathcal{L}}$

$$
\int_{T} \left(\int_{s}^{T} \frac{1}{s} e^{i\theta} \right) ds = S^{4} \int_{t(T)} r(u) \left(\int_{u}^{T} r(v) \right) du.
$$
\n
$$
s = \int_{t_0}^{t} \frac{d\tau}{R(\tau)w(x(\tau))} \quad \text{and} \quad y(s) = x(t(s)) \quad (t \in I_{\beta})
$$

we transform the differential equation $(D2)_1$ into the equation

$$
\frac{d^2y(s)}{ds^2} + \overline{a}(s)F(y(s)) = 0 \qquad (s \in [0, \infty))
$$
\n(14)

Using
 $s = \int_{t_0}^{t} \frac{d\tau}{R(\tau)w(x(\tau))}$ and $y(s) = x(t(s))$ $(t \in I_{\beta})$

we transform the differential equation (D2)₁ into the equation
 $\frac{d^2y(s)}{ds^2} + \overline{a}(s)F(y(s)) = 0$ $(s \in [0, \infty))$ (where $\overline{a}(s) = R(t(s))p(t(s))$. The oscillation where $\overline{a}(s) = R(t(s))p(t(s))$. The oscillation properties of the differential equations $(D2)_1$ and $(D2)_2$ are invariant under these transformations. Analogously, we have the \sim \sim

$$
= \int_{t_0} \frac{d\tau}{R(\tau)w(x(\tau))} \quad \text{and} \quad y(s) = x(t(s)) \quad (t \in I_\beta)
$$
\nthe differential equation (D2), into the equation\n
$$
\frac{d^2y(s)}{ds^2} + \bar{a}(s)F(y(s)) = 0 \quad (s \in [0, \infty)) \quad (14)'
$$
\n
$$
R(t(s))p(t(s)). \quad \text{The oscillation properties of the differential equations}
$$
\n
$$
P(t(s))p(t(s)) = \int_{t_0}^{\infty} \bar{a}(\tau) d\tau \quad \text{where} \quad \tau \text{ and } \bar{a}(\tau) \text{ and } \bar{a}
$$

 \mathcal{A}_c , \mathcal{A}_c ,

Concerning the differential equation (14)' it follows from Theorem 5 that

$$
\int^{\infty}\left(|\overline{A}(s)|+\int\limits_{s}^{\infty}(\overline{A}(u))^{2}du\right)ds=\infty.
$$

On the other hand, by relations (15)' and, without loss of generality, $s_0 \leq 1$ and $S \geq 1$, we have

In. Rudek
\n:
$$
\int^{\infty} \left(|\overline{A}(s)| + \int_{s}^{\infty} (\overline{A}(u))^{2} du \right) ds = \infty.
$$
\nthe other hand, by relations (15)' and, without loss of generality, $s_{0} \leq 1$ and $S \geq \infty$
\n
$$
\int^{\infty} \left(|\overline{A}(s)| + \int_{s}^{\infty} (\overline{A}(u))^{2} du \right) ds \leq \frac{1}{s_{0}^{4}} \int_{t(T)}^{\beta} \frac{1}{R(u)} \left(\overline{P}(u) + \int_{u}^{\beta} \frac{(\overline{P}(v))^{2}}{R(v)} dv \right) du.
$$
\nrespectively, in view of inequalities $0 < r(t) \leq R(t)$ and $|P(t)| \leq Q(t)$ for all $t \in \mathbb{R}$.

Correspondingly, in view of inequalities $0 < r(t) \le R(t)$ and $|P(t)| \le Q(t)$ for all $t \in I_\beta$ we obtain

$$
\frac{1}{S^4} \int_{t(T)}^{\beta} \frac{1}{r(u)} \left(S^2 \overline{Q}(u) + \int_u^{\beta} \frac{\overline{Q}^2(v)}{r(v)} dv \right) du = \infty.
$$
 (16)

Hence, by (15) and (16) we obtain
 $\int_{0}^{\infty} \int_{0}^{x} A(s)$

$$
\int\limits_T^{\infty}\left(A(s)+\int\limits_s^{\infty}A^2(u)\,du\right)\,ds=\infty.
$$

Thus, in view of Theorem 4, the differential equation (14) is oscillatory at β and hence also the differential equation $(D2)_2$ is oscillatory at β .

