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Non-Symmetric Matrix Riccati Equations 
G. Freiling and G. Jank 

Abstract. We prove a fundamental representation formula for all solutions of the matrix 
Riccati differential equation and of the corresponding algebraic Riccati equation. This formula 
contains the complete information on the phase portrait of the matrix equation and on the 
structure of the set F of all solutions of the corresponding algebraic equation. In particular we 
describe all constant, periodic and almost-periodic solutions of the matrix Riccati differential 
equation. Further we give an application of the fundamental representation formula to the 
investigation of non-autonomous Riccati equations. 
Keywords: Matrix Riccati differential equation, algebraic Riccati equation, asymptotic prop-

erties 
AMS subject classification: 34 A 46, 34 C 25, 34 C 27, 34 E 10, 49 J 15, 93 C 15 

1. Introduction 
In this paper we study the matrix Riccati differential equation 

W=B21 +B22 W—WB 11 —WB 12 W	(tEC or tEll?)	(RDE) 

(we will write (RDE)c and (RDE)JR for t E C and t E JR, respectively) and the 
corresponding algebraic Riccati equation 

0= B21 + B22 W - WB 11 - WB 12 W	 (ARE) 

where W(t) (or W) is a complex m x n matrix and where B 11 , B 12 , B21 , B22 are constant 
complex matrices of dimensions n x n, n x m, in x is and in x in, respectively. The matrix 
Riccati equation - especially (RDE)JR and (ARE) for m = is - plays an important role 
in many branches of applied mathematics, notably in variational theory and the allied 
areas of optimal control and filtering, invariant imbedding, spectral factorization and 
dynamic programming (see [5, 8, 14, 21]). Non-square matrix Riccati equations appear 
for example in Nash and Stackelberg control problems, where the properties of Riccati 
equations determine the existence of the optimal open-loop strategies (see [1, 18, 28] for 
further references). On the other hand (RDE) is also of mathematical interest, since it is 
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the description in local coordinates of the differential equation on a Graf3mann manifold, 
whose flow is given by the action of a one-parameter subgroup of Gl(n + in, C) (see 
[10, 22, 27]). 

In Section 2 of this paper we derive a fundamental representation formula (2.10) 
for the solutions of equation (RDE). This formula contains the complete information 
on the phase portrait of (RDE) and in particular on the structure of the set F of all 
solutions of equation (ARE) (see Sections 3 and 4). In the last part of this note we 
give an application of the fundamental representation formula to the investigation of 
non-autonomous Riccati equations. 

2. The fundamental representation formula 

In this section we describe the connection between equation (RDE) and the correspond-
ing linear differential equation (L) (see [21: p. 11]), and we derive a detailed formula 
for the general solution of equation (RDE). 

Let
B=(	

:) 	
and	Y (Q) 

B2 
I 

with complex n x n and in x ri matrix functions Q and P, respectively. Then equation 
(RDE) and the linear system of differential equations 

Y = B Y	(tEC)	 (L)


are equivalent in the following sense: 

(i) Let In E CRXfl be the unit matrix and let W be a solution of equation (RDE). 
If Q is the unique solution of the initial value problem 

Q = (B 1 + B12W(t))Q 

Q(t 0 )=I	(to EGcC) 

and P(t) = W(t) Q(t), then Y = () is a solution of equation (L). 

(ii) If Y	() is a solution of equation (L) such that Q(t) is regular for i E G C C, 
then

	

W: C -* C m>< ',	t —+ P(t)Q 1 (t) = W(t) 

is a solution of equation (RDE). 

Let
V = (v i ,... ,Vn+m) E C(n+m)+m) 

be the matrix defined by a Jordan basis of generalized eigenvectors of B such that 

fi	*	0 
V'BV=J=diag(Ji,...,J)=	.	*	 (2.1)


An+mJ
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with * 6 {O, 11 and (without loss of generality) 

Re) 1 <RcA2	...	Re A,,+,,,	 (2.2) 

and where J is a Jordan canonical form of B with Jordan blocks 

P1'	1	0 

=	0 p	
••.	 (	

l<v<p 
1'	 •.	

•.	i	 6 {A 1 ,... ,An+m} 

0...	01 

If

	

( ,nc+".)	

/ Cl71
EC >

 ... Cn+m,n 

and
(xi(t),. . . , xn,(t)) diag(e t ,. . . , e'"') V (2.3) 

then an arbitrary ((ri + m) x n)-matrix solution Y = Y(t) = Y(t; C) of equation (L) 
has the form

Y(i) = Ve3tC - (Q(t ) '\ - (Q(t;C)\ (2.4) 
- P(t)) - P(t;C)) 

with
\ 

Q(t) 6 Cnxn , P(t) 6	 Y(0) = VC	Q0(C) = (PO(C)). 

Further, to every Jordan block J1' (1 <zi p) there correspond j1' solution vectors of 
the form

= e t vj i + ,, +j1_i +l =: etxj1++j11+i(t)

(2.5) 
.71 

	

= ehi	
(j1' - 

q =: 

(1	ii <p and io :=O). Let

( x1',i(i) \ 
x1'(t)= (
	 I	(1<v<n-Em) 

be the polynomials defined by (2.5), 1 j n and 1	m. Then we set 

(

X^I \
I . T 

 I	x1'(,j) = (x 1'1 ,. . . ,	, x1',71+t, x i,,j+i,. . . ) 

Xvn
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Similarly we define i3 1, and v,(t,j). Using these notations we infer from (2.4) 
n-fm	 n-fm 

	

Q(t) 
= (	

... , 

n+m 
i xk(t)eAtc,  k=1	 Q11(t)	. . .	Qin(i) 

	

n+m	 I-.i	\ 

	

\'n1 l
)	. . . 

k=1 

and

fn+m	

(Xv,n+-(t) 

x,+i(t) \	n+m	

( Xv,'n+M(t)))

x,+i(t) 
P(t) 

=	
cie 

	...  ,  
n-fm 

k=I 

n+m
Xk,n+m(t)etCk 

k=1 

Consequently we obtain, using the multilinearity of the determinant, 
n+m	n-fm 

det Q(t) =	' ... '	e'" C k 1 1 . . . C	Xk, (t),.. , 
k 1 =1	k=1

	

e(i+:+n)t	k,( t ), . . . ,Xk(t)€
1<k<k2< ... <k<n+m 

(Ck,jan 
. Ck(fl)fl) 

irE 

Ck1 

=	 I:i k ,
	

. ,X/ç,,(i)f 
1<ki<k2< ... <kn<n+m	

Ck 

We recall that

	

