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Non-Symmetric Matrix Riccati Equations

G. Freiling and G. Jank

Abstract. We prove a fundamental representation formula for all solutions of the matrix
Riccati differential equation and of the corresponding algebraic Riccati equation. This formula
contains the complete information on the phase portrait of the matrix equation and on the
structure of the set I' of all solutions of the corresponding algebraic equation. In particular we
describe all constant, periodic and almost-periodic solutions of the matrix Riccati differential
equation. Further we give an application of the fundamental representation formula to the
investigation of non-autonomous Riccati equations.

Keywords: Matriz Riccati differential equation, algebraic thcatt equation, asymptolic prop-
erties

AMS subject classiﬂcation: 34 A 46, 34 C 25, 34 C27,34E10,49J15,93C15

1. Introduction
In this paper we study the matrix Riccati differential equation
W =By + BuW - WB —WBuW  (te€C or te R) - (RDE)

(we will write (RDE)¢ and (RDE),R for t € C and t € R, respectively) and the
corresponding algebraic Riccati equation

0=BZI +322W—WBH —WBnW (ARE)

where W (t) (or W) is a complex m x n matrix and where B, B2, By, By, are constant
complex matrices of dimensions n xn, n xm, m xn and m x m, respectively. The matrix
Riccati equation — especially (RDE)m and (ARE) for m = n - plays an important role
in many branches of applied mathematics, notably in variational theory and the allied
areas of optimal control and filtering, invariant imbedding, spectral factorization and
dynamic programming (see [5, 8, 14, 21]). Non-square matrix Riccati equations appear
for example in Nash and Stackelberg control problems, where the properties of Riccati
equations determine the existence of the optimal open-loop strategies (see {1, 18, 28] for
further references). On the other hand (RDE) is also of mathematical interest, since it is
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the description in local coordinates of the differential equation on a Gramann manifold,
whose flow is given by the action of a one-parameter subgroup of Gl(n +m,C) (see

(10, 22, 27)).

In Section 2 of this paper we derive a fundamental representation formula (2.10)
for the solutions of equation (RDE). This formula contains the complete information
on the phase portrait of (RDE) and in particular on the structure of the set I' of all
solutions of equation (ARE) (see Sections 3 and 4). In the last part of this note we
give an application of the fundamental representation formula to the investigation of
non-autonomous Riccati equations.

2. The fundamental representation formula

In this section we describe the connection between equation (RDE) and the correspond-
ing linear differential equation (L) (see [21: p. 11]), and we derive a detailed formula
for the general solution of equation (RDE).

Let . o
_ ( Bi1 B _
B_(Bm Bzz) and Yf(P)
with complex n x n and m x n matrix functions @ and P, respectively. Then equation
(RDE) and the linear system of differential equations

Y=BY (teC) (L)

are equivalent in the following sense:
(i) Let I, € €™*" be the unit matrix and let W be a solution of equation (RDE).
If Q is the unique solution of the initial value problem
Q= (Bn1 + B12W())Q
Qlte)=I, (treGCC)

and P(t) = W(t)Q(t), then Y = (g) is a solution of equation (L).

(ii) f Y = (9) is a solution of equation (L) such that Q(¢) is regular for t € G C C,
P
then ’ '
W: G- Ccmxn, t — P)Q7'(t) = W(¢t)

is a solution of equation (RDE).

Let
('Ul, ) v"+m) c C(n+m)x(n+m)

be the matrix defined by a Jorda.n basis of genera.lxzed exgenvectors of B such that |
/\1 * 0
VBV =J =diag(Jr,...,Jp) =] - . * (2.1)
0 . )\n+m
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with * € {0,1} and (without loss of generality)
Re /\1 S Re /\2 S ‘e S Re /\n+m (22)

and where J is a Jordan canonical form of B with Jordan blocks

g 1 ... 0
0 p, o —y ( 1<v<p )
Ju - € c]v v .
1 v f‘ve{’\l"'~v’\n+m}
0o ... 0 pu
If .
<1 €11 oo Cin .
C = : = : : ‘€ gntm)xn
Cn+m Cn;{-m,l v+ Ca4myn
and .
(z1(t), ..., Tntm(t)) diag (eMt,...,etntmt) = Vet (2.3)
then an arbitrary ((n + m) x n)-matrix solution Y = Y(t) = Y(¢;C) of equation (L)
has the form o 0(t:C)
_ Jtoy t _ t;
Y =ve C‘(P(t))‘(P(t;C)) - 29
with 04(C)
t nxno Pt mxn o Y(0)=VC = 50 ).
anecm,  poecem,  vo=ve=(%E)

Further, to every Jordan block J, (1 < v < p) there correspond j, solution vectors of
the form ' :

7 - . — oHvl, . . —. phvl .. .
Uivtootioa41(t) = €054 4j 41 = €T 4 g, (1)

(2.5)
Jv t}v -1
i otis (1) = €2 Vit oaki =0 € 4, (1)
— (., —i)!
(1 <v <pandj:=0). Let

I,,,l(t)
z,(t) = (1<v<n+m)

xv,n+m(t)

be the polynomials defined by (2.5), 1 < 7 <n and 1 < € < m. Then we set

Tyl
~ . . T
Iy, = . ) z,(€,3) = (xvh”'yxu,j-l:zv,n+lyzu,j+l’-- . 7$vn) .

Tyn
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Similarly we define ¢, and v, (4, ). Using these notations we infer from (2.4)

n+m ‘ n+m
Q(t) = <Z cpre™ z,,(t) ey Z c,,,,e"”'i:,,(t))

v=1 v=1
e Axt “ .
t k
L, ma(eer Qu(t) ... Qun(t) (2.6)
nima:k,,(t)e"*'ck Qni(t) ... Qnalt)
k=1
and
(n+m $V1"+1(t) ) n+m zu,n+l(t)
P(t) = Z Culexv‘ ‘ ) [ Z cVnei\Vt .
v=1 Ty, n+m(t) vl Ty ntm(t)
n+m
( Z Th,nt1(t)e ek (2.7)
n+m

\ E Tk n+m(t)e’\“'ck

Consequently we obtain, usmg the multilinearity of the determinant,

n+m ; n+m
detQ(t) = D ... Y Pt Ao g a|ER (2, ., Ek (B)|
. k=1 kn=1

eert At |ik1 (t),.:., ik"-(t)l
1<k; <k2<...<kpn<n+m

. ' . (2.8)
X ( Z S1gn T - Ck,(l)l e Ck,(,,)n>

TEOL

Ckl

3 eGrttAealt |z, (1), L B, (2)]

1<k; <k2<..<kn<n+m

Ck

n

We recall that

|.’Ek ®),.. :Ekn(t)l = |ﬁk1, .. ,17kn|
is constant if B is semlslmple otherwise these determma.nts are polynomials with coef-
ficients of the form |3,,,...;3,, |.