Case (iii): The inequalities $0 < r(t) \leq R(t)$ ($t \in I_\beta$) and condition (iii) imply the existence of the integral $\int_{\mathcal{B}}^{\beta} \frac{du}{R(u)}$. All suppositions of Theorem 6 are fulfilled for the differential equations $(D2)_1$ and $(D2)_2$. Both equations are non-oscillatory. Thus the proof of Theorem 7 is complete. **I** *x* $V(t) \leq R(t)$ $\leq R(t)$ $\leq R(t)$ $\leq R(t)$ and condition (ii) imply
integral $\int_{\mathcal{B}}^{\beta} \frac{du}{R(u)}$. All suppositions of Theorem 6 are fulfilled for the
is $(D2)_1$ and $(D2)_2$. Both equations are non-oscillatory. Thus the
 x (D2)₁ and (D2)₂. Both equations are non-oscillatory. Thus the scomplete. \blacksquare

sition $p(t) \ge 0$ for all $t \in [t_0, \infty)$, Theorem 7 generalizes a result of 3 in that paper).

a in that paper).

ardifferential equa

Under the supposition $p(t) \geq 0$ for all $t \in [t_0, \infty)$, Theorem 7 generalizes a result of Butler [i] (Theorem 3 in that paper).

3. A corollary

Consider the nonlinear differential equations

$$
x''(t) + A(t)x'(t) + B(t)f(x(t)) = 0 \qquad (t \in I_\beta) \tag{D3}_1
$$

$$
x''(t) + a(t)x'(t) + b(t)f(x(t)) = 0 \qquad (t \in I_\beta).
$$
 (D3)₂

Corollary. Let $a, A, b, B \in C(I_\beta)$ be functions such that

A corollary
\nhsider the nonlinear differential equations
\n
$$
x''(t) + A(t)x'(t) + B(t)f(x(t)) = 0 \qquad (t \in I_{\beta}) \qquad (I
$$
\n
$$
x''(t) + a(t)x'(t) + b(t)f(x(t)) = 0 \qquad (t \in I_{\beta}). \qquad (I
$$
\nCorollary. Let $a, A, b, B \in C(I_{\beta})$ be functions such that
\n
$$
a(t) \leq A(t) \qquad and \qquad |B(t)| \leq b(t) \exp\left(\int_{t_0}^t (a(s) - A(s)) ds\right) \qquad (t \in I_{\beta}).
$$

Suppose that there exist

\n
$$
P^*(t) = \int_t^{\beta} |B(s)| \exp\left(\int_t^s A(u) du\right) ds
$$
\n
$$
Q^*(t) = \int_t^{\beta} b(s) \exp\left(\int_t^s a(u) du\right) ds
$$
\n
$$
A \text{sum of } t \in I_{\beta}
$$
\nAssume further that f is a function on R satisfying the condition (a) and either the condition (b) or (c) of Theorem 7, where $w = 1$ is supposed.

\nThen if the differential equation (D3)₁ is oscillatory at β , so also the differentiation (D3)₂ is oscillatory at β .

\nProof. By setting

Assume further that f is a function on IR satisfying the condition (a) and either the *condition* (b) *or* (c) *of Theorem* 7, where $w = 1$ is supposed.

Then if the differential equation $(D3)_1$ is oscillatory at β , so also the differential $\ddot{}$

Proof. By *setting*

$$
Q^*(t) = \int_{t} b(s) \exp\left(\int_{t_0} a(u) du\right) ds
$$

\nAssume further that f is a function on \mathbb{R} satisfying the condition (a) and either
\ncondition (b) or (c) of Theorem 7, where $w = 1$ is supposed.
\nThen if the differential equation (D3)₁ is oscillatory at β , so also the difference
\nequation (D3)₂ is oscillatory at β .
\nProof. By setting
\n
$$
r(t) = \exp\left(\int_{t_0}^t a(s) ds\right) \quad \text{and} \quad \mathbb{R}(t) = \exp\left(\int_{t_0}^t A(s) ds\right) \quad (t \in I_{\beta})
$$
\nthe corollary immediately follows from Theorem 7.

