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Some Results on Non-Coercive Variational Problemé
and Applications

F. Weissbaum : v

Abstract. We give a necessary and sufficient condition to ensure the existence of solutions of
three problems of the calculus of variations with non-coercive integrands. The solutions u we
consider are lipschitz functions, i.e. u € W!**°(0,1). The three problems depends on the same
functionals but are different in the constraints. We consider respectively a problem without
constraint, a problem with ' > 0 and finally a problem with u > 0. These problems can be
related to optimal foraging models in behavioural ecology.
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1. Introduction

In this paper we consider the following three variational problems: Letting f : [0, 1) x
IR — IR be a continuous function satisfying the condition

(H) f(z,-): R — IR is convex for every z € [0,1]

we investigate the existence of a minimizer u in the cases

1 . .
(Ps) inf{ I(u) = /f(::,u'(z:)) dz| w € WH(0,1), u(0) = 0, u(1) = S
0

l M Ve
(P;) inf ¢ I(u) = /f(:t,u'(x)) dz| 0 < u e Wh=(0,1), u(0) =0, u(1) = S
| J ,

(Pls+) inf I(u) = /f(x, u'(z)) dz| u € WH(0,1), u(-O).= 0, u(l) =5

Hereby S is a given number and W1:°°(0, 1) stands for the set of Lipschitz functions (i.e.
continuous functions with almost everywhere uniformly bounded derivatives) defined
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on the interval (0,1). It is important to observe that we do not impose any coercivity
condition or any differentiability on the function f.

For these three problems we will show the following statements.

(1) In the problems (Pg) and (P%) two possibilities can happen: either there is no
solution for every number S € IR or there exists numbers S,y and Ssup respectively S

and S} such that the following implications

problem (Pg) has a solution = S € J = [Sint, Ssup)

S € J = (Sint, Ssup) = problem (P) has a solution
respectively

problem (P¥) has a solution = Se Jt =[Sk, Sp)

SeJt=(8,5%,) = problem (P%) has a solution

are true.

(2) For problem (Pls+) there exists always numbers Si’n and Ssjp such that the
implications

problem (P +) has a solution = Se J'+ = [Smf =0,8.t

Jsup
SeJ*= [S’mf 0, S;‘Tp) = problem (PS+) has a solution
are true.

(3) If numbers S,y and S:up exist, then always the inequalities

Seup < SE_ < St

sup sup
are true.

(4) In general (contrary to Ssup, S, and Ssjp) we cannot establish an order relation
between the numbers S;,¢ and Sitr

Remarks: (i) We will characterize explicitely the numbers Sin¢ and S,p (the num-
bers St Sk, and S;"fp, respectively).

(ii) In general if S = Sy or § = Syyp (if S = S:,p, S = Smf or § = Ssj'p,
respectively), we cannot conclude to the existence or non-existence of a solution. In
fact it is possible to exhibit cases where we can show the existence of a solution and
other cases where we can show the non-existence of a solution if § = St or § = Ssup
(fS=8,5=5or 5= Ssup, respectively).

(iii) If Sinr and Soup (S, and St respectively) do not exist, then J =@ (J* =

respectively). Finally, if Ssjp = 0 (if Sing = Seup or S{:, = S;tp, respectively),' then
=[0] (J = [Sing] and T+ = [S:,], respectively).
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(iv) We will show in particular that if f = f(z,£) € C°, f¢ € C° and f¢(z,0) =

constant for all z € [0, 1], then the three problems (Ps) (P%) and (P +) are equwalent
for § > 0. In particular we have the relations

Sint €0, St =

'+ _ + '+
inf — Sinf - 0’ SSUP - Ssup - Ssup'

Although some of these conclusions are already known, the main interest of this
paper is to relate all these results. Note that they are optimal. Another important
point is the fact that we can compare the existence of solutions between these three
variational problems. Indeed this question is the same as to compare the ma.x1mal value

and the minimal value of S for each one of the three problems.
In the coercive case, i.e. when the function f satisfies the Tonnelli growth condition

f(z,8)
lel—oo  |€]

= +oo for every z € [0,1],

it is well known that there exists a solution to the problem (Ps) for any S € IR (see
Cellina and Colombo [8], Marcellini [16] or Olech [17]). Note that for problems (P%)and
(P +) existence holds only for every S > 0 since otherwise the problem is ill posed. In
the general case we show that the existence of a solution of problem (Pg) (of problems
(P%) and (P +) respectively) depends on the value S: S has to belong to an interval
7 (interval J¥ and J'+ , respectively).

The problem (Ps) can be illustrated by the example of Weierstrass (see.Cesari [9]):
f(z,8) = %z{z. With our notation we will obtain for this problem that Sinf = Ssup = 0.
In this example we know that there exist a solution u € W if and only if S = 0, i.e.
if and only if S = Sint = Ssup = 0. The problem of finding geodesics on a cylinder (see
Troutman [19}) can also be put into the formalism of the problem (Ps).

