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On Associated and Co-Associated 
Complex Differential Operators 

R. Heersink and W. Tutschke 

Abstract. The paper deals with initial value problems of the form 

8tt u=uo for t=0 at 

in [0,T] x C C JR x JR' where £ is a linear first order differential operator. The desired 
solutions will be sought in function spaces defined as kernel of a linear differential operator I 
being associated to £. Mainly two assumptions are required for such initial value problems 
to be solvable: Firstly, the operators have to be associated, i.e. liz = 0 implies l(Cu) = 0. 
Secondly, an interior estimate l Lu IIG' < c(C,C')IIUII G (with C' C C) must be true. Moreover, 
operators £ are investigated possessing a family of associated operators 1k (which then are said 
to be co-associated). 

The present paper surveys the use of associated and co-associated differential operators 
for solving initial value problems of the above (Cauchy-Kovalevskaya) type. Discussing interior 
estimates as starting point for the construction of related scales of Banach spaces, the paper 
sets up a possible framework for further generalizations. E.g., that way a theorem of Cauchy-
Kovalevskaya type with initial functions satisfying a differential equation of an arbitrary order 
k (with not necessarily analytic coefficients) is obtained. 
Keywords: Initial value problems, interior estimates, Cauchy- Kovalevskaya theorem 
AMS subject classification: 35 F 10, 35 B 45, 35 A 10 

1. An application of interior estimates of solutions of associated 
differential equations 

Let G be a bounded domain in JR'1 and Ta positive real number. Let, further, C be 
a linear first order differential operator defined on a set of functions sufficiently often 
differentiable. The coefficients are defined on [0, T] x C and continuous, at least. The 
paper is aimed at solving differential equations of type 

au
(1) 

The solution can be understood in the distributional sense; too. For this purpose intro-
duce the spaces C$°(C) and C'°([0, T] x C) of test functions defined in G and [0,T] x C, 
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respectively. Suppose £ possesses an adjoint operator £* in the distributional sense for 
every fixed t E [0, TI, i.e. one has 

GIG 
provided u is smooth and W is an arbitrary test function belonging to C— (G). Then a 
(locally) integrable function u = u(t, x) is called a distributional solution of the evolution 
equation (1) if for all y E C([O, T] x G) the relation 

110, 71.G u(-_rtcodtdx=o 

is satisfied. 
Suppose the differential operator 1 (of order k and having coefficients not depending 

on time) is associated to the differential operator £ on the right-hand side of (1), i.e. 

lu=O	 l(Lu)=O. 

In case that both the operators £ and 1 have adjoint operators £* and 1, respectively, 
the condition for associated differential operators can be rewritten in the following 
distributional sense: for all test functions p, 

JG	= 0	==	IG uL*(I*W) dx = 0. 

Assume, finally, that the solutions of the associated differential equation lu = 0 
satisfy an interior estimate of type

const 
'Cu jjG' :	IuIIG dist(G', ÔG) 

where C' is a subdomain of G having positive distance from the boundary 9G of the 
given domain C and 11 . denotes the norm of a suitably chosen function space (with 
respect to G ,  G). Note that this interior estimate must not be true for all first order 
derivatives separately (e.g., in the case of holomorphic functions the interior estimate 
is needed for the complex derivative only but not for the real derivatives of real and 
imaginary part). Exhaust the domain G by a family {G 3 } 0 < 3 < 50 of subdomains G. 
satisfying the condition.

dist(G s , ÔC S ) > const . (s - s') 

for any pair s, s' with 0 < s' < s < so where the constant does not depend on the 
choice of s and s'. Introduce a corresponding family {W3 } 0 < 3 <, of Banach spaces 
W. (with norm ,) embedded in each other by restriction, i.e. the restriction of a 
function u E W3 to the subdomain G 3 belongs to the space W3' where the norm of the 
restriction can be estimated by II u IIs	M u ll3 . Then the above interior estimate yields 

llLulls	
const 

' < hulls - .5 -S' 
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and, consequently, the abstract Cauchy-Kovalevskaya theorem is applicable 1. 

That way the following theorem has been proved. 

