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Abstract. We will show that in an infinite-dimensional separable Hilbert space fl, there exist 
constants N E hV and c, d E JR such that every unitary operator can be written as the product 
of at most N positive invertible operators {a k } c B(fl) with II akII < c and 11 a 'lI^ d for all 
k. Some consequences of this result in the context of von Neumann algebras are discussed. 
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1. The results 
In this article, we assume the reader is familiar with the theory of von Neumann al-
gebras (see [8] and [12] for standard references), and subsequently we will make use of 
the standard settings in this context, e.g. factor, normal, faithful etc. without further 
explanation. For a given Hubert space N, the algebra of all bounded linear operators 
over N will be denoted by B(N). Furthermore the cone of positive operators in B(7) 
and the unitary group over N will be denoted by B(N) and U(N), respectively. 

The main results of this paper are the following theorems. 
Theorem 1. Let N be an infinite- dimensional separable Hubert space. There exist 

constants N E JTJ and c, d E JR+ such that for every u € U(N) there are invertible 
elements a 1 ,... ,a1v E B(N)+ with Il akil c and II a 'II d (k = 1,...,N) and such 

that aNa1=u. 
A von Neumann algebra M acting on a Hilbert space N is called hyperfinite if there 

exist factors	satisfying 

• MM 1 (C)foralljwith{n}CJNand2<n i <n2<... 

• 1lMEM for all j 
• MCMiforallj 

and such that U1 M 3t = M. Here M(C) denotes the full algebra of all n x n 
matrices. This definition of a hyperfinite von Neumann algebra is taken from [5: p. 
150]. 
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Theorem 2. Let M be a hyperfimite von Neumann algebra acting on a separable 
Hubert space. There exist constants N E IN and c, d E IR+ such that for an arbitrary 

E [0,27r) there are elements a 1 ,... ,a 1 , E M with Ilakil < c and II a 'II < d (k = 
1,... , N) and such that a	a1 = e1"ll. 

Remark 1. In fact, more than the assertion of Theorem 2 can be proved. For the 
assertion of Theorem 2 to hold it is even sufficient that M contains a hyperfinite von 
Neumann algebra. 

Remark 2. Hyperfiniteness of a von Neumann algebra M is an expression for M 
being infinite-dimensional as well as for M being "sufficiently" non-commutative. Nei-
ther for a finite-dimensional algebra nor for an abelian von Neumann algebra Theorem 2 
can be true. 

2. Auxiliary results and proofs 

Before we can prove the theorems, we have to consider some auxiliary results. 

Proposition 1. Let M2 (C) denote the full algebra of all 2x2 matrices with complex 
entries and M2(C)+ the cone of the positive ones. Then there exist constants N' E IN 
and c, d E .IR+ such that 

I	u = ar	a 1 jar	a 1	with invertible a k E M2(47)+ such 
SU(2) = u e M2(C) 

I	that Il akil	c and II a i'I	d (k = 1,... ,r; r <N' —1) 

Proof. Since in the above equation elements of the right-hand side are evidently 
in SU(2), it is sufficient to prove only that each matrix in SU(2) has a representation 
as shown on the right-hand side of the equation above. Let a E M 2 (C)+ be invertible 
and a $ Al (.X E li?+). Then there exists an element v E SU(2) such that a does 
not commute with vav. Let u := a(vav)Ia(vav*)I_ l . (Here and in the entire article 
for an operator or matrix b by IbI will be denoted the modulus of b defined by 
This construction yields u j4 ii. Since the element v is normal, it can be written as 
v = wdiag[eI0 , e_]w* for some w  U(2) and v E (0, 27r). Now let for cE [0, w] 

v = wdiag [e le ,e_i] w	and	u = a(veavfl Ia(v€vflI' 