The’ variational problem (Pis ) appears in models related to behavioural ecology
Arditi and Dacorogna [2, 3] considered models of optimal foraging theory. One of the
problems is related to the minimization of a functlona.l F of type

1

Flu) = / (e(a)e™ @ + K(zp'(2)) da

0

in the class of functions u € W'°°(0,1) such that u(0) = 0, u(1) = S and u'(z) > 0 a.e.
on [0,1]. Observe that in this case the integrand is bounded, and therefore non-coercive,
with respect to u' > 0.

The problem (P ) has also been studied by Botteron and Dacorogna [5]. Their
approach is slightly different: they fix the value of S and obtain a sufficient condition
depending on f and S for the existence of a solution. We will see here that this sufficient
condition is included in our framework in such a way that it implies directly the relations
55:p>5>5,nf—0(1e SeJt).

Botteron and Marcellini [6] studied similar problems. In their paper the essential
difference is that there the functional f depends not only on z and u' but also on .
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The constraint is the same, i.e. u' > 0oru > 0. In their context they obtain a sufficient
condition to prove the existence of a minimizer. Here we can show more precise results
since f does not depend on u. Indeed we obtain a necessary and sufficient condition for
the existence of a solution for each of our problems (Ps), (P +) and (P+).

The study of problem (P%) is motivated by all classical examples illustrating prob-
lem (Ps) (see Akhiezer [1], Cesari [9] or Gelfand and Fomin [15]) in which we introduce
an obstacle. This is the motivation of the introduction of the contraint u > 0. Note
that we can also consider more general constraint such as u(z) > g(z) for all z € (0,1]
where g is a given function representing the obstacle. By changing variable (v=u-—g)
the problem is then equivalent to problem (P}). Observe that this problem is more
difficult than the two others since the function u appears explicitely in the constraint:
u must be posmve In the two other problems the integrand (and the constraint for

problem (P +)) depends on the derivative u' only.

In the Section 2 of this article we first present some examples that motivate the study
of these three problems (Ps), (P¥) and (Ps ). Then we consider some mathematical
preliminaries in the goal to study these problems independently. In Section 3 we compare
the three problems, i.e. we prove for a fixed S if the poblems have a solution. As we will
see, this question is the same as to compareé the values Ssupy’ Ssup and S'Sup (respectively

Sint, .S'nf and Smf)

2. Examples and mathematical modelling

2.1 Examples

2.1.1 Geodesics on a cylinder. This is a well known problem but we present it only
to show that we can put it into our formalism. We consider a right cylinder C containing
two points 4 and B. We suppose that this cylmder is generated by a Jordan curve in
the (z,y)-plane. Assume that this curve is described in polar coordinates by a strictly
positive function p € C!([0,27]) with p(0) = p(2r). By using cylmdrlca.l coordinates
(p,8,2) it implies that the cylmdcr is defined by

z(8,2) = p(6) cos 8
y(8,2) = p(#)sin b (z € R,8 € [0,27]).
2(6,2) =z o

We want to join the points A and B by an arc lying on C and having shortest possible
length Let A =-(p(6,), 01,21) and B = (p(61), 02,22) The curve _]ommg A and B is
given by

1

z(8) = p() cos 8
y(8) = p(6)sin6 . (0 €[61,6,]) -
2(8) = z(8)
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where z(6,) = z; and z(6;) = z;. With such a notation the curve has the length

92 82
L(z) = / V@ 77 (0 + 7(6) df = / Vo + ' (8)F + 2(8)° df.
8, A

Without loss of generality we can suppose that 4 = (0,0) and B = (1, S). Therefore by
letting f(z,€) = \/p(z)? + p'(z)? + €2 the problem is’

(Ps) inf {I(u) = /f(:c,u'(z)) dz| uw € Wh*(0,1), u(0) =0, u(1) = S}.

Such a problem on a right circular cylinder (i.;e. p(6) = constant > AO) can be found in
Troutman [19]. Cesari (9] treats this problem of geodesics on a sphere. Note that in
this last case the lenght depends neither on 2’ and 6 but also on z.

2.1.2 Problems with obstacles. Let g € C!([0,1]) and S > 0. We then consider two
points A = (0, ¢(0)) and B(1,S + ¢(1)) in the (z,y)-plane. We want to find a function
v joining A and B such that its length is minimal and v(z) > g(z) for every z € (0, 1].
This situation is represented in Figure 1. The function ¢ represents an. obstacle that
the curve v must avoid.

A

B=(1g(1)+8)

A=10(0)) ' .

Figure 1: Problem with obstacle

The length of the curve described by v is L(v) = fo V1 +v'(z)? dz. Hence the problem
1s to find

vewh °°(0 1) withv > g
v(0) = g(0), v(1) =S + g(1)

‘inf {L(v) / Vv1+v'(z)dz
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By letting u = v — g and f(z,£) = /1 + (£ + ¢'(z))? this problem is then equivalent to
the problem

0<ueWwh>e0,1)

) in u) = zu'é z
(PY) inf{ I(u) 0/f<, O)E NN

Note that all classical problems of the calculus of variations (see Akhiezer [1], Cesari [9]
or Gelfand and Fomin [15]) where the obstacle can be represented by a function such
as g and where the integrand depends on z and u’ only (i.e. no dependence on u) can
be transformed into this formalism.

