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On a Comparison Theorem 
for Second Order 

Nonlinear Ordinary Differential Equations 
Th. Rudek 

-Abstract. We present a comparison theorem for second order nonlinear differential equations 
of the form

	

(R(t)w(x(t))x'(t))' + p(l)f(x(t)) = 0	(t.E [to,i3), !^ cc) 
where p is a continuous function on [to,i3) without any restriction on its sign. 
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0. Introduction 

Consider the second order differential equation 

(R(t)x'(t))' + p(t)x(t) = 0,	(t e (to, cc))	 -	(D1)1 

with given functions p and R on [t0 , cc). A function defined on an interval [to, 0), /3 
+cc, is said to be oscillatory at 3 if for every a E (to, 0) it has an infinite number 
of zeros on the interval (a,8), and otherwise it is said to be non-oscillatory at /3. A 
differential equation of the form (D1) 1 is called oscillatory at 0 if all its solutions are 
oscillatory at /3, and otherwise such an equation is called non-oscillatory at 3. In the 
following we set I = [to, 00) and I = [t0,,8). 

A fundamental problem concerning the oscillation theory of second order linear or 
nonlinear ordinary differential equations may be posed as follows.. Suppose R and p are 
functions on Icc which make the differential equation (D1) 1 oscillatory at cc. Are there 
relations between the functions R and r as well as functions p and- q which ensur that 
the differential equation	 - 

	

(r(t)x'(t))' + q(t)x(t) = 0	(t E Ic,)	 (D1)2 

is also oscillatory at _: ? A well-known relation for this linear case is the classical Sturm 
comparison theorem [6: p. 21. Hille [3] and Wintner [8] extended Sturm's result in the 
following way. 
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Theorem 1 (Hille-Wintner comparison theorem). Suppose R	1 and r	1
in equations (D1) 1 and (D1) 2 , respectively. Let p,q E C(100 ) be functions such that 
P(t) = f00p( s ) ds and Q(t) = f°°q(s)ds exist with 0 P(t) Q(t), for alit E 100. 
Then if the differential equation (D1) 1 is oscillatory at oc, then also the differential 
equation (D2)2 is oscillatory at oo. 

Taam [7] proved the following generalization of the Hille-Wintner theorem. 

Theorem 2. Let p, q, r, R E C(100 ) be functions such that r is bounded from above 
on I, P(t) = f p(s) ds and Q(t) = ft q(s) ds exist, IP(t)I Q(t) and 0 < r(t) < 
R(t), for all t E 100 . Then if the differential equation (D1) 1 is oscillatory at co, so also 
the differential equation (D2) 2 is oscillatory at oc. 

These and other Sturm-type comparison theorems hold for very general second 
order linear and nonlinear differential equations. Butler [1] obtained such a nonlinear 
extension of Theorem 2 for a certain class of equations. 

We consider the differential equations 

(R(t)w(x(t))x'(t))' + p(t)f(x(t)) = 0	(t E .[)	 (D2)1 
(r(t)w(x(t))x'(t))' + q(t)f(x(t)) = 0	(t E Ia).	 (D2)2 

Theorem 3 (see Butler [11). Suppose to 1 and 9 = 00 in equations (D2) 1 and 
(D2) 2 . Let p,q,r,R E C(100 ) be functions such that P(t) = f p(s ) ds and Q(t) = 

f°° q(s) ds exist, IP(t)l < Q(t) and 0 < r(t) R(t), for all t E '00 Assume that f is a 
function on JR satisfying the following conditions: 

(ao) f e C'(IR), uf(u) > 0 and f(u) > 0, for all u 54 0 

and either 

(b0 ) f' is non-increasing on (—oc,0] and non-decreasing on 
or

(co) liminf f'(u) >0 and f_du <oc. 
ui -+00	 f(u) 

±1 

Then if the differential equation (D2) 1 is oscillatory at 0, so also the differential equation 
(D2) 2 is oscillatory at 

Butler also showed that Theorem 2 holds without the restriction that r is bounded. 

1. Preliminaries 

To obtain the main result of the paper we need the following well-known three theorems. 

Theorem 4 (see Rudek [5: Theorem 1]). Consider the nonlinear differential equa-
tion

(R(t)x'(t))' + a(t)g(x'(t)) + p(t)f(x(t)) = 0	(t E '00)	 (133) 

where a, p, B are functions on 100 satisfying the following conditions:
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(Vi) a, p, R E C(I,), a(t) ^! 0 and R(t) > 0 for all t E '00 R decreasing on 100, 

P(t) = f00p(s ) ds existing for all t E '00	

T P(s) 
and liminf I	ds > -.