Since det Q(t) is an exponentla.l sum w1th polynomials as coefficients, the asymp-
totical distribution of the zeros of det Q(t) is well known (see Lemma 1, [4] and [16]).

For the evaluation of (PQ™!)¢,, the element in the £-th row and a-th-column of
PQ™!, we use (2.6) - (2.8). From

n+m

Qas(t) = 3 crge iapa(t) " (2.9)

k=1
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and
an(t) al,,(t)

wor | 2F
tQ(t) a,,l(t) Ce. a,,,.(t)

Q') =

where a;;(t) is the minor of Q;i(t) with respect to Q(t), we get'for det Q(¢) # 0 (as with
(2.8))

det Q(t)(PQ ™" (1))ta

nt+m Qi
= Z e Tk npe(Cri,- - Chn) ( : )
k=1 Gna
Qui(t) an(t)
n4+m Qa—;,l(t) Qa—l "(t)
= Z HTkontt Ck1 Ckn
Qa+1,1(t) Qa+1,n(t)
Qua(t) Qnn(t)
n+m n+m n+m n4m n+m

SDILTS 3

2

2

. Z P T TN P P

=1 Va-1=1va41=1 va=1
Cuyi1 Cuin
. C"a—lyl CV},_‘,H
X I"l,](t)"'Il’a—lyu—l(t)x”a+l:°+1(t)'"I”n,“(t) Ck1 Ckn
Craq1,1 Cva4r1n
Cyn1 Cynn
) Cuy
= Y. Pt g, (k). 5, (6,0)|(1)
1<» <v2<...<vp <ntm ’ Cy.
N n

We summarize the preceding analysis as a theorem.

Theorem 1 (Fundamental representation formula for the solutions of (RDE)): Let

Y(C), QO(C) and Py(C) be defined by (2.4). Further let QO(C) be regular and W¢ =
Py(C)Qo(C)™". Then :

W(We): C\{teC| detQ(t) =0} — €™

t — P)Q(t)™' = W(t;We) -
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i3 a solution of equation (RDE) with W(0; W¢) = Wi and

wea(t; We) =
Ck,
k kn< Oyt A, =z, (¢, 0‘): 2k, (6 @) ()
1<k <...<kn<ntm - ' Ck, (2.10)
Ck, V
O e R A [0))
1<k <...<ka<ntm ok

(1<<m, 1<a<n).

Remark 1. (i) Obviously any solution W(-; W¢). of equation (RDE) defines a
meromorphic matrix function with poles at most in the zeros of det Q(t). This solution
W(-; Wc) is called the solution corresponding to Sy = span(VC), the column space of
VC. The coefficients |ck, - - ck,| T appearing in formula (2.10) are the so-called Plicker
coordinates of C (or of the n-dimensional subspace span C). These coefficients and also
the coefficients

|2~:kl,...,ik"|(t) and kal(f,a),....,xk"(f,a)l(t)

are coupled (see Lemmas 1 and 3), which has strong influence on the behaviour of the
solutions of equation (RDE) and on the structure of the set of all solutions of equation

(ARE).

(ii) If the coefﬁcients: B;; in equation (RDE) are functions of ¢t and/or of some
parameter p and if the differential equation (L) has a (n + m) x (n + m) fundamental
matrix solution of the form

(21(t, p), - .. ,z,,+m(t p)) dlag( ’\‘("") o e’\"+"'("")),

then the statement of Theorem 1 remains true for the non-autonomous or parameter
dependent matrix Riccati equation, if we replace the vector polynomials zx(t) in formula
(2.10) by the functions zx(t, p) and Mgt by Ae(t,p) (1 <k <n+m).

In the special case of T-periodic coefficients B;;(t) equation (L) has, according to
the Floquet-Lyapunov theorem, a fundamental system of solutions g, ..., Jn4+m of the
form (2.5) with T-periodic vector functions vy,...,vnt+m (instead of ecigenvectors). If
we define the polynomials z,,...,Zn4m (with T-periodic coefficients) formally as with
(2.5), then the funda.menta.l representatlon formula (2 10) can also be used in the T-
periodic case. v

(iii) As far as we know the funda.mental representation formula (2.10) for the gen-
eral solution of equation (RDE) is in this detailed form new even in the autonomous
case. Obviously formula (2.10) contains the complete information on the phase portrait
of equation (RDE) and particularly the complete information on all the solutions of
equation (ARE). : ‘
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The properties of the solutions of equations (RDE) and (ARE) are very important
for various branches of mathematics, therefore these equations have received consider-
able attention.

Readers who are interested in a detailed description of the geometry of the solutions
of the most important special cases of equations (ARE) and (RDE) and of the so-called
eztended Riccati equation (ERDE) (see [27]) are referred to the papers of Callier and
Willems [7], Shayman [23 - 27] and Hermann and Martin [10, 11] on this topic and to
the literature cited therein.

In the next section we use formula (2.10) to study the geometry of the solutions
of equations (ARE) and (RDE). We focus our investigations mainly to those subcases
which have not yet been considered in detail in {18, 23 - 27, 28] - in this sense our
results complement those of Shayman and also those of Medanic [18] and Telford and
Moore [28]. :

3. The solutions of the algebrai¢ Riccati equation

In this section we use the representation formula (2.10) to derive a parametrization and
a geometric description of the set I' of all solutions of equation (ARE). ‘

3.1 Notations. For the formulation of our results we introduce the following
notations.

a) For
A=, n4m) and a=(a,...,8n+m) € {0,1}"F7

we set
n+m

¢((a)=(Aa)= 3 @,  R@) =Re((a), I(a)=Im((a).

v=1
b) Let N = ("*™) and let
A={d,...,a"} c{o, ™"
be the set with | |

;={1 forie {vl,... vi}; vi<... <y} )

J— (g’ J
a’ =(a},...,al,n) and qj 0 else

In the sequel we assume that the N elements of A are enumerated such that

; either Re(((a’)e'?) < R?(C(ak)eié) for 0 < ¢ < &g SR
<k ‘E'{ or ((a)) = C(a¥) and (V2. ., v0) Srex (WK, k) . O

for some € > 0, where <jex means lexocographical ordering.
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¢) For
. C
aj E A and C = e c(n+m)xn

_ . Cntm
and with the polynomié.ls z, defined in (2.5) we set
Pt @) = 2,50, 2,5 (1)
Pla(t,aj) = Ixu{ 4, a),... ,xyf‘(f,a)l(t) (1<¢<m;1<a<n)
D(aj,C) - lc”{ ceec {T

va

With these abbreviations formula (2.10) can be written in the form

2aica et'((aj)l’la(t’ a’)D(a?,C)
Laieae@p(t,a’)D(a’,C)

we,a(t; We) = (3.2)

The following lemma and Lemma 3 indicate the type of coupling of the coefficients
appearing in formulas (2.10) and (3.2).