2.1.3 Biological problems. Some models of behavioural ecology (see Botteron [7])
study the movements of animals while foraging, i.e. while searching food. The problem
we want to deal with is the following: an animal is going each day around in its habitat
to find food. Suppose that the food resource is renewed each day and with the same
distribution. Assuming that the animal has learnt the food distribution, what is the
optimal way to exploit the habitat in the goal to maximize the quantity of the food?

In the last few years, optimal foraging theory has developed models to answer such
theoretical problems. Charnov [10] attempts to formalize this problem and gives a
partial answer in the well-known ”patch model”: he only considers particular type of
food distributions. More recenlty, Arditi, Botteron and Dacorogna [2, 3, 5 - 7] have
proposed models in which food dlstrlbutlon is arbitrary.

Their model can be described by the animal’s shedule u = u(z) (time in function
of position z with z € [0,1]). The interval {0,1] represents a one-dimensional habitat
or a closed curve in a plane with z = 0 and £ = 1 corresponding to the start and
the end point of this curve. These two points are assumed to be both the nest or the
cache of the animal. We suppose that the animal covers its habitat during the "foraging
period” S (u{0) = 0 and u(1) = S). For biological reasons the speed of the animals
is upper bounded: after change of variable this is equivalent to u'(z) > 0 a.e. The
food distribution in the habitat is decribed by the food density p = p(z). We represent
the time during which the animal eats the food available at point z by the "foraging
presence” u'(z). Finally the dynamics of food acquisition is described by ¢(u'(z)) where
¢ is a given function. .

In mathematical terms, if we let f(z,u'(z)) = p(z)¢(u'(z)) + K(z)u'(z) where
K represents the costs of the foraging, then the problem is to find the minimum of a
non-coercive function of the calculus of variations:

u € WH(0,1), u' >0

(P§) inf I(")zo/ @@zl o)~ 0 and u(1) = 5

where § > 0 is a given number and W!+*°(0, 1) stands for the set of Lipschitz functions
defined on (0,1). Note that f(z,£) = p(z)e ¢ + K(z)¢ is a relevant example in the
optimal foraging described above.
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2.2 Mathematical preliminaries

Let the function f : {0,1) x R — IR be continuous and satisfying the condition (H).
Since the function f(z,-) is convex we can define its left and right derivative

f(z,£+1) - f(z,6)
t

£ (z,€) = lim

fe(z,8) = ltl{gl flz, &+ ti - f(:r,f).

respectively. Note that these two limits exist everywhere and are bounded (not neces-
sarly uniformly) since f is convex and domf = {(z,£) € [0,1] x R : |f(z,£)| < +o0} =
(0,1} x IR. Moreover the functions f:(z, *) and f¢ (z,-) are non-decreasing.

2.2.1 Behaviour of f at infinity. The results of this subsection are well known
and we state them here for the sake of completeness only (for more details, see Ekeland
and Temam [14] or Rockafellar [18]).

Since the function f(z,-) is convex, the function

g: [0,1) x R\ {0} > R defined by g(:z:,{):w

is non-decreasing. Therefore we can define the functions
d: [0,1] - RU {+00} by d(z)= Elir+n g(z,€)

c: [0,1] = RU{-00} by c(z)= ¢ lim g¢(z,¢).
——00
These definitions are clearly equivalent to

d(z) = lim @ = fli.r+rloo (=6 = E_ljffw fe (2,8)

§—+oo
o) = Jim L2 = i i) = tm f7@6)

respectively. We have ¢(z) < d(z) for every z € [0, 1]. If we suppose the functions ¢ and
d to be bounded, then we cannot conclude at their continuity, and this even if f(-,€) is
of Lipschitz type.

Example 2.1: Let ¢ > 0 and f(z,£) = farctan(|§|z). It is easy to verify that
this function satisfies condition (H). Let £ € IR. Then for any z,y € [0,1] we have
[f(z,€) — f(y,6)] < [€]***|z — y|. Therefore f(-,£) is of K(£)-Lipschitz type where
K (&) = |€]'*. Note that this constant K(£) is the smallest one satisfying the Lipschitz
condition. However d(z) = /2 for 0 < z < 1 and d(0) = 0. It means that d is not
continuous at-the point z = 0.

The next lemma gives a possible sufficient condition for the functions ¢ and d to
be continuous. We state it as a matter of curiosity but we will not require any extra
hypothesis than (H). . .
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Lemma 2.1: Assume that for all £ € IR there ezists a constant K(€) > 0 such that

() 1f(2,8) = f(y, )| < K(§)lz - y| for all z,y € [0,1]
. K . K : A
(ii) fBr+n°° —% < 00 (fl!r_noo %)- > —oo,respectzvely).
Then the function d (the function c, respectively) is of Lipschitz type.
The proof is elementary. Note that this lemma is in some sense also necessary since
we cannot suppress any condition on f. The function f given in the preceding example

satisfies the condition (11) only for ¢ = 0 but does not satisfy this condition for any
e>0.