Xk, (t), .. . , X k,j t )j =	, Vk^ 

is constant if B is semisimple, otherwise these determinants are polynomials with coef-


	

ficients of the form I1	I. 
Since det Q(i) is an exponential sum with polynomials as coefficients, the a.symp-

totical distribution of the zeros of det Q(i) is well known (see Lemma 1, [4] and [16]). 
For the evaluation of (PQ'), the element in the t-th row. and c-th column of 

PQ', we use (2.6) - (2.8). From

(2.6) 

(2.7) 

(2.8) 

n-fm 

Q00(t ) = E ckfl e " x ka( t )	 (2.9)
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and
(aii(t)	...	a112(t)\ 

= detQ(i) I
\a12i (t) ... a1212(t)J 

where a 13 (t) is the minor of Q, 1 (t) with respect to Q(t), we get for det Q(t) 0 0 (as with 
(2.8)) 

det Q(t)(PQ' (i))a 

fl+fl3 ala 

	

=	CLXknt ( ckl,. . . , Ckn () 

Q 11 (t)	...	Q112(t) 

n+m	 Q,–ii(t) ... Q.–i,n(t) 

	

=	 Ckl	...	Ckn 
Qa+ii( t) ...	Qa-i-in(t) 

I Q(t)	...	Q1212(t) 
I 

12+ m	 n+ in	n+ m n+ m	12+ m 

	

E=	 •.. >i	i ... > 
k=1	v1=1	u,_=1 v+i=I	v,,=l

	

cull	.	Cu112 

Cv_1,l	. . .	Cu_i,n 
X x1,1(t)... xv_i,a_i(t)xi,+i,a+i(t). .	 C kl	.. .	C12 

Cl11 

	

Cul	. .
'cull


	

=	 e' +..+A)t x 1,1 (t, of),. . . , x (, of)I(t) 
1<ui < i'2< ... <u<n+m 

We summarize the preceding analysis as a theorem. 

Theorem 1 (Fundamental representation formula for the solutions of (RDE)): Let 
Y(-; C), Q0 (C) and PO (C) be defined by (2.4). Further let Q 0 (C) be regular and W = 
P0(C)Q0(C)'. Then 

W(-; WC): C \{t E Cl det Q(t) = 0) —i Cm' 
t i— P(t)Q(t)' = W(t;Wc)
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is a solution of equation (RDE) with W(0; Wc) = WC and 

w,(t; WC) =
Ck,


	

e ( i +..+Ak)txk, (, ci),.. , X	(, a)1(t)
Ck 

c( k ' + ..+A	
Ck1 

k fl )t	k , . . . , X	(t)

Ck 

(1<e<m, 1cin).

(2.10) 

Remark 1. (i) Obviously any solution W( . ; Wc) of equation (RDE) defines a 
meromorphic matrix function with poles at most in the zeros of det Q(t). This solution 
W( . ; W) is called the solution corresponding to So = span(VC), the column space of 
VC. The coefficients Ick, . ck, T appearing in formula (2.10) are the so-called Plucker 
coordinates of C (or of the n-dimensional subspace span C). These coefficients and also 
the coefficients

• ,X, I (i)	and	1Xk, (, ci),... ,Xk (, ci)I(t) 

are coupled (see Lemmas 1 and 3), which has strong influence on the behaviour of the 
solutions of equation (RDE) and on the structure of the set of all solutions of equation 
(ARE).

(ii) If the coefficients Bij in equation (RDE) are functions of t and/or of some 
parameter p and if the differential equation (L) has a (n + m) x (n + in) fundamental 
matrix solution of the form 

(z i (t, p),. . . ,Zn+m(t, p)) diag (eA(t 

then the statement of Theorem 1 remains true for the non-autonomous or parameter 
dependent matrix Riccati equation, if we replace the vector polynomials xk(t) in formula 
(2.10) by the functions zk(t,p) and Akt by Ak(t,p) (1	k n + m). 

In the special case of T-periodic coefficients B;j (t) equation (L) has, according to 
the Floquet-Lyapunov theorem, a fundamental system of solutions i,• . . Qn+m of the 
form (2.5) with T-periodic vector functions v 1 ,. . . , Vn.4-m (instead of eigenvectors). If 
we define the polynomials x 1 ,. . . , (with T-periodic coefficients) formally as with 
(2.5), then the fundamental representation formula (2.10) can also be used in the T-
periodic case. 

(iii) As far as we know the fundamental representation formula (2.10) for the gen-
eral solution of equation (RDE) is in this detailed form new even in the autonomous 
case. Obviously formula (2.10) contains the complete information on the phase portrait 
of equation (RDE) and particularly the complete information on all the solutions of 
equation (ARE).
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The properties of the solutions of equations (RDE) and (ARE) are very important 
for various branches of mathematics, therefore these equations have received consider-
able attention. 

Readers who are interested in a detailed description of the geometry of the solutions 
of the most important special cases of equations (ARE) and (RDE) and of the so-called 
extended Riccati equation (ERDE) (see [27]) are referred to the papers of Callier and 
Willems [7), Shayman [23 - 27] and Hermann and Martin [10, 11] on this topic and to 
the literature cited therein. 

In the next section we use formula (2.10) to study the geometry of the solutions 
of equations (ARE) and (RDE). We focus our investigations mainly to those subcases 
which have not yet been considered in detail in 118, 23 - 27, 28] - in this sense our 
results complement those of Shayman and also those of Medanic [18] and Telford and 
Moore [28). 

3. The solutions of the algebraic Riccati equation 

In this section we use the representation formula (2.10) to derive a parametrization and 
a geometric description of the set r of all solutions of equation (ARE). 

3.1 Notations. For the formulation of our results we introduce the following 
notations.	 . 

a) For

A - (Ai,.,)n+rn)	and	a = (a 1 ,... , an+m) E {0,1}n1m€

we set

n+Tfl 
((a) = (A, a) =	 R(a) = Re ((a),	1(a) = Im((a). 

b) Let N = (tm ) and let 

A={aI,...,aN}C{0,1}+m 

be the set with 

a'= and a -
	for  e	zi < ...