Lemma 1. The following statements are true.
a) Let 1 ki <ky<--<kn<n+m,je{l,...,n+m}\ {ki,...,kn} and
{0k, s, Ok, | #0. Then at least one of the determinants

|f)j,6k,,...,f)k"| or’ |v,-(€,a),vk,(£’,a),...,vkn(l,a)| (1<€<m;1<a<n)

13 non-zero.

b) Let a’ € A and let p(t,a’) = c t* (c # 0) be a monomial of degree k > 1. Then
at least one of the polynomials

Pea(t,d?)  (1<€<m; 1<a<n)

15 not identically zero and not a monomial of degree k.

Proof. The matrix Dy = (v;,vk,,-..,vk,) has rank n and by assumption D, =
(¥kys- -, 0k, ) has rank n — 1. Let the first n — 1 rows of D; be linearly independent
- 0therw1se we proceed similarly. Then we can transform Dy by element.axy column
operations into the form

(2 g) where b€ C™*!\ {0} and F € €*~1*("=1) i repylar.

This proves assertion a).

Assertion b) (which can also be obtained from the results of [19]) follows with
assertion a) from the definition of the polynomials p(t,a’) and pa(t,a’). Notice the
special form of the vector polynomials zx(t) in (2.5) B
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3.2 The asymptotic behaviour of W (re'¥; Wc) for r — oo. The complex plane
is divided into 2h sectors

Si={teClps1 <argt<gpr} (1<k<2R) (3.3)

where the following holds true:

(1) po S0 <) <2 <...<pan =o+ 27 < 2m.
(ii) For 1 < k < 2h there is a permutation ok of {1,...,N} with

Re(t(A,a®*M)) < Re(t(A,a*P)) < ... < Re(z(A,}zf'*(N))) (t € Sk).

(iii) The sectors Sx are the maximal sectors (3.3) with the properties (i) and (ii).

We note that the permutations ok are in general not yei: uniquely determined; this is
not necessary. In addition here we can assume for convenience that o1 = id.

From the results on the asymptotic behaviour of the zeros of exp(énential sums [16]
(see also [4: Satz 2.1.1] for further details) and from formula (2.10) we infer in the next
lemma that lim, .. W(re'?; W¢) exists for ¢ # ¢;.

Lemma 2. Let ¢ > 0 and let C € C(m+mxn pe such that Qo(C) s regular Then
almost all zeros (1 e. ezcept at most ﬁmtely many) of det Q(t) - deﬁned by (2.4) - are

contained in the set R
2

U {teCIw—e< argt < px +e}.
k=1

In addition, for ¢ € [0,27)\ {¢1,...,p28},1 €L <m and 1 < a < n there exists

Vw(o,(e"‘" <00y We) = llm w[a(rei;‘_’;WC) (3.4)
r—oo

with respect to the chordal metric on the Riemann sphere C=cu {oo}. The limits are
easily determined from formula (2.10).

3.3 Three representations of I'. There are several possibilities to determine the set
T of all (complex) solutions of equation (ARE):

(HT= {PQ_“\ (g) € C’("+"‘)"",.detQ # 0, span (IQ’) is B - ipva.ria.nt}

(see [19: Theorem 1] for an alternative formulation and a proof).

(i) T = €™ n {W(e“’ -_c_ao;Wc)‘ C e Cirtmxn Qu(C) regula.r} for ¢ ¢
{¢1,%2,.--,p21}. This is an immediate consequence of Lemma 2 and formula(2.10).

(iii) T = {all constant €™ *"-valued functions W (; Wc) of the fofm (2.10) |

Using (i) - (iil) and the fundamental representation formula (2.10) we obtain a nice
parametrization of I'. For this purpose we introduce some abbreviations.
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3.4 Notations. Let V,(C™*™) be the set of all full rank (n + m) x n ma,trlces with
complex entries. For C € V,,(C"*™) and 1 < k < N we set

Jo(C) = { ‘1<J<NandD(a’ C);eo}
Ge(a*) = { eV,,(C”*”‘)I D(a*,C) = 0 for ((a*) # ((a*) and D(a*; C) # 0}
and,forl1 < £<mand1l<a<n,

nome.(C)= Y pealt,a’)D(a",C)

v€Jo(C)

den(C)= > p(t,a")D(a",C)

v€Jo(C)

d,(C) = max {degree(nomla(C)) 1€8<m,1<ax n}

da(C) = degree(den(C))

where here and in the sequel — for technical reasons - the degree of the zero polynomial
is defined to be —

Notice that for C € G¢(a*) all exponential terms in (3.2) are identical to c“(“ ).
Hence in this case

‘nomga(C)

wea(ti W) = den(C)

if dg(C) > 0.

In particular W(t; W¢) is a constant solution if d¢(C) = 0 and d,(C) < 0.
‘For the description of I' we use the set of parameter matrices

G(ak) = {c € G<(a")’ d(C) =0 and dn(C) < o}
and the set of indices

J@)= U %)

CGG?(a‘)

3.5 Parametrization of I'. a) To any matrix C € G2 (a") #0 there corresponds -
according to formula (2.10). - a solution
We =W(t; We) =: (wg)lél%m
1€asn

of equation (ARE), where

c ZuEJo(C) pga(t,a”)D(a",C)
Wi = .
2 veso(c) P(t,a)D(a”,C)

(3.5)
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On the other hand it follows from Subsection 3.3/(i), (iii) and formula (3.2) that any
solutions of equation (ARE) can be represented in the form (3.5) (see also Theorem
3/(i))-

To each family
Fi = {C e va(€™™)| 1o(C) J(a*)}

there corresponds the family I'y = {W¢| C € Fy} of solutions of equation (ARE) and
F = U;cv=l Fk'

It is well known that the number of solutions of equation (ARE) corresponds to
the number of n-dimensional B-invariant subspaces of C"+™ being complementary to
the span of (0;'."'") (see Subsection 3.3/(i)). Alternatively the number of elements of
I’ and the structure of ' can be easily determined from (3.5) if we know #Jo(C) and
#J(a*) (1 <k < N). Obviously T is either finite or uncountable.