2.2.2 The conjugate function f*. For the function f the conjugate function f* :
[0,1] x R —» R U {400} is defined as

f*(z,0) = sup{af - f(z,€)}  ((z,2) €[0,1] x R).
£ER

Since f*(z,-) is convex we can define the left and right derivative of f*(z,-) by

f(z,a+t) - f*(z,a)
t

f‘(I,O + t) - f'(.‘z:,a)
t b

x4 :1
fa¥ (2, @) =lim

£~ (2,0) = lim

respectively.

Remarks. (i) Let z € [0,1] be fixed. When ¢(z) < d(z), f*(z,e) is bounded if
a € (c(z),d(z)), and in the case where d(z) < 400 (c(z) > —o0, respectively) we have
f*(z,a) = +oo if a > d(z) (if & < ¢(z), respectively). When ¢(z) = d(z) we have
clearly f*(z,a) = 0if a = d(z) and f*(z,a) = +oo if a # d(z).

(ii) The derivatives f3~ and fi* are bounded in the interior of domf* = {(z,a) €
(0,1} x R: f*(z,a) < +00}.

(iii) By convention (as in Rockafellar [18]), when d (when ¢, respectively) is
bounded, welet fi~(z,a) = fit(z,a) = +ooifa > d(z) (f3~ (z,a) = fo¥ (z,a) =
if @ < c(z)) ThlS convention 1mphes that f2~(z,-) and fi*(z,-) are non- decrea.smg
functions.

These left and right derivative leads us to the definition of the sets

of(z,6)={a e R| f{(s,6) Sa< f}(=,0)) (CeR)
af (:1: @) = { fi(z,a) <€ < fr¥(z, a)} (« € R).

The set 0f(z, £) (the set 3f*(z, a), respectively) is called the subd:ﬂercnttal of f at pomt
(z,€) (of f* at point (z,a), respectively). Observe that if f2*(z,a) = f2 (z,a) =
then the set 9f*(z,a) is empty. In the interior of domf*, this set is never empty.

The next lemma follows from the above definitions.
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Lemma 2.2: Let z € [0,1] be fized. Then the propositions (a) a € f(z,£) and (b)
£ € 8f*(z,a) are equivalent.

The proof of this lemma is given in Rockafellar [18]. It means that of*(z,") is a
generalized inverse of df(z,-) and conversely.

2.2.3 The Kuhn-Tucker Theory. Let f : [0,1]x R — Randg: [0,1]x Rx R — R
be continuous functions, X = W1*(0,1), As = {v € X| u(0) =0 and u(1) = S} and
Y = L?%(0,1). We define

G: X-Y by G(u)(z) = g(I:“(I)a“I(x)) )

F: X->R by F(ﬁ):/,f(x,u'(:c))d_z.

and Ay = {v€Y|v(z) <0 ae.}. Let

(P) inf {F(u) = /f(:c,u'(x)) dz| u € As and G(u) € Ay}.

Note that th_é problem (P) can be formulated in the form

(P) inf{F(u):/f(z,u'(:c)) dz

weWh®(0,1), u(0)=0
u(l) =S, 9(z,u(z),v'(z)) S 0 ae.

Definition 2.1: Let

A% = {,\ € L2(0,1)| A20 ae}

= {,\ € L*(0,1)

1
//\(z)v(z) dz <0 for every v é'Ay}.
0 :

(i) We define the Langrange function L: Ag x A} — IR associated to the problem
(P) by S : o

1

L(u,)) = /(f(:c,u'(z)) + X@)g (2, u(2),¥(2)) ) da.

o
(ii) Let (i, 1) € As x AY. We say that (&, ) is a saddle point of the function L if
L(@,A) < L(@, ) < L(u,X)

for every (u,\) € As x A%.
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- The proofs of the following two lemmas can be found in Barbu and Precupanu [4].

Lemma 2.3: The element (i,)) € As x A} is a saddle ﬁoint of the function L if
and only if ’ :

(a) L(@,)) = mingeas L(u, )
- (b) g(z,@(z), @ (z)) <0 ace. in (0,1)

(¢) A(z)g(z,u(z),@'(z)) = 0 a.e. in (0,1).

Lemma 2.4: If (,)) € As x A} is a saddle point of the function L, then @ is
a solution of problem (P). Conversely, if problem (P) admits a solution @, then there

ezists an element X € AY such that (@,)) is a saddle point of the function L.

Ekeland and Temam [14] give also a proof of the two lemmas above based on duality
theorems. Note that in the general theory the function f can also depend on u, but we
avoid deliberately this dependence since the integrand in the problems we want to deal
with does not depend on u.

Now we want to apply these results to our problem.

Theorem 2.1: Let the function f: [0,1] x R — IR be continuous and satisfying
condition (H). Let further the function g : [0,1] x IR x R — IR be differentiable and .

g(z,-,-) be convez.

(i) Ifu € As is a solution of the problem (P), then there exist A € A} and a € R
such that

(a) 0 € 8L(u,]), i.e. @ €

Af (z,@'(z)) + A(z)ge (z,u(z),a@'(z)) - of A(s)gs (s,u(s),u'(s)) ds a.e. in (0,1)
(b) 9(z,a(z),@'(z)) <0 a.e. in (0,1)
(&) Mz)g(z,(z),d'(z)) =0 a.e. in (0,1).