We have u 0 = 11 and u, = u 54 ii, and the mapping [0, ] —* SU(2), c '— u is continuous. 
The spectrum of a matrix is a continuous function of its entries, and so are the real 

parts of the spectrum. Since all matrices Ue are elements of SU(2), their spectra are of 
the kind {e", e -") which means that the real parts of this two numbers coincide, and 
therefore we will speak from now on of the real part of the spectrum. Let the real part 
of the spectrum of u be x (note that it has to be x < 1). When c goes from 0 to , the 
set of real parts (spec u) covers at least the interval [x, 1]. Let 0 Arccos x. Then 
for each z9 E [0,t&] there is an (i9) E [0,] such that spec u,, ) = {e",e"}. From this 
and since SU(2) is a normal subgroup of U(2) it now follows that each matrix in SU(2) 
the spectrum of which is {e',e"} (19 E [0,1) can be written as ababj' for some 
matrices a, b E M2(C)+.
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Let /c = [] + 1 (the brackets stand for the integer part). Now we get the universal tP 
constant N' by setting iV' = 3k because each matrix in SU(2) can be generated as a 
product of at most 3k positive matrices as follows: Let u' E SU(2) be given arbitrarily, 

	

= w' diag [e", e' 9 1 w'	for some w' E U(2) and o e [0, 27r). 

We have E 10, ], hence there are elements a, b > 0 with 

abIabI	= diag[e'f,e'f] 

But then
(ablabl' )k = diag [e, e'] 

and, finally,
'	I	I.	I u I =	aW W bw' w'IabI -1 W I- ) k . 

Since the norm of a matrix and that of its inverse are continuous functions of the entries, 
too, it is easy to see that there are upper bounds for both of them for all vav as well 
as for all Ia(vav)L'. This completes the proof U 

Now let R be a separable Hilbert space of finite or infinite dimension. Let Ud(N) be 
the subset of U(fl) which consists of those operators which have a complete orthonormal 
system of eigenvectors. Then each eiement of Ud(7) admits a representation as a 
diagonal matrix. Now we can state the following. 

Proposition 2. Let 7i be an infinite-dimensional separable Hubert space. There 
exist constants N" E W and c, d E li?+ such that the following is true: For an arbitrary 
U E Ud( 7-1) there exist invertible elements a 1 (u),. . . , aN"(u) E B(7-1)+ with 1a1(u)II < c 
and II a (u)II 5 d (i = 1,2,... ,N") and such that aN"(u)... a 1 (u) = u. 

Proof. Let u = e1k pk be given with { pk } being a set of mutually orthogonal 
one-dimensional orthoprojections which sum up to 11. Since u is an element of Ud(1), 
this is always possible. Now let us define two specific operators v(u),w(u) E Ud(?-1) as 
follows: There are 

= (xi,x .... ) and	=	 with Xk,bk E [0, 27r) for all k. 

such that
X2k-1 + X2k mod 27r = 0	for all k E IV 

5 1 = 0, 02k + lk2k+I mod 21r=0	for all kEW 

and with the property that Xk + Ok mod 27r = Wk for all k E .V. To this end, we have 
to set

X1'PI,	?,b2=(pi+p2 mod 2 lr ,	x3=col+'p2+2a mod 27r 

and so on. Now we can set 

v(u) 1: 0= e'pt	and	w(u) 
=	

e"pk.

k=1
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The special choice of and b brings about 

v(u)w(u) =	e'p = U. 

This means if we are able to represent both v(u) and w(u) as products of positive 
invertible operators with the required properties we will have proved the proposition. 

But since both v(u) and w(u) are direct sums of SU(2) and SU(1) matrices (note 
the special construction of these operators), Proposition 1 states that this is the case 
here. Simply take the operators provided by Proposition 1 and form the direct sum 
of them. There are no convergence problems or ambiguities since the application to 
vectors of fl is well-defined. (The case of SU(1) is trivial since it contains only I) As 
for the constants, the number N" of Proposition 2 can be chosen twice the number N' 
of Proposition 1 - should there be less matrices one has to add a suitable number of 
unit matrices -; c and d can be the same as in Proposition 1 since the direct sum of 
operators has a norm which does not exceed the maximum of the initial norms I 

Remark 3. The argumentation used in the preceding proof can be easily adjusted 
to the case of an n-dimensional Hilbert space R. There we can find for each operator 
(matrix) u E SU(n) at most N" positive invertible operators the product of which is u. 
This is the case since in a finite-dimensional Hilbert space, the matrix of every unitary 
operator is unitarily diagonalizable. The restriction to SU(n) is necessary because the 
application of v(u) and w(u) to Proposition 1 requires that they have determinant 1. In 
fact, only operators with a positive determinant can be the product of positive invertible 
operators, and therefore only elements of SU(n) can occur. 