• Theorem. Suppose the.linear first order differential operator £ has an associated 
differential operator 1 (of order k) where the solutions of the equation lu = 0 permit an 
interior estimate. Suppose, moreover, that u 0 is a solution of that equation having finite 
norm II uoIlc . Then the initial value problem 

Cu,
au 
--= 	u(0)=uo 

has a solution u in the distributional sense existing in G, provided 0 < t < a(.s—so) where 
a is a suitably chosen positive number. The solution depends continuously differentiable 
on t and is a solution of the associated differential equation lu = 0 for every fixed I. 

2. Interior estimates depending on the order of the associated 
differential operator and the choice of the norm • 

Next we are going to show that both well-known classical statements and new results 
as well can be subordinated under the above general theorem. 

Example 1. Let G be a domain in the complex plane, z = x + iy (x,y E JR). As 
function space choose the space 7-1(G) of all holomorphic and bounded functions in G. 
This space equipped with the supremum norm turns out to be a Banach space. Define 
the operator £ by

(Cu)(t, z) = C(t, z) 
du 

(t, z) +A(t, z) u(t, z)

dz 

where du/dz means the ordinary complex derivative, A and C are elements of the space 
C ([0, T], 7-1(G)), the set of all continuous mappings of [0, Tj into 7-1(G). Introduce the 
partial complex differentiations 

a	i/a	.\	a	i/a	.a 
and

	TX i9y 

Then the so-called Cauchy-Riemann operator 

is associated to L. Notice that for holomorphic functions the ordinary complex differ-
entiation coincides with the partial complex differentiation with respect to z, i.e. 

du au —  
dz 

= 
az — while lu = — = 0. 

Concerning linear versions of the abstract Cauchy-l<ovalevskaya theorem cf. T. Yamanaka 
[17], L. V. Ovsyannikov [13, 141, and F. Treves [15], while non-linear versions can be found in 
L. Nirenberg [10, 111 and T. Nishida [12]. The functional-analytic approach to the Cauchy-
Kovalevskaya problem was initiated by M. Nagumo [9]. Concerning further historical remarks 
see the appendix of the Russian translation of L. Nirenberg's book [11]; see also [16].
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The necessary interior estimate follows from Cauchy's integral formula and the above 
theorem yields the simplest form of the (linear) classical Cauchy-Kovalevskaya theorem. 

Example 2. Again let G be a bounded domain in the complex plane. Let C"() be 
the Banach space of Holder continuous functions (with HOlder exponent A, 0 < A < 1) 
equipped with the norm 

II U I1G = max sup Iu(z)I, sup 
u(zl) — U(Z2)1 } 

I zEG	ZI76Z2	z i — 

Define the first order differential operator £ by 

f Ou\	fOu\	/Ou\	fOu\ 

	

Lu = C1 (—) +C2 I —) +C3 1 —) +C4	+Au+B 1 — I	i \ÔZJ	\OJ	\azj 

where the coefficients may depend . on (t,z),and, e.g., are supposed to belong to the 
space C([O, T]; C'(0)). Then for large classes of operators £ of the above form there 
exist operators 1 of both first order and of second order as well being associated to C. 
This can be shown by (elliptic) operators of type 

	

a	Iôu\	75u\ 
ôz8	3z	ô 

having coefficients belonging to C'(), for instance, where 8 = 0 or 8 1. 
In the case 8 = 0 sufficient conditions for associated pairs and interior estimates for 

solutions of the associated equation can be found in 116]. As an example of associated 
pairs with non-analytic coefficients (even not in the sense of real analyticity) in this book, 
moreover, associated pairs with piecewise constant. coefficients are constructed. Using 
mapping properties of both weakly and strongly singular integral operators (with the 
singularities 11(z — () and 1/(z — 2, respectively) the interior estimates may be given 
not only in the HOlder norm but also in the L-norm provided p> 2. Using B. Bojarski's 
theory of generalized analytic vectors [1], in his paper [2] A. Crodel solves initial value 
problems with generalized vectors as initial elements. On the other hand, for the case 
8 = 1 in the paper [5] a system of 10 (sufficient) non-linear second order equations 
(joined with each other)for the 12 coefficients C 1 ,C2 ,C3 ,C4 , A 7 B, Y1 ,Y2,73,74, a,3 is 
deduced from the above definition of associated differential operators. Special solutions 
of that system are contained in the same paper [5] and, in addition, in the paper [4]. A 
further solution of the system for associated pairs not contained in the quoted papers 
[4, 5] and not only consisting of (real-) analytic coefficients will be given in the next 
section. 