_ (ii) Conversely, if there ezist i'€ Ag, A € A} and a € R such that conditions (a),
(b) and (&) are satisfied, then 4 is a solution of the problem (P).

This theorem is equivalent to Lemma 2.4. The only difficulty comes from condition
(a). However, since in this case L(u, A) is a convex function of u and a linear function
of A, the minimum of L is attained at a point (@, A) if and only if 0 € dL(x, A) where 9
represents the subgradient of L as function of u.
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2.3 Existence of a solution for the problem (Ps)

In this subsection we will deal with problem (Ps). We begin with the following
Theorem 2.2: Let

f(z,6)
din = lim ——=
(= mf d( ) :e[o ) €—+co ¢
Csup = sup c(z) = sup lim f(z,8)

z€[0,1) z€(0,1]§——0 4

Then the following statements are true.
(i) If dint < csup, then problem (Ps) has no solution for every S € RR.
(ii) If dingt > csup we define

1

Ssup = ltign /f;+(z,a)dz and Sinf 1= 11m fo(z,a)dz,
a|dinf
)

alceup

then problem (Ps) has a solution for every S € (Sint,Ssup) and has no solution if
S < S or if S > Ssup.

Remarks: (i) In general if S = S,up or S = Sing, then one can not conclude at the
existence or non-existence of solutions of problem (Pg).

(ii) If dinf = ¢sup, then one can not determine in general the values of S,yp and Sias.
In some cases (e.g. f = const) we can proof the existence of a solution of problem (Pg)
for any S € IR and in other cases (e.g. f(z,€) = (sin(27rz) + 2)(arctan{ + 7)) we have
no solution of problem (Pg) for any S € IR. However the next lemma gives a necessary
and sufficient condition to obtain the existence of a solution of problem (Pg) in this
particular case.

To establish Theorem 2.2 it is sufficient, by Kuhn-Tucker theory, to observe that
u € W(0,1) with u(0) = 0 and u(1) = S is a solution of problem (Ps) if and only if
there exists an a € IR such that a € 3f(z,u'(z)) ae.

We recall that for @ € R and v € L*(0,1), the inclusion a € 3f(z,v(z)) ae.
means that

fe (z,v(z)) <a< f? (z,v(z)) for almost every z € (0,1). (1)
The proof of Theorem 2.2 is therefore an immediate consequence of the lemma which
follows. ) _
Lemma 2.5: Let ding = inf.¢[o,1)d(2), Coup = sup;¢po,1)¢(z) and a € R.

(i) If csup > ding, then for every a € R there is no v € L(0,1) for which the
inequalities (1) are satisfied.

(i) If csup = dint, then for at most one a € IR there exists v € L*°(0,1) such that
the inequalities (1) are satisfied.
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(iii) If coup < ding, then for every a € (csup,dint) there erists v € L>°(0,1) such that
the inequalities (1) are satisfied. Conversely, if there e:m.st.s a € R and v € L*(0,1)
such that inequalities (1) are satisfied, then a € [csup, ding]. -

Proof: First observe that inequalities (1) are equivalent to thé inclusion v(z) €
9f*(z, ) almost everywhere. This is equivalent to showmg that f3~(z,a) and f3~(z,a)
are bounded in L°°(0,1). For ¢ > 0 let

Tu(e) = {z € o, 1], ld(z) ~ ding] < e}
I.(e) = {m € o, 1]‘ le(z) - cs.,pll < e}.

By definition of dint and csup, for every € > 0, Iy(e) and I.(¢) are not empty.
Let @ > dinr and € € (0,a — diyr). This implies that f*(z,a) = +oo for every
z € I4(e). We then distinguish two cases: : :

(a) measIy(e) > 0: Then f3~(z,a) = fit(z,a) = +oo for every z € I4(¢) which
implies that v ¢ L*°(0,1) since meas I4(¢) > 0. :

(b) meas Iy(¢) = 0: Let z € I4(e). Then f*(z,a) = +oo. Hence for every k > 0,
there exists {x € IR such that aéx—f(z,€k) > k. Let z, € Ia(e)° (i.e. z € [0,1]\I4(¢))
a sequence such that limp_co zn = z. Then we have

afk - f(z"aé.k) + f(mn)ék) - f(xyék) Z k.
Since f*(zn,a) > abi — f(zn,Ek), we obtain .

f‘(xn,a)-'*' f(?n,ﬁk)._‘f(z,ﬁk) 2k . and llmmff (zn,a) >k

n-—oo

siﬁce limnioo f(Zn,€k) = f(z,&k). Therefore for all & 2 0 there exists a neighbourhood
V of z such that f*(Z,a) > k for every Z € V. Since this result is true for k as large as
we want, it implies that v ¢ L*°(0,1).

Wlth the same a.rgument we can show that. if @ < ceup, then v ¢ L>(0,1). This
implies that inequalities (1) hold for v € L°°(0,1) only if ¢ip < & < dinr. The cases (i),
(i1) and (iii) follow easily from this result B

We now give an example which illustrates Theorem 2.2.