— 1.0 else 

In the sequel we assume that the N elements of A are enumerated such that 

r  
<k	either Re(((a3)e') < Re(((a')e') for 0 < / i	.1 or ((a)) = ((ak) and (vi,... ,zi) ^Iex 

(3.1) 

for some co > 0, where IeX means lexocographical ordering.
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c)For
/ C1 

a3 E A	and	C =(	E Cm)Xn 
Cn+m) 

and with the polynomials x, defined in (2.5) we set 

p(t,a3 ) =	. , ,i(t) 

Pt. (t,a) = Ix (,a),.. ,x(,a)I(t)	(1	£ < m; 1 <a <n) 

IT 

With these abbreviations formula (2.10) can be written in the form 

ai EA 
eU.1')p,(t, aJ )D(ai , C) 

wta(t ; W) =
ai CA eC( ) p(t, ai )D(ai, C)	

(3.2) E 
The following lemma and Lemma 3 indicate the type of coupling of the coefficients 

appearing in formulas (2.10) and (3.2). 

Lemma 1. The following statements are true. 

a) Let l<k i <k2 < ... < k<n+rn,jE{1,...,n+rn}\{ki,...,k} and 
I v 1 ,	,	0. Then at least one of the determinants 

Vk 2 ,.. . , f)kn I	or I v,(e, a), Vk2(e, a),.. . ,	(, a) 1 (1	£ < m; 1 < a < ri) 

15 non-zero. 

b) Let aj E A and let p(t,aJ ) = c	(c 54 0) be a monomial of degree k ? 1. Then 
at least one of the polynomials 

pt(t , a')	(1 £ rn; 1 a n) 

is not identically zero and not a monomial of degree k 

Proof. The matrix D0 = (v,, vk2,.... vk,) has rank n and by assumption D 1 = 

( i k 2 ,. . . , i3) has rank n - 1. Let the first n - 1 rows of D 1 be linearly independent 
- otherwise we proceed similarly. Then we can transform D0 by elementary column 
operations into the form 

o 
b D)	where be cm \{0} and FE	 is regular. 

This proves assertion a). 

Assertion b) (which can also be obtained from the results of [19]) follows with 
assertion a) from the definition of the polynomials p(t,ai ) and p( t, a)) . Notice the 
special form of the vector polynomials xk(i) in (2.5) 1
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3.2 The asymptotic behaviour of W(re'°; Wc) for r —+ 00. The complex plane 
is divided into 2h sectors 

	

Sk = It E C1 pk—i argt < 'p}	(1 < k <2h)	 (3.3)


where the following holds true: 

(i)'po<0<'pI<p2< ... <p2h='po+21r21r. 

(ii) For 1< k < 2h there is a permutation crk of {1,. . . ,N} with 

R.e(t(A, aT1)))	Re(t(A, a c ( 2 )))	. :5 Re(t(A, aN)))	(t E Sk). 

(iii) The sectors Sk are the maximal sectors (3.3) with the properties (i) and (ii). 

We note that the permutations crk are in general not yet uniquely determined; this is 
not necessary. In addition here we can assume for convenience that orl = id. 

From the results on the asymptotic behaviour of the zeros of exponential sums (16] 
(see also [4: Satz 2.1.11 for further details) and from formula (2.10) we infer in the next 
lemma that	W(re'; W) exists for 'p 0 'p,. 

Lemma 2. Let e > 0 and let C E C (n+m)XTh be such that Qo(C).is regular. Then 
almost all zeros (i.e. except at most finitely many) of dci Q(t) - defined by (2.4) - are 
contained in the set

U{t € C (Pk —e < argt < 

In addition, for 'p E [0,27r]\ {'pi,... ,'pzhl £ <m and 1 < a < n there exists 

00; WC ) := lirnwea (revo ;WC )	 (3.4) 

with respect to the chordal metric on the Riemann sphere C = C U fool. The limits are 
easily determined from formula (2.10). 

3.3 Three representations of I'. There are several possibilities to determine the set 
r of all (complex) solutions of equation (ARE): 

(i) r = {PQ—' ()	 detQ 0, span () is B —invariant 

(see (19: Theorem 11 for an alternative formulation and a proof). 

(ii) r = Cmxvi n {W(et .cxi;Wc) C € C( 2 +m ) , Q0 (C) regular} for 'p 

{ 'p i ,cp, . . .	This is an immediate consequence of Lemma 2 and formula(2.10). 

(iii) I' = {all constant C"'-valued functions W( . ; W) of theform (2.10) }. 

Using (i) - (iii) and the fundamental representation formula (2.10) we obtain a nice 
parametrization of F. For this purpose we introduce some abbreviations.
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3.4 Notations. Let V(C+ m) be the set of all full rank (ii + ni) x n matrices with 
complex entries. For C E V(Cm) and 1 k N we set 

Jo(C)= { 1 <j :5 N and D(a',C) o} 

G C (ak ) = { c E V(Ctm) D(a", C) = 0 for ((a") ((at ) and D(ak; C) 0 o} 

and, for l<m and l<a<n, 

nom,(C) = >2 pta(t,a")D(a",C) 
uEJo(C) 

den(C) = >2 p(t,a")D(a",C) 
EJo(C) 

4(C) Max {degree(nom(C)) 1 £ rn, 1 a n} 

dd(C) = degree(den(C)) 

where here and in the sequel - for technical reasons - the degree of the zero polynomial 
is defined to be -. 

Notice that for C E G( (ak ) all exponential terms in (3.2) are identical to 
Hence in this case

nom(C) 
wt. (t; W) = den(C)	if dd(C) >-0. 

In particular W(t; W) is a constant solution if dd(C) = 0 and 4(C) 0. 
For the description of r we use the set of parameter matrices 

G(ak) = {C E G( (a') dd(C) = 0 and 4(C) o} 

and the set of indices
J(a") = 	JO (C). 

CEG(ak) 

3.5 Parametrization of r. a) To any matrix C E G°(a') 0 there corresponds - 
according to formula (2.10) - a solution 

WC W(i;Wc) =: (w)i<<rn 

of equation (ARE), where

W= > vEJo(c)p,c(t,a)D(a,C)
(3.5)
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On the other hand it follows from Subsection 3.3/(i), (iii) and formula (3.2) that any 
solutions of equation (ARE) can be represented in the form (3.5) (see also Theorem 
3/(i)). 

To each family
Fk = {c e V(Cn+m) Jo(C) C J(ak)} 

there corresponds the family Fk = {WcI C C Fk} of solutions of equation (ARE) and 
r =	rk. 