T—+00 1' R(s) 

(V2) I E C'(li?), uf(u) > 0 and f'(u) > 0, for all u 0 0, and 0 < g E C(100). 

±00 
f du (V3) lirnjnf f'(u) > 0 and 
j j — < I u . H+co  

±1 

Then the differential equation (D3) is oscillatory at oo if the condition 

00	/	00 

(V4) I	P(s) + J (P+ MY du ds = _ 

(	

R(u) J R(s) 

is satisfied. 

Theorem 5 (see Butler [1: Lemma 2.3]). Consider the differential equation 

x"(s) + p(s)F(x(s)) = 0	(s e [0, oo)).	 (D4) 

Let P(t) = ff00 p(s)ds exists on 100 , F be continuously differentiable with uF(u) > 0 and 
± 

F'(u) > 0 for all u	0. Suppose further that 1iminf11....00	 00 du 

	

F'(x) > 0 and f1	r;y < 
00. Then the relation

7 
00 
 
(
IP( s )l + 7P2(u)du) ds =00 

is a necessary condition for the differential equation (D4) to be oscillatory at 00. 

Theorem 6 (see Rudek [5: Theorem 2]). Consider the differential equation (D2)1. 

Let p, R E C(I,), R(t).> 0 (t E Ia), and assume that ffl d and (t) = ff Ip(s)I ds 
exist on Ig. Let further the following conditions be satisfied: 

The functions f and w are continuous, the product (fw)(u) = f(u)w(u) (u E JR) 
is continuously differentiable, uf(u) > 0 and (w(u)f(u))' > 0 for all u 0 0. Let there 
exist so, S E JR such that 0 < So w(u) 5 S holds for all u E R. 

Then the differential equation (D2) 1 is non-oscillatory at 3.
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2. Main result 

Let 8 < 000r,3=oo 

Theorem 7. Let p, q, r, R E C(I) be such that there exist (t)	f/ q(s) ds and 
(t) = f/ jp(s)j ds, P(t)	Q(i) and 0 <r(t) < R(t), for all t E I. Further let f, w be 

functions on 11? satisfying the following conditions: 

(a) f,w E C 1 (), uf(u) > 0 ,1(u ) >0 and (w(u)f(u))' >0, for all  54 0. 

Let there exist so,S E JR such that 0< S	w(u) < S for all u E JR and either 

(b) w(u) 
be non-increasing on (—oo, 0] and non-decreasing on [0, ) 

or
+00 du (c) liminf (w(u)f(u))' > 0 and I u t—.+oo	i±i f(u) 

Then if the differential equation (D2) 1 is oscillatory at 3, so also the differential equation 
(D2)2 is oscillatory at /3. 

Proof. It will be convenient to separate the proof into the following three cases: 

(i) Conditions (a), (b) and I 
du 

= oo are fulfilled 
j r(u) 

(ii) Conditions (a), (c) and	du J -- = no are fulfilled 

(iii) Condition_ <on is fulfilled. 
r(u) 

Case (i): Let the differential equation (D2) 1 be oscillatory at /3. Suppose on the 
contrary, that the differential equation (D2) 2 is not oscillatory at 13. Then there is a 
solution x of the differential equation (D2) 2 which is non-oscillatory at 3. Without loss 
of generality, we may assume that 

x(t) > 0	for all t E I j .	 (1) 

In this case we show all assumptions of a corollary of Tychonov's theorem [2: p. 4051 
are satisfied. Setting	. 

z(t) = r(t)w(x(t))x'(t)	
(t e I)	 (2) 

we obtain from (D2)2

f' (x(t))z 2 (t) 
z'(t)	- 	- q(t)	(t E Ia). 

r(t)w(x(t))
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Then we have 

z(t) = z(T) +7 q(s)ds + f '(S)-(X(S)) 
ds	(to t T < /9)	(3) 

where, for T -k 

Jq(s)ds	:	(t)	and	I r(s)w(x(s))ds
	k 

with 0 < k <co. Hence we have 

urn z(T) = b	where - 00 <b < 00. 
T-.$ 

Now we show that 0 < b < oc. Suppose that —oo b < 0. Then choosing T sufficiently 
large, say T > T, we have r(T)x'(T) <0. If there exists an E > 0 such that r(T)x'(T) 
—c for all T > T 1 , then we obtain 

x(T) - x()	fdS 

The right-hand side tends to -oo if T - 9. This contradicts x(t) > 0 (t E Ia). Thus 
we have limsup_r(T)x'(T) = 0. 

