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Some Results on Non-Coercive Variational Problems 

and Applications 

F. Wessbaum 

Abstract. We give a necessary and sufficient condition to ensure the existence of solutions of 
three problems of the calculus of variations with non-coercive integrands. The solutions u we 
consider are lipschitz functions, i.e. tz E W"— (O, 1). The three problems depends on the same 
functionals but are different in the constraints. We consider respectively a problem without 
constraint, a problem with v' 0 and finally a problem with u 0. These problems can be 
related to optimal foraging models in behavioural ecology. 
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1. Introduction 
In this paper we consider the following three variational problems: Letting f [0, 1) x 
JR -+ .11? be a continuous function satisfying the condition 

(H) f(x,-) : 1R -' JR is convex for every x E [0, 1] 

we investigate the existence of a minimizer u in the cases 

(Ps) inf 1(u) = / f(x,u'(x)) dx u E W"'(0, 1), u(0) = 0, u(1) = S 

(Pr ) inf 1(u) = / f(x,u'(x))dx 0 u E W"'(0, 1), u(0) = 0, u(1) = S 

(Pt) inf 1(u) = /f(x,u'(x)) dx u e W"(0,1), u(0)= 0, u(1) = S 

Hereby S is a given number and W"(0, 1) stands for the set of Lipschitz functions (i.e. 
continuous functions with almost everywhere uniformly bounded derivatives) defined 
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on the interval (0, 1). It is important to observe that we do not impose any coercivity 
condition or any differentiability on the function f. 

For these three problems we will show the following statements. 

(1) In the problems (Ps) and (Pt ) two possibilities can happen: either there is no 
solution for every number S E JR or there exists numbers Sinf and Ssup respectively Sf 
and S such that the following implications 

	

problem (P 5 ) has a solution	: S E J = [ Sf51 , S5] 

	

SE J = (Sj,S9 )	. problem (F 5 ) has a solution 

respectively

problem (Pt) has a solution = S E J = ts+	1 I ml ' sup1 

SE J =	 pro =	blem (P) has a solution 

	

in	sup

are true.

(2) For problem (P) there exists always numbers S and S	such that the 
implications

	

problem (Pt) has a solution	. S E J' = [ S ' += 0, 5]inf 

S E J' = [S = 0, S) = problem (P) has a solution 

are true.

(3) If numbers	and S	exist, then always the inequalities 

Ssup	SSITIP 

are true. 

(4) In general (contrary to S, S and S) we cannot establish an order relation 
between the numbers 5mi and inf* 

Remarks: (1) We will characterize explicitely the numbers Sinf and S u, ( the num-
bers	StJ and	respectively). 

(ii) In general if S = S11 or S = Ssup (if S	S = S, or S = 
respectively), we cannot conclude to the existence or non-existence of a solution. In 
fact it is possible to exhibit cases where we can show the existence of a solution and 
other cases where we can show the non-existence of a solution if S = 5mrif or S = Ssup 
(if S =	S S or S =respectively).SSUP

(iii) If Smnf and 5sup (S and	respectively) do not exist, then J = 0 (J = 0, inf
respectively). Finally, if S	= 0 (if 5mnf = Ssup or S f = S, respectively), then
.Up
J' + = [0] (J = [S] and J+ = [S], respectively).
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(iv) We will show in particular that if f = f(x,e) e C°, f E C° and f(x,O) 
constant for all x E [0, 11, then the three problems (Ps), (Pt ) and (P ' ) are equivalent 
for S 2 0. In particular we have the relations

—5+ -s'+ Sinf < 0 + - S+ = 0,	Ssup - sup - sup - ,	
5 

inf_ inf 

Although some of these conclusions are already known, the main interest of this 
paper is to relate all these results. Note that they are optimal. Another important 
point is the fact that we can compare the existence of solutions between these three 
variational problems. Indeed this question is the same as to compare the maximal value 
and the minimal value of S for each one of the three problems. 

In the coercive case, i.e. when the function f satisfies the Tonnelli growth condition 

lim f(x,e) = +00 for every x E [0, 1], II—.00	iei 

it is well known that there exists a solution to the problem (Ps) for any S E 1!? (see 
Cellina and Colombo [8], Marcellini [16] or Olech [17]). Note that for problems (P t ) and 
(Pt) existence holds only for every S 2 0 since otherwise the problem is ill posed. In 
the general case we show that the existence of a solution of problem (Ps) (of problems 
(Pt) and (P s+ ), respectively) depends on the value 5: S has to belong to an interval 
Y (interval J+ and J'+, respectively). 

The problem (Ps) can be illustrated by the example of Weierstrass (see. Cesari [9]): 
f(x,) = With our notation we will obtain for this problem that = S5 ,,, = 0. 
In this example we know that there exist a solution u E WI,00 if and only if S = 0, i.e. 
if and only if S = Si,,f =	= 0. The problem of finding geodesics on a cylinder (see 
Troutman [191) can also be put into the formalism of the problem (Ps). 

The variational problem (Pt ) appears in models related to behavioural ecology. 
Arditi and Dacorogna [2 3] considered models of optimal foraging theory. One of the 
problems is related to the minimization of a functional F of type 

F(u) / (p(x)e_u' + K(x)u'(x)) dx 

in the class of functions u E W 1, (0, 1) such that u(0) = 0, u(1) = S and u'(x) 2 0 a.e. 
on [0, 1]. Observe that in this case the integrand is bounded, and therefore non-coercive, 
with respect to u' 2 0. 

The problem (Pt) has also been studied by Botteron and Dacorogna [5). Their 
approach is slightly different: they fix the value of S and obtain a sufficient condition 
depending on f and S for the existence of a solution. We will see here that this sufficient 
condition is included in our framework in such a way that it implies directly the relations 

> s> Si = 0 (i.e. S E J). 
Botteron and Marcellini [6] studied similar problems. In their paper the essential 

difference is that there the functional I depends not only on x and u' but also on u.



288	F. Weissbaum 

The constraint is the same, i.e. u' 0 or u 2 0. In their context they obtain a sufficient 
condition to prove the existence of a minimizer. Here we can show more precise results 
since f does not depend on u. Indeed we obtain a necessary and sufficient condition for 
the existence of a solution for each of our problems (Ps), (Pt) and (Pt). 

The study of problem (P t ) is motivated by all classical examples illustrating prob- 
lem (Ps) (see Akhiczer [1], Cesari [9] or Gelfand and Fomin [15]) in which we introduce 
an obstacle. This is the motivation of the introduction of the contraint u 2 0. Note 
that we can also consider more general constraint such as u(x) 2 g(x) for all x e [0, 1] 
where g is a given function representing the obstacle. By changing variable (v = u - g) 
the problem is then equivalent to problem (P t ). Observe that this problem is more 
difficult than the two others since the function u appears explicitely in the constraint: 
u must be positive. In the two other problems the integrand (and the constraint for 
problem (P)) depends on the derivative u' only. 

In the Section 2 of this article we first present some examples that motivate the study 
of these three problems (Ps), (P) and (Pt). Then we consider some mathematical 
preliminaries in the goal to study these problems independently. In Section 3 we compare 
the three problems, i.e. we prove for a fixed S if the poblems have a solution. As we will 
see, this question is the same as to compare the values	S,, and St, (respectively 
S,, 1 , S	and S;). 

2. Examples and mathematical modelling 

2. 1 Examples 

2.1.1 Geodesics on a cylinder. This is a well known problem but we present it only 
to show that we can put it into our formalism. We consider a right cylinder C containing 
two points A and B. We suppose that this cylinder is generated by a Jordan curve in 
the (x, y)-plane. Assume that this curve is described in polar coordinates by a strictly 
positive function p E C'([0,27r]) with p(0) = p(27r). By using cylindrical coordinates 
(p, 6, z) it implies that the cylinder is defined by 

X(9 ' z) = p(6) cos 6 

	

y(6, z) = p(6) sin 6	(z E 111,6 E [0, 27,]). 
z(6,z)=z 

We want to join the points A and B by an arc lying on C and haying shortest possible 
length. Let A =(p(6 1 ) 7 9 1 ,z 1 ) and B = (p(61),62,z2). The curve joining A and B is 
given by

x(0)=p(6) Cos 0	 S	 S 

y(0)	p(9) sin 6	(6 E [61,62]) .: 
z(8)=z(8)



A=(

)+S) 
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where z(9) = z1 and z(92) = z2. With such a notation the curve has the length 

L(z) 
= J xl(9)2 +y 1 (0) 2 + z I (0) 2 dO 

= f \/(0)2 + -p'(0) 2 + z(9)2 do. 

Without loss of generality we can suppose that A = (0,0) and B = (1, S). Therefore by 
letting f(x, ) = /p(x)2 + p'(x)2 ± 2 the problem is 

(Ps) inf { 1(u) 
=	

f(x, u'(x)) dx u E W"'(0, 1), u(0) = 0, u(1) = /  
Such a problem on a right circular cylinder (i.e. p(G) constant > 0) can be found in 
Troutman [19]. Cesari [9] treats this problem of geodesics on a sphere. Note that in 
this last case the lenght depends neither on z' and 0 but also on z. 

2.1.2 Problems with obstacles. Let g E C'(fO, 1]) and S > 0. We then consider two 
points A = (0, g(0)) and B(1, S + g(1)) in the (x, J)-plane. We want to find a function 
v joining . A and B such that its length is minimal and v(x) ^! g(x) for every x E [0, 1]. 
This situation is represented in Figure 1. The function g represents an obstacle that 
the curve v must avoid. 