Finally we have to consider whether every unitary operator can be the product of 
positive invertible operators. To this end, we use the following result. 

Proposition 3. Every unitary operator on an infinite-dimensional Hubert space is 
the product of at most four symmetries, i.e. unitary Hermitian operators. 

This result can be found, e.g., in 6: Problem 1121, and for reasons of convenience 
the idea of the proof is restated here. 

Proof of Proposition 3. Begin by representing N as the direct sum of a sequence 
{ i-I,,} of equidimensional subspaces each of which reduces the given unitary operator u. 
It is convenient to let the index n run through all integers. 

Relative to the fixed direct sum decomposition N = En 63 i-I,,, define a right shift 
as a unitary operator s such that si-I,, = i-In+ i , and define a left shift as a unitary 
operator t such that ti-I,, = i-In i (n 0, ±1, ±2,. . .). The equi- dimensionality of all 
the N,,'s guarantees the existence of shifts. Ifs is an arbitrary right shift, write t = su. 
Since ti-I,, = s*uN,, = sN,, = i-In i for all n, it follows that t is a left shift. Since 
u = st, it follows that every unitary operator is the product of two shifts; the proof will 
be completed by showing that every shift is the product of two symmetries. 

Since the inverse (equivalently, the adjoint) of a left shift is a right shift, it is 
sufficient to consider right shifts. Suppose then that s is a right shift; let p be the 
operator that is equal to s1 2n on i-I,, and let q be the operator that is equal to S -2n on 
N,, (n = 0, ±1, ±2,. . .). It is easy to see that p and q are symmetries. If E N,,, then
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qç =	E s 2 71 = 7-L.,, so that pqp = ps 2 p =	 = s. This

completes the proof U 

Now we have the tools to prove Theorems 1 and 2. 
Proof of Theorem 1. Every symmetry is an element of Ud(71) since every symme-

try is the difference of two orthoprojections where the one is the orthogonal complement 
of the other. Hence we can apply Proposition 2 to each of the symmetries of Proposi-
tion 3 and get the desired result. It is clear that c and d can be chosen the same as in 
Proposition 2 and N = 4N" U 

Proof of Theorem 2. It is known that n,n3' holds for all j. Let k 1 = nj and 
k, = n3 /(n- 1 ) for j > 2. Without loss of generality, we can assume that kj 3 for all 
j. (If necessary, we can achieve it by thinning out the type sequence {n1}.) 

In M there exist systems of mutually orthogonal and mutually equivalent (in von 
Neumann sense) orthoprojections 

	

{p1 }! 1 CM 1	with PI+P2+...pk, zrl1M 

{Pij} 1i c M2	with Pu +pj2 + . . . p 2	Pi 

	

{pIk} 1 L 1=1 c M3	with Piji +Pij2 +	+i3k3 = Pij 

etc. Now we define orthoprojections P1 and P as follows: 

P1=p l + p2 + ... + Pk, 2 
P2 = Pk,1 +Pk,2 + ... +Pk,k 2 -2	and	P2' = Pk,k2-1 

Pk,k 2 i +Pk 1 k 2 2 + . . . +Pk,k 2 k3 -2	 P3 = Pk,k2k3-i 

etc. Finally, let

	

Q1=P1+P	 Q=P+P2 

	

Q2 =P2 +P	and	Q=P+P3 
Q3=P3+P 

etc. Let for the moment	 E [0, 27r) and in addition	 E [0, 27r) 
be arbitrarily given. Let H=	 and	=	 .). 