Next we choose a sequence (T) 2, 1 c 1,6 such that, for sufficiently large n and for 
all  E	we have 

__ = r(T)w(x(T))x'(T) > r(T)w(x(T))x'(T) 

and therefore	T = /9 . Let n be sufficiently large. Integrating the differential 
equation (D2) 2 from T to T, we have 

0> Jq(s)f(x(s))ds. 

Integration by parts yields

T. 

V(T) <JH(s)V(s)ds	( < T < T) 

where

V(T) = f(x(T))Jq(u)du	and	H(T) = x'
_T)f'T

f(x(T))
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From (1), condition (a) and x'(T) <0 we get H(t) > 0 (t E [, Ta )). Setting 

	

W(T) = I H(s)V(s)ds	(T E [,T)) 

we obtain W'(T) —H(T)V(T)> —H(T)W(T). Then we have 

	

( 

W(T)exp

 (I

T

H(s)ds)) >0	(T e [,T)) 
dT  

which implies that

W(T)exp (JH(s)ds) 

is strongly increasing on [T, Ta ). Considering W(T) = 0 we obtain that the function 
W, and hence the function V, is negative for every t E [, Ta ), and, consequently, it is 
easy to see that

f q(s)ds <0, 

contradicting the non-negativity of (t) for all t E I. Now we have 

	

0< b= urn z(T) <00.	 (4) 
— 

Letting T —+ 3 it follows from (3) that

f(	
ds	(tEIfl).	 (5) z(t) = b + (t) + f	

x(s))z2(s) 
r(s)w(x(s)) 

By (2) and the substitution x(s) u we have 

X(t) 

P w(u) 
du Jz(s) j —= —ds (tEip)	 (6) f(u)	r(s) 

C	 to 

where c = x(to) > 0. It follows from (1), (4) and (5) that z(i) > 0 for i E I. Thus it 
follows from (2) that the function x is increasing on I. We define 

z 
Q (X) w(u) 

	

= —du	(x>c) .	 (7) 1(u) 
C



On a Comparison Theorem for Differential Equations	191 

The function Q is strongly increasing on D() = [c, oo). Let IF be the inverse function 
of Q which is also monotone increasing. D()) is an interval, and therefore the function 
IF is continuous. From (6) and (7) we get 

(x(t)	

/	z(s) J	I 
x(t) =r(c(x(t))) =r	w(u) —	(J r(s) du I = f	_ds I	(t E Ip)). 

C	
/	

0	 ) 

f(u)	J 

Using

G(z,r,t) P(r' 
/	 \

	1w ( / = 	I / — Ii 
I tz(r) dr !	I tz(	

)) 
j r(r)	I)	

rj -r) dr 
/1	 \tO 

it follows by (5) that

fi  

z(t)=b+(i)+	Z2(S)G(Z,r;S)dS	(t e 1,3).1-  J r(s) 

The right-hand side defines a map M by

	

U 2(s) G(u, r; s) ds	(t E 1,6 ).	 (8) (Mu)(t)=b+(i)+ f-_-j r(s) 

Let the domain of this. map M be the set C of all continuous functions u on Ip with 
the restriction 0 u(t) 5 z(t) (t e Ia). Then M is a map of C into itself. Since r and 
f'w 1 (condition (b)) are increasing it is easy to see that 0 (Mu)(i) :5 z(t) = (Mz)(t) 
for every u E C, - 

Now we consider the map L defined by 

(Lrn	
m2(s)

)(t) = b + P(i) + I R(s) G(m, R; s) ds	(t e 1,q).	 (9) 

Let the domain of L be the set D of all continuous functions u on Ip with (t) < 
u(t) < z(t) (t e Ip). Then L is a map of D into itself. 

In the following we need the Fréchet space C(Ifl ), i.e. the linear, locally convex, 
compact space C(Ifl ) of continuous real-valued functions on I. The corresponding 
topology p is defined by the metric 

00	
/p j (X_y) \ 

p(x,y)=
+p(x - Y)	

C(I)).	 (10) 

Here {p}>i is a family of seminorms with 

pj(X - y) = sup Ix(i) - 
t El t o t.1
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where	 -	

/3 ti

	

	 (11)i+1 
for 

 
tto+i	for /3=oo. 