Figure 1: Problem with obstacle 

The length of the curve described by v is L(v) = j1' Ji + v(x)2 dx. Hence the problem 
is to find

inf{L(v)=J1+v1(x)2dx v  W
1 '°°(O,l)withv >g. 1 1	 (. v(0)=g(0), v(1)=S+g(1) 

j 0
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By letting u v - g and f(x, ) = /i + ( + g'(x))2 this problem is then equivalent to 
the problem 

+	I
	I
	 0 < u E W"(O, 1) 

(') Inf1I(u)= 	
f(x,u(x))dx u(0)=0, u(1)=S 0	 ^ 

Note that all classical problems of the calculus of variations (see Akhiezer [1], Cesari [9] 
or Gelfand and Fomin [15]) where the obstacle can be represented by a function such 
as g and where the integrand depends on x and u' only (i.e. no dependence on u) can 
be transformed into this formalism. 

2.1.3 Biological problems. Some models of behavioural ecology (see Botteron [7]) 
study the movements of animals while foraging, i.e. while searching food. The problem 
we want to deal with is the following: an animal is going each day around in its habitat 
to find food. Suppose that the food resource is renewed each day and with the same 
distribution. Assuming that the animal has learnt the food distribution, what is the 
optimal way to exploit the habitat in the goal to maximize the quantity of the food? 

In the last few years, optimal foraging theory has developed models to answer such 
theoretical problems. Charnov [10] attempts to formalize this problem and gives a 
partial answer in the well-known "patch model": he only considers particular type of 
food distributions. More recenity, Arditi, Botteron and Dacorogna [2, 3, 5 - 7] have 
proposed models in which food distribution is arbitrary. 

Their model can be described by the animal's shedule u = u(x) (time in function 
of position x with x E [0, 1]). The interval [0, 1] represents a one-dimensional habitat 
or a closed curve in a plane with x = 0 and x = 1 corresponding to the start and 
the end point of this curve. These two points are assumed to be both the nest or the 
cache of the animal. We suppose that the animal covers its habitat during the "foraging 
period" S (u(0) = 0 and u(1) 5). For biological reasons the speed of the animals 
is upper bounded: after change of variable this is equivalent to u'(x) > 0 a.e. The 
food distribution in the habitat is decribed by the food density p = p(x). We represent 
the time during which the animal eats the food available at point x by the "foraging 
presence" tz'(x). Finally the dynamics of food acquisition is described by (u'(x)) where 

is a given function. 
In mathematical terms, if we let f(x,u'(x)) = p(x)(u'(x)) + K(x)u'(x) where 

K represents the costs of the foraging, then the problem is to find the minimum of a 
non-coercive function of the calculus of variations: 

(P) inf{I(u)=ff(xul(x))dx 
u(0)=Oandu(1)= S 

	

I	 uEW1(0,1), u'^O} 

where S > 0 is a given number and Wl00(0, 1) stands for the set of Lipschitz functions 
defined on (0, 1). Note that f(x, ) = p(x)e + K(x)e is a relevant example in the 
optimal foraging described above.
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2.2 Mathematical preliminaries 
Let the function f : [0, 1) x JR - JR be continuous and satisfying the condition (H). 
Since the function f(x,.) is convex we can define its left and right derivative 

f(x + 0 - f(x,e) f(x,) = lim 
Ito	t 

f(x, + t) - f(x,e) 
f(x,e) = lim I T O	t 

respectively. Note that these two limits exist everywhere and are bounded (not neces-
sarly uniformly) since f is convex and domf = {(x, ) E [0,1] x JR: If (x, )I < + oo} = 
[0, 11 x JR. Moreover the functions ft(x,.) and f(x,.) are non-decreasing.	- 

2.2.1 Behaviour of f at infinity. The results of this subsection are well known 
and we state them here for the sake of completeness only (for more details, see Ekeland 
and Temam [14] or Rockafellar [181). 

Since the function f(x,.) is convex, the function 

g: [0,1)xJR\{0}—JR defined byg(x,)= f(x,e) - f(x,O) 
C 

is non-decreasing. Therefore we can define the functions 

d: [0,1] -* JRU {+oo} by d(x) = lim g(x,) 

C: [0,1] - IRU {—}	by c(x) = lim g(x,). 

These definitions are clearly equivalent to 

f(x,C) d(x) = hm	= lim f(x,C) = lim f(x,C) 
e	e—+oo 

f(x,C) C(X) = lim	= lim ftt 	= lim f(x,C), --	e 

respectively. We have c(x) <d(x) for every x E [0, 11. If we suppose the functions c and 
d to be bounded, then we cannot conclude at their continuity, and this even if f is 
of Lipschitz type. 

Example 2.1: Let e > 0 and f(x,C) = Carctan(Ix). It is easy to verify that 
this function satisfies condition (H). Let .E R. Then for any x,y E [0,1] we have 
If(x ,C) — f( y ,) I <	— y. Therefore f(,) is of K(C)-Lipschitz type where 
K(C) = Note that this constant K(C) is the smallest one satisfying the Lipschitz 
condition. However d(x) = 7r/2 for 0 < x < 1 and d(0) = 0. It means that d is not 
continuous at the point x = 0. 

The next lemma gives a possible sufficient condition for the functions c and d to 
be continuous. We state it as a matter of curiosity but we will not require any extra 
hypothesis than (H).	 .
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Lemma 2.1: Assume that for all e JR there exists a constant K() > 0 such that 

(1) f(x,) - f( y,) I	K()x - y Ifor all x,y E [0,1] 

DO
e	 (-- 

(ii) urn	<	urn 

	

K()	.	:c.) > -, respectively).
00 C 

Then the function d (the function c, respectively) is of Lipschitz type. 

The proof is elementary. Note that this lemma is in some sense also necessary since 
we cannot suppress any condition on f . The function f given in the preceding example 
satisfies the condition ( ii) only for E = 0 but does not satisfy this condition for any 
E >0. 

2.2.2 The conjugate function f*• For the function f the conjugate function f* 
[0,1] x R--* RU {+oo} is defined as 

f(x,a) = sup{a—f(x,)}	((X, 0,) E [0,1] x JR). 

Since f(x,) is convex we can define the left and right derivative of f*(x.) by 

(X, a) = 
urn f*(xa + t) - f(x,a)

ito	 t 

f (x, a) = lif*(x,a+t)_f*(x,a) 

im 

T o	 t 

respectively. 

Remarks. (1) Let x E [0,1] be fixed. When c(x) < d(x), f(x,co) is bounded if 
a E (c(x),d(x)), and in the case where d(x) < + (c(x) > —oo, respectively) we have 
f*(x , a) = + 00 if a > d(x) (if a < c(x), respectively). When c(x) = d(x) we have 
clearly f(x,a) = 0 if a = d(x) and f*(x,a) = + 00 if a d(x). 

(ii) The derivatives f and f are bounded in the interior of domf = {(x, a) E 
[0,1] x JR: f(x,co) < + 00}. 

(iii) By convention (as in Rockafellar [181), when d (when c, respectively) is 
bounded, we let f(x,a) = f(x,a) = +ooifa > d(x)(f(x,a) = f(x,a) = - 00 

if a < c(x)). This convention implies that f(x,.) and f(x,) are non-decreasing 
functions. 

These left and right derivative leads us to the definition of the sets 

af(x,) = {a 1R f(x,e) a < f(x ,e)}	( E 11?) 

af'(x,a) = {	JR I f(x,a) < < f*+()}	(a e 

The set ôf(x, ) (the set 0f(x, a), respectively) is called the subdifferentialof f at point 
(x,) (of f at point (x, a), respectively). Observe that if f, +(x , a) = f(x,a) = oc, 
then the set a! *(x,a) is empty. In the interior of domf, this set is never empty. 

The next lemma follows from the above definitions.
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Lemma 2.2: Let x E [0, 1] be fixed. Then the propositions (a) a E ôf(x, ) and (b) 
E i3f(x,a) are equivalent. 

The proof of this lemma is given in Rockafellar [18]. It means that 81 (x,.) is a 
generalized inverse of ôf(x,.) and conversely. 

2.2.3 The Kuhn-Tucker Theory. Let f: [0,1]xli?— lR and g: [0,11x1RxJR-1R 
be continuous functions, X = W"°°(O, 1), As = { u E X1 u(0) = 0 and u(1) = S} and 
Y = L2 (0, 1). We define 

G: X—Y by G(u)(x)=g(x,u(x),u'(x)) 

F: X - JR by F(u) = /f(x,u'(x)) dx 

and Ay = { v E Yl v(x) <0 a.e.}. Let 

(P) inf {F(u) = f(x, u'(x)) dx u E As and G(u) E Ay 

/ 
	
}.


Note that the problem (F) can be formulated in the form 

	

u E W 100 (0 , 1), u(0) = 0	

} 

	

(P) inf {F(u) = I f(x,u'(x)) dx u(1) S, g(x,u(x),u'(x))	0 a.e. 

Definition 2.1: Let 

= {A E L2 (0 , 1) A> 0 a.e.} 

= { A E L2 (O , 1) JA(x)v(x)dx<O for every VEAY}. 

(i) We define the Langrange function L: As x A?), - JR associated to the problem 
(P)by

L(u,A) = J (f(x,u'(x)) + A(x)g(x,u(x),u'(x)))dx. 

(ii) Let (i!,,\) e As x A?),. We say that (u, ) is a 3addlepoini of the function L if 

L(ü,A) <L(i,) L(u,A) 

for every (u, A) E As X A°.
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The proofs of the following two lemmas can be found in Barbu and Precupanu [4]. 

Lemma 2.3: The element (u, ) e As x A° is a saddle point of the function L if 
and only if 

(a) L(ü, ) = min- E A, L(u, ) 

(b) g(x,u(x),u'(x))	0 a. e. in (0,1) 

(c) (x)g(x,u(x),u'(x)) = 0 a. e. in (0, 1). 