It is well known that the number of solutions of equation (ARE) corresponds to 
the number of n-dimensional B-invariant subspaces of being complementary to 
the span of (°') (see Subsection 3.31(i)). Alternatively the number of elements of 
r and the structure of r can be easily determined from (3.5) if we know #Jo(C) and 
#J(ak ) ( 1 k N). Obviously F is either finite or uncountable. 

The following Lemma implies in particular that F,, n F3 = 0 for Ic 54 j if B has only 
simple eigenvalues. 

Lemma 3. Let C  G( (a) and D(a°,C) 54 0. Then 

Proof. From the definition of G( (a') it follows that ((a)) = ((a s ). Let a 54 .j and 
let us assume that the assertion of Lemma 3 does not hold. Then there is a q with .\n = 
A s,, for q + 1	i	n and (without loss of generality) Re	e'') < Re (.X,,., c'') for 0 < 

	

<CO Since c 2 ,.. . ,c,,j are linearly independent, we have c,, =	-ycj and from 
Ic	.. . cfl	0 it follows that (71,..., yq)	0 since	co+, = c,,,, . .. , c,o = c 
are linearly independent. 

Let 7p0 for somepE{1,...,q}. Then 

Cç c	 ç	=	
IT

,	 0 

and

Re(e	+ ... +	+,\,,,. + j	+ ... +	< Re(e''((a)) 
P+1 

for 0 <p < co. This contradicts C E G( (aJ ) and Lemma 3 is proved I 
b) From the definition of J(a') we infer using Lemmas 1 and 3 that #J(a) 5 1 if 

at most one of the eigenvalues A d ,.. . , A,k is a multiple eigenvalue and if this eigenvalue 
has geometric multiplicity one. 

If #J(a') = 0, then r = 0 and if #J(alc ) = 1, then F,, = {W,,} where W,, = 
(Wkp)15<m with

	

p(t, ak )	 Iv	(e , 'U), . . . , v, (, i)I 

	

=	
- 

 p(t, ak) 	
(3.6) 

If #J(a) = ic > 1, then F,, is uncountable and there are several possibilities for the 
structure of F,,.
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If there are matrices .0 E G°(a') with J0 (C) = J(ak), then we infer from formula 
(3.2) that rk is a ( — 1)-parametric family of solutions of equation (ARE) of the form 
(3.5) - in this case we can assume without loss of generality that D(a c , C) = 1 if this 
parameter is non-zero. 

Otherwise, according to Lemma 3 and formula (3.2), we can split rk into two or 
more subsets: 

I'k = 
nk	

'2k 

	

 r kj where rk1 is a Pk — parametric set and EPk	- 1 

Since every element of F can be written in the form (3.5) (for some k) we have obtained 
a parametrization of all complex solutions of equation (ARE) (see also Theorem 3). 

A detailed description of all real symmetric solutions of equation (ARE) has been 
given by Shaymari [24, 251, the set of all complex solutions of equation (ARE) has been 
determined by Meyer [19] (see Subsection 3.3/(i)). 

C) If the matrix B has n+rn simple eigenvalues, then, according to item b), equation 
(ARE) has at most N different solutions. This fact has already been observed by Potter 
[20] and M.rtensson [17: p. 26], who considered the most important special case of 
equations (RDE) and (ARE). 

If to each eigenvalue of B there corresponds exactly one Jordan block (which means 
that the numbers ,a,, defined at the beginning of Section 2, are pairwise different), then 
we get similarly that equation (ARE) has only a finite number No N of solutions 
which can be determined according to item b). In addition No can be determined from 
the number of the Jordan blocks of B and from its eigenvectors of rank lesser or equal 
n.

If B is cyclic, which means that J = V BV consists of exactly one Jordan block, 
then equation (ARE) has no solution if D = ',... 	= 0, otherwise equation (ARE) 
has exactly one solution W0 = ( w' ) with ta

1 
= 

D 
V, (e, 	. . 

This corresponds to [19: Corollary 11. 

d) For special cases of equation (ARE) there are control-theoretical conditions, 
ensuring that the denominators of (3.2), (3.5) or (3.6) are non-zero (see [15, 17, 18, 23 
- 27, 28]). For a survey of the most important results on the symmetric and definite 
solutions of equation (ARE) in the special case B = (	) see [15]. 

3.6 The parameter matrices C and WC . In order to parametrize the solution 
W( . ; W) it is convenient to use the matrix C instead of the initial matrix W. Here 
we describe how C can be determined from the initial matrix. 

Let C E V(C hl + m ) and Wc = P0 (C)Q0 (C) 1 (see (2.4)). If K E C T	is regular

and C = CK, then W3 = W. Hence to the class 

[C] = {CKI K E Gl(ri,C)} with detQo(C) 0
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there corresponds a unique matrix W. 
Let Wc0 be given. Then we can determine a normalized representative C E [Co] in 

the following way: 

Version 1: Set c = v' ( I 
\ 

W0 

Version 2: (i) Choose a permutation ir of {1,.. . , n + m} and define 

V11 E Cnxm , V32 E Cnxn,	V21 E cmxm,	V22 E cmxT 

by

V 
7r	

(V1	\ 

	

= (v, (i) ,... ,V(n+m))	
1	v12 

= v21 v22) 

(ii) Check if the system of equations 

(Wco V11 - V21 )0 V22 - W 0 V12	 (3.7) 

for 15 =: (C,r(I)	C(yj)) T E CtmxTh is solvable. 

If a solution 6 of equation (3.7) exists with det(V31 Ô + V12 ) 54 0, then we set 
C,(m+j) = e (1 < j < ii) with the canonical unit vectors e3 E C' x and we set 
C = (c i ... cn+ m ) T . In this case it follows from v(fl = VC and equation (.7) that 

WC. = ( V21 + V22 ) (VI ,(5 + V12 ) = WC 

If C cannot be determined using ir, then we choose succesively another of the N per-
mutations of 11,. . . , n + m} until - after at most N steps - C has been determined. 
We propose to start in step (i) with ir = id since in most applications one is mainly 
interested in the case where equation (3.7) is solvable for ir = id (see Remark 3/(ii)). 
Notice that the matrix C is of lower dimension than the matrix C in Version 1, hence 
from computational point of view it is often better to use Version 2 instead of Version 
1. 