In the case 8 = 1 the associated differential equation lu = 0 is a second order 
equation with principal part A for a complex-valued function u. Splitting up this 
equation into real and imaginary part, one gets a system of form
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where u = u 1 + iu 2 . In A. Douglis' and L. Nirenberg's paper [3] interior estimates are 
given for general elliptic systems of arbitrary order. These estimates show, especially, 
that the product of the absolute value of the first order derivatives of a solution and 
the distance from the boundary is uniformly bounded by the supremum norm of the 
solution multiplied with a constant not depending on the special choice of the solution. 
This estimate implies that the above mentioned scale method is applicable. 

It remains to prove that the above system satisfies the assumptions being sufficient 
for applying the results of the paper [3]: 

The characteristic determinant of the above system is 

V +&2	0 I	 2'2 

	

ç2I	's2) 0	e+2 

and, therefore, the system is elliptic, as expected 2. 
Concerning the coefficients 71,72,73,Y4 and a,8 suppose that their Holder norms 

are uniformly bounded (it would be sufficient, however, that a weighted HOlder norm 
containing the distance from the boundary is finite). 

Note that the HOlder continuity of solutions to equation lit = 0 follows from gen-
eral regularity theorems also contained in A. Douglis' and L. Nirenberg's paper [3]. 
In the above case the Holder continuity can be proved immediately using techniques 
of Complex Analysis: The differential equation lu = 0 in the domain Q implies the 
representation

u=T0(_..Yi_ ... _au_/il)+i+2 

where Tp is the (weakly singular) operator with the Cauchy singularity 11(z - () over 
and CI, (P 2 are holomorphic functions defined in ft This representation shows, for 

instance, that u is HOlder continuously differentiable provided u is supposed to be 
continuously differentiable. Knowing this, the same representation shows that u is even 
twice HOlder continuously differentiable. 

Example 3. The characteristic determinant of the (plane) bipotential equation 

= 0 

is equal to ( + )2 and, therefore, A. Douglis' and L. Nirenberg's result [3] is appli 
cable to this equation, too. Consequently, (real- and complex-valued) solutions to the 
bipotential equation satisfy an interior estimate of the desired type (in the supremum 
norm). An easy example of a first order differential operator £ to which the bipotential 
operator is associated is given by 

Lu = Ci (t,z)	+ C2(t,z) 
au 

2 In the quoted paper [3] the system is supposed to have the form 'ii 1.,u, = f. (i =j =I
1,...,N), where 1., is an operator of order not greater than s + t,. Theorem 1 of [3], for 
instance, can be applied with s, = 1 and t, = 1 or with s = 0 and t = 2 (for all i and j).
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provided C1 is a linear holomorphic function and C2 is a linear anti- holomorphic function 
(for every fixed t). Then the corresponding initial value problem can be solved (in case 
the initial function is a solution to the bipotential equation). At the same time, the 
above theorem states that the solution turns out to be a solution of the bipotential 
equation for every t. 

3. Examples of associated operators with non-analytic 
coefficients 

While the classical Cauchy- Kovalevskaya theory is applicable to differential equations 
with analytic coefficients only, the above concept is always applicable if only there exists 
an associated differential equation whose solutions satisfy an interior estimate. 

In the case S = 1 in Example 2 the pair 1, L is associated if the 12 coefficients 
C1 , C2 , C3 , C41 A, B, ,72,73,74 and a,,3 satisfy 40 non-linear second order partial 
differential equations joined with each other (see [5]). In that paper and in [4], too, one 
can find many special solutions of the system of (sufficient) conditions for associated 
operators. A further example not quoted in these two papers and having non-analytic 
coefficients is the following: 

Let A and k be any real numbers and b = b(x) any real-valued twice continuously 
differentiable function defined in G and depending on x only. Then the operators L and 
1 defined by

au 
Lu =	+ Au - b(x)u 

52u	2	 I
lu=-+(k-b(x))u+b(x)i 

are associated to each other. 