Lemma 2.4: If (u, ) E As x A° is a saddle point of the function L, then i is 
a solution of problem (F). Conversely, if problem (F) admits a solution i, then there 
exists an element \ E A° such that (, )) is a saddle point of the function L. 

Ekeland and Temam [14] give also a proof of the two lemmas above based on duality 
theorems. Note that in the general theory the function f can also depend on u, but we 
avoid deliberately this dependence since the integrand in the problems we want to deal 
with does not depend on u. 

Now we want to apply these results to our problem. 

Theorem 2.1: Let the function f : [0, 11 x B? - Rbe continuous and satisfying 
condition (H). Let further the function g [0, 1] x JR x JR - JR be differentiable and 
g(x,.,.) be convex. 

(i) If ü E As is a solution of the problem (P), then there exist E A° and a E JR 
such that 

(a) 0 E c9L(ü,A), i.e. a E 

ôf(x, ü'(x)) + (x)g (x, i(x), i'(x)) - f (s)g., (s, i(s), W(s)) ds a. e. in (0, 1) 

() g(x,u(x),u'(x))	0 a. e. in (0,1) 

() (x)g(x,u(x),u'(x)) = 0 a. e. in (0, 1). 

(ii) Conversely, if there exist i E A 5 , A E A9 and a E JR such that conditions (a), 
(b) and () are satisfied, then u is a solution of the problem (P). 

This theorem is equivalent to Lemma 2.4. The only difficulty comes from condition 
(a). However, since in this case L(u, A) is a convex function of u and a linear function 
of A, the minimum of L is attained at a point (i, A) if and only if 0 E t9L(ü, A) where ô 
represents the subgradient of L as function of u.
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2.3 Existence of a solution for the problem (Ps) 

In this subsection we will deal with problem (Ps). We begin with the following 

Theorem 2.2: Let

d11 = inf d(x) = inf lim 
f(x 

	

xE(0,1)	zE(0,11 —+oo 

cSUP = sup c(z) = sup lim 
f(x,t)

 

	

zE [ 0 , 1 1	zE(0,1]	°° 

Then the following statements are true. 

(i) If d11 < c 1,, then problem (Ps) has no solution for every S E R. 

(ii) If d1 ,, 1 > c501, we define 

	

1	 1 

S	lim f(x,a)dx	and	S,	lim If(x,a)dx, 

	

aTdf I	aJc.,  

	

0	 0 

then problem (Ps) has a solution for every S E (Sjn f , S5 ) and ha., no solution if 
S < Sinf or if 5> 

	

Remarks: (i) In general if S =	or S = S1 ç, then one can not conclude at the 

existence or non-existence of solutions of problem (Ps). 

(ii) If d1f = c51 , then one can not determine in general the values of S and 
In some cases (e.g. f = const) we can proof the existence of a solution of problem (Ps) 
for any S E JR and in other cases (e.g. f(x, ) = (sin(27rx) + 2)(arctan C + ir)) we have 
no solution of problem (Ps) for any S E R. However the next lemma gives a necessary 
and sufficient condition to obtain the existence of a solution of problem (Ps) in this 
particular case. 

To establish Theorem 2.2 it is sufficient, by Kuhn-Tucker theory, to observe that 
U E W"°°(O, 1) with u(0) = 0 and u(1) = S is a solution of problem (Ps) if and only if 
there exists an a E JR such that a e af(x,u'(x)) a.e. 

We recall that for a E JR and v E L(0,1), the inclusion a E Of(x,v(x)) a.e. 
means that

f(x,v(x)) <a f(x,v(x))	for almost every x E (0, 1).	(1) 

The proof of Theorem 2.2 is therefore an immediate consequence of the lemma which 
follows. 

Lemma 2.5: Let d f = 'nf €[o,i) d(x), c9 , = sup 10 i c(x) and a E R. 

(i) If c9 > d, 1 , then for every a E JR there is no v E L°°(0, 1) for which the 
inequalities (1) are satisfied. 

(ii) If c 1, = dinf, then for at most one a E R'-there exists V E L°°(0, 1) such that 
the inequalities (1) are satisfied.
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(iii) If < dij, then for every a E (c9 ,d1c) there exists v e L(O, 1) such that 
the inequalities (1) are satisfied. Conversely, if there exists a E it? and v E L°°(O, 1) 
such that inequalities (1) are satisfied, then a E [c5 , drni]. 

Proof: First observe that inequalities (1) are equivalent to the inclusion v(x) E 
ôf*(x a) almost everywhere. This is equivalent to showing that f.*,- (x, a) and f(x, a) 
are bounded in L°°(O, 1). For e > 0 let 

Id(E) = x E [Q, 1] Id(x) - d11 J <E} 

	

1'! W = {x E [0, 1] 
1 

Ic(x) - c9	<}. 
By definition of d11 and	for every e > 0, Id(E) and I(e) are not empty. 

Let a > d11 and e e (O,a - dIf ). This implies that f*(x,a) = +oo for every 
x E Id(e) . We then distinguish two cases: 

(a) measld(c) > 0: Then f(x,a) = f,(x,a) = +oo for every x E Id( E ) which 
implies that v 0 L(0, 1) since meas Id(E)> 0. 

(b) measld(e) = 0: Let x E Id(E). Then f*(x,a) = +cx. Hence for every k > 0, 
there exists G E ii? such that aek—f(x,ek) ^! k. Let x, E Id (E)c (i.e. x,, E [0, 11\Id(e)) 
a sequence such that	x,. = X . Then we have 

a k - f(x,) + f(x, k ) - f(x,ek) > k. 

Since f*(xn,a) ^! a - f(x,Ck), we obtain 

f*(xn,a)+f(xn,ek)_f(x,ek)>k	and	liminff(x,a)>k 

since lirn_.. f(x, ek) = f(x, Ck). Therefore for all k > 0 there exists a neighbourhood 
V of x such that f(,a)> k for every E V. Since this result is true for k as large as 
we want, it implies that v L°°(0, 1). 

With the same argument we can show that if a < c9 ,,,, then v L°°(0, 1). This 
implies that inequalities (1) hold for v E L°°(0 1 1) only if c511 a d11 . The cases (i), 
(ii) and (iii) follow easily from this result U. 

We now give an example which illustrates Theorem 2.2. 
Example 2.2: Let P1, P2 : [0, 11 , it? be continuous functions, P1, p2 ^! 0, and let 

the function f: [0, 1] x it? - it? be defined by 

f(x,C) = pi(x)i(C) + p2(X)2(C) where i(C) = ICI and 2(C) 
=

2 

We consider the following problem: 

(Ps) inf{I(u)= / f(x,u'(x))dx u E W"°°(O,l), u(0)=O, u(1)= s}.
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In this context the classical problem of Weierstrass (i.e. f(x, ) = x 2 ) corresponds to 
= 0 and p2 (r) = X. We will see here how to apply our theorem to the example of 

Weierstrass. 
Let K = {x E [0, 1]: P2 (X) = 0}. This set is compact. Assume that it is not empty. 

Then we have

	

d(x\ = u rn 
f(x,) = f p i (x)	if x E K 

+00/	 1. +00	if x K 

c(x) = lim	= f — p i (x) if XE K 
00 1—oo	if xK. 

Let PK = minxEK p i(x) > 0. Then c51, = — PK and d1f	PK• If PK = 0 and 
meas{x e K : p, (x) = PK = 01 = 0, then problem (Ps) has a solution only if S = 0. 
If p j< = 0 and meas{x E K: p i (x) PK = 01 > 0, then problem (Ps) has a 'solution 
for every S E R. 

Now let us suppose that PK > 0. For the left and right derivatives of f we have 

+  (x	Ip1(x)+p2(x)e	if e>o 
f	)= — p i (x) + p2(x)e if e < 0 

-	fpi(x)+p2(x)e	if	'>o 
f	(,e) - —p(x) +	2(x)	if C <0. 

The conjugate f' is defined by 
o if	klIpl(x) 

+00 if xEK and lal>pi(x) 
/a 	(X))2 .i 	-

if xK and a>pi(x) 
2	p2 (x) 

(a +Pi(x))2 if x	K and a <—p1(x) 
2	p2(x) 

and its derivatives are given by
0 if —p 1 (x)	a <p1(x) 

+cc if xEK and a>pi(x) 

—co 
f(x,a)—

if xEK and a<—pi(x) 
a — n(x' 

'"' if xK and a>pi(x) 
P2 W, 

a + Pi(x) 
P2(X)

if x	K and a < —p1(x) 

o if —p 1 (x) <a	pi(x) 

+co if xEK and a>pi(x) 

—cc 
f,,	(x,a)=

if xEK and a—p1(x) 
a — ' (x r1	) if xK and a>pi(x) 

P2(x) 
a+pi(x) if x	K and a < —p1(x). 

P2(X) '	 '
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With the help of Theorem 2.2 we have for this problem 

s p = urn fa_pl(x)d	and	 lim f a+P1(x)d 
'1 pK	p2(x)	 al—PK J	p2 (x) 

K 1	 K, 

where K1 = {x K: p1 (x) <pK}. 
If we apply these results to the example of Weierstrass (i.e. for f(x, ) = x 2 ), we 

conclude that PK = 0 and that S5 = Sf = 0. Therefore the problem (Ps) admits a 
solution only if S = 0: the solution is given by u = 0. In all other cases (i.e. for S 0 0), 
the problem of Weierstrass does not admit any solution. 

Example 2.3: In geometrical optics, using Fermat's principle (see, for example, 
Dacorogna [131), we are led to find a solution of problem (Ps) with 

f(x,) = a(x) \/1 _+V 

where a : [0, 1] —+ 1R is a continuous function representing the refractive index. Let 
amjn = minXE [ 0 , 1 ] a(x). Then we have c(x)	—am i,, and d(x)	amjn. Therefore, 

applying Theorem 2.2, we obtain three cases: 

(i) amjn <0: There is no solution for any S E R. 
(ii) amj,, = 0: Let J = {x E [0, 1]: a(x) = am i n = 01. If mea.sJ = 0, then problem 

(Ps) admits a solution only if S = 0. If measf > 0, then problem (Ps) admits a solution 
for any S E R. 