From (10) and (11) it follows that D is a closed, convex subset of the Fréchet space 
C(Ifl ). In the following we show that the functions belonging to L(D) are uniformly 
bounded and equicontinuous on compact subintervals of Ip. Let T E (to, 0) and m E D, - 
There exists a constant k E JR with I z(t) I k for all t E [to, T), and therefore we have 
I(Lm)(t)I < k for all t E [t0 , T] and all m E D. Thus there follows the uniform 
boundedness of L(D) on compact subintervals of 16• From m(t) < z(t) (t E Ia), (8) 
and (9) it follows for s,i E1t0,T] that, for all rn E D, 

(Lm)(t) - (Lm)(s)	I Ip(u)I du +
	

q(u) du + z(s) - z(t)I.	(12) 

Let c > 0 and It - sI < 6(e). By virtue of the estimations 

IP1 
du <,	fq(u)du	,	z(t)—z(s)I 

for It - s i < 6(e) and (12) we obtain that the functions in L(D) are equicontinuous 
on compact subintervals of Iq. By the Arzela-Ascoli theorem; it follows thatL(D) is 
pre-compact on closed subintervals of I. Now we show that the map L is continuous 
on D. Using

(m; s) - - m2(s) G(m, R; s)	(s ,E I) 
 R(s) 

it follows by (9) that

(Lm)(t) = b + (t) + f (m; s) ds. 

Let the sequence (m)> 1 C D be such that rn - m (in E Di ), uniformly on 
compact subintervals of I. Let e > 0 be given. There exists a T € ( t i /3) such that 

f
f_ ja(z,r;s)ds <. 

On the other hand, there exists an no(e) such that 

C max(rn;t) - (m; t) I < 
3 1T tol

(n > no). 
- 
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Then for all t E (to, TI and n > no we obtain 

(Lm)(t) - (Lm)(t) 

=

m; s) - $(m;s)) ds +J(I(mn; s )I + I(m;s)I) ds 

:

J( (mn; s) - (m; s)) ds + 2J f_ j G(z r; s) ds 

Thus Lm -+ Lm as n - oo, uniformly on compact subintervals of I. 
Finally we need that L(D) is pre-compact on Ip. Here we show that every sequence 

(L(rn,))j>j c L(D) has a subsequence being a Cauchy sequence. Choosing e l > 0 we 
set z1 >O such that

P1 
1+p - 2 

There exists a number T 1 E Ip such that, for all t E (T 1 , /3), 

(Lm)(t) - (Lm k )(t)	J (i mn; s i + (rnk;s)I) ds <2J(z;s)ds <pi 

independently of n and k. Therefore we obtain the inequality 

sup (Lm)(t) - (Lm * )(i) 5 AI 
tE[Ti,t] 

where
I	/3—to 

-	if3— .	 for f3<oo 
t+jl 

to+i+ ji-1 for /3=oo and j i = min{i: t 1 >T1}. 
Thus we have for all n, k 

00 1 sup E [T,I) ( Lmn)( t ) - (Lmk)(t)	i , 

1 + sup EIT	 - (Lmk)(t)	, 2' 1+ p ' - 2 

Since L(D) is pre-compact on the interval [to,,], the sequence (Lm,),> i has a con-
vergent subsequence (Lm)> i on [t0 , T1 ] being a Cauchy sequence. It follows that 

sup - (Lm')(t) < 
iEIto,T1)
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holds if n, Ic > n 1 . We obtain

sup	 - (Lm')(t) 00

P (Lm, Lm' ) ) =	
1 E[to,id 

i=1	1 + sup (Lrn'(t) - (Lm1))(t) 
tE(to li] 

S
	 Lup	(Lrn)(i) - (	( 1 ) )(t)

I 
(Lm(  

+ sup (Lrn' ) (t) - (Lm1))(t) 
tElto,T,] 

sup	 - (Lm')(t) 

	

00 1	tE[,i,) 

2' 1 + sup	 - (Lm')(t) 
tE[T, ,t,] 

<Ci 

for all n, k > n i . This process can be repeated infinitely often setting c,, = Em,..1 /2 and 
using successively pm,Tm,jm and nm (n = 2,3,.. .). Then the diagonal sequence 

(L(m))	ç (L(m))>1 

is a Cauchy sequence. Since

(L(m))	ç C(I) 

this Cauchy sequence is convergent. Therefore L(D) has a compact closure on I. By 
the corollary of Tychnov's Theorem (see (2: p. 405]), L has a fixed point 1 E D, 
LTI=ff. Then

x(t)=r(Jds)>o	(tEI) 
to 

is a non-oscillatory solution of the differential Equation (D2) 1 which contradicts the 
suppusition. 