We have M 1 M, (C) and Q 1 E M1 , hence we can embed Q 1 M1 Q 1 into M., (C); 
thus we have Q 1 M1 Q 1 Mk,-I(C). Using Proposition 2/Remark 3, this means there 
exist invertible	. ,ar,,(p) E Mk,_l(C)+ with the boundedness properties 

II a '( p )II	c	and
	

IIa()_hII	for all i 

and the product representation

= diag 

'Pi = -(k 1 — 2) mod 27r. 

Since Q 1 M1 Q 1	Mk,-,(C) holds we can regard a(p),...	as elements of 
(Q 1 M 1 Q 1 )+ and in this view we can write .(p) . . . aI() = e" P1 ED e"°'P'.
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Similarly, we have M2 M 2 (C) and Q2 E M2 , hence we can embed Q2M2Q2 
into M 2 (C), too; thus we have Q2 M2 Q 2	Mk,-I(C). Again there exist invertible


E Mk 2_ 1(C)+ with the boundedness properties 

	

II a 2)II c	and	a(2)'II < d	for all i 

and the product representation

diag [e'2 'e P2 ,	, e1	'e''} 

(p 3 = - ( k2 - 2)(p 2 mod 27r. 

Since Q2 M2 Q 2 Mk2_l(C) holds we can again regard a( (p2 ),... ,a,, ((p2 ) as elements 
Of (Q2M2Q2)+ and write a,,((p 2 ) . " al(W2) = e2P2 W3 P21. 

Proceeding this way, we finally obtain a((p2(..1)) E QM3 Q3 c QMQ for all i,j. 
All these operators are bounded by c and act on mutually orthogonal subspaces of 71 
for different j. Hence for each z the operator 

a() = a ((p) ED
j=2 

is well defined. For these operators we have the inclusion a() E M+, the boundedness 
properties

	

II a i(c)II <c	and
	

II a ()II <d	for all i 

and the product representation 

aN"(co ) •	= e'P1 e'P	e 2 P2 

Analogously we have M2 M 2 (C) and Qi E M2 , therefore we can embed QM2Q 
into M n2 (C); thus we have Q' 

' M
2 Q	M2k 2_ 2(C). This means that there exist invert- 


ible b (iI'1),. . . , b,,( i ) E M2 2 _2(C)+ with the boundedness properties 

	

b(1)II <c	and
	

II b ('i)'II < d	for all i 

and the product representation 

	

•	= diag [e14'1,...,c'tP1,e1,...,e14'2] 
k 2 times	(k2-2) times 

02 = - k2 - 2' mod 27r. 

Since QçM2 Q'1	M2k2_2(C) holds we can regard	 as elements of 
(QM2 Q)+, and under this agreement we can write b,(' 1 ) .	= e'"P 
e2P2.



On the Decomposition of Unitary Operators	241 

Again, we have M3	M 3 (C) and Q'2 E M3 , hence we can embed Q'2M3Q' 
into Mn 3 (C); again we have Q'2 M3 Q'	M2k3_2(C). There exist invertible operators 


b,,( 3 ) E M 2k3_ 2(C)+ with the boundedness properties 

II b (3)II < c	and	II b ('3)' 1 < d	for all i 

and the product representation 

b( 3 ) = diag [e13 ,. . . 
- ------

k3 times	(k3-2) times 

04
k3 = -	mod 27r. 

k3 - 

Since QM3 Q'	M2k3_2(C) holds we can regard b( 3 ),. .. , b,,(i3 ) as elements of 
(QM3 Q) and write	...	=	ee''P3. 