Example 2.2: Let p;,p7 :-[0,1] — IR be continuous functions, p;, p2 > 0, and let
the function f: [0,1) x JR — IR be defined by

Sf(2,6) = p1(2)$1(€) + p2(z)d2(€)  where ¢1(€) = |€] and ¢,(¢) = %52.

We consider the following problem:

(Ps) inf {I(u) = /f(:c,u'(z:)) dz| u € W(0,1), u(0) =0, u(l) = S}. '
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In this context the classical problem of Weierstrass (i.e. f(z,£) =
p1 = 0 and py(z) = z. We will see here how to apply our theorem to the example of

Weierstrass.
Let K = {z €[0,1] :
Then we have

pg(;z) = 0}. This

dz) = lim_ f(zé,ﬁ)
c(z) = f_llr_n M
Let px =
meas{z € K :

for every S € R.

Now let us suppose that px > 0. For the left and right derivatives of f we have

set is compact. Assume that it is not empty.

_Jp(@E) fzeK
T 4o if z¢ K
_J=m(z) f z€eK
T ~oo if z¢ K.,

minzex p1(z) > 0. Then Csup = —pk and dins = px. If pK = 0 and
p1(z) = px = 0} = 0, then problem (Pgs) has a solution only if S = 0.
If px =0 and meas{z € K: pi(z) = px =0} > 0, then problem (Ps) has a solutlon

+ _ (@) +pAz)€ i £20
fE (3)6)‘ - { _pl(z) + pQ(z)é lf 6 < 0
@ (@) i €50
fe @6 = { —p1(z) + pa(z)E if €<0.
The conjugate f* is defined by
(0 - if |a| < pi(z)
+00 if z€ K and |a| > p1(2)
. B Y C R 1C)
fiza)=¢ 2 C17 if ¢ K and a > pi(z)
2 pa(z) ,
Latpi(z)” if z¢ K and @ < —py(2)
( 2 92(3:) o s
and its derivatives are given by
0 if —pi(z) € a < pi(x)
+00 if z€ K and a 2 p1(2)
fat(z,a) = ¢ ;o_c.)pl(a:) Tf z € Konda< o)
v 2(0) if z¢ K and a > pl(z)
e :zf()igx) if z¢ K and o < pl(a:)
(0 if —pi(z) <a< pl(z)
+o0 if z€ K and a > pi(z)
- 1 < -
fa(z,0) =4 aofpx(x) l: z;ﬁa.nja_ ,El()x)
itz > T
pa(z) measm
T et Kadas ).

32€?) corresponds to
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With the help of Theorem 2.2 we have for this problem

Ssup = lim ﬂdz and Sjnf = lim l(.’t) dz
afpk p2(z) al-pk pz(z)
Kl Kl
where K; = {z ¢ K: pi(z) < px}.

If we apply these results to the example of Weierstrass (i.e. for f(z,£) = %162), we
conclude that pg = 0 and that Sgup = Sins = 0. Therefore the problem (Ps) admits a
solution only if § = 0: the solution is given by u = 0. In all other cases (i.e. for S # 0),
‘the problem of Weierstrass does not admit any solution.

Example 2.3: In geometrical optics, using Fermat’s principle (see, for example,
Dacorogna [13]), we are led to find a solution of problem (Pg) with

f(z,6) = a(z)V1+ ¢

where a : [0,1] — IR is a continuous function representing the refractive index. Let
@min = Minggp,1ja(z). Then we have ¢(z) = —amin and d(z) = amin. Therefore,
applying Theorem 2.2, we obtain three cases:

(1) @amin < 0: There is no solution for any S € R.

(i1) amin = 0: Let J = {z € [0,1] : a(2) = @min = 0}. If measJ = 0, then problem
(Ps) admits a solution only if § = 0. If measJ > 0, then problem (Ps) admits a solution
for any S € IR.

(iii) amin > 0: We can calculate the minimal and maximal value of S:

1

Seup = | ———min___ and  Sint = —Seup.

\/ amm

2.4 Existence of a solution for the problem (Pg)

Now we will consider the second of our problems, namely problem (P ) in which the
function f is continuous and satisfies condition (H).

Theorem 2.3: fzet dint = inf ¢po,1) d(z) = inf g0,y limg—t o @ and K = {z €
(0,1] : f7(2,0) < dins}. Then let

Si=0 and St = lim /f +(a, a)d:z:

If S,:} <SS < Ss"fp, then problem (P ) has a solution. Conversely, if S < Smf
s> Ss“fp, then problem (Ps+) has no solution.
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Remarks: (i) If § = Ssjp > 0, then we cannot conclude in general that problem
(Ps+) admits a solution. (ii) If S < Sm, = 0, then the problem (P'S+) is ill posed. (iii)
If meas K = 0, then S} = S} = ' '

sup
Proof of Theorem 2.3: Let S > 0 and As = {u € WH*®(0,1) : u(0) =
0 and u(1) = S}. With the help of the Kuhn-Tucker theory, there exists a solution

for the problem (PIS+) if and only if there exist u € As, « € R and-A € L?(0,1) such
that a.e.

u'(z) > 0, /\(x) >0, . a + M(z) € 0f(z,u'(z)), A(z)u'(z) =0
For « € IR we define
K(a) ={z €(0,1]: f!(z,0) < a} and K(a) =[0,1]\ K(a).