4. The phase portrait of equations (RDE) JR and (RDE) 
Let CE V(Cm) be such that Q0 (C) is regular, e >0 and p E {ii,... ,2h}. Then 
W( . ;Wc)canhaveaninfinitenumberofpolesinthesector{t E Cko—c <argt < cp+} 
and - in contrast to (3.4) - lim r..., w(retP; Wc) may fail to exist. According to 
Lemma 2 the phase portrait of equation (RDE) is (as i - cc) very simple if we restrict 
t to the interior of a sector 5k (1 < /c < 2/i). On the other hand the behaviour of 
W( . ; Wc) along one of the raysB = (t E C I argt = may be very complicated. 
Obviously it is sufficient to describe W( . ; Wc) along one of the rays B,1 (1 j < 2/i) 
- without loss of generality we assume that the positive (and consequently also the 
negative) half-axis is one of these rays. For this reason we confine in this section to the 
description of the phase portrait of equation (RDE).
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For the rest of this section let k e {1,. . . ,N}, C E V,, (C'+') and t E R. The 
formulation of the following theorems is rather technical since we are considering the 
most general case — the formulations become much simpler if B has simple eigenval-
ues or even if B is only diagonalizable. For a detailed discussion of the fundamental 
representation formula we use the following abbreviations: 

	

Hd(ak , C) = degree	: 

(((aj)=((aI) 

	

d,.(ak , C) = degree	>

P(ta')D(a3C))

ii tm 
P(ta')D(a3C)	

< < 
)	i  

D(a k , C) ^6 0, and D(a3 , C) = 0 

ö(ak) = {c E V(Cn + m) if R(a3 )> R(ak) or R(a) = R(ak) } 

as well as ((a' )((ak) 
=0 and 

ã(ak) = {c E (a k)  
max dta(a',C) 0 for R(&) = R(ak) }• 

We shall see that each solution W( . ; Wc) of equation ??? with C E G(alc) has a limit 
Wc0 E r with Co E GO( (a c ) as i —*00. 

The following theorem is concerned with an important special case. 

Theorem 2. Let C E GO( (ak ) ( j4 0) and R(ai ) 54 R(ak ) for j 54 k. Then the 
following statements are true. 

(1) Wc := Wk with Wk defined by (3.6) is a solution of equation (ARE); Wk is 
real if B is real. 

(ii) If C' E	(ak ) with detQo(C 1 ) 0 0, then there exist t 0 E JR, v0 E IN0 and 
K0 >0 such that W(t;Wct) EC m ' fort? to and 

- v 	a),... 
wa(t, T4'c '	 <K0 tv0et')_R	(4.1) 

for 1 < £ <m, 1 <a < ri and t ? t 0 . This means that the convergence of W(t,Wc) 
for t —i oo takes place at an exponential rate. We have u 0 = 0 if B is semzsimple, 
otherwise 0 i.'o max { degree (p,(i,a3)) 1	ii, 1 < £ < m, j E MCI) }. 

(iii) If C2 E G(a') with d(ak, C 2 ) = —co < maxt,a dtQ (a C , C2 ), then either 
detQo(C 2 ) = 0 and WC2 is undefined or at least one element of W(t,Wc) tends 
to infinity for t — co. 

Proof. Since R(a3) R(ac) for j k, the eigenvaiues ),. . . , A and the corre-
sponding eigenvectors appear in conjugate complex pairs if B is real. Hence it follows 
easily (as with [17: Theorem 3]) that Wk is real if B is real.
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From the assumptions of (ii) and from (3.2) we infer 

wt ( t ; WC.) - 
>2jEJo(C1) ep 0 (t, aJ )D(a', C') 

- >jEJo(C') et(0I)p(t, aJ )D(ai , C')	
(4.2) 

where p(t,ak)D(ak,CI) 54 0 and R(a-') < R(ak ) for i E Jo(C') \ {k}. Using (4.2) 
we obtain assertion (ii) of the theorem, and in the special case C' = C obviously 

= WC = W. 
Assertion (iii) is an immediate consequence of formula (3.2) U 

The next theorem generalizes Theorem 2. 
Theorem 3. The following statements are true. 

(i) If C e GO( (a k ) , then W =: (wee,,) t<<, is a solution of equation (ARE) with 

>2 pt.(t,a3)D(a,C) 
Wta = iE (C) 

>2 p(t,ai)D(ai,C)	 (4.3)

jEJo(C)

cv 

>2	Ivi (, cr) . .. , vvi (, a)

jEJo(C) 

Wto,
=	 C?	

(4.4) 

>2

,EJ0(C)

Vn 

Notice that all polynomials pt,,,(, a') and p( . , a2 ) in (4.3) are constant. Any solution of 
equation (ARE) can be written in the form (4.4) for an adequate C E GO(ak). 

(ii) Let CO E G°( (a'). Then there ex ists a solution W0 of equation (ARE) with 
urn W(t; WC0) = W0 , and the convergence takes place at an exponential rate. WO is t 0 
obtained from the right-hand side of (4.3) by replacing therein C by CO and j E Jo(C) 
by R(a)) = R(ak). 

(iii) Let C 1 e G((a'), 

p(t,a')D(a',C') 
R(ai)rR(a") 

=	 pe0(t,a)D(a,C') 
R(ai)=R(ok) 

If -oo < d= degreei.(t) ^: max (degree L,0 (t)I 1	in, 1	n} = D, then

there exists a solution W0 of equation (ARE) with 

lirnW(t;WC I) = WO,	 (4.5) 
t 00
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and W0 can be determined from (3.2) and the coefficients of td in the polynomials (t)


	

and	In addition there exist constants k > 0 and to > 0 with 

w(t;Wci)—wea(i;Wo) <	for t >to and 1	1	n. 

In this case we say that the convergence takes place at a polynomial rate. 
If 0 < d < D, then at least one element wtQ(t; Wci) tends to _- as x -	and if 

	

(t)	0, then the limit in (4.5) may fail to exist. 