Proceeding further as indicated, we finally arrive at a family { b (j.. i ) I of operators 
obeying b( 2 _ 1 ) E QM 1 Q', c QMQ for all z,j. These operators are also bounded 
by c and act on mutually orthogonal subspaces of N for different j. Hence, the setting 

P1	b21) 

yields an expression which makes sense as a bounded operator. We have the inclusion 
E M+, the boundedness properties 

II b ()II < c	and 11 b () 	< d	for all i 

and the product representation 

bN"() .. b 1 () = P1	ei p' P11 We 2 P2	WeP3 

For given p, we now define {} and {i'k} successively by requiring 

4' i = cp—co i mod 2ir,	ç2=o—,1'2 mod 2ir 
V13 = -	mod 27r,	W4 = c,o - 04 mod 27r 

etc. Thus we finally get the product representation 

aN"(co) ... al(ç)bN'(t)...	= e''1lM. 

The constant N in the theorem can therefore be chosen twice the constant N" in 
Proposition 2; c and d apply as well in this theorem I
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3. Some applications and discussion 

The results of the first section are useful especially for the investigation of holonomy 
groups of states over von Neumann algebras. In the following, the concept of the 
holonomy group of a normal state, i.e. a normalized to one normal positive linear form, 
over a von Neumann algebra will be briefly introduced. For more detailed information, 
the reader is referred to [1] and [2]. 

Throughout this section we suppose that M is a von Neumann algebra acting on 
some Hilbert space R. We assume that M admits a cyclic and separating vector 11. (For 
definitions, cf. [12: Definition 3.16).) Then it is known that there exists a faithful normal 
state on M (cf. 15: Proposition 2.5.6)) and that for any normal positive linear form w 
over M there is at least one vector p E h which implements w, i.e. (x) = (xp, p) for 
all x E M (cf. [5: Theorem 2.5.31]). The set of all vectors which implement w will be 
denoted by S(w). 

A pair {w,a} of normal positive linear forms over M such that there do not exist 
normal positive linear forms w', a' with w' <w, a' < a and w' J a, a' I w apart from 
the trivial pair {O, O} in [1] has been referred to as a <<-minimal pair. In this case, the 
situation that for 0 E S(a) and p E S() the condition 

- C, h() := (() p ) positive 

is satisfied will be referred to by the notation . One can easily prove (cf. 11: Remark 
6.8(2)]) that for {w,a} such that each p E S(w) uniquely determines 0 e S(a) with 
h,b > 0, and vice versa, the <-minimality is fulfilled. Note that any pair of faithful 
normal positive linear forms yields a <<-minimal pair. As it comes out the relation 11 is 
reflexive and symmetric, but in general not transitive. 

For a given linear form w on M and a E M, the notation w" is an abbreviation for 
the linear form w(a*(.)a). Then we have (w = bo Assume {w, a} is <<-minimal. In 
the special case or = wa (a E M+) for given cp E S(w) the vector 0 = wp is the uniquely 
defined vector b E S(a) with b 11 p (cf. [1: Example 6.2(1)]). 

One might consider a "path" 7 9 M.+, which is a finite sequence {w} 0<< (n E 
1TV0 ) of normal positive linear forms such that {wk,wk+I} is <<-minimal for U < k < 
n - 1. According to the above considerations, for such a path to given W E S(WO) 
there exist in a unique manner vectors Wj E S(w3 ) () = 0, 1,. . . , n) such that W o = 
and c'kII(pk-f1 for 0	k	n — i. Call	y ) :=	. For Lo = WO = w, the path is 
closed and is referred to as an w-loop. Then, the map S(w) 3 p - y ) E S() is 
an automorphism (a homeomorphism onto itself) of the complete metric space S(W). 
The effect of the non-transitivity of the relation 11 then is that in general the group 
of all these automorphisms Go(w), the holomomy group of w, is non-trivial provided 
the algebra M is non-commutative. This means that the transport of implementing 
vectors along paths accomplished in accordance with 11 in general leads to an effect of 
anholonomy which manifests in the fibreS(w) over w. 

It turns out that in case is an w-loop, for a fixed vector w E S(w), each homeomor-
phism in the holonomy group can be written as the action of a certain unitary operator 
coming from the comrnuiani W of M. For w being a faithful state, this operator is 
uniquely determined (cf. [2: Lemma 8.2]). The group of all such operators is called the 
ui-phase group at . It is anti-isomorphic to the holonomy group at w. Thus, we can
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discuss the holonomy group in terms of the w-phase group at some E S(w), which is 
more convenient. 