By letting A(z) = 0 for a.e. = € K(a) and A(z) € 3f(z,u'(z)) — a for a.e. z € K%(a)
we conclude that there exists a solution for the problem (P:;‘) if and only if there exist
u € As and a € IR such that .

o € 0f(z,u'(z)) forae z€ K(a) (2)
u'(z)=0 ‘forae ze€K(a) o (9)

Let us consider u € As and a € IR such that conditions (2) and (3) are satirfied.
Then u'(z) > 0 for a.e. £ € (0,1). More precisely we have u'(z) > 0 for a.e. z € K(a)
and u'(z) = 0 for a.e. z € K°(a).

Moreover, let a; < a; and assume the existence of elements u;, u, € wtee(0,1)
such that

a; € 8f(z,uj(z)) forae z € K(oy)

az € f(z,uy(z)) for ae. z € K(az).

Then K(a;) C K(az) and uj(z) < uj(z) for a.e. z € K(a;). This implies that the
maximal value of S will be obtained by taking the maximal value of « for which the
conditions (2) and (3) are satisfied. With the same arguments as in Theorem 2.2 on
the existence of a solution to the problem (Ps) we know that a € 8f(z,u'(z)) has a
meaning only if a < diy since u is of Llpschltz type. This leads us to consider the
maximal set

K= {:r €(0,1): f;(z,0) < d;,,f}.

With the set K we finally obtain

S,up-— lim /fa+(:r a)dz

aldinr

and the statement is proved B
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Botteron and Dacorogna [5] study the same problem (Pis.‘*“) in a different way: they
fix the value of S and obtain a sufficient condition depending on f and S to conclude
at the existence of a solution. This condition is given by

Y(8) < dinr

where 7(S) = sup,jo.) £ (2, 5).

In our framework, 7(S) < dinr implies Ssu‘*'p > § > 0: since csyp < ¥(S) we have
clearly csup < dint; let us consider & = ¥(S) and K(a) = {z € [0,1) : fit(z,a) > 0}.
The function u defined by

wO =0 wnd (@)= (T e K

is then a solution of problem (Plst) for S, = fK(a) fit(z,a)dz. Finally, we have

1

. 1 ) .
St > 52 [fir@e)ds 2 [ 1@ st S) e =520
0

0

It means that in general the sufficiency condition ¥(S) < dins is not necessary. We give
below such an example.

Example '2.4: We consider the problem

u€e WH(0,1), u' >0 }

(Ps) inf{l(u)iff(z’"’(z))d u(0) = 0, u(1) =

where f(z,£) = e*\/1+ {2 and we show that the result of Botteron and Dacorogna
cannot be applied if S is sufficiently large. Indeed, we have

9=

Therefore v(S) < ding if and only if S < 1/v/e? — 1. Moreover

d(m) = ét: . éinf = ‘11

= hm / dz = arctan
\/_ Ve

As arctanv/e? > 1/vVe? —1 we conclude that there exists a solutlon of problem

(P +) if SS‘TP > S 2 0 but y(S) > dinr if arctanveZ —1> S > 1/ve? — 1. Therefore
the condition ¥(S) < dins is not necessary in general.
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2.5 Existence of a solution for the problem (P})

The third problem we want to deal with is (P%). This problem is more difficult than
the two first one since the function u appears explicitely in the constraint: u must be

positive. In the two other problems the integrand and the constraint for problem (Pls+)
depend only on the derivative u'.

For the sake of clarity, instead of giving immediately the most general theorem (see
Theorem 2.7), we will start by an abstract existence theorem (see Theorem 2.4) which
gives the existence of solutions provided one can find an appropriate function {. We then
give two results (see Theorems 2.5 and 2.6) where such a function can be constructed
easily. Finally we show how [ can be found in general (see Theorem 2.7).

Theorem 2.4: The problem (P’;) admits a solution if and only if there ezist func-
tions I € W12(0,1) and u € WH*°(0,1) such that
u(0)=0, u(l)=S, u>0
[ 1s non-increasing
u'(z) € 0f* (z,(z)) a.e. in(0,1)
U(z)u(z) =0 a.e. in(0,1).
Remarks: (i) A function u € W*°°(0, 1) which satisfies all the conditions of this
theorem is of course a solution of problem (P¥).
(ii) The set W'2(0,1) stands for the set of functions defined on [0,1] and whose
first derivative in a weak sense belongs to L?(0,1).

(iii) Theorem 2.4 is a direct application of the Kuhn-Tucker theory. We will see
that in the case where f is differentiable and f¢(-,0) is monotone, this theorem implies

that problem (P;) can be easily compared to problems (Ps) or (PIS+).

Proof of Theorem 2.4: The Kuhn-Tucker theory leads us to the following result:
problem (P%) has a solution u € W'(0,1) if and only if there exist A € L*(0,1) and
a € IR such that

u(0)=0, u(l)=S5, u>0
A>0 ae in (0,1)

a € df(z,u'(z)) +//\(a)da a.e. ip (0,1)

A(z)u(z) =0 a.e. in (0,1).