(iii) amin > 0: We can calculate the minimal and maximal value of S: 

amj,,
dx	and	S1f = Ssp. Ssup = J a2(x) - amin 

0 

2.4 Existence of a solution for the problem (P's) 

Now we will consider the second of our problems, namely problem (P ' ) in which the 
function f is continuous and satisfies condition (H). 

Theorem 2.3: Let d1f = inf10 i d(x) =nf1E[0 11	
Lj2 and K = {x E 

[0,1]:	(X, 0) < d1 ,,}. Then let 

S. 
1+ 

0	andS= lim Jf*+(xa)dx 
K 

If 5;-4 < 5 < 5'	then problem (P ' ) has a solution. Conversely, if S < S	or sup, nf 
5> S'	then problem (P) has no solution. S.'+
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Remarks: (i) If S = S > 0,then we cannot conclude in general that problem 
(Pt) admits a solution. (ii) If S <S = 0, then the problem (P) is ill posed: (iii) 
If measK = 0, thenS =	= 0. 

Proof of Theorem 2.3: Let S 2 0 and A = {u E W"(0,1) : u(0) = 
0 and u(1) = S}. With the help of the Kuhn-Tucker theory, there exists a solution 
for the problem (P) if and only if there exist u E A5 , a E R and A E L2 (0, 1) such 
that a.e. 

U , (X) ^! 0,	A(x) ^! 0,	a + A(x) E ôf(x,u'(x)),	)(x)tt'(x) = 0.


For a € 111 we define 

K(a) = {x E [0,1]: f(x,0) <a)	and	Kc(a) = [0,1] \ K(a). 

By letting .\(x) = 0 for a.e. x E K(a) and A(x) € ôf(x,u'(x)) - a for a.e. x € Kc(a) 

we conclude that there exists a solution for the problem (P t ) if and only if there exist 
u€As and a€JR such that 

a E af(x,u'(x))	for a.e. x  K(a)	 (2) 
u (x) = 0 for a.e. x € K (a).	 (3) 

Let us consider u E As and a E JR such that conditions (2) and (3) are satirfied. 
Then u'(x) 2 0 for a.e. x € (0, 1). More precisely we have u'(x) > 0 for a.e. x € K(a) 
and u'(x) = 0 for a.e. x € K'(a). 

Moreover, let a 1 < a2 and assume the existence of elements U1, U2 € W 11 °°(O, 1) 
such that

a1 € ôf(x,u'1(x)) for a.e. x € K(ai) 
a2 € ôf(x,u(x)) for a.e. x E K(a2). 

Then K(a i ) C K(a2 ) and u'1 (x) 5 t4(x) for a.e. x € K(a i ). This implies that the 
maximal value of S will be obtained by taking the maximal value of a for which the 
conditions (2) and (3) are satisfied. With the same arguments as in Theorem 2.2 on 
the existence of a solution to the problem (Ps) we know that a € Of(x,u'(x)) has a 
meaning only if a d1f since u is of Lipschitz type. This leads us to consider the 
maximal set

K={xE(0,1): f(x,0)d11}. 

With the set K we finally obtain 

S = hmJf(xa)dx	 S 

Tdi.f

and the statement is proved 0
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Botteron and Dacorogna [5) study the same problem (P ' ) in a different way: they 
fix the value of S and obtain a sufficient condition depending on f and S to conclude 
at the existence of a solution. This condition is given by 

y(S) < dinf -

where	= sup10 j f(x, S). 
In our framework, 7(S) < dinf implies S t,, > S > 0: since c, u o < 7(S) we have 

clearly c51,., < d1 ç; let us consider a = y(S) and K(a) {x e [0,1] : f(x,a) > 01. 
The function u defined by 

u(0) = 0	and	u1(x) = 1f(x,a) if x  K(a) 
0	if xK(a) 

is then a solution of problem (P '+ ) for S0 = fK(0) f(x, a) dx. Finally, we have 

S >50? J f(x,a)dx >
I 

i	f(x,S)) dx = S>0. 

It means that in general the sufficiency condition 7(S) < d1 ,,ç is not necessary. We give 
below such an example. 

Example 2.4: We consider the problem 

(P'	
uEW 

) inf {I(u) f f(x,u'(x)) dx 
u(0) = 0, u(1) = S 

'(0,l), u'?O} 

where f(x, ) = e x y'i + 2 'and we show that the result of Botteron and Dacorogna 
cannot be applied if S is sufficiently large. Indeed, we have

e  d(x)=ez,	d1=1,	(S)= 
y1+s2 

Therefore y(S) < dinf if and only if S < 1/e2 - 1. Moreover 

=	I ¼21_ a 
dx = arctan e2 - I. 

aT1

As arctan Ve2 - 1 > 1 /v'e2 - 1 we conclude that there exists a solution of problem 
(P') if 5 > S ^ 0 but y ( S ) > d if arctanV'e2 —1 > 5> 1/Ve2 - 1. Therefore 
the condition -y(S) < di n f is not necessary in general.
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2. 5 Existence of a solution for the problem (P) 
The third problem we want to deal with is (P t ). This problem is more difficult than 
the two first one since the function u appears explicitely in the constraint: u must be 
positive. In the two other problems the integrand and the constraint for problem (Pt) 
depend only on the derivative u'. 

For the sake of clarity, instead of giving immediately the most general theorem (see 
Theorem 2.7), we will start by an abstract existence theorem (see Theorem 2.4) which 
gives the existence of solutions provided one can find an appropriate function 1. We then 
give two results (see Theorems 2.5 and 2.6) where such a function can be constructed 
easily. Finally we show how I can be found in general (see Theorem 2.7). 

Theorem 2.4: The problem (Pt) admits a solution if and only if there exist func- 
tions I e W 1,2 (0, 1) and u E W"°°(O, 1) such that 

U(0) = 0, u(1) = 5, u 0 
1 is non-increasing 

?i'(X) E i9f (x, 1(x)) a. e. in (0, 1) 

l'(x)u(x) = 0 a. e. in (0, 1). 

Remarks: (i) A function u E W 1 °°(0, 1) which satisfies all the conditions of this 
theorem is of course a solution of problem (Pt). 

(ii) The set W 12 (0, 1) stands for the set of functions defined on [0,1] and whose 
first derivative in a weak sense belongs to L2 (0, 1). 

(iii) Theorem 2.4 is a direct application of the Kuhn-Tucker theory. We will see 
that in the case where I is differentiable and fe('O) is monotone, this theorem implies 
that problem (P) can be easily compared to problems (Ps) or (Pt). 

Proof of Theorem 2.4: The Kuhn-Tucker theory leads us to the following result: 
problem (Pt) has a solution u E W 1 '°°(O,l) if and only if there exist A € L2 (0,1) and 
a E JR such that

u(0)=0, u(1)=S, u>0 

A>0 a.e. in (0,1) 

a E af(x, u'(x)) + / A(ci) dci a.e. in (0, 1) 

A(x)u(x) = 0 a.e. in (0, 1). 
Let 1(x) = a - 0 dci. Since 0 < A E L2 (0, 1), 1 is non-increasing and 1 e W 12 (0, 1). 
With the help of the conjugate function f we can conclude that the problem (Pt) has 
a solution u € W l00 (0 , 1) if and only if there exists a function I E W 1,2 (0, 1) such that 

u(0)=0, u(1)=S, u>0 
•	 S	 5	 1 is non-increasing 

u'(x) E 31* (x, 1(x)) a.e. in (0, 1) 
l'(x)u(x) = 0 a.e. in (0, 1). 

These last relations represent the result we are looking for U
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We now present two cases where the function I can be found easily. 

Theorem 2.5: Let 1, .f E C'([0 , 1] x JR). Assume that the function f(x,.) is 
convex and the derivative f( . ,0) : [0,1] - 1!? is non-decreasing. Then for a given 
number S > 0 the problems (Pt) and (Ps) are equivalent. In particular either the two 
problems have no solution for every S > 0 or 

SU) = S 11 = urn I f(x,a)dx 
j 
0 

and
/ 

'in1 = max (S j ,0) max ( urn f f(xa)dx0) 
cJc	J 

0 

Proof: Let 5> 0. 
(a) Suppose that problem (Ps) admits a solution u e W 1, (0, 1). Let di ,,f 

i nf Z E[0,1] d(x) and c5 = SUP Z E[0,I] c(x). We know that problem (P 5 ) admits a solution 
u only if

(i) d11 > 

(ii) a = f (x, u'(x)) a.e. in (0, 1) for some a E [c 5 , d11]. 

By hypothesis the derivative f(, 0) is non-decreasing and since the function f(x,.) is 
convex the derivative f(x,.) is also non-decreasing. Suppose that there exist ± and 
u'(2) <0 such that a f(±, u'(±)). Then since f(x,.) and f( . , 0) are non-decreasing 
we have

a=f(±,u'(±)) <f(±,0)<f(x,0)	for all xE[±,1]. 
Since a = f(x,u'(x)) a.e. in (0,1) and a <f(x,0) for all x e [±,1] we have u'(x)	0 
for a.e. x E (±, 1). It means that if tz'(±) 0, then u'(x) 0 for a.e. x E [±, 1]. 
Therefore there exists 0 < a < 1 such that the equation a f(x,u'(x)) has a solution 
which satisfies u'(x) > 0 for a.e. x E (0,a) and u'(x) < 0 for a.e. x E (a,1). Since 

= S > 0 we conclude that u(x) ^! 0 for ' every x E [0, 11. By letting 1(x) a the 
functions I and u satisfy the conditions of Theorem 2.4. This implies that for S > 0 
problem (Ps) admits a solution u which is also solution of problem (Pt). 