It is known (cf. [2: Theorem 11.5)) that in case of M MN(C), Go(i) SU(N) 
holds for a faithful w, and G0 () U(k) whenever dims(w) = k < N occurs. In the case 
M B(fl0 ), with a separable Hilbert space 71o, the holonomy group of a normal positive 
linear form with finite-dimensional support is isomorphic with U(dim s(w)), whereas for 
those the linear forms of which have infinite-dimensional supports one easily sees that 
the holonomy groups are mutually isomorphic (thus one needs only to calculate the 
holonomy group of a faithful normal positive linear form). 

Now consider the following construction: Assume M = { L I x E B(fl0 )} is the 
von Neumann algebra of left multiplications on elements of the Hilbert space R of all 
Hubert-Schmidt operators over the separable Hilbert space flo. The scalar product in 
this Hilbert space is given as (x,y)Hs = trxy. Then, M' = { R Ix E B(710 )} is the 
von Neumann algebra of right multiplications. It is known that M B(?1o) holds, i.e. 
we are in the standard situation of a factor of type I,,, n E iN or n = 

By means of Theorem 1, we can state the following 

Theorem 3. Let M be the type-I,,,, factor of left multiplications as in the above 
situation. Let a faithful normal state w be given. Let	be the square root of the 
density matrix of w. Then := e S(w), and the w-phase group of w at contains 
every unitary operator that commutes with j5 as a Hubert-Schmidt operator, i.e. every 
Ru E B(71) with u/ = ./Ju on 

Proof. Let u E B(7- 0 ) be a unitary operator that commutes with ../ 5. In accor-
dance with Theorem 1, there are positive invertible operators a 1 ,. . . , a,, E B(R0 ) so 
that a,,	a = u. Consider the path 

__ a  - a 2 a 1	a	
= 

All pairs of neighbouring linear forms are <<-minimal due to [1: Example 6.2(1)]. Since 
u commutes with .../, it commutes with w as well, and we have 

= w(u( . )u) = tru( . )u = truiu( . ) = truu*w(.) = trw( . ) = 

i.e. is a loop. Furthermore, we have 

(Note the above remark on the 11 relation for vectors that implement neighbouring linear 
forms.) Since R u E M', this must be the uniquely determined element of the w-phase 
group for	I 

The above mentioned operator wi!2 is a Hilbert-Schmidt operator over 7i 0 . Since 
it belongs to a faithful normal state w its kernel is {O}, and therefore it is invertible. 
The inverse is an unbounded, closed, selfadjoint operator over ?10 and will be denoted 
by w 112 . Its domain of definition will be denoted by D(w7112).
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Lemma 1. Let M and w be given as in the preceding theorem. The w-phase group 
at the implementing vector w l ' 2 contains all iLnitaries Ru for which LL) h/2uw_h/2 as well 
as	 both defined on	 are closable operators over 

Proof. All we have to do is finding an w-loop y with w 1 I2 (.y) = Rw' 12 . Since 
w h / 2 uw_ h /2 is closable, there exists a polar decomposition of the closure of this operator 
as follows:

= 

with a certain partial isometry v E B(7i 0 ). Since w 12 is closed and W112u is bounded, 
we have

(L,1/2u4)_1'2y = 

(cf. [9: §5.10.111.6)]) and the operator on the right-hand side is densely defined. Hence 
the range R(_h/2uwh/2) is dense in 71g. Similarly, since w112u*w_112 is densely 
defined, 1?(Wh/2uw_h/2) is dense in 1i 0 . Hence v is a unitary operator. 

We have 

Iw 1 /2 uw_ 1 1 2 1w 112 = vj1/2liw_h/2w1'2 = V * W I / 2 uw_ 1 /2 w 1 /2 = v*wl/2u 

and
w1'2v*w'2u _W 1/2 1w I /2 uw_ 1 /2 1w 1/2 >0. 