The following Lemma implies in particular that 'y N I'; =0 for k # ; if B has only
simple eigenvalues.

Lemma 3. Let C € G¢(a’) and D(a®,C) # 0. Then
(AyiiAy‘:‘) :(’\V{'"":’\V,‘,’)'

Proof. From the definition of G¢(a’) it follows that ((a’) = ((a®). Let a # j and
let us assume that the assertion of Lemma 3 does not hold. Then there is a ¢ with A,e =
A,i for ¢+1 <4 < n and (without loss of generality) Re(A,2e'?) < Re(/\ué e'¥) for 0 <
® '< €g. Since Chise--sC,ys are linearly independent, we have Cg = S Vicy; and from

leve -+ cue|T # 0it follows that (v,,. .. »Yq) # 0 since Cuas Cug

=Gl g =6
are linearly independent.

Let -, # 0 for some p € {1,...,q}. Then
|Cu{ e cy;:_l 2 i

and

+1

Re(e“"[,\”{ o A H e A+ +)‘.,;',]) < Re(e**¢(a’))

for 0 < ¢ < €¢. This contradicts C € G¢(a’) and Lemma 3 is proved &

. b) From the definition of J(a*) we infer using Lemmas 1 and 3 that #J(a*) <1 if
at most one of the eigenvalues )\,f s+ -1 Ayx is a multiple eigenvalue and if this eigenvalue
has geometric multiplicity one. : ‘

If #J(a*) = 0, then Ty = 0 and if #J(a*) = 1, then T4 = {Wi} where Wi =

m with
(wk’[“)lléitssﬂ w1

_ Plp(t, ak) _ |vul* (e) ﬂ')’ cee 1vu,“ (e,/l)l

Wity = = . —
# p(t,a") Ivufa"'avuf‘l

(3.6)

If #J(a*) = x > 1, then I is uncountable and there are several possibilities for the
structure of T'g.
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If there are matrices C € G2 (a ) with Jo(C) = J(a*), then we infer from formula
(3.2) that Ty is a (x — l.)-pa.ra.metrlc family of solutions of equation (ARE) of the form
(3.5) - in this case we can assume without loss of generality that D(a*,C) = 1 if this
parameter is non-zero.

Otherwise, according to Lemma 3 and formula (3.2), we can split T'x into two or
more subsets

ng
'y = U Fk where I"k,. is a px; — parametric set ar_ld. Zpki < k-1
j=1

Since every element of ' can be written in the form (3.5) (for some k) we have obtained
a parametrization of all complex solutions of equation (ARE) (see also Theorem 3).

A detailed description of all real symmetric solutions of equation (ARE) has been
" given by Shayman (24, 25|, the set of all complex solutions of equation (ARE) has been
determined by Meyer [19] (see Subsection 3.3/(i)).

c) If the matrix B has n+m simple eigenvalues, then, according to item b}, equation
(ARE) has at most N different solutions. This fact has already been observed by Potter
{20] and Martensson [17: p. 26], who considered the most important special case of
equations (RDE) and (ARE).

If to each eigenvalue of B there corresponds exactly one Jordan block (which means
that the numbers y,, defined at the beginning of Section 2, are pairwise different), then
we get similarly that equation (ARE) has only a finite number Ny < N of solutions
which can be determined according to item b). In addition Ny can be determined from
the number of the Jordan blocks of B and from its eigenvectors of rank lesser or equal
n.

If B is cyclic, which means that J = V=1 BV consists of exactly one Jordan block,
then equation (ARE) has no solution if D = |31,...,9,| = 0, otherwise equation (ARE)
has exactly one solution Wy = (w},) with

1 .
w(l)a = Blvl(&Q)y R :vn(eaa)l'

This corresponds to [19: Corollary 1].

d) For special cases of equation (ARE) there are control-theoretical conditions,
ensuring that the denominators of (3.2), (3.5) or (3.6) are non-zero (see [15, 17, 18, 23
- 27, 28]). For a survey of the most important results on the symmetric and definite
solutions of equation (ARE) in the special case B = (& B2) see (15].

3.6 The parameter matrices C and W¢. In order to parametrize the solution
W(-; W¢) it is convenient to use the matrix C instead of the initial matrix W¢. Here
we describe how C can be determined from the initial matrix.

Let C € Vo(C™*™) and We = Po(C)Qo(C)™! (see (2.4)). If K € C™*™ is regular
and C = CK, then Wz = Wc. Hence to the class

[C] = {CK| K € Gl(n,C)} with detQo(C) # 0
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there corresponds a unique matrix We¢.

Let W¢, be given. Then we can determme a normalized representative C € {Cy] in
the followmg way:

. T,
. — -1 n
Version 1: Set C =V <Wc°)'

Version 2: (i) Choose a permutation 7 of {1,...,n + m} and define
Vine ™™, Vi e C™7, Va1 € C™XM, Ve € C™X"
by . .
Ve = (V1) - Un(nim)) = (1‘;; “2:) :
(i1) Check if the system of equatiéns
(WeoVir = Var)C = Vyy — We,Viz (3.7)

for C =: (c,,(l) . ~~c,,(,,.))T € €™*" is solvable.