(b) Suppose that problem (Pt ) admits a solution u E W"(0, 1). By Theorem 2.4 
we know that there exists a function 1 E W" 2 (0, 1) such that 

1 is non-increasing 

u'(x) E o9f (x, 1(x)) a.e. in (0, 1) 
l'(x)u(x)	0 a.e. in (0, 1). 

It implies that l(x) = f(x,u'(x)) a.e. in (0,1). Moreover if there exists an open set I 
such that u(x) 0 for all x E I, then 1(x) = f(x,0) for all x E I. Since the function 
f( . , 0) is non-decreasing I must be constant on I. Finally if there exists an open set J 
such that u(x) > 0 for all x E J, then 1 must be clearly constant on J. Therefore since 
I must be continuous there exists a E JR such that 1(x) = a and a = f(x,u'(x)) a.e. 
in (0,1). Moreover since u' E L°°(0, 1) we must have a E [c up , d11 ]. It means that u is 
also solution of problem (Ps) 0
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Theorem 2.6: Let f, f E C°([0, 11 x JR). Assume that f(x,.) JR —* JR is convex 
and fe( • , O) : 10,1] — JR is non-increasing. Then the problems (P) and (Pt ) are 
equivalent. In particular, let K = {x E (0, 1): d 1 2 f(x, 0)). Then 

	

- S.' + 	urn	f*+ (xa)dx	and 

	

c1dint 
I	

inf _ 5 — Sin' f —0 -  
K 

Proof: Let S 2 0. 
(a) Suppose problem (P t ) admits a solution. By Theorem 2.4 there exist 1 E 

W 1 ' 2 (0, 1) and u W"(0, 1) such that 

U(0) = 0, u(l) = 5, u 2 0 
I is non-increasing 
u'(x) E af*(x, 1(x)) a.e. in (0, 1) 
l'(x)u(x) = 0 a.e. in (0, 1). 

It implies that 1(x) = f(x,u'(x)) a.e. in (0, 1). Moreover if there exists an open set I 
such that u(x) = 0 for all x E I, then 1(x) = f&, 0) for all x E I. Conversely, if there 
exists an open set J such that u(x) > 0 for all x E J, then 1 must be clearly constant 
on J. Therefore on a sufficient small interval 1(x) is either constant or equal to f(x,0). 
Since fE(, 0) and 1 are non-increasing and continuous there are only two ways to define 
the function 1: 

(i) There exists a 2 f(0, 0) such that 1(x) a. 

	

-	 .	 (f(x,0) if 0<x< 
(ii) There exists x e 10, 11 such that 1(x) =-

	. - ft(x,0) if x<x<1. 
In the second case u'(x) = 0 for a.e. x E (0,) and l'(x) = 0 for every x E 

Let us show that this function u is also a solution of problem (Pt ). By letting 
a = 1(1) we can say that in the two cases above u satisfies 

I  
u(x) 

E af(x,a) for a.e. x e K(a) 

	

= 0	for a.e. x E Kc(a) 

where

K(a) = {x E 10,1]: f(x,0) < a}	and	Kc(a) = [0,1] \ K(a). 

Moreover since f(, 0) is non-increasing we have either K(a) = [0, 1] in the case where 
1(x) a or K(a) = [±, 1] in the case where I is defined as in the point (ii). In both of 
these cases u'(x) 2 0 for a.e. x E K(a). This last result implies that u is also a solution 
of problem (Pt). 

Note that 1(x) a with a < f(0,0) is not possible since in this case u'(x) < 0 for 
a.e. x E (0, ) for some > 0 and hence u(x) <0 for x E (0,:i), which contradicts the 
fact that u is a solution of problem (Pt).
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(b) Suppose problem (P t ) admits a solution. By proceeding as in the proof of 
Theorem 2.3 (see relations (2) and (3)) there exist a E 1R and u E A (recall that 
As ={uE W"°°(0,1): u(0)0 and u(1)=S}) such that 

a = f (x, u'(x)) for a.e. x E K(a)	and	u'(x) = 0 for a.e. x E Kc(a). 

Since f( . , 0) is non-increasing we deduce that there exists ± E [0, 1] such that K = (±, 1]. 
Therefore by letting

	

-	 1f(z,0) if 0<x<±	. - 1(x) a if x = 0	or	1(x) 
=	

if x > 0 f(±, o) if ±  

we conclude that u is also solution of problem (Pt ) • 

Corollary 2.1: Let f, f E C°([0, 11 x JR). Assume that f(x,.) : JR -+ JR is convex 
and f(., 0): [0, 1] -* JR is constant. Then in view of Theorems 2.5 and 2.6 the problems 
(Ps), (Pt ) and (Pt ) are equivalent for all S > 0. 

Before describing the interval to which S must belong to conclude at the existence 
of a solution for the problem (P t ) in the general case, we introduce a set E of functions 
which will describe the solutions of the problem. The definition of this set is motivated 
by the results of Theorem 2.4. We want to exhibit all the functions 1 which can satisfy 
the conditions of this theorem. 

Definition 2.2: We define E as the set of functions I E W 12 (0, 1) such that the 
following conditions are fulfilled: 

(Ea) 1 is non-increasing. 

(Eb) c(x) < 1(x) < d(x) for every x e 10, 11. 

(Es) For every xo E (0, 1) at least one of the two following conditions is satisfied: 
(E) 1 l(xo) e af(xo,0) 

(E) 2 i(s) = l(xo) (x E (x 0 - 8o, x 0 + So)) for some 5o > 0. 

Remarks: (i) The condition (E) 1 is equivalent to f(xo,0) < l(xo) f(xo,0). 
Note that the functions f(,0): [0,1] -* JR and f( . ,0): [0,1) -* JR are continuous. 

(ii) The set E can be empty. However if, for example, infeio d(x) = d11 ^! 
sup 0,11 c(s), then E is not empty since 1 d1 ç or 1 c, belongs to E. 

Definition 2.3: In the case where E is not empty we define the functions 

	

19up : (0,11 - JRU {+oo}	by lsup(x) = sup I(x)
 
'Es 

	

linj : 10,1] - IRU {—oo}	by linc(x) = inf 1(x). 
LEE 

We give below two examples how to obtain these function for a given function 1.
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Example 2.5: Let us consider the function f: (0, 1) x JR - JR defined by f(x, ) = p(x)q). Assume that f is continuous and satifies condition (H) (this is equivalent to 
saying that p is continuous and 0 is convex). 

Figure 2: Construction of 1	and 1j,, f when f(x,) = 

We suppose that 0 satisfies the conditions 

urn	= > —no	and	urn	= <+oo. 

Therefore we have c(x) = _p(x), d(x) = Op(x) and f(x,0) = kp(x), where k E 
a(o). Finally suppose that the set E associated to f is not empty. We then can 
construct the functions ISU P and lj. In Figure 2 we give a representation of all these


	

functions in a general example.	. 

Example 2.6: We take the same example with 

p(x) = sin(2x)	and	OW = j ctan S + ) ds. 

Then we have 

f(x,).= f(x,e) = f(x,) = (sin(27rx) + )(arctan.+) 

d(x) =

 

	

37r (sin(27rx) +
	

and	c(x) = (sin(2,x) + 7)
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d(x)
	

d(x) 

Unf(x) 

Figure 3: Construction of 1 2, up and I i . f , f(x,) = (sin(21rx) + )(f(arctans + ir)ds) 

The functions	and l i ,, f are given by 

(d(0) if 0 <x< d1 if 0<x<ci 
l5 (x) =

f 
f(x,0) if d 1 <x <d2 lint(x) =

{C() 

ft(x,0) if c 1 <x <C2 
d() if d2 <x<1 c(1) if c2<X<1 

where
1	1 1	3 

<d2 < 4-,
1	1	1	3 

<c1<,	<c2<

satisfy the equations 

d(0) = f(d 1 ,0), 
d () 

= ft (d2, 	
c () 

= f(c j ,0), c(1) = f&2,0)- 

In Figure 3 above the representation of all these functions is given. 

With the definition of the set E we can study the problem (Pt ) in the general case. 
We only restrict our work by introducing the following two weak assumptions: 
(Al)f E C'([O,l] x ]R) 

(A2) There exist disjoint open intervals J1 , ..., J, such that U=1 Jk = [0,1] and f(,0) 
is monotone on the intervals Jk (k = 1.....n). 

Observe that we can show the existence of a solution in the general case (i.e. f only 
satisfies condition (H)) but we avoid deliberately this general proof, the notations being 
too heavy in this case. Moreover the results are qualitatively not better. 

The assumptions (Al) and (A2) imply that, for every function 1 E E, there exist 
disjoint open intervals I , , ._ I,, such that U=1 'k = [0, 1] and 1 is either constant or 
equal to f&, O) on the intervals 'k (k = 1, ..., ri). However these assumptions are 
not sufficient to prove that E is not empty. We give below a necessary and sufficient 
condition to determine if E has an element. 
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Lemma 2.6: Assume that the function I satisfies conditions (H), (Al) and (A2). 
Then E is empty if and only if there exist elements x 1 and x2 such that x 1 < X2 and 
d(x i ) < c(x2). 

Proof: Let x 1 < x2 and d(x i ) < c(x 2 ). Suppose that E is not empty and I E E. 
This implies that 1(x i ) 2 1(x 2 ) and d(x i ) > 1(x) 2 1 (x2) 2 c(x 2 ) which is absurd since 
d(x i ) < c( x2). Therefore E is empty.