Proof. Assertion (i) follows from Subsection 3.5 - the last sentence in assertion (i) 
is a consequence of Subsection 3.3/(i) and (2.10). Notice that (4.4) results from (4.3) 
and the definition of 

From the definition of	and (3.2) we infer that 

w,0 (t; Wco)
- >R(ai)<R(ak) e t (( a')p(t , a3)D(a3 , Co)

(4.6) 
- >R(aI)<R(a') tC( a2 )p(t , a )D(ai,C°) 

where

p(t,a)D(a',C°) 
R(a')=R(a') 

is a non-zero constant. Obviously this implies assertion (ii). Part (iii) of the theorem is 
proved in the same way I 

Remark 2. (i) Since any initial value problem for equation (RDE) is solvable and 
since the solution can be represented in the form (2.10), it follows from (2.10) (for t = 0) 
that for an arbitrary initial matrix Wo E Cm ,n we can choose k E { 1,... , N} such that 
there exists a matrix C E G( (a Ic ) with W0 = WC such that at least one of the constants 
d and D defined in Theorem 3/(iii) is unequal —oo. 

(ii) Using item (i), formula (2.10) and Theorem 3 we can determine the stable set 
S(Wc) of an arbitrary solution W0 = WC of equation (ARE). If C E G(a') and if 
B is semisimple, then it follows from formula (2.10) and Theorem 3 that S(Wc) = 
{Wco I Co E 

If B is not semisimple, then the situation is more involved (see Theorem 3/(iii)) 
- instead of trying to describe S(Wc) in the general case we propose to use directly 
formula (2.10) to determine S(Wc) for a fixed solution WC of equation (ARE). 

(iii) The set of all (almost) periodic solutions of equation (RDE) JR corresponds to 
the set of all (almost) periodic functions of the form (3.2). Using this fact and (3.2) we 
get the assertions of the two following theorems - the proofs are omitted since they are 
similar to the proofs of Theorems 1 and 2.
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For the formulation of Theorem 4 we use the following abbreviations 
D(ac, C)	0 and D(a', C) = 0 

G lcom (ak ) = C E V(C1+m) if either R(a) 0 R(a') or if 

I(a), I(av) are incommensurable 
f R( if 	R(ak), then = 

GL(ak)= {CEGIoak)
d(a',C)<Oand max d€(&,C)<0} 

D(a k , C) 54 0, and D(a',C) = 0 if 
Gj 0 (a') = C e V(CTh+m) R(a) > R(ac) or R(a') = R(ak ) and 

1(a') and I(ak) are incommensurable 
ifR(&)=R(ak), then 

co() = {CEGIcom(ak)dy
C)<0	d max dta(ai,C)<0} 

Tico(ak) = ^ j I R(aj ) = R(ak ) , 1(a2 ) and I(ak) are commensurable}.

Theorem 4. The following statements are true. 

(i) Let C E G(aIc ) with det Q0 (C) 0. Then W( . ; WC ) (restricted to .1R) is a 
periodic solution of equation (RDE)JR with 

ei I(a' p€a( t , a2 )D(a', C)  
,Er,0(ak)  

w,0 (t; WC) 
=	E	C ii I(a))p(j ai)D(ai , C)	 (4.7)  

,Er,0,(ak)

cv 
e" I(a')v(a)	. 

2ErI,m(ak)	
.  W,(t; WC) =	 (4.8) 

elt1(02)5i,.. . 
jErIcom(ak)	

S 

The solution W( . ; W) may have real poles. Every periodic solution of equation (RDE)1 
is of the form (4.7) and (4.8) for some k E {1,.. . ,N} and for some matrix C e 
G(ak ) or it can be written in the form (4.10) (see Theorem 5/(i)). 

The set of all periodic solutions of equation (RDE)JR is either empty or uncountable. 
(ii) Let

-	fc\ 
C' =	E d' m (.k)	and	C' = 

\C+m)	 .	\Cfl+m 
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with
_	I cj if k e	U 
CJç =	 )ErICOm (,,k) 

	

( O	else 

If

=	e'' )p(t, a3 )D(a', C') and	o(t)I ^! 6 > 0	(t E	), 
j Er, ,,, (a k) 

then W( . ; W i) is a periodic solution of equation (RDE) JR with 

urn(w(t; Wci) - W(t; W)) = o 

and the convergence takes place at an exponential rate. 

(iii) Let C 2 E Gjcorn ( a k ) and 

e' p(t, a3 )D(a3 , C 2 ) =: e ta' ),(t) 
fl(ai)=I1(a') 

where
L(t) =	p(t,a)D(a',C2) 

((a2)(ak) 

is a polynomial of degree d> 0. If 

max (degree (
	

Pta(tav)D(avC2))) d for R(a') = R(ak), 

then there exists a periodic solution W(; Wc) of equation (RDE)jn with 

tlim(w(t; Wc2) - Wt; Wc)) = 0, 

and the convergence takes place at a polynomial rate. Using (3.2), W( . ; W) can be 
determined from the coefficients of td in the polynomials p(t,a') and p,a(t,a') (j E 

Ti— (ak)). 

For the formulation of Theorem 5 we set 
I  

G R (a Ic ) = C e V(Cm) 
D(a k , C) 0 0and 

I.	 D(a,C)=0ifR(a)R(a')


d(a',C) 0 and 
G(ak)= {

CEGR(aH max dta(a3,C)0 for R(a3)=R(ak)} 

I 
G(alc ) = C e V(Cm) D(a

k C) 0and

 ^ D(a',C) = 0 for R(a2 ) > R(a c )) 

di	I	..	d(ac C)<Oand 
H (ak ) = M e G n(ak )	- 

I	d(a3,C) <0 for R(a2) = R(ak)



Non-Symmetrix Matrix Riccati Equations	277 

Theorem 5. The following statements are true. 

(i)Let CE G(ak). If detQ(t,C) 0 and detQo(C) 54 0, then W(;Wc) is an 
almost periodic solution of equation (RDE) IR which is bounded if det Q(t; C) 54 0 for 
IImtI < e > 0. The solution W( . ; W) satisfies 

ei((')pta(t,a))D(ai,C) 
R(ai)=R(ak) 

wt(i; WC) 
= >1R(oi)=R(ak) et((a')p(t, ai)D(ai , C)	

(4.9) 

e(a))lv1,i(t,a),. . 

wt(t; WC) =	 Cj 
C,	

(4.10) 

et((a'),...	:. 
R(a)=R(ak)	1

c vj 

Every almost-periodic solution of equation (RDE),R is of these forms for some matrix 
C E G}(a'). Notice that the functions of the form (4.9) and (4.10) are periodic if the 
elements of the set {((a J ) - ((ak )I R(ai ) = R(ak )} are commensurable. 

