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On a Comparison Theorem
for Second Order
Nonlinear Ordinary Differential Equations

Th. ‘Rudek

‘Abstract. We present a comparison theorem for second order nonlinear differential equations
of the form

(ROw(z(1)='(1) +p(Df(=(t)) =0 (L€ [to,),8 < 00) -
where p is a continuous function on [to,8) without any restriction on its sign.
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0. Introduction

Consider the second order differential equation

(R()z'(1)) +p(t)z(t) =0,  (t€ [to,00)) (D1

with given functions p and R on [tg,00). A function defined on an interval [to,8),8 <
+00, is said to be oscillatory at B if for every a € (to,8) it has an infinite number
of zeros on the interval (a, ), and otherwise it is said to be non-oscillatory at 5. A
differential equation of the form (D1), is called oscillatory at 8 if all its solutions are
oscillatory at 3, and otherwise such an equation is called non-oscillatory at 3. In the
following we set I, = [to,o0) and Ig = [to, ).

A fundamental problem concerning the oscillation theory of second order linear or
nonlinear ordinary differential equations may be posed as follows. Suppose R and p are
functions on I, which make the differential equation (D1), oscillatory at co. Are there
relations between the functions R and r as well as functions p and’q which ensure that
the differential equation

(OFO) +ee®) =0  (tels) ~ (Di)

is also oscillatory at co ? A well-known relation for this linear case is the classical Sturm
comparison theorem [6: p. 2]. Hille [3] and Wintner [8] extended Sturm'’s result in the
following way.
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Theorem 1 (Hille-Wintner comparison theorem). Suppose R = 1 and r = 1

in equations (D1); and (D1);, respectively. Let p,q € C(Ix) be functions such that
P(t) = [ p(s)ds and Q(t) = [ q(s)ds ezist with 0 < P(t) < Q(t), for allt € I
Then if the differential equation (D1), is oscillatory at oo, then also the differential
equation (D2), is oscillatory at oco. .

Taam (7] proved the following generalization of the Hille-Wintner theorem.

Theorem 2. Letp,q,r,R € C(l) be functions such that r is bounded from above

on I, P(t) = [ p(s)ds and Q(t) = 17 a(s)ds ezist, |P(t)| <Q(t) and 0 < r(t) <
R(t), for allt € I. Then if the differential equation (D1); is oscillatory at oo, so also
the differential equa.tion (D2); is oscillatory at co.

These and other Sturm-type comparison theorems hold for very general second
order linear and nonlinear differential equations. Butler [1] obtained such a nonlinear
extension of Theorem 2 for a certain class of equations.

We consider the differential equations

(REOw(0)='(0) +p0f=0) =0 (telp) (D2);
(r(Ow(z(t)2'() +a(O)f(=(t) =0 (t € Ip). (D2)2

Theorem 3 (see Butler [1]). Suppose w = 1 and f = oo in equations (D2); and
(D2);. Let p,q,r,R € C(ls) be functions such that P(t) = [~ p(s)ds and Q(t) =

I7 q(s)ds ezist, |[P(t)] < Q(¢) and 0 < r(t) < R(t), for allt € Io. Assume that f is a
function on IR satisfying the following conditions: .

(ag) f € C'(R), uf(u) >0 and f'(u) >0, for allu#0
and etther
(bo) f' 1s non-increasing on (—00,0] and non-decreasing on [0, o)

or

+o00
(<o) luixr_l‘inf f'(v) >0 and / T )du < 0.

Then if the differential equation (D2)1 18 osczllatory at B, so also the differential equatzon
(D2); is oscillatory at B.

Butler also showed that Theorem 2 holds without the restriction that 7 is bounded.

1. Preliminaries

To obtain the main result of the paper we need the following well-known three theorems.

Theorem 4 (see Rudek [5: Theorem 1]). Consider the nonlinear differential equa-
tion

(R(t)='(1))" + a(t)g(=' (1)) + p(t)f(x(t)) = O - (tel) (D3)

where a,p, R are functions on I, satisfying the following conditions:
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(V1) a,p, R € C(Is), a(t) > 0 and R(t) > 0 for all t € I, R decreasing on I,

0o .. .. T P(S)
P(t) = [” p(s)ds ezisting for allt € I, and !rlmmf

it | R ds > —oo0.