If a solution C of equation (3.7) exists with det(Vna + Vi2) # 0, then we set
Cx(m+j) = €j (1 £ j < n) with the canonical unit vectors e; € €'*" and we set

= (¢1+ " Catm)T. In this case it follows from V() = VC and equation (3.7) that
I

co = (VarC + Va2)(Vii € + Vap) ™! = We. -

If C cannot be determined using 7, then we choose succesively another of the N per-
mutations of {1,...,n + m} until - after at most N steps - C has been determined.
We propose to start in step (i) with # = id since in most ‘applications one is mainly
interested in the case where equation (3.7) is solvable for 7 = id (see Remark 3/(ii)).
Notice that the matrix C is of lower dimension than the matrix C in Version 1, hence

from computational point of view it is often better to use Version 2 instead of Version
1. ' o

4. The phase portrait of equations (RDE)x and (RDE)

Let C € V,(€™*™) be such that Qo(C) is regular, e > 0 and ¢ € {¢y,...,921}. Then
W(:; W¢) can have an infinite number of poles in the sector {t € C|p—¢ < argt < p+¢}
and - in contrast to (3.4) - lim,_ .o wea(re'?; We) may fail to exist. According to
Lemma 2 the phase portrait of equation (RDE) is (as t — o0) very simple if we restrict
t to the interior of a sector S (1 £ k <€ 2h). On the other hand the behaviour of
W(-;Wc) along one of the rays'B, = {t € C| argt = ¢} may be very complicated.
Obviously it is sufficient to describe W(-; W) along one of the rays B,, (1 <j < 2h)
~ without loss of generality we assume that the positive (and consequently also the
negative) half-axis is one of these rays. For this reason we confine in this section to- the
description of the phase portrait of equation (RDE) .
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For the rest of this section let k € {1,...,N}, C € V,(€C™"*™) and t € R. The
formulation of the following theorems is rather technical since we are considering the
most general case — the formulations become much simpler if B has simple eigenval-

ues or even if B is only diagonalizable. For a detailed discussion of the fundamental
representation formula we use the following abbreviations:

d(a*,C) = degree ( Z p(t,aj)D(aj,C))

¢(a?)=((a*)

dea(a®,C) = degree ( z Pta(i,aj)D(aj,C)) (i i ﬁg m)

¢(ai)=((a¥) ==

D(a*,C)#0, and D(a’,C)=0

Ge(a*) = { C e Vo(C™™)|if R(a’) > R(a*) or R(a’) = R(a*)
as well as ((a’) # ¢(a*)

d(a*,C) = 0 and }

HCO {C e 6 ax dea(a’,C) < 0 for R(a’) = R(a")

We shall see that each solution W(-; W¢) of equatlon 7?7 with C € G? (ak) has a limit
WcoeI‘thhCOGG (a*) as t — oo.

The following theorem is concerned with an important special case.

Theorem 2. Let C € GY (ak) (# 0) and R(a’) # R(a*) for j # k. Then the

following statements are true.

(i) We := Wi with Wy defined by (3.6) is a solution of equation (ARE); Wy is
real if B 1s real.

(i) IfC' € G°( %) with det Qo(C') # 0, then there ezist to € R, vy € Ny and
Ko > 0 such that W(t Wei) € C™*" for t >ty and

|v,,:(€,a),... yur (€, a)|

Dybyens x|
|y‘1 » Vv

wealt, Wer ) = < Ko toel(R@*  H=R@) (4

for 1 <2< m, 1<a<nandt>ty. This means that the convergence of W(t,Wen)
for t — oo takes place at an ezponential rate. We have vo = 0 if B 1s semisimple,
otherwise 0 < vy < max {degree (pea(t, a’))] 1<p<n, 1<€<m, je Jo(Ch)}.

(iii) If C? € G((a*) with d(a*,C?) = —o0 < maxlo,dlo,(a ,C?), then either
det Qo(C?) = 0 and Wca is undefined or at least one element of W(t,Wc:) tends
to infinity for t — oo. -

Proof. Since R(a’) # R(a*) for j # k, the elgenva.lues Aux,. ., Aux and the corre-
- sponding eigenvectors appear in conjugate complex pairs if B'is rea.l. Hence it follows
easily (as with [17: Theorem 3]) that Wy is real if B is real.
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From the assumptions of (ii) and from (3.2) we infer

E:jejb(c,)e‘((°j)pza(t,a’)l)(aj,(T‘)
Z:)'EJo(C‘) e!((af)p(t’ aj)D(aj3 Cl)

where p(t,a*)D(a*,C') # 0 and R(a/) < R(a") for 3 € Jo(C') \ {k}. Using (4.2)
we obtain assertion (ii) of the theorem and in the special case C! = C obviously
Wer = We = Wy,

Assertion (iii) is an immediate consequence of formula (3.2) ®

w,o,(t; WCI) =

(4.2)

The next theorem generalizes Theorem 2.
Theorem 3. The following statements are true.

() IfC el (ak), then W¢e = (w¢Q)1<z<m 13 a solution of equation (ARE) with

2 Pea(t,a’)D(a’,C)

j€Jo(C)
= . y 4.3
Wea Z p(t,aJ)D(a’,C) ( )
J€Jo(C)
c,i
1
> Iv"; (8, a),---,v,; (¢, a)l :
j€h(c) ! " .
N P’
Wee = — n_ (4.4)
v
Byiye b, ||
j€Jo(C) ! ’
ci

Notice that all polynomials pya(-,a’) and p(-,a’) in (4.3) are constant. Any solution of
equation (ARE) can be written in the form (4.4) for an adequate C € GY(a*).

(ii) Let C° € G’o(a") Then there exzists a solution Wy of equation (ARE) with
hm W(t;Weo) = Wo, ‘and the convergence takes place at an ezponential rate. W, is

obtamed from the right-hand side of (4.3) by replacing therein C by C° and j € Jo(C)
by R(a’) = R(a*).

(iii) Let C' € G¢(a*), }
Aty= > p(t,a’)D(a?,C")
R(ai)=R(a*)

Aw()= Y pualt,a?)D(a?,CY).
R(ai)= R@w

If —oo < d-= degree A(t) > max{degrecAgo,(t)| 1<¢<m 1<ac< n} D, then
there ezists a soluiwn Wo of equation (ARE) with

lllm W(t; WCI) = Wo, ) (4.5)
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and Wy can be determined from (3.2) and the coefficients of t% in the polynomials A(t)
and A¢oft). In addition there ezist constants k > 0 and to > 0 with

Eeyd

|wea(t; Wen) —wta(t;W0)| < n for t>t; and 1<€<m, 1<a<n

In this case we say that the ébnvergence takes place at a polynomial rate.

If 0 < d < D, then at least one element d(o(t;ch) tends to oo as z — oo and if
A(t) = 0, then the limit in (4.5) may fail to ezist.

Proof. Assertion (i) follows from Subsection 3.5 - the last sentence in assertion (i)
is a consequence of Subsection 3.3/(i) and (2.10). Notice that (4.4) results from (4.3)
and the definition of Gg(a") A

From the definition of Gg and (3.2) we infer that

ZR(ai)SR(n“) é“(aj)pla.(t) aj)D(aju CO)

t;Weo) = j j '
wea(t; Weo) ER(aj)SR(ak)et((al)p(t,aJ)D(aJ,CO)

(4.6)

where

S p(t,a))D(e?,C?)