Analogous constructions leading to permissible non-analytic initial functions can 
be carried out for differential operators of arbitrary order and for differential operators 
with respect to real differentiations as well. To be short, regard, for instance, in the 
(x, y)-plane the differential operator

au au 
.Cu = -+	+ A(x)u. 

The desired function u and the coefficient A (depending on x only) are supposed to be 
complex-valued, in general. We look for an associated fourth order differential operator 

60  au	83u	02u	au 
lu = -- + -- + a i (x)-3- + a2 (x)- . + a3 ( X ) 	+ a4(x)u 

whose (complex-valued) coefficients a3 depend on x only. Let A = A(x) be any four 
times continuously differentiable function. Then the pair L, 1 turns out to be associated
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provided the a3 are (complex-valued) solutions of the system 

dx dx 
da2 dA &A 
dx

= 3a 1 — dx
+6

dx2 
da3 dA &A d 3 A - 
dx

= 2a2 — 
dx + 3a 1 —i- dx

+ 4-- 
dx 

da4 dA &A d 3 A	d 4 A 
dx — (13 — dx + a2	+ dx2

a 1	+ dx3	dx4

of ordinary differential equations. Note that the a3 may depend not only on x but also 
on y. Then the left-hand sides of the above system are to be replaced by 

3a 3	aa, 
—+—	(j=1,...,4). 
ox	ay 

Consequently, in this case the permissible coefficients a3 = a,(x, y) are uniquely deter-
mined up t 6 four arbitrary functions only. 

4. Solubility of initial value problems using co-associated 
differential operators 

The first example of the previous section shows that for fixedly chosen A E JR and 
b E C 2 (G) there exists a whole family of associated operators 1 because k may be chosen 
arbitrarily. This phenomenon can be found also for associated first order differential 
operators such as those given in Example 2 of Section 2 with 8 = 0. E.g., the operator 

Lu = C(t, z)	+ A(t, z)u

az 

with A, C e C([0, T], 7-1(G)) and the family of operators 1k defined by

au k 
I k u = — Z U 

are associated where k is an arbitrary non-negative integer (cf. [61). 
In such cases the operators of the family 1k are said to be co-associated with respect 

to L (shortly: L- co- associated). 
Provided the operators 1k are L-co-associated, the initial value problem 

au = Lu,	u(0) = no 

where n

	

(k)	 (k), 

	

u 0 =u0	 and	lkT20 =0 
k=O 
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has the solution

U = 

where	is a solution of the initial value problem 

au 
= 'Cu '	u(0) = (k) 

belonging to the function space defined by the differential equation ik u = 0. In case the 
initial function u 0 cannot be represented by a finite sum	u one can represent 
the initial function by a series	in some cases or one can approximate the 

initial function by a finite sum, at least. For details we refer to [7]. 

Note that in the second example of the last section the coefficients a 3 (x, y) depend 
on four arbitrary functions even. 

5. Concluding remark 

The theory of solving initial value problems in classes of solutions of an associated 
differential equation makes it possible to solve initial value problems with more general 
initial functions. The case of (complex-valued) initial functions satisfying a uniformly 
elliptic first order system in the plane is developed in the book [16] citing A. Crodel's 
results [2] on generalized analytic initial vectors, too. At present generalizations of these 
constructions to the case of higher order side conditions are under consideration. The 
higher the order of the associated differential operator, the larger the set of solutions 
(e.g., a solution of the Laplace equation satisfies the bipotential equation, too, but not 
vice versa). Therefore, the conditions for associated pairs are more restrictive in the 
case of higher order side conditions. On the other hand, the variety of co-associated 
differential operators is larger for higher order side conditions. 

Notice that the famous H. Lewy example [8] shows that there are linear differential 
equations with C°°-coefficients not having any solutions. The existence of an associated 
differential operator satisfying an interior estimate implies not only the solubility of 
the differential equation but also the possibility to choose arbitrary solutions of the 
associated differential equation as initial values. 

The present paper contains some results obtained recently and characterizes also 
the directions of generalizations to be considered in the future. 
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