(V2) f € C'(R), uf(u) > 0 and fl(u) >0, forallu#0, and 0 < g € C(Is). .
*o0

(V3) Il"ilrr—l.inif'(u) >0 and;:/
1

0.

du <
f(u)
Then the differential equation (D3) is oscillatory at co if the condition

o [ gty (P [ E ) =

s

1s satisfied.

Theorem 5 (see Butler [1: Lemma 2.3]). Consider the differential equation
2(s) + p(s)F(z(s)) =0 (s € [0,00)). (D4)

Let P(t) = [~ p(s)ds ezists on I, F be continuously differentiable with uF(u) > 0 and
F'(u) >0 for allu # 0. Suppose further that liminf};| .o F'(z) > 0 and f:lm f‘%‘ﬁ; <
oo. Then the relation

oo

/(|P(s)| + 7P2(u)du) ds = co

ts @ necessary condition for the differential equation (D4) to be oscillatory at oo.

Theorem 6 (see Rudek [5: Theorem 2]). Consider the differential equation (D2),.
Let p,R € C(Ig), R(t)>0 (t€ Ip), and assume that fﬂ '}ﬁ‘:ﬂ and P(t) = fiﬂ |p(s)| ds
ezist on Ig. Let further the following conditions be satisfied: A

The functions f and w are continuous, the product (fw)(u) = f(v)w(u) (v € R)
is continuously differentiable, uf(u) > 0 and (w(u)f(u))' > 0 for all u # 0. Let there
ezist s9, S € IR such that 0 < sp < w(u) < S holds for allu € R.

Then the differential equation (D2); is non-oscillatory at 3.
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2. Main result

Let 8 < 0o or f = 0.

Theorem 7. Let p,q,r,R € C(Ig) be such that there ezist Q(t) = flﬂ q(s)ds and
P(t) = [° Ip(s)l ds, P(t) < Q(t) and 0 < r(t) < R(t), for all t € I5. Further let f,w be

functions on IR satisfying the following conditions:
(a) f,w € CHR), uf(u) >0, (u) >0 and (w(u)f(x)) >0, for allu #0.
Let there exist s9,S € IR such that 0 < so < w(u) < S for all u € R and either

O]
w(u)

be non-increasing on (—o0,0] and non-decreasing on [0, 0)

(b)

oT

. ' too du -
(c) IIJIIETL(w(u)f(u)) >0 and Al o) < oo

Then if the differential equation (D2); is oscillatory at 3, so also the differential cquation
(D2); 1s oscillatory at (3.

Proof. It will be convenient to separate the proof into the following three cases:

8
(i) Conditions (a), (b) and / ((1_u) = oo are fulfilled
r(u v

= oo are fulfilled

 du
(ii) Conditions (a), (c) and/ %

.. A du .
(iii) Condition —— < oo is fulfilled.
r(u)

Case (i): Let the differential equation (D2), be oscillatory at 8. Supposec on the
contrary, that the differential equation (D2); is not oscillatory at 8. Then there is a
solution z of the differential equation (D2), which is non-oscillatory at 5. Without loss
of generality, we may assume that

z(t) >0 forall telg. ) BN

In this cdase we show all assumptions of- a corollary of Tychonov’s theorem [2: p.. 405]
are satisfied. Setting

_ r(tule)z'(0) |
O="Tew) W (2)
we obtain from (D2), '
Ay = ~LEOTO oy ey,

r(t)w(z(t))
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Then we have

T T
2(t) = 2(T) + /q(s)ds + %dé} (to St<T<p) 3)

where, for T' — 8

)

T

[aras — @) and

t

[PED26),
ry(a(s)

with 0 < k£ < 0o. Hence we have

lim 2(T) = b where — 00 <b < 0.
T—8

Now we show that 0 < b < co. Su]f)pose'that —o00 £ b < 0. Then choosing T sufficiently
large, say T > T, we have r(T)z'(T) < 0. If there exists an € > 0 such that r(T)z'(T) <
—€ fovr all T > T,, then we obtain

. T )
d

The right-hand side tends to —oo if T — 8. This contradicts z(t) > 0 (t € Ig). Thus
we have limsupr_ g r(T)z’ (T) =0.

Next we choose a sequence (T, Jn>1 € I such that for sufﬁmently la.rge n and for
all T € [T, T,), we have

~ 2 = r(Ta)u(=(Ta))e'(Ta) > r(Tyw(z(T)'(T)

and therefore limp, ..o T, = . Let n be sufﬁmently large. Integrating the differential
equatlon (D2); from T to T,-., we have

ST,

> / o) f(a(s)) ds.