Since w 1 /2vc'2 u is positive, the linear form

2 1/	 tr/'2v*W1h/2u () = (v*wh/2u(.)	)HS = 

is positive, too, and therefore we have wh/211v*wh/2u. 
Let now a 1 ,... , av E B(1Lo)+ be given such that a,v	a1 = v and consider the 

loop

	

_ L,),,, 	w a 2 a j V	 _	a N' a v = 

Since the a 1 ,... , av are positive, for 

= Po =	 = v*w1I2u 

Wk = ak_I	aiv*w12u	(k = 2,3,... , N + 1) 

we have
coo e S(W),	co' e S(Y) 

	

cokeS(w'	1V)	(k=2,3,...,N+1) 

and cokIcok+ 1 (kr0,1,...,N). Hence wehave 

= aN	alv*whh/2 U VV* L) tL=W 1/2	1/2 = Rw'"2


or R is the w-phase of the loop 7
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Remark 4. By Lemma 1 the problem of finding the holonomy group of w is trans-
formed to an operator theoretic problem. Note that the condition of Lemma 1 is only 
sufficient. 

In the case of a more general hyperfinite yon Neumann algebra, we can say the 
following. 

Theorem 4. Let M be given as in Theorem 2. Let w be an arbitrary faithful normal 
state over M, and W E S(w). The ci-phase group at W contains all unitaries that are 
multiples of 11. 

Proof. Since for each A E JR there are a 1 ,... ,a E M+ with a a = e'1l, 
we can construct an w-loop which maps W to eiA W in a similar way as in the proof of 
Theorem 3. Since e 1 11 is always a unitary element of M' for all A E JR, the proof is 
complete U 

Remark 5. The last theorem states that in all .hyperfinite von Neumann algebras 
the full unitary group U(1) is contained in the holonomy group of a faithful normal 
state. Note that for pure, non-tracial normal states, it is known that the holonomy 
group is isomorphic to U(1) (cf. [2: Theorem 11.2]). This means that if we restrict 
ourselves to finite-dimensional and hyperfinite factors the following is true: With the 
only exception of faithful states over a finite-dimensional factor, the holonomy group of 
every normal state contains at least U(1). 

Remark 6. Apart from the applications of Propositions 1 and 2 to the theory of 
holonomy groups, these propositions and Theorem 1 could be of use in other fields of 
mathematics, too. Therefore it could be interesting to find the best upper bound for the 
number N. Starting with Proposition 1, N' has to be greater than 3 because - can not 
be the product of three positive invertible operators since abc = —1 implies ab = —c- 1, 
and this is impossible since ab has a non-negative spectrum. A similar argument rules 
out N' = 4 such that N' has at least to be 5. On the other hand, N' = 27 suffices which 
can be shown by an example that has k = 9, k defined as in the proof of Proposition 1. 

Following the line of conclusions, an upper bound for N" of Proposition 2 is 54, 
and, finally, an upper bound for N of Theorem 1 is 216. But since the proofs were only 
intended to yield the existence of these constants, these numbers must be far from the 
respective best upper bounds. Furthermore, N' heavily depends on the choice of the 
matrices v and a, and therefore on the constants c and d as well. Making N' small 
means making c and d large and vice versa. Finding the best upper bounds for N', N" 
and N in dependence on the choice of c and d could be the subject of separate research. 

Acknowledgement. The author is very indebted to Doz. Dr. Peter M. Alberti for 
his advice and assistance during the work on this article. He also wishes to thank the 
referees for their advice.
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4. Note added in proof 

While proof-reading the author got aware of some other results on products of special 
matrices, as positive or Hermitian ones, and which are closely related to this subject. 
A short discussion of these results follows. 

In the context of von Neumann algebras, Størmer in 1965 proved a lemma which 
deals with the decomposition of ill into a sum of two products of four self-adjoint oper-
ators (cf. [11: Lemma 2.13]). In special cases there is even a decomposition of ill into a 
product of three self-adjoint operators. 