R(a’)=R(a*)

is a non-zero constant. Obviously this implies assertion (ii). Part (iii) of the theorem is
proved in the same way ®

Remark 2. (i) Since any initial value problem for equation (RDE) is solvable and
since the solution can be represented in the form (2.10), it follows from (2.10) (for ¢ = 0)
that for an a.rbltrary initial matrix Wy € €™*" we can choose k € {1,..., N} such that
there exists a matrix C € G¢(a*) with Wy = W¢ such that at lcast one of the constants
d and D defined in Theorem 3/(iii) is unequal —oo.

(ii) Using item (i), formula (2.10) and Theorem 3 we can determine the stable set
S(Wc) of an arbitrary solution Wy = W¢ of equation (ARE). If C € G¢(a*) and if
B is semisimple, then it follows from formula (2.10) and Theorem 3 that S(W¢) =
{We,l Co € GY(a*)}.

If B is not semisimple, then the situation is more involved (see Theorem 3/(iii))
- instead of trying to describe S(W¢) in the general case we propose to use directly
formula (2.10) to determine S(W¢) for a fixed solution W¢ of equation (ARE).

(iii) The set of all (almost) periodic solutions of equation (RDE)g corresponds to
the set of all (almost) periodic functions of the form (3.2). Using this fact and (3.2) we
get the assertions of the two following theorems - the proofs are omitted since they are
similar to the proofs of Theorems 1 and 2. '
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For the formulation of Theorem 4 we use the following abbreviations:
D(a*,C) # 0 and D(a?,C) =
Gleam(a®) = { C € V(€™ ™) |if either R(a’) # R(a*) or if
I(a’), I(a*) are incommensurable
if R(a’) = R(a*), then
d(a’,C) < 0 .and max dea(a?,C) <0 }

Gl...(a*) = { C € G, (a")

D(a*,C) #0, and D(a’,C) =0 if
Clom(a®) = { C € Va(C™*™) | R(a’) > R(a*) or R(a’) = R(a*) and
I(a’) and I(a*) are incommensurable
if R(a’) = R(a*), then }

~1 ky _ ~ k ) )
Glcom(a )_ {C € Glcom(a ) d(a’,C) S 0 and nlla.xdga(a’,C) S 0

Tleom(@¥) = {]' R(a’) = R(a*), I(a’) and I(a*) are commensurable}.

Theorem 4. The following statements are true.
(i) Let C € G}___(a*) with det Qo(C) # 0. Then W(;W¢) (restricted to IR) is @
periodic solution of equatton (RDE)R with
et ’(“’)pga(t,aj)D(aj, C)
et W) = Pl ‘ | )
tel® )= > etle)p(t a))D(al,C) ’

JE€TIom(a*)

ey
) . 1
" eit l(a')|vu:'(£,a),,,;,vuf‘(f,a)l
1€ com ' .
JET at) ¢
Wea(t; We) = = . (4.8)
“
it [(ad) |5 . ~ . .
jET (a")e ~|vu{’“.,v"{'l
com cy{‘

The solution W(-; W) may have real poles. Every periodic solution of equation (RDE) g
18 of the form (4.7) and (4.8) for some k € {1,...,N} and for some matriz C ¢
_(a¥) or it can be written in the form (4.10) (see Thcorem 5/(1)).
“The set of all periodic solutions of equation (RDE) g is either empty or uncountable.
(ii) Let
' ad \ ‘ &l

C!'= € 6lc;m(ak) and C'=

n+m



276 G. Freiling and G. Jank

with : .
» { fke U {0
Cx = J€TIcom (a¥)
0 else
If
Aoty = S " @p(t,a))D(a?,CY) and |Ao(t) 28>0  (te R),

JETI 0m (aF)

then W(-; Wg1) is a periodic solution of equation (RDE)R with
lim (W(t; Wei) - W(t;Wél)) =0

and the convergence takes place at an ezponential rate.
(iii) Let C? € Gy, (a*) and
S ep(t,))D(e, C?) =5 A1)
R(a’)=R(a*)

where
Al)= Y p(t,a')D(a’,C?)
¢(a?)=¢(a*)
18 a polynomial of degree d > 0. If

max (degree ( z pga(t,a”)D(a",Cz))) <d for R(a’)= R(a"),

¢(a¥)=¢(al)
then there ezists a periodic solution W(-; W¢) of equation (RDE)g with
lim (W(t;Wer) - W(t;Wo)) =0,

and the convergence takes place at a polynomial rate. Using (3.2), W(;Wc) can be

determined from the coefficients of t% in the polynomials p(t,a’) and pes(t,a’) (j €
k

Tlcom(a ))'

For the formulation of Theorem 5 we set

a* and
Gr(a*) = ’{C e V(€M) D ,,C) #0 i }
D(a?,C) = 0 if R(a?) # R(a*)
. \ d(a’,C) <0 and
‘Gr(a®) = {C € Gpr(a®) Hllz;x.d,a(a",C) < 0 for R(a?) = R(a*) }
o a.k . _ ,
G (o) = {C € V(€™ D( .,C) # 0 and | }
D(a’,C) =0 for R(a’) > R(a*)
ok an .
d(a’,C) < 0 for R(a’) = R(a")
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Theorem 5.. The following statements are true.

(i) Let C € G(a*). If det Q(t,C) # 0 and det Qo(C) # 0, then W(-;W¢) is an
almost periodic solution of equation (RDE)g which is bounded if det Q(¢;C) # O for
lImt| <& > 0. The solution W(-;Wc) satisfies .

eté(a’ )pta(t,a?)D(a?,C)
R(a’)=R(a%)

wea(t; We) = ' j ,C) (®2)
@ ZR(a”:R(d") e‘((a’)p(t’a])D(aJ’C)
. Cu{
et((aj)lvui (eya))"' » Vi (e’ C!)l A
R(ai Y=R(ab) 1 ] .
. _ ‘v
vt W) = —— Yo, (4.10)
v .
e 5, ..., 5, || :
R(a?)=R(a*) ' )
CUZ‘

Every almost-periodic solution of equation (RDE)R is of these forms for some matriz
C € GL(a*). Notice that the functions of the form (4.9) and (4.10) are periodic if the
elements of the set {((a’) — ((a*)| R(a?) = R(a*)} are commensurable.