T
Integration by parts yields
V(T) < /H(s)V(s)ds (T<T<T,)
where

Ta
V(T) = f(=(T)) / q(u)du and  H(T)= - (:;()af;((;)()T))'
T
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From (1), condition (a) and z'(T) < 0 we get H(t) >0 (¢t € (T,Ty,)). Setting

Ta :
wW(T) = /H(S)V(s)dsv (T e[T,Tn))
T

we obtain W'(T) = —H(T)V(T) > ~H(T)W(T). Then we have

d

T
7 | W(@eap _/ H(s)ds| | >0 (T €[T,T.)

T

which implies that
T
W(T)ezp /H(s) ds
T

is strongly increasing on (T, T,). Considering W(T,) = 0 we obtain that the function
W, and hence the function V, is negative for every t € [T, T,), and, consequently, it is
easy to see that

g(s)ds < 0,

Nl —

contradicting the non-negativity of Q(¢t) for all ¢t € Is. Now we have

<b=1 . »
0<b 71‘1£‘nﬁz(T)<oo (4)

Letting T — B it follows from (3) that

B8
et [ LGRS ;
=040+ [ TGy el (5)

By (2) and the substitution z(s) = u we have

z(t

) t
w(u) 2(s)
——=du= | —=ds tel 6
[Fan=[ime wew ©
c to '

where ¢ = z(t9) > 0. It follows from (1), (4) and (5) that z(¢) > 0 for ¢ € Ig. Thus it
follows from (2) that the function z is increasing on Ig. We define

w(u) du (z 2 ¢). (7

%= | 7 >
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The function Q is strongly increasing on D(Q) = [c,00). Let T be the inverse function
of §2 which is also monotone increasing. D(Q) is an interval, and therefore the function
I is continuous. From (6) and (7) we get

z(t)

. z(t)'=I‘(Q(:z(t)))=I" w(u) 4, =r ( / (s) s) (t € Ip)).

f(u) r(s)

G(z,rit) = f' (r (/(—gd)) /w (r (/ jg; ))

it follows by (5) that

Using

B
2(t) = b+ Q(t) + z:((:)) (t € Ip).
The right-hand side defines a map M by
(Mu)(t) =vb+5(t)+ u(s )G(u r;s)ds  (t € Ip). (8)

r(s)

Let the domain of this. map M be the set C, of all continuous functions u on Ig with
the restriction 0 < u(t) < z(t) (t € Ig). Then M is a map of C, into itself. Since I" and
f'w™! (condition (b)) are increasing it is easy to see that 0 < (Mu)(t) < 2(t) = (Mz)(t)
for every u € C,.

Now we consider the map L defined by -

(Lm)(t) = b+ P(t) + ";2((5)) G(m, R;s)ds (t € Ip). (9)

Let the domain of L be the set D, of all continuous functions u on Ig with P(t) <
u(t) < 2(t) (t € Ig). Then L is a map of D, into itself.

In the following we need the Fréchet space C,(Ig), i.e. the linear, locally convex,
compact space C,(Ig) of continuous real-valued functions on Ig. The corresponding
topology p is defined by the metric

o)=Y 5 (T syy) (v Gl (10)

Here {pi}i>1 is a family of seminorms with

pi(z —y) = sup |z(t) — y(t)]
t€fto,ti]
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where

141 (11)

t'_{ﬂ—'ﬂj_to for <
to +1 for 8 = co.

From (10) and (11) it follows that D, is a closed, convex subset of the Fréchet space
Cp(1p). In the following we show that the functions belonging to L(D,) are uniformly
bounded and equicontinuous on compact subintervals of Ig. Let T € (t,, B)andm € D,.
There exists a constant k € IR with |z(t)] < & for all t € [to, T), and therefore we have
[(Lm)(t)] < k for all t € [to,T] and all m € D,. Thus there follows the uniform
boundedness of L(D.) on ‘compact subintervals of Ig. From m(t) < z(t) (t € Ip), (8)
and (9) it follows for s,t € [to, T] that, for all m € D,,

@) = @m))] < [+ [ ow)da

s

tle() -0l (12)

Let € > 0 and |t — s| < §(¢). By virtue of the estimations

/ p(w)l du

for |t — s| < 8(¢) and (12) we obtain that the functions in L(D,) are equicontinuous
on compact subintervals of Is. By the Arzela-Ascoli theorem; it follows that'L(D,) is
pre-compact on closed submterva.ls of Ig. Now we show that the map L is continuous

on D,. Using

t

/q(u)d

L]

€
k) = o0 < 3

wlm
wWio

d(m;s) = T;;(is))G(m,R;s) © (s e Ig)

it follows by (9) that
i B
(Lm)(t) = b+ P(t) + /q)(m; s)ds.