4. An example

Let $\beta < \infty$ and $t_0 > 0$. In view of Theorem 2 in [4] we can see that the differential *equation*

example

\n
$$
\infty \text{ and } t_0 > 0. \text{ In view of Theorem 2 in [4] we can see that the diffi-\n
$$
\left((\beta - t)^5 \left(\frac{a}{e^{x(t)} + e^{-x(t)}} + b \right) x'(t) \right)' + \frac{1}{t} \left(|x(t)|^\alpha \operatorname{sign} x(t) + cx(t) \right) = 0
$$
\n
$$
\beta \text{ with}
$$
\n
$$
c > 0, \qquad 0 < a \le b, \qquad 1 < \alpha = \frac{2\beta + 1}{2\gamma + 1} \quad (\beta, \gamma \in \mathbb{N})
$$
\natory at β . Hence, by Theorem 7 it follows that the differential equation
$$

for $t \in I_\beta$ with

$$
c>0, \qquad 0
$$

is oscillatory at β . Hence, by Theorem 7 it follows that the differential equation

$$
\left(r(t)\left(\frac{a}{e^{x(t)}+e^{-x(t)}}+b\right)x'(t)\right)' + q(t)\left(|x(t)|^{\alpha}\operatorname{sign} x(t)+cx(t)\right) = 0
$$

is oscillatory at β , if the functions r and q satisfy the conditions

scillatory at
$$
\beta
$$
. Hence, by Theorem 7 it follows that the differential equation
\n
$$
\left(r(t)\left(\frac{a}{e^{x(t)}+e^{-x(t)}}+b\right)x'(t)\right)' + q(t)\left(|x(t)|^{\alpha}\operatorname{sign} x(t) + cx(t)\right) = 0
$$
\nscillatory at β , if the functions r and q satisfy the conditions
\n $r, q \in C(I_{\beta}), \qquad 0 < r(t) \leq (\beta - t)^5, \qquad \ln \frac{\beta}{t} \leq \int_{\epsilon}^{\beta} q(s) ds < \infty \qquad (t \in I_{\beta}).$

References

- [1] Butler, C. J.: *HiIle-Wintner type comparison theorems for second-order ordinary differ*ential equations. Proc. Amer. Math. Soc. 76 (1979), 51 - 59.
- (2) Hartman, P.: *Ordinary Differential Equations.* New York London Sidney: John Wiley & Sons, Inc. 1964.
- [3] Hille, E.: *Non-oscillation* theorems.-Trans. Amer. Math. Soc. 64 (1948), 234 252.
- *[4] Rudek, Th.: Oszillationskriterien fiir nichtlineare gewiihnliche Differentialgleichungen* zweiter Ordnung. Wiss. Z. Päd. Hochschule Erfurt/Mühlhausen, Math. Nat. Reihe 28 (1992), 67 - 76.
- [5] Rudek, Th.: *Verallgemeinerung einiger Oszillationskriterien von Butler fur nichtlineare gewöhnliche Differentialgleichungen zweiter Ordnung.* Wiss. Z. Pad. Hochschule Erfurt - Mühlhausen, Math. Nat. Reihe 28 (1992), 77 - 85.
- [6] Swanson, C. A.: *Comparison and Oscüation Theory of Differential Equations.* New York: Acad. Press 1968.
- *[7] Taam, C. T.: Non-oscillatory differential equations.* Duke Math. J. 19 (1952), 493 497.
- [8] Wintner, A.: *On the comparison theorem of Kneser-Hille.* Math. Scand. 5 (1957), 255 260.

Received 25.04.1994