In 1968 and 1970 Ballantine examined products of positive (n x n)-matrices over 
the real [3] and the complex field [4]. In the latter work it is shown that every invertible 
complex matrix is the product of at most five positive invertible matrices. Sourour gave 
in [10] a shorter proof of this fact using a more general result about factorization of 
matrices. Finally, Wu [ 13] extended Ballantine's result to positive 3emidefinite matrices. 

An extensive survey of solved and unsolved problems concerning products of sym-
metric, Hermitean, positive and normal matrices is given in [7], where also the case of 
bounded operators over infinite-dimensional Hilbert spaces is considered. 

The difference of these results to the ones of this work lies in the observation that 
there is a global upper bound for the norms of the positive operators as well as for those 
of their inverses. This is a vital feature of the constructed matrices for the direct sum 
of them to yield a bounded invertible operator. 

Now another remark on the occurring constants. As what has been said above, since 
our first goal was to say something about holonomy groups, we were only interested in 
the existence of constants N and N. Therefore we did not draw our attention to seeking 
best upper bounds. Nevertheless, something better than the statement in Remark 6 can 
be said about, the constant N' of Proposition 1. 

Ballantine's result is that every invertible complex matrix is the product of at most 
five positive invertible matrices. Since this cannot be true if we require that the latter 
fulfil the norm inequalities of Proposition 1 and set the constants c and d simultaneously 
"too close" to 1, one could ask for the dependence on c and d of N'. Conversely, if we 
allow for "sufficiently" large upper bounds, N' = 5 should do for Proposition 1. This 
can be seen easily by slightly modifying the proof of Proposition 1 as follows. 

Consider instead of terms of the kind a(vav*)]a(vav*)I_I now terms of the kind 

I 3 (v 3 av * )(v2av 2 )(vav * )aI(v3 *3 av )( v2 *2 av )(vav)a1' =:u. 

For, say, a = diag [25,1] and v =	 andi going from 0 to , u yields matrices 
with all possible spectra for unitary matrices. This is due to the fact that, for a 
diag[1,0], the partial isometry in the polar decomposition of (v3av*3)(v2av*2)(vav*)a 
can be uniquely extended to the following orthogonal matrix with determinant 1: 

(—sin3t 
cos3i	sin3t	 I' ir'

 cos3t)	for t E [0,) 

and this is equal to the pointwise with respect to t limit of u for a = diag [k, 1] as k 
tends to infinity. The convergence is the better the nearer i is to 0. The number 25 was
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found numerically. A by-product of these calculations was the following equality which 
was found by suitably rounding the numbers obtained by numerical calculations: - 

(_0i 0 \ 	o\ /6 —g\ h 	12 '\ (	_\ / 163	30 ) 
1 164840	4121 

—i)(
25
o 1)_9 20)12 16)-5 2	30	467 

	

4121	8242 

Another factorization of —Il into five positive (2 x 2)-matrices can be found in [7]. 
The example given there is "more sound" than the above mentioned one in so far as 
the entries of the positive matrices have smaller denominators, but unfortunately it is 
given without any word of reasoning. 

As for what matrices can be the product of four positive matrices obeying the 
norm inequalities for given c and d, things seem to be more intricate. In this case, 
at least the obvious approach u = (v2 av* 2 )(vav*)aI(v 2 av* 2 )(vav*)aI_ 1 fails, for, then 
in case of a = diag [1,0] the special orthogonal matrix in the polar decomposition of 
(v2av*2)(vav*)a equals	')fort E [o, ), and hence values of 2t near ir can — sin	cos 2
only be obtained by letting k for a = diag [k, 1] and therefore the constants c as well as

d tend to infinity. The latter is due to the term I(v2av*2)(vav*)aI_1. 

Without knowing whether or not the following numbers are the best upper bounds, 
we can at least state that for, say, c = 25 and d =25 = 390625 we have N' = 5 
(Proposition 1), N" < 10 (Proposition 2/Remark 3), N 20 (Theorem 2) and N 40 
(Theorem 1). 
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