Let the sequence (myp)n>1 € D, be such that mp, — m (m € D.), uniformly on
compact subintervals of Ig. Let € > 0 be glven There ex:sts aT G (tl,ﬂ) such that

[ 2 : |
s )G(z s)ds< 3

On the other hand, there exists an ng(e) such that

£

nZno.
o (2o

maa:’q)(m,,, ) — ®(m; t)‘ < 3|T
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Then for all ¢ € [ty, T] and n > ny we obtain

(Lma)(t) - (Lm)(8)|

(@(m,,; s) — (P(m;s)) ds

B
(80mais) = @i ) do[+ [ (18(mni )] + (i 5)]) s
' T

<

r(s)

IN
s T T

2 2
((D(mn;s) - Q(m;s)) ds| + 2/ 2(s) G(z,r;s)ds
T

< E.

Thus Lm,, - Lm as n — 06, uniformly on compact subintervals of Ig.

Finally we need that L(D,) is pre-compact on Ig. Here we show that every sequence
(L(mj))j>1 € L(D.) has a subsequence being a Cauchy sequence. Choosing €; > 0 we
set u; > 0 such that :

H1 €1
< —.
I+m = 2
There exists a number T € Iz such that, for all ¢t € (T, f),

B8

(Ima)(#) - (Eme)(t)] < / (1(ma; )|+ 1@(ma; )] ) ds < 2 / ®(z;5)ds <

independently of n and k. Therefore we obtain the inequality

sup_[(Lma)(t) = (Lme)(®)] < m

te[T, 1]
where :
_ B - ?—_.—0 for B < o0
ti =3 1+ 1 )

tot+i+j1—1 for =00 and j; =min{i: t.~>Tl}.
Thus we have for all n, k

= 1 subier iy (Ema)(®) = (Ema)() 1w e
Z=: 214+ SUP, (T, 7 ]\(Lmn)(t) - (Lmk)(t)l .Z 2% 1 +m -2

Since L(D;) is pre-compact on the interval [to,T;}, the sequence (Lm,),>1 has a con-
vergent subsequence (ng )) j>1 on [to, T1] being a Cauchy sequence. It follows that

[
sup |(Lm{P)(e) - (Lm{)0)| < 5
t€[to, 7] ’
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holds if n, k¥ > n,. We obtain

sup |(Lm@)(t) - (Lm)(t)

[oasd -
p (LD, Lm) = 2:3_‘ﬁwﬂ
pr it (R sup '(Lm(l)(t) (Lm(l) t)l

t€(to,ti]

sup [(Lm®)(t) - (Lm0

il 1€{t0, T}
S0+ sup [(EmB(e) - (Lm))]

te[lo,Td
w  sup [(EmO)E) - (Lm{))
1 ‘E[le?i]
v M
S04+ s [@mie) - (Lmd)o)
te[Ty,1]
<eg

for all n, k > n,. This process can be repeated infinitely often setting €m = €m—1/2 and
using successively pim,Tm,jm and n, (n =2,3,...). Then the diagonal sequence -

() : .'
(L.(mj ))_,:21 < (L(m’?)jzl
is a Cauchy sequence. Since
(L) ., < Colls)

this Cauchy sequence is convergent. Therefore L(D.) has a compact closure on- Ig. By
the corollary of Tychnov’s Theorem (see [2: P 405]), L has a fixed point @ € D,,

L7 =7n. Then
$m=r( E%s)>0 aeh?

is a non-oscillatory solution of the dxﬁerentla.l Equation (D2); which contradicts the
suppusition.