Xj	X3 X, xI 

Figure 4: Beginning of the construction of 

Conversely, if for every x 1 e [0,1] we have d(x i ) > c(x 2 ) for every x 2 E [x i , 11, then 
we can exhibit a function which belongs to E. Indeed two-cases can happen: 

(a) If d(x) = + 00 for every x E [0, 1], then the function 1(x)	maxyc[olJ f(y, 0) 
belongs to E since for every x E [0, 1] we have 

C(X) fe(x,O)	max fe( y , O ) <d(x) +00. 
yE[O,i) 

(b) If infi011 d(x) < +00, then we can construct a function 1 up E W 1 ' 2 (0, 1) 
which belongs to E. We will see that this function is actually the supremum of all the 
functions which belongs to E. 

We construct	from right , to left, i.e. from x = 1 to x = 0. Let x 0 = 1. 
(i) Let x 1 = min{x E [0, x0 ] : d(x) = d11 }. We let 15 (x) = d 1 for all x E [x 1 , xo]. 

(ii) If f(x, 0) < d 1 for all x E [0, x 1 ], then we let l5 p(x) = d11 for all x E [0, x1] 
and the construction is finished. 

(iii) Assume that (ii) does not hold. We then let 

= max{x € [0,x i ] : fe(x,O) = d11 and f(,0) is decreasing at
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and set l9 (x) = d1f for all x E [x 2 ,x i ]. We finally consider 

= min {x E [0,x 2 1 : f( . , O) is non-increasing on the interval [X , X21 

and 1 = infzE[0z 3] d(x). See Figure 4 on the previous page to observe what x1, x2, X3 
and I represent in a concrete example. 

13	X2	 1, 

Figure 5: Construction of 

At this point of the construction two cases can happen: 
( ill ). 1 >_ fE(x3,0). Then I set 1(x) = f(x,O) for all x E [x3,x2]. 

(iii)b I < fe( x 3, 0). Since 1 > f(x 2 , 0) there exists z4 E (x 3 , x 2 ) such that fe(x4, 0) = 
1. We then set 1, up 	= fe(x,0) for all x E [x4,x2]. 

The points (i), (ii) and (iii) represent the first step of the construction of	To 
go further it is sufficient to take again in account the following two cases: 

(iii),, We replace x 1 by x 3 and d11 by fe(x3,0). We then return to point (ii). 
(ii) 6 We replace x 0 = 1 by z4 and d, 1 by fe(x4,0). We then return to point (i). 
In Figure 5 above the representation of such a construction is given. Since ft (., 0) 

is piecewise monotone l, is constructed in a finite number of steps. Moreover we have 
c(x) < 15 (x) d(x) since l5 (x) is either equal to f&,0) or equal to a constant U 

Lemma 2.7: Assume that the function f satisfies conditions (H), (Al) and (A2). 
Assume that E is not empty. 

(a) If d(x) = +	( if c(x) = -, respectively) for every x E [0, 1 1, then 15(x) 

+00 (l,,ç(x) E -, respectively). 

(b) If there exists x E [0, 11 such that d(2) < +00 (c() > —no, respectively), then 
isup E E	E E; respectively).
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Proof: We prove the statements (a) arid (b) for the function l	only. For 
proceed analogously. 

(a) Suppose that d(x)	+. Let 1(x)	k with k > max1e101jf(x , 0 ) . Then 
1 E E since 1 satisfies clearly the conditions (Ea ) - ( Es) of Definition 2.2. Therefore 
SUp Z EE 1( X ) — +00 for every x E [0,1]. 

(b) Let there exists i E [0, 1] such that d() < +00. Then for any 1 E E we have 
1(x) < d() for all x > ±. Moreover I can be strictly decreasing at a point i only if 
1(e) = f(,O). Therefore 

lsup(x) :.5 max max Mx, 0), d 1 )	for every x E [0, 1] 
(.E[0,11 

where d11 = inf E [o, J ] d(x). Hence 1up satisfies condition (Eb) since d(x) 2 fe(x,O) 2 
c(x) for all x E [0, 1]. 

The function 1,up is non-increasing. Let 0 y x 1. For every c > 0 there exists 
l	E E such that I5 (x)	l , (x) + E. Since 1e,x is non-increasing, we have 

lsup(x)	l(x) + E	le,x(y ) + C	lsup(y) + C. 

Since this result is true for every e > 0 we conclude that 1, up satisfies condition (Ea). 
The function	is continuous from the right. Indeed, let x 0 E [0, 1). For every 

e > 0 there exists	E E such that 15 p(xo)	1, 0 (xo) + e/2. Therefore for every 

x E [x 0 , 11 we have

0	1sup(x 0 ) — lsp(x) <	+ le,r o (Xo) - 1,0(x). 

Since E,XO is continuous, there exists 6 = 8(xo,e) . > 0 such that Ix — xol < 8 implies 
lie 0 (xo) - 4, 0 (x)l < e/2 and finally 

0 x - x0	6 = 0 15 (xo) — 19 (x) <. 

The function '"r is continuous from the left. Indeed, let x0 E (0, 1]. For every C> 0 
there exists 8 = 8(xo,e) >0 such that lx — x0 < 8 implies f(x,0) - f(xo,0)l < e/2. 

With the definition of the set E, these results implies that, for every I E E, Ix — xoI < 
5 yields 11(x 0 )— l(x)l <e/2. Let x E [xo —6, xo]. Then there exists l E E and 11C E E 

such that 

1,(x)	iup(x)	1(x) + 
C and	l 0 (xo) :5 15,,(xo)	1 0 ,(x0 ) + — 4 

This implies
0 15 (x) —

C 
S l(x) +	•:— l0(xo) 

C	 C =	+ 1 1, (x) — 1,(xo) + l,(xo) — l0,(xo)
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Since	 S 

l(xo)	4(x0 )	1 0 ,(xo) + 

we have finally

	

0	15 (x) - l5 (x0)	+ lze(x) - l,(xo). 

Moreover since l E E we know that 0 xo —x < 8 implies 0 < 1 1, e(x) —lx (xo)I < 
Therefore l is continuous. We can then show in an elementary way that l satisfies 
condition (Er). This implies that lsup E E I 

Now we are able to present the general theorem on the problem (Pt). 
Theorem 2.7: Assume that there exists 1 belonging to the interior of E and assume 

that the function f satisfies conditions (H), (Al) and (A2). Then 

(i) either lIf (x)	or there exist bo=Q<a i <bi <	<ak<bk<	<a 
bn<l = an+i such that	 S 

	

11 f(X)	
1f(x,0)	if x  'k = ( ak,bk) (k = 

 =
1f(bk, 0) if x  [bk,ak+1] (k0,1,...,n). 

(ii) either l(x)	d1 ,,1 or there exist 60 = 0 < a 1 < 6 1 < ... < à < bk < ... 
à, < b, < 1 = fl 1 such that 

l(x) 
= Jfe(x0) 

fe(b,0) 

Let

if xE Ik—(ak,bk) (k=l,...,n) 

if x  [bk,ãk+l] (k = 0,1,...,n). 

K= ( U Ik ) n (Uik) 

vp(x) = limJf*+(I ()	) d,	Vjnf(X) =	Jf_(,l iflf (a) +e) da.
CIOEJO

Then problem (Pt) admits a solution for a certain S? 0 if and only if the two conditions 

(al) v5 (x) 2 0 'for. every x E [0, 11 

	

(a2) vii(x) 'O for every x E K:	 S 

are fulfilled. Moreoier, if conditions (al) and (a2) are satisfied then, let 

xp = min {x E [0, 1]: 19 (x) = 

xinf = min {x E [0,1] : 1 1 ç(x) = llflf(l)}. 

Then

	

1	 /	I 

	

S= lirn f	(a, d1 - e) da,	S1 = m (o lim I	(a, c5 + e) dajo	 ) .I U
ejO J 

	

x.u p	 .	rinr
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Remarks: (1) If E is empty, then problem (P) does not admit any solution for 
every S > 0. 

(ii) K is the open set where l ig and l,,, are equal and strictly decreasing. Moreover, 
if x E K, then u(x) u 1 (x) = 0. 

Proof of Theorem 2.7: Step 1: Necessary and sufficient condition for the exis-
tence of a solution. Theorem 2.4 says that problem (P) has a solution if and only if 
there exist 1 E W 1,2 (O, 1) and u E W' , — (O, 1) such that 

u(0)=O, u(1)=S, u>0	 .	(4) 
1 is non-increasing	 (5) 
u'(x) E ôf* (x, 1(x)) a.e. in (0,1)	 (6) 
1'(x)u(x) = 0 a.e. in (0, 1).	 (7)


These relations imply that I E E. Since E is not empty we can define the functions 

lsup(x) = sup 1(x)	and	l(x) = inf 1(x). 
lEE	 lEE 

They are respectively the smallest and the greatest function for which the relations (5) 
and (6) are well defined. Moreover l9 (x) ^! dinf and 11f (x)	for every x E [0, 1). 

Step 2: Condition (al) is necessary. Let 

v5 (x) =	/ f* + (a, 1(a) - e) da,	Vjflf(x) = Urn / f (a, linf 	+ e) da. 
ejo

Letting 1 E E we define u E Wl,00 by u(0) = 0 and u'(x) E t9f*(x,1(x)). Then 
v1 (x) < u(x) < v9 (x). Therefore v5 p(x) > 0 for every x E [0,11 is a necessary 
condition for the existence of a solution of problem (Pt). 

Step 8: Condition (a2) is necessary. Letting 1 E E we define u E W 00 by u(0) = 0 
and u'(x) E 31' (x, 1(x)). Such a function u is a solution of problem (P) if and only if 
S = f0' u'(x) dx, u 0 and 1'(x)u(x) = 0 for a.e. x E [0, 1]. Therefore we define 

E	L2 (0, 1) by g_(l)(x) = 1'(x) I	(a, 1(a)) da 

g: E . L2 (0, 1)	by g+(l)(x) = 1'(x) I	(a, 1(a)) da. 