(ii) Let

1 =1

I3 _ &)
C'= € 51,3 and . C'= :
C}x+m E}._*_m
with )
& = {c}‘ ifke R(aj)yk(ak){uf,...,u{;} . '
0 else
If .
A= Y e@p(t,a7)D(a?,CY) = A
R(ai)=R(a*)-
where

Ao _ Z . p(t,aj)D(aj,Cl) and le(t)‘ > 6>0 (t 2 tO)’
R(ai)=R(a*) : '

then W(-; Wga.) is an almost-periodic solution of equation (RDE)gr with
Jim (W(t; Wer) = W(tWe ) =0

and the convergence takes place at an ezponential rate.

(iii) The statement of Theorem 4 remains true if we replace therein 61<°m(a") and
periodic by Gr(a*) and almost-periodic, respectively.
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Remark 3. (i) In the preceeding theorems we have given a description of the
most important parts of the phase portrait of equation (RDE)IR. These results show
that the phase portrait of the equations (RDE)r and (RDE) is rather simple if B
has only simple eigenvalues. If B is semisimple (diagonalizable), then all polynomials

p(t,a’) and pea(t,a’) in (3.2) are constant and in this case the constant, periodic and
almost-periodic solutions of equation (RDE)g are of the form (4.4), (4.8) and (4.10),
respectively — in addition we obtain from (3.2) quite easily the corresponding stable (or
unstable) sets. The phase portrait of the symplectic Riccati equation with simple or
semisimple spectrum has been described in detail by Shayman {27].

In the general case the phase portrait of equation (RDE) g may be very complicated.
On the other hand, using (3.2), it is not difficult to analyze the phase portrait of equation
(RDE)R if the matrix B is fixed and if its Jordan canonical form and its (generalized)
eigenvectors are known. There remains only to discuss the behaviour of some specific
exponential sums as described in Theorems 2 - 5.

(ii) An important special case is obtained if

A
ReAm < ReAnmiy and (B) = (vm+1,...,vm+n)

with . :
A= (6m+l,--~,6m+n) a.nd detA;éO

Then W* = BA™! is a solution of equation (ARE) which is called dichotomic solution
(see {18: Definition 2]). According to Theorem 2 any solution W(-; W) with

1 Cm+1
C = and #0

Cn+m Cm+n

converges at an exponential rate to the dichotomic solution as ¢ — oco. Hence the
domain of attraction of W* is open and dense in €C™*". If rank A = n — 1, then it
follows with Lemma l/a) that at least one element of W{(-; W¢) tends to mﬁmty as
t—bOO lf |Cm+1 Cm+"| #0

In the case of the symplectic Riccati equation the dichotomity condition Re \,, <
ReAm41 is equivalent to the condition ReA; #0for 1 < j < n+m (= 2n).

(iii) If Re A, = Re Ay, then it follows from formula (2.10) and Theorems 2 - 5
that there is no stable equilibrium of equation (RDE) with respect to t — oo and that
there is no solution of equation (ARE) whose domain of attraction is open and dense

(see also [1]).

(iv) For the asymptotic behaviour of the solutions of equation (RDE) g for t — —o0
we obtain similarly all the corresponding results.

(v) All the results of this section can be formulated in the language of Gra.ssmanruan
manifolds used in' (27] and [8§].
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5. Non-autonomous Riccati equations

In this section we give an application of the fundamental representation formula (2.10)
to the investigation of non-autonomous Riccati equations (RDE). In order to simplify
the representation of the results we confine to the most important special case.

5.1 Assumptions. Let the coefficients B;; in equation (RDE) be matrix polyno—
mials in ¢ such that

B B r-1 .
B(#)=( " ”) ) =t""1Y Atk (5.1
©= (50 B)O=r" A (51)
withr € IV,
A € Clmtmx(min) g 0<k<r—1
and where

Ao = (AEI AEZ)
Az An
has n + m simple eigenvalues Ay,...,Ap+m. The eigenvector of Ag corresponding to A
is denoted by vy (1 < k< n+m).

5.2 Notations and preliminary results. (i) The algebraic Riccati equation (ARE)o,
0= A% + A%, W — WA, — WA, W  (52)

is called-the limiting algebraic Riccati equation corresponding to
W = By (t) + Boa(t)W — W.By,(t) — W By ()W. (5.3)
(ii) Let § > 0 be sufficiently small and let here (¢x)kcz With - < ¢ < 0 < ¢ <

@2 - - - be the sequence of the Stokes’ directions (for the definition see [13: ?7??]) of the
differential equation

y = B(t)y (teC). ) (5.4)
Then we set

Ni(s) = {t e c| br-1+6 < argt < duvs = 6.

From Assumption 5.1 and from (3: ???] and [13: ???] we infer that for any sector
Ni(8) there exist n + m linearly independent vector solutions §, (1 < u < n+ m) of
the linear differential equation (5.4) of the form

r—1 ;

. tr—) -

Gu(t) = z,(t) exp E aﬁ“)rj} =: (tPrv, + 1P+ 1b, (1)) eV (5.5)
=0 , :

where

o =2, BueC, oMeC (1<j<r-11<p<n+m)
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and where b,(t) (1 € g £ n+ m) is uniformly bounded for ¢ € Ni(8). Since we shall
assume that Ng(6) is fixed, we do not indicate the dependence of g, on the sector by
an additional index. .

(m) We use all notatlons and assumptxons introduced in the Sections 2 and 3 with
the two followmg slight modifications:

a) Instead of the sectors Sy we consider for 6 > 0 the sectors Si($), deﬁned in the
following way:

Let (7j)jez with -+ < 40 <0< 7, < y2--- be the sequence of all Stokes’ directions
‘of the set {t"((a*)| a* € A} Here, as’in Subsectlon 3.1, {(a*) = A » »+...+Ax. Then

{7;| 7 € Z} is the set of all solutions ¢ of equations of the form
fur(®) =Re (eT?[¢(a*) = ((a”)]) =0 (a* # a*).
We set
Su(8) = {t € €| m1 + 6 < argt < 7~ 5},

Notice that, for r. = 1, y& = px (1 < k < 2h) where ¢} is defined as in Subsection 3.2.

b) The functions z, (1 < g < n+ m) defined by (2.5) have to be substituted here
by the functions z, deﬁned in (5 5). Here and in the sequel we assume that the sector
"Ni(8)is fixed.