Case (ii): Let the differential equation (D2), be oscillatory at # and z a solution
of the differential equation (D2);. By using

o= | m wo)=a(s) (el (13)

we transform the differential equation (D2); into the equation™

T (e @) =0 (5 € [0,00).
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We set . . : _ . Lo N
a(s) =r(t(s))g(t(s))  and  F(y(s)) = w(y(s))f(y(s))

and obtain the differential equation

DU 4o F =0 elboo 09

By (13) we get ‘
‘ A(s) = /a(r) dr >0 (se [0,00))

Hence we have

/ A(s)ds > 2 Q(u)
T

=5t (u)
F(F ‘(T) : (15)
A’(r>dr) as> & [ = ( O ) o
T/ (s/ s / r(u) r(v)
Using
.odr . S . . o
s = ! W a.nd . y(s) = :l:(t(s)) . ‘ (t € !ﬂ)
we.transf&rrﬁ the diffc_:réntia.l equation (D2), into the gquat{on >_ )
d2dys(23) +a(s)F(y(s)) =0 (s € [(j,oo)) : T (e

where a(s) = R(t(s))p(t(s)). The oscillation properties of the differential equations
(D2), and (D2), are invariant under these transformations. Analogously, we have the

inequalities
(e o]
/ (r)dr
s

.00 . B _‘ ‘ i
[E@ias < 5 [ T | sy
T ) i

«T)

[A(s) =

< iﬁ(t(é» "

o0

Z(/(A(T))zdr) ds < — /B R(lu) (/‘:ﬂ (i}(t;)))z dv) du.

s
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Concerning the differential equation (14)' it follows from Theorem 5 that

/ o (|Z(s)| + 7(Z(u))2du) ds = oo

On the other hand, by relations (15)' and, without loss of generality, sy < 1and S > 1,
we have

oo oo B
= _S _'U, 2u S l —1— —u ((v))2 Uu
oo-T/(|A<>|+/(A( ))d)d 533,(1,’“")(””“ e )d.

s

Correspondingly, in view of inequalities 0 < r(¢t) < R(t) and |P(t)] < Q(t) for all t € I

we obtain
B
1 L Q' Q (v)
/ ()( Q()+/ dv)du- (16)

z(’I‘)
Hence, by (15) and (16) we obtain

7(4(5) +V7A2(u)du) ds = oo

T s

Thus, in view of Theorem 4, the differential equation (14) is oscillatory at 8 and hence
also the differential equation (D2); is oscillatory at j.

Case (iii): The inequalities 0 < r(t) < R(t) (¢ € Ig) and condition (iii) imply
the existence of the integral [ g m“-‘;‘;;ﬁ All suppositions of Theorem 6 are fulfilled for the

differential equations (D2); and (D2),. Both equations are non-oscillatory. Thus the
proof of Theorem 7 is complete. B '

Under the supposition p(t) > 0 for all t € [to, 00), Theorem 7 generalizes a result of
Butler 1} (Theorem 3 in that paper)
3. A corollary

Consider the nonlinear differential equations

z"(t) + A(t)z'(t) + B(t)f(z(t)) =0 (t € Ip) (D3
z"(t) + a(t)z'(t) + b(t) f(z(t)) =0 (t € Ip). (D3)2

Corollary. Let a,A,b,B € C(Ig) be functions such that

a(t) < A(t) and - |B(t)| S'b(t)exp (/(a(s) —A(s)) ds) - (t € Ip).

to
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L

Suppose that there ezist AR

. . 5 -
P©) = [1BO)lexp (/ "(“)."“)"’3 DL
'ﬂ , ’lo t (t € Ip).

. ‘o .

Assume further that f is a function on IR satisfying the condttton (a.) and etther the
condition (b) or (¢) of Theorem 7, where w = 1"is supposed. '

Then if the differential equation (D3)1 ss osctllatory at §, s0 alao the differential
equation (D3)2 is oactllatory at 5.

.

Proof. By setting

r(t) = exp (/ a(s) ds) ©and R(t) = exp (/ A(s)'ds) - (te Ip)

the corollary immediately follows from Theorem 7. R

4. An example

Let 8 < oo and to > 0. In view of Theorem 2 in [4] we can see that the differential
equation

((5 — 1) (eT:e—W + b)z'(t))' + %(lz(t)|°signx(t) + cz(t)) =
for t € Ig with .

28+1
27 +1

c>0, 0<a<y, l<a= (B,ye N)

is oscillatory at 3. Hence, by Theorem 7 it follows that the differential equation

a ! o - \
(r(t)(m + b)z'(t)) + q(t)(12(2)| sign a(t) + ca(t)) =
is oscillatory at 8, if the functions r and g satisfy the conditions

B

< (s)ds < 00 (t € I).
{‘/q 8)

-~ | D

r,q € C(Ig), 0<r(t) S(ﬂ—t)s, In
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