To explain the intoduction of the functionals g_ and g we consider I E E and u defined 
as above, i.e. u E W 100 (0 , 1) , u(0) = 0 and u'(x) E 8f'(x,I(x)). We then obtain 

g(1)(x) !^ l'(x)u(x) 5 g_(1)(-T)	for a.e. x E [0,1]
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since, for any 1 E E, 1'(x) :^ 0. With this definition, I E E and u satisfy all the conditions 
of Theorem 2.4 if and only if 

g(I)(x) < 0 < g_(I)(x)	a.e. in [0, 1].	 (8) 

Let
•	

.	 K=(UIk)fl(Uik) 
This is clearly an open set. For every x EK and for every 1 E E we have 1(x) = Ijf(X) = 
isup 	= f(x,0) and l'(x) <0. 

Suppose that for a certain . Y E K we have Vjnf() > 0. Then v5 (±) > 0. Moreover 
for every 1 E E we have 

9+(lsup)(±)	g+(I)()	g_(l)(±) 5 g_ ( linf)() < 0. 

Therefore the relation (7) cannot be satisfied for any 1 E E and problem (P t ) does not 
admit any solution for any S > 0. Condition (a2) is then necessary. 

Step 4: Conditions (al) and (a2) are sufficient. Observe first that g+(lsup )(x) 0 
for all x E [0, 1], and for everyl E E and for every x E [0,1] we have 

9+(l9up )(x)	g(l)(x)	g_(I)(x)	g_(l)(x).	.	(9) 

(a) Let x E K. Since conditions (al) and (a2) are valid we have l'(x) <0 and 

0	and	g_(l)(x) 20	for all x E K. 

(b) Let x K.. We then have l(x) = 0 or 1 1 (x) = 0. Therefore we have 

= 0	or	g(ljf)(a) =0	for all x , K. 

The cases (a) and (b) composed with relation (9) imply finally that 

9±(l5up )(x)	0 < g_(l)(x)	for all x E [0, 11. 

Since the functionals g_ and g are continuous and E is connected there exists I E E 
such that	 -	• - 

g(I)(x) < 0 < g_(l)(x)	for a.e. x E [0, 1]. 

It means that the function ü defined by ü(0) = 0 and u'(x) E ôf (x, i(x)) is a solution 
of the problem (Pt ) for S j' i'(x) dx: 

Step 5: Characterization of S, and S f . Suppose that conditions (al) and (a2) 
are satisfied. Then there exists a solution of problem (P) for a certain S 2 0. It means 
that there exists a function 1 E E. such that	 • 

. g+(i(x) <0 <— g -( [)(x )	for a.e.	E [0, 1].
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We then consider the following two cases: 
(i) 1(0) ( di.f. Then since l5 (x) ^: d1,, we conclude that I	d3f satisfies the


conditions of Theorem 2.4 and we obtain 

Ssup — — Ssup = urn f f+ (x, c) dx.

o1 d in r J 

0 

• (ii) 1(0) > d11 . Then since 1(1) :5 dinr we let min {x E [0,11: I(x) = dinf}, 

I(x) = I(x) if x < ± and l(x) = d1 ç if x > ±. Then 1 satisfies the conditions of Theorem 
2.4. To obtain the maximal value of S it is sufficient to replace ± by x5,,., = min{x E 
[0,1]: 15 (x) = 1(1) = d 1 } and we have 

Ssu - lim [	(o, din f '- e) do P - cLo j 
'sup 

For the minimal value of S we consider x = min{x E [0, 1): 11f (X) = l(1)}. Taking 
into account that S must be positive we obtain 

= max (o urn 
j [f (a, c + c) do) 

CIO  
Xjnf 

and the statement is proved I 

3. Comparison between the three problems 

In this section we want to compare the minimal and the maximal values of S for the 
three problems (Ps), (Pr) and (P). We suppose that the function I : [0,11 x R — R 
is continuous and satisfies conditions (H), (Al) and (A2). Note that the assumptions 
(Al) and (A2) can be relaxed but we avoid deliberately to consider the general case, 
the notations being too heavy. Observe that these two assumptions are not very strong. 

3. 1. Comparison between the maximal values of S 

In Section 2 we characterized the maximal values S 51,,,	and S	for the. three

problems. Here we give relations between these values.. 

Theorem 3.1: Assume'that- there exist numbers Si E JR and 52 > 0 such that 
problems (Ps,) and (Pt) have a solution. Then Sup < S p <S,. 

Remark:	S and S are allowed to take the value +00. up 

The+ proof of Theorem 3.1 is given by the following two lemmas.-
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Lemma 3.1: Assume that there exist numbers Si E JR and S2 > 0 such that 
problems (Ps1 ) and (P'2 ) have a solution. Then the following statements are true. 

(i)S <S sup - sup 

(ii) If S p is bounded, then	= u5 (l) and S+sup - S5 - min10 1) u5 p(x) - 
for u 1, : 10, 1] - JR U {+oo) defined by u 5 (x) = limald flf f0 f*+ (o, a) dci with 
d, f	infZE[oI] d(x). 

Proof: (1) Since problem (Ps) admits a solution for some S E JR we can apply 
Theorem 2.2, i.e.

S9, = urn If(ci,a)da. Tdr J 
0 

Since problem (P t ) admits a solution for some S E JR we can apply Theorem 2.7, i.e. 
there exists 1 E E such that 1(x) 2 d1 ,, 1 for all x E [0, 11 and 

S = lim f f*+ (ci, 1(a) - e) dci. cjo J 
0 

Since the function f(x,.) is non-decreasing and 1(x) 2 dinf for all x E [0,1] we 
conclude that Ssup 5 

(ii) If limaIdjnrff(a , a) do, <+, then we can define u 5 : [0,1] -s JR by 

z 
u5 (x) = u rn fS+der. 

a 1 djt I 
0 

Let x0 be the smallest x E [0,1] such that d1f = urn +oof(xo,e) . This implies 
that f(xo,d1flf) +. Let ± be the smallest x e [0,1] sucht that usup(±) = 

min10 , 1 1 u5 (x). This means that if 2 > 0, then u 9 (±) <u5 p(x) for every 0 X < 2. 
We then consider the following two cases: 

(a) u5 (±) = 0 (i.e. 2 =. 0).. Then u9 (x) 2 0 for every x E [0, 1] and u. u p is a 
solution of the problem (Pt) with S =	Consequently S 2	It is therefore 
sufficient to show that	<S. 

Let u : [0, 11 -s JR be a solution of problem (P) for a certain number S. Then 
there exists 1 E E (see Subsection 2.5 for the definition of the set E) such that 

u'(x) E 5f5 (x,l(x)) .	and	1'(x)u(x) = 0	a.e. in [0,1]. 

Since 1 E E we have 1(x) <d1f for all x E [xo, 1]. Then two possibilities can happen:
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(a) i There exists i xo such that u(s) = 0. Since u.() ^! tZsup() = 0 we have 

S=u(1)—u() 

= I	 l(a)) da 
<If(c,diflf)da 

= u9 (1) - u5() = Ssup - 
S5up. 

Figure 6: Representation of u when xo > 

(a) 2 u(x) > 0 for every x x0 . Let I < x 0 such that u(I) = 0 and u(x) > 0 for all 
x E (1, 1]. Such a point I exists since u(0) = 0. Since u(x) > 0 for all x E (1,11 there 
exist k E iF? such that 1(x) = k for all x E (1, 1) (i.e. l'(x) = 0 for all x E (1, 1]). Hence 
for x > I we have

U(X) 
= 	+ (a, 1(a)) da = J f(a, k) da. 

Moreover, we know that k< d11 . Therefore we obtain 

S = u(1) - u(I) 
= I f*+(a k)da 

< I
f(cr ,dii )da = u 9 (1) - u(I) < 

Considering that S	? S	this last inequality implies that S = S,. 
(b) u(±) <0.  
(b) 1 xo > (see Figure 6). We then consider the following problem: Find u € 

W''(0 , ±) and 1€ E such that 

(P t ) u(0)=u()=0, u(x) >O for every x  (0,)
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•	l() = d11 
u'(x) E ôf'(x,l(x)) and l'(x)u(x) = 0 a.e. in [0,.]. 

(b) 11 Problem (P±) admits a solution i : [0,±] - li?. Then we can extend this 
function on [0, 11 by letting 

	

u(x) = Jf(, dini) d	if X E (±, 11. 

With such a definition i is a solution of problem (Pt ) where S = S - u. ,(±). This 
implies that	2 SSUP - u5p(). 

The reverse inequality can be shown as follows. Suppose that there exists a solution 
u of problem (Pt ) for a certain 5> 0. Let [0,1] such that u() = 0 and u(x) > 0 
for all x E (, 1]. Such a i exists since u is continuous, u(0) = 0 and u(1) = S > 0. 
Then there exists k < d1 ç such that 

S = f f(a,k)da J f(,dini )da = S - up() S9 - 
I	 I 

(b) 12 Problem (P±) does not admit any solution. Then we show that this case is 
impossible. Suppose that there exists afunction u which is solution of problem (Pt) 
for a certain number S 2 0. Then u() > 0 since otherwise problem (P±) admits a 
solution. Since u is a solution of problem (P t ) there exists I E E such that 

u'(x) E ôf*(x,l(x))	and	l'(x)u(x)	0 •	a.e. in [0, 1]. 