(ii)Let 
(c\ 

	

C' =	 E G',	and	15 1 = 
c +m)	 'n+rn 

with
-1	14 zfkE	U Ck =	 R(ai)=R(ok) 

else 

if

	

(t) =	 e1 1'ai)p(t, a2 )D(a2 , C') = et0Lo 

where

Ao =	 p(t,a)D(a',C')	and	/.o(t)I ^: 8>0	(t > to), 
R(a')=R(a') 

then W( . ; Wi) is an almost-periodic solution of equation (RDE) JR with 

urn(w(t; Wci) - W(t; w) = 0 

and the convergence takes place at an exponential rate. 

(iii) The statement of Theorem 4 remains true if we replace therein G jcom (ak ) and 
periodic by G R (ak ) and almost-periodic, respectively.
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Remark 3. (i) In the preceeding theorems we have given a description of the 
most important parts of the phase portrait of equation (RDE)1R. These results show 
that the phase portrait of the equations (RDE) JR and (RIDE) is rather simple if B 
has only simple eigenvalues. If B is semisimple (diagonalizable), then all polynomials 
p(t,a') and pta(t,a) in (3.2) are constant and in this case the constant, periodic and 
almost-periodic solutions of equation (RDE)j1 are of the form (4.4), (4.8) and (4.10), 
respectively - in addition we obtain from (3.2) quite easily the corresponding stable (or 
unstable) sets. The phase portrait of the symplectic Riccati equation with simple or 
semisimple spectrum has been described in detail by Shayman [27]. 

In the general case the phase portrait of equation (RDE) JR may be very complicated. 
On the other hand, using (3.2), it is not difficult to analyze the phase portrait of equation 
(RDE) in if the matrix B is fixed and if its Jordan canonical form and its (generalized) 
eigenvectors are known. There remains only to discuss the behaviour of some specific 
exponential sums as described in Theorems 2 - 5. 

(ii) An important special case is obtained if 

Re A..<ReA m+ i	and	cB) = (vm+,,.... 

with
A = (i3m+i,... ,im+n)	and	detA $0. 

Then W* = BA — ' is a solution of equation (ARE) which is called dichotomic solution 
(see [18: Definition 2]). According to Theorem 2 any solution W( . ; WC ) with 

/ c	 Cm1I 
c=( : )	and	:	$0 

Cm+n 

converges at an exponential rate to the dichotomic solution as t -	. Hence the 
domain of attraction of W is open and dense in If rank A = n - 1, then it 
follows with Lemma 1/a) that at least one element of W(; W) tends to infinity as 
t - co if ICm+l . . . Cmn' $ 0. 

In the case of the symplectic Riccati equation the dichotomity condition Re Am < 
Re Am+ i is equivalent to the condition Re .X, $ 0 for 1 j n + m (= 2n). 

(iii) If Re A m = ReAm + i , then it follows from formula (2.10) and Theorems 2 - 5 
that there is no stable equilibrium of equation (RDE) with respect to t —* oo and that 
there is no solution of equation (ARE) whose domain of attraction is open and dense 
(see also [1)). 

(iv) For the asymptotic behaviour of the solutions of equation (RDE) JR for t - —oo 
we obtain similarly all the corresponding results. 

(v) All the results of this section can be formulated in the language of Grassmannian 
manifolds used in, [27] and [8].
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5. Non-autonomous Riccati equations 

In this section we give an application of the fundamental representation formula (2.10) 
to the investigation of non-autonomous Riccati equations (RDE). In order to simplify 
the representation of the results we confine to the most important special case. 

5.1 Assumptions. Let the coefficients B13 in equation (RDE) be matrix polyno-
mials in t such that

r-1 
B(t)

	

( B11 B 12 \	jr-i	Akt_k	 5.1) =B	B22)	
k=0 

with r E W,

	

Ak E c(m+(m + n )	for 0 < k <r - 1 

and where
(A0,? A0 = 

has n + m simple eigenvalues \ l i	, Anm. 
is denoted by Vk (1 k n + m).

AO 12 
A° 22 

:'he eigenvector of A0 corresponding to Ak 

5.2 Notations and preliminary results. (i) The algebraic Riccati equation (ARE)OO 

0 = A 1 + A 2 W - WA?1 - WA?2W	 (5.2)


is called-the limiting algebraic Riccaii equation corresponding to 

W = B21 (t) + B22 (t)W - WB 11 (t) - WB 12 (t)1'V.	 (5.3) 

(ii) Let S > 0 be sufficiently small and let here (ck)kEz with	< Oo 0 < 0 1 < 

02	be the sequence of the Stokes' directions (for the definition see [13: ???]) of the 

differential equation

y = B(t)y	(t E C).	 (5.4) 

Then we set
Nk(S) {t E C 

I Ok-1 +	argt <_ q5k+1 - 

From Assumption 5.1 and from [3: ???] and [13: ???] we infer that for any sector 
Ni(S ) there exist ii + in linearly independent vector solutions (1 It n + in) of 
the linear differential equation (5.4) of the form 

r-i	tr_i 
(t) = x(t) exp 	(tv, + t'bM(t)) eat)	(5.5) 

3=0 

where

ao	Al 81 EC, oEC	(1<j<r-1;1<p<n+m)
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and where b,(t) (1 /2 :^ n + ni) is uniformly bounded for t E Nk(6 ) . Since we shall 
assume that Nk(S) is fixed, we do not indicate the dependence of Q on the sector by 
an additional index. 

(iii) We use all notations and assumptions introduced in the Sections 2 and 3 with 
the two following slight modifications: 

a) Instead of the sectors 5k we consider for 6 > 0 the sectors Sk(ö), defined in the 
following way: 

Let (7j)jE with	< yo 0 < Yi < 72	be the sequence of all Stokes' directions

of *the set {t'((a)I a E Al. Here, as in Subsection 3.1, ((aA) = A +... . . + A. Then 
{ - I j E	} is the set of all solutions cc ' of equations of the form 

	

f,('p ) = Re (ett'[((aM) - ((a")]) = 0	(a	a") 

We set
Sk()= {t	m- 1 +	argt 

Notice that, forr = 1, 7k = cc( (1	k < 2h) where Wk is defined as in Subsection 3.2. 
b) The functions XM (1 ii + m) defined by (2.5) have to be substituted here 

by the functions x 11 defined in (5.5). Here and in the sequel we assume that the sector 
Nk(ö)-is fixed. 