Case (ii): Let the differential equation (D2) 1 be oscillatory at $ and x a solution 
of the differential equation (D2) 2 . By using

dT 

	

= I r(r)w(x(r))'	
y(s) =x(t(s))	(t e I)	 (13) 

we transform the differential equation (D2) 2 into the equation 

+ r(t(s))q(i(s))w(y)f(y) =0	(s E [0, co)).
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We set	 - 
a(s) = r(t(s))q(t(s))	and	F(y(s)) = w(y(s))f(y(s)) 

and obtain the differential equation 

&y(s) + a(s)F(y(s)) =0	(s e [0,.00))..	 (14) 

By (13) we get

A(s) = J a(r)dr 2 0	(sE [0,00)) 

Hence we have 

00 

1 ds>I J 9L' 32 r(u) 
T	 t(T)

(15) 
00 / co

T
1	1 

ds>I 
J

1

(fl

dv J	r(v)	
)

du. ;: 

YT)

Using

=
R(r)w(x())	

and,y(s) = x(i(s))	(t E I)	- 
to 

we.transform the differential equation (D2) 1 into the equation 

+ (s)F(y(s)) =0	(s E [0, no))	 (14)' 

where a(s) = R(t(s))p(t(s)). The oscillation properties of the differential equations 
(D2) 1 and (D2)2 are invariant under these transformations. Analogously, we have the 
inequalities	 - 

IA(s)I	f(r)dr	--P(t(s))	 S	

-SO 

JIA(s)Ids	
J	

-du 
T	 (T) 

(rfr) ds 
^7 (a00

	
1	(1: 

((v))2 
50	 dv) 
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Concerning the differential equation (14)' it follows from Theorem 5 that 

J00 (
	+ ](A(u))'du ds = oo. 

On the other hand, by relations (15)' and, without loss of generality, s 0 < 1 and 5> 1, 
we have

co /	 00 $ 

I 00=1 ( S	 ds< + f(A(u))2du) 1	
(TP(u) + /	dv) du. — 

	

- s J R(u)	 R(v) 
t(T) 

Correspondingly, in view of inequalities 0 < r(t) <R(t) and l P()I <Q(t) for all t E Ip 
we obtain

(,6 0 —2 
s 2 (u)±I Q(v) dv I du00 vIdu00 (16)  r(v) 

i(T)  

Hence, by (15) and (16) we obtain 

S 

00

(A(s)+7A2 (u)du) ds=oo. 

Thus, in view of Theorem 4, the differential equation (14) is oscillatory at 3 and hence 
also the differential equation (D2) 2 is oscillatory at P. 

Case (ill): The inequalities 0 < r(t)	R(t) (t E 1$ ) and condition (iii) imply 
the existence of the integral f' All suppositions of Theorem 6 are fulfilled for the 
differential equations (D2) 1 and (D2) 2 . Both equations are non-oscillatory. Thus the 
proof of Theorem 7 is complete. I 

Under the supposition p(t) ^! 0 for all t E [to, ), Theorem 7 generalizes a result of 
Butler [i] (Theorem 3 in that paper). 

3. A corollary 

Consider the nonlinear differential equations 

	

x" (t) + A(t)x'(t) + B(t)f(x(t)) = 0	(t E 1$)	 (D3)1 

	

x"(t) + a(t)x'(t) + b(t)f(x(t)) = 0	(t e 1$ ).	 (D3)2 

Corollary. Let a, A, b, B E C(I) be functions such that 

a(t)	A(t)	and	IB(t)I <b(t)exp (J(a(,) - A(s)) ds	(i E 1$). 
to	 )
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Suppose that there exist	 - 

	

P(t) = f B(s) I ex (
to"

A(u)du) s
	 (tI).	- 

Q(i) = Jb(s)exp Ja(u)du) ds 

Assume further that . f is a function on JR satisfying the condition (a) and either the 
condition (b) or (c) .01 Theorem 7, where w = 1 i supposed. 

Then if the differential equation (D3) 1 is oscillatory. at /9, so also the differential 
equation (D3) 2 is oscillatory at 8.	

0 

Proof. By setting 

r(t)=exP(Ja(s)ds)
	

and	E(t)= ex(JA(s)ds)	(EIp) 
to	 to 

the corollary immediately follows from Theorem 7. I	 . 

4. An example 

Let /9 < oc and t0 > 0. In view of Theorem 2 in [4] we can see that the differential 
equation

((/9 - j)5 ( e z ( t ) ±e_x(t) + b)x'(t)) + It (Ix(t)Isignx(i) + cx(i)) = 0 

for I E 1,6 with

c>0,	0<a<b,	1<a=	 ,-yeW) 

is oscillatory at P. Hence, by Theorem 7 it follows that the differential equation 

(r(i)(() +e(t) 
+ b)xt (i)) + q(i)(Ix(t)I' sign x(t) + cx(t)) = 0 

is oscillatory at 3, if the functions r and q satisfy the conditions 

r,q E C(Ip),	0< r(t) (/9_t)5,	lnç <Jq(s)ds <oc	(t E 1,6).
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