Let x< x such that u() = 0 and u(x) >0 for every x E (,±]. This implies that 

I(x)=k	and	u(x)=Jf(a,k)da	for all xE(,±] 

where k = f(,0). Since u() >0 and u(s) = Owe have 

0< u(±) —u() 
= 

Moreover
± 

	

0 2 u9 () - uup() =	 din 
I 

which implies that k > d1f . Since 1(xo) <d11 , 1(±) = k > d11 and 1'(x)u(x) = 0 a.e. 
there exists I € (, x 0 ) such that u(I) = 0. We finally obtain 

u9 (I) —	=
	<	(a, k) dor= u(I) — u(2) <0
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which is absurd since u(x) - u 5 () 2 0 for every x E [0, 1]. This implies that, for 
every S 2 0, problem (P) does not admit any solution. This is in contradiction with 
the hypothesis of the lemma. 

(b.2) xo	± (see Figure 7). This last case is impossible since we can show that if 
x 0 <, then problem (P t ) does not admit any solution. 

Figure 7: Representation of	when Xo < 

Suppose that there exists a function u: [0, 1] - JR that is solution of problem (Pt) for 
a certain S 2 0. It means that there exists a function 1 € E (see Subsection 2.5) with 
1(x) <d 1 for all x € [X0, 11 such that u(x) = f' f (a, 1(a)) da. Hence for x > x0 we 
obtain

2:0	 2: 

U (x) =J f .o+ (a, 1(a)) du + f f + (a, 1(a)) da 
0	 10 

= U(X0) +ff(a,l(a))da 
ZO 

<u(xo) +ff(adini)da. 
ZO 

Since	x0 we have 

u(±) u(x0 ) + J f(a, d1ni )da = u(xo) + u 9 () - u9p(xo). 
zo 

Since u() 2 0 and u() - u 9 (xo) <0 we conclude that u(x 0 ) > 0. 
Let i < xo such that u() = 0 and u(x) > 0 for every x E (,x 0 ]. Such an i exists 

since u(xo) > 0 and u(0) = 0. Moreover since u(x) > 0 for all x € (,x 0 ) there exists a
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constant k d1f such that 1(x) = Ic for all x 6 (,x 0 ) and 

U(X) = Jf*+(al(a))da	for all x  [,1]. 

Finally since u() 2 0 and u() = 0, we have 

±	 ± 
I 

0< u() - u(i) = J f + (a, 1(a)) da J f (a,da flf )da = u() - usup(). 
±	 . 

This last result is in contradiction with the fact that is the smallest element of [0, 1) 
which realizes the minimum of the function u. It implies that problem (Pt) does not 
admit any solution in this case I 

Lemma 3.2: Assume that there exists a number S 2 0 such that problem (Pt ) has 
a solution. Then S4 P <S. 

Proof: In Subsection 2.4 we have shown that 

s=JK,
Ia (a,d flf )da SUP

 

where K = {x E. [0,11 :	(x, 0) d1,,}. From the preceding lemma we know that 

s+ p - Ssu -min 
(OX 

f + (a, d1f ) du) su - xE[0,1 

Let i 6 [0,1] be a point which realizes the minimum of fox f(a, d1 ). Therefore we 
have

1	 ± 

s+su p - ssup ' = dinf- Io, f+(adinr)da - I f*+(a
I

dinf)da 
J 
0	 0	 K 

± 

= f f(a,d1 )da - ff+(adt)da 
K'	 0 

=	J f(a,d1i ) do, — J f(a,d1,t)da 
K'n(±,1)	 Kn(0,±) 

<0 

since f, + (x,djflf ) 0 if x 6 KC and f(x, d151 ) > 0 if x 6 K I
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3.2 Comparison between the minimal values of S 

We first recall thatS is always zero. Concerning S11, and S f , it is not possible 
in general to say if one is greather than the other. As we will see in the following 
examples, Si n f and S, 1 are in general independent. Recall that we suppose the function 
f to satisfy conditions (H), (Al) and (A2). In particular it implies that ft (-'O = 
f(x,) = f(x,e). 

Examples 3.1: Let us consider the situation described in Figure 8 where x 0 is 
that point in which c realizes its maximum and ± is defined as a point where f( . ,Q) is 
decreasing and such that c5,, = f(±, 0). Note that here we have c5, = c(xo = 1). 

Figure 8: Graph of the functions c,d and f(,O) in Example 3.1 

We suppose that inf d(x) > maxr f(x,0). This hypothesis implies that for some S 2 0 
there exists a solution for each one of the three problems (Ps), (Pt) and (P). With 
the example presented in Figure 8 we construct in Figure 9 the values of S1 ,, f and inf* 
In Figure 9 we can observe that the point ± is the global minimum of the function 

Ujnf(X) = I f.* - ( a, csup) da. 

Note that S1f = u(1). Moreover, by continuity, there exist x 1 < ± and & > c5 (see 
Figure 9) such that

a i = f(x i3 O)	and	Jf(ai)d=O.
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f(x,(

13 

max c(x) 
X
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Therefore by using Theorem 2.4 and by letting 

1I	if 0<x<x1 
1(x) =	( X 0) if x <x 

lCsup	 if i cx<1
and u(x) 

=	
f - (, 1(e)) do, 

Figure 9: Construction of Sinf and S 1 in Example 3.1 

we conclude that u is the minimal solution of problem (P). It means that S 
Sj - u(), and since	< 0 we have	> 5if• 

To show that this last result is not true in general we consider a second example. 

Figure 10: Graph of the functions c,d and f&, o) in Example 3.2
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Example 3.2: Let the situation described in Figure 10. In this figure, x0 is always 
the point where c realizes its maximum, and ± is defined as a point where f(,0) is 
decreasing and f(±,0) = c(xo). Here again we suppose that the three problems (Ps), 
(P) and (P) admit a solution for some S > 0. 

Figure 11: Construction of Sm f and	in Example 3.2 inf 

In Figure 11 we can observe that the point ± is the global minimum of the function 

= 

Note that S,,, = u 1i (1) > 0. Moreover, by continuity, there exist x < ±, x 2 > ±, 
&i > cSU P and a2 < c5, ( see Figure 11) such that 

a 1 = f(x 1 ,0), a2 = fe(x2,0), j f (,a i )d = 0, 1 f(a,a2 )da = 0. 

Therefore by using Theorem 2.4 and letting 

(a i	if 0<x<x1 
1(x) =	f(x, 0) if x 1 <x <x 2	and u(x) f f(a,l()) du 

( a 2	if x2 .<x51	 o 

we conclude that u is the minimal solution of problem (P) since u(x) > 0 for all 
E [0,1] and u(1) = 0 (i.e. S = 0). It implies in this example that 0 = S, f < S11. 

This last inequality, composed with the inequality obtained in Example 3.1 (see Figure 
9), shows that S 1 and Sinf are, in general independent.
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3. 3 Independence of the problems (Ps) and (P). 

3.3:1 Existence of a solution of problem (Ps) for every S E 1R and non-
existence of a solution of problem (Pt) for every S > 0. In this subsection we 
exhibit a function f such that problem (Ps) has a solution for every S E JR and, for 
the same f, problem (P) does not admit any solution for every S > 0. In Figure 12 
we illustrate such a possibility. 

Figure 12: Problem (P t ) does not admit any solution 

In this example we assume that ± j and ±2 are two points in which d realizes its minimum, 
i.e. d(± 1 ) = d(± 2 ) = d11 and f(x,0) < d(x) for all x E [O,±]. This means that 
l5 (x) d1 . Moreover we suppose that there exists E (±j,±2) such that 

lim ]f*+()da<O.	 (10) 
oTdi.r0 

Let a E ( c9 p 7 d i ) and define

and	S(a) = u(1). 

We suppose that

lim S(a) +oo	and	lim 5(a) = —cc. 
ol d nr	 ajc.
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This means that problem (Ps) admits a solution for any S € R. We then consider the 
function

I 

v5 (x) = urn f	(, lsup(ci) - e) d. 
CIO j 

0 

But since relation (10) is valid and since 15 (x) d1f we conclude that v is not always 
greater than zero since v5 () < 0. This implies (see Theorem 2.7) that problem (P) 
does not admit any solution for every S > 0. 

3.3.2 Existence of a solution of problem (Pt) for every S > 0 and non- 
existence of a solution of problem (Ps) for every S E JR. In this subsection we 
show that we can construct a function f for which problem (P t ) has a solution for every 
S > 0 and, for the same f, problem (Ps) does not admit any solution for every S € R. 
To exhibit such an example, it is sufficient to consider a function f € C 1 ([0, 1] x JR) 
such that 

(a) f(,0), d and c: [0,11 - JR are continuous and *decreasing, 

(b) c(0) > d(1). 

The conditions (a) and (b) imply that c 1, = c(0) > d(1) = d1f . Therefore (see 
Subsection 2.3) problem (Ps) does not admit any solution for every S € R. 

However conditions (a) and (b) imply that there exists ± € (0, 1) such that f(±, 0) = 
d(1). We deduce that

1f(x,0) if 0<x<± 15(x) - t f(± , 0 )	if ± <x	1. 

Therefore 15 (x) = d(1) for all x € [±, 11. Moreover assume that 

lim (11) 

	

Then problem (Pt) has a solution for every S > 0. Let	€ (±, 11. We consider

1 € C°([0, 1]) and u € WI00 defined by 

1(x) - 
Jf(x,0) if 0 x< 
lfe < x 1.	

and u(x) =	(a, 1(a)) 
(,0)	if  

respectively. Then u(x) = 0 for all x E [0,.] and u'(x) > 0 for a.e. x E (,1]. It 
implies that both I and u satisfy the conditions of Theorem 2.4. Hence u is a solution 
of problem (Pt) for S = f u'(x) dx = j' u'(x) dx.
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In Figure 13 we can see how to construct such a solution u for problem (P) by 
considering the function 1 E E associated to the function u (see Subsection 2.5). Finally 
we obtain that S = +oo by using relation (11). 

Figure 13: Problem (Ps) does not admit any solution 
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