According to Subsection 3.1/b) and c) and (5.5) we have here for a 2 E A 

0,+...+fl, 	 0(1) p(t, a') =	(t), . . . , L,i( t) = t t	 ,. .	I + 

p,,(t, a') = t 1	'• +	 (, a)...... i3j (, a) I + 

where Landau's 0-Symbol 0(1) denotes a function oft which is uniformly bounded for 
t E Nk(8), 5 > 0. 

(iv) For C e V(C T + m ) we set, generalizing the notations of Section 2, 

Y(t;C) = (Q 1 (i),. .. ,n+m(t))C 
= ()	

(5.6) 

with Q(t) E CnXn and P(t) E CrnXn . Further we set for t  Nk(5) with det Q(t) 0 

WC(t) = P(t)Q(t) = (w,(t))	 (5.7) 

(v) We recall that Assumption 5.1 implies that the number of solutions of equation 
(ARE) OO is lesser or equal to (nfm) 

Using the preceding assumptions and notations we infer from the proof of Theorem 
1 (see also Remark 11(u) and (3.2)) the following corollary.
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Corollary 1 (Fundamental representation formula .for the solutions of equation 
(5.3)). The function	 S 

Wc Nk(6 ) \ {t E Nk(6)I detQ(t) = 0) -i C 
is a solution of the matrix Riccati equation (5.3) with 

w(t) =

Ck, 

e°' ' (1)++0k(t) t th i + "'+Okn ( I vk i (, a).... , Vk(e , c)I + 
1<ki< ... <kn<n+m

Ck 

Ck, 

e' (t)+...+o(() jflk l +...+flk	(k5k 1 	Vk, +
Ck 

where c,(t) is defined by (5.5). 

The following corollary generalizes Lemma 2. For simplicity we formulate the state-
ments of the corollary for the sector So(0) U S(0) containing the positive real *axis. For 
the remaining sectors corresponding results hold true. 

Corollary 2. Let 6 > 0 and

( cn+ 

c 
c 

= 	) 
E V(C+m) 

mI 

with the following properties: 

(i) D(ak,C) 54 0 and D(a,C) = 0 for Re((a')> Re ((a'). 
(ii) D(a',C) 0 0 and D(aJ ,C) = 0 if Re(e'((a')) > Re(e'((a)) for ' < W < 

Yo•

Then the following statements are true. 

a) If If,. . . , i3 10 0, then the solution Wc defined by (5.6) and (5.7) has at most 
a finite number of poles in S 1 (6). Further, 

lim	W(t) W0 = (W)1(<,	 (5.8) S,(6)1-.00 

exists and is a solution of equation (ARE),,. with	 . 

v(,cr),. . . 
-	 (5.9) 

where -the convergence takes place at least at a polynomial rate: 

w(t) - w	915t	
for t € S 1 (6) and ti ^ t0 .	(5.10)
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If in addition,u = k, then Wc has at most afinite number of poles in 5(6) = It  7-1+8 < 
argt	- 8) and the limit (5.8) exists for S(6) t -	. 

b) If p 54 k and .. ,il54 0 then WC has an infinite number 
of poles in B 6 = It E C o - 8 argt < yo + 81 and at most a finite number of poles 
in S0 (6) U S, (b).  Further,

urn	W(t) = W1 = (W)i<t<m	 (5.11)
So(6)i-00 

with
lv(, cr), . . . ,	a)I

(5.12) W ta
n

 - ,vpl 

c) If	.	= 0 and	 ,v,,k(€, a) 1 54 0, then 

urn w(t) = 
S1(6)t—.cx, 

For the investigation of the behaviour of the remaining elements w(t) one needs rep-
resentations of the solutions	which are more precise than those given by (5.5). 

Proof. a) Since the eigenvalues A 1 ,... , An.m are simple it follows as with the proof 
of Lemma 3 that 

D(a t',C) = 0	if a' 0 {a',a'} and ((a") E {((a1),((ak)}.	(5.13) 

Let t E S1 (6) and l i .d',...	I ^ 0. Dividing nominator and denominator of the

representation formula for w(t) (see Corollary 1) by

Ck, 

e t)++t) tth' 

we infer, using (5.13), that there exist to > 0 and co(6) > 0 with 

= Iv (a)' . . Vpk (, a)I +	+ O(e°(6)) 

Vp +	+ O(e-e00))	
(5.14) 

for t > to. This implies (5.8) - (5.10). 
If p = k, then (5.14) is valid for -y- 1 + 6	argt $	- 6, which proves the


last statement of item a). If p 54 k, then (under the assumptions of item b)) for 
t € So(S) the terms containing the factor e.)+ +a(i) are the dominant terms in 
the representation formula for Wc(t) . Hence we infer from the properties of asymptotic 
exponential polynomials (see [4: ???] and [16: ???]) that WC has an infinite number 
of poles in B6. 

The remaining assertions of Corollary 2 are obtained similarly from Corollary 1 0
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Remark 4. (i) Obviously any solution of equation (ARE),,,, can be represented as 
a limit of-the form (5.8), and from Subsection 3.5 it follows that equation (ARE) OO has 
at most ( t tm ) solutions. 

(ii) If A0 has multiple eigenvalues, then the behaviour of the solutions of equation 
(5.3) may be different from that described in Corollary 2. In particular there may be 
solutions of equation (5.3) having an infinite number of poles in the sector Sk(S). These 
poles have at most logarithmic density, which means that for S >, 0 the number of the 
poles of any solution of equation (5.3) in St(S) fl It E CI It] < R} is at most of the order 
O(logR) for R — cc (see [12] for further details). 

(iii) If -yo <0 <71, then Corollary 2 gives a description of the solutions of equation 
(5.3) for I > 0. If o = 0, then it is possible to generalize some of the results obtained 
in Section 4 for the autonomous Riccati equation (RDE)JR to the non-autonomous case. 
We give the following example which corresponds to Remark 3/(ii) and which is an easy 
consequence of Corollary 1.	- 

Corollary 3. Let Re A..<Re.Xm+,, 

	

B) 
= ( v-+i, " , Vm+n)	with A = ( 13m+i,. . .	 and J AI 0 

Then W = BA — ' is the dichotomic solution of equation (5.2) and any solution Wc 
(defined by (5.6) and (5.7) fork = 1) with ICm+ I .. cmn] 0 0 converges for 0 < t —* cc 
at least at a polynomial rate to W. 
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