According to Subsectron,S.l/b) and c) and (5.5) we have here for a’ € A

j ~ ~ B i+..+8 ; . . 0(1

pra(tia) = 5 (o e, ] + O(l))

where La.ndau s O- Symbol O(l) denotes a function of ¢ which is uniformly bounded for
t € Ni(6), 6§ >0.

(iv) For C € V,,(C™*™) we 'éét, generaliiing the notations of Section 2,
. t
V(EC)= (@) inen(0)C = (%) (5.6)
w1th Q@) € C'""" and P(t) € C’"‘"" Further we set for t € Nk(é) with det Q(t) #0
We(t) = P()Q(t) ™' = (wla(t)) 1gtgm (5.7)

. (v) We recall that Assumption 5.1 implies that the number of solutions of equation
(ARE)c is lesser or equal to ("*+™).

Using the preceding assumptions and notations we infer from the proof of Theorem
1 (see also Remark 1/(ii) and (3.2)) the following corollary.
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Corollary 1 (Fundamental representation formula for the solutions. of equation
(5.3)). The function

We: Ni(é)\ {t € Ni(6)| detQ(t) =0} — C

is a solution of the matriz Riccati equation (5.3) with

c
wla(t) =
Ck‘
eon (O tora (0 g ttBin (o, (6,0),..., vk, (6,0)] + 22)
1<k1<...<kn<n+m
. 7 Ck,,
Ckl
ek (04 +ar, (1) 1B, +... 4B, (li‘,k“ Bk, | + 0('))
1<k1<..<k,<n+m ) ¢
k

where a(t) is defined by (5.5).

The following corollary generalizes Lemma 2. For simplicity we formulate the state-
ments of the corollary for the sector S5(0) U S;(0) containing the positive real’ axis. For
the remammg sectors corresponding results hold true.

: Corollary 2. Let 6§ > 0 and
C)
(% )enie
o Cnt+m
with the following properties:

(i) D(a*,C) # 0 and D(a?,C) = 0 for Re((a') > Re((a*).
(ii) D(a*,C) # 0 and D(a’,C) = 0 if Re(e*?((a’)) > Re(e'?((a*)) for v_, <p<

C

Yo-

Then the following statements are true.

a) If |17,,‘z yo--yUyr| # 0, then the solution W defined by (5.6) and (5.7) has at most
a finite number of poles in S)(6). Further,

N . , . _ 0
B t—ee VO = Wo = (W) g2 58

ezists and is a solution of equation (ARE)y with |

v,i(6,a),...,v] (a)
wy, = i . e | (5.9)
. |vv{"“’UVf.| i
where-the convergerice takes place at least at a polynomial rate:
T const ' ' .
lwéa(t) = wo| < T for t€ 51(8) and |t|2t.  (5.10)
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If in addition p = k, then Wc has at most a finite number of poles in 5(6) ={t} y_1+6 <
argt < 71 — 6} and the limit (5.8) ezists for 5(6) 5t — oo.
b) If 4 # k and |f),,:‘, ol #£0#£ |5ufa -+ yOyx], then We has an infinite number

of poles in B® = {t € C| 70 — 6 < argt < 7o + 6} and at most a finite number of poles
in So(6) U S51(6). Further,

h = = 1 1 m
50(6)1;111_.00 We(t) = W, (wla)xéfzsgn (5.11)
with |
Uys e)a ) y Uyt e’a
;a_ l( . ) _ n( )l (512)
|‘U‘,;‘, :vux|

c) If If)uf,...,ﬁyﬁl =0 and |vuf(€,a),...,vyﬁ(€,a)| # 0, then

li € (1) =
s‘(é)l;?_’wwla() 0o

For the investigation of the behaviour of the remaining elements wS(t) one needs rep-
resentations of the solutions §, which are more precise than those given by (5.5).

Proof. a) Since the eigenvalues A;,..., A4, are simple it follows as with the proof
of Lemma 3 that

D(a",C)=0 if o” ¢ {a*,a"} and ((a") € {¢(a"),((a*)}. (5.13)

Let t € S)(6) and |v, x .yO,x| # 0. Dividing nominator and denominator of the
representation formula for w,c (t) (see Corollary 1) by
. Ch
et etk gy 4 tp,,
Ck

n

we infer, using (5.13), that there exist tg > 0 and £9(6) > 0 with

lv,,f (€,@),. .., v,k (¢, )| + @ + O(e~%(®))
|85, By | + B2 + O(emeo(®))

wi (t) = (5.14)

for t > to. This implies (5.8) - (5.10).
If 4 = k, then (5.14) is valid for y-; + § < argt < 7 — §, which proves the
last statement of item a). If x4 # k, then (under the assumptions of item b)) for

. )+... . .
t € S¢(8) the terms containing the factor St 4ot e the dominant terms in

the representation formula for W¢(t). Hence we infer from the properties of asymptotic
exponential polynomials (see [4: ???] and [16: ???]) that W¢ has an infinite number
of poles in B®.

The remaining assertions of Corollary 2 are obtained similarly from Corollary 1 B
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Remark 4. (i) Obviously any solution of equation (ARE), can be represented as
a limit of the form (5.8), and from Subsection 3.5 it follows that equation (ARE)OO has

at most (“‘;m) solutions.

(ii) If Ao has multiple eigenvalues, then the behaviour of the solutions of equation
(5.3) may be different from that described in Corollary 2. In particular there may be
solutions of equation (5.3) having an infinite number of poles in the sector Sx(§). These
poles have at most logarithmic density, which means that for § > 0 the number of the
poles of any solution of equation (5.3) in Sx(6)N {t € C| |t| < R} is at most of the order
O(log R) for R — oo (see [12] for further details).

(ii1) If 7o < 0 < 71, then Corollary 2 gives a description of the solutions of equation
(5.3) for t > 0. If 79 = 0, then it is possible to generalize some of the results obtained
in Section 4 for the autonomous Riccati equation (RDE)pg to the non-autonomous case.
We give the following example which corresponds to Remark 3/(ii) and which is an easy
consequence of Corollary 1. -

Corollary 3. Let ReA,, < Re Ay,

4 .
(B) = (‘Um+1,. .. ,v,,.+,,) with A= (6m+1,. --,6m+n) and |A| # 0.

Then W* = BA™! is the dichotomic solution of equation (5.2) and any solution W¢
(defined by (5.6) and (5.7) for k = 1) with |cm41 - Cm4n| # 0 converges for 0 < t — oo
at least at a polynomasal rate to W*.
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