Let I(z) = a— f; Mo)do. Since 0 < A € L*(0,1), l is non-increasing and | € W1:2(0, 1).
With the help of the conjugate function f* we can conclude that the problem (P) has
a solution u € W'*(0,1) if and only if there exists a function | € W"%(0,1) such that
C w(0)=0, u(1)=S, u>0 '
! is non-increasing :
u'(z) € f*(z,1(z)) ae. in(0,1)
I'(z)u(z) = 0 a.e. in (0,1).

These last relations represent the result we are looking for 8
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We now present two cases where the function ! can be found easily.

Theorem 2.5: Let f,.fe € C°([0,1] x R). Assume that the function flz,") is
convez and the derivative f¢(-,0) : [0,1) — IR is non-decreasing. Then for a given
number S > 0 the problems (P+) and (Ps) are equivalent. In particular either the two
problems have no solution for every S > 0 or

+
Ssup = Qsup = lrlin
inf

1
/ fat(z,a)dz
and

Smf = max (Sinf,0) = max ( lim /f “(z,a)dz 0)

o C,up

Proof: Let S > 0.

(a) Suppose that problem (Ps) admits a solution u € W'(0,1). Let diny =
inf¢(0,1] d(2) and csup = suUpP;¢o,1) ¢(z). We know that problem (Ps) admits a solution
u only if

(i) dint > Csup

(il) a = ff(:r u'(z)) a.e. in (0,1) for some a € [csup, dint)-

By hypothesis the derivative ff( 0) is non-decreasing and since the function f(z ) is
convex the derivative fe(z,) is also non- decreasing. Suppose that there exist £ and
u'(Z) < 0 such that & = f¢(z,u'(z)). Then since f¢(z,) and f¢(-,0) are non-decreasing
we have ]
a = fe(z,u'(%)) < fe(2,0) < fe(z,0) for all z € [z,1].
Since a = fe(z,u/(z)) ae. in (0,1) and a < fe(z,0) for all z € [Z,1] we have u'(z) < 0
for a.e. z € (Z,1). It means that if u'(z) < 0, then u'(z) < 0 for ae. z € [7,1].
Therefore there exists 0 < a € 1 such that the equation a = f; (x,u'(z)) has a solution
which satisfies u'(z) > 0 for ae. z € (0,a) and u'(z) < 0 for a.e. z € (a,1). Since
u(l) = § > 0 we conclude that u(z) > 0 for every z € [0,1]. By letting I(z) = « the
functions ! and u satisfy the conditions of Theorem 2.4. This implies that for S > 0
problem (Ps) admits a solution » which is also solution of problem (P¥).

(b) Suppose that problem (P¥) admits a solution u € W!*°(0,1). By Theorem 2.4
we know that there exists a function [ € W'2(0,1) such that

! is non-increasing
u'(z) € 8f*(z,1(z)) ae. in(0,1)
. I'(z)u(z) = 0 ae in (0,1). _ .

It implies that I(z) = f¢(z, u'(z)) a.e. in (0,1). Moreover if there exists an open set I
such that u(z) = 0 for all z € I, then I(z) = f¢(z,0) for all z € I. Since the function
fe(+,0) is non-decreasing | must be constant on I. Finally if there exists an open set J
such that u(z) > 0 for all z € J, then [ must be clearly constant on J. Therefore since
! must be continuous there exists a € R such that I(z) = « and a = f¢(z,u'(z)) ae.

in (0,1). Moreover since u' € L*(0,1) we must have & € {coup, dint]. It means that u is
also solution of problem (Pg) &
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Theorem 2.6: Let f, f¢ € C°([0,1) x R). Assume that f(z,-): R — IR is convez

and fe(-,0) : [0,1) — IR is non-increasing. Then the problems (P%) and (P +) are
equivalent. In particular, let K = {z € (0,1): dint > fe(z,0)}. Then

She = Ssup = lim /f;+(z,a)d:z and St =5*=o0.

aldint inf — “inf

Proof: Let $ > 0.

(a) Suppose problem (P}) admits a solution. By Theorem 2.4 there exist { €
W12(0,1) and u € W'°(0,1) such that

u(0)=0, u(1)=S, u>0

[ is non-increasing

u'(z) € 3f*(z,1(z)) ae. in (0, 1)
I'(z)u(z) =0 ae. in (0,1).

It implies that I(z) = f¢(z,u'(z)) a.e. in (0,1). Moreover if there exists an open set I
such that u(z) = 0 for all z € I, then I(z) = f¢(z,0) for all z € I. Conversely, if there
exists an open set J such that u(z) > 0 for all z € J, then [ must be clearly constant
on J. Therefore on a sufficient small interval I(z) is either constant or equal to f¢(z,0).
Since f¢(-,0) and [ are non-increasing and continuous there are only two ways to define
the function I:

(i) There exists a > f¢(0,0) such that I(z) = a.
- 0) if 0<z<3z

(ii) There exists z € [0,1] such that I(z) = { ;:E;,O; ;f = ; :: ; 21:

In the second case u'(z) = 0 for a.e. z € (0,%) and I'(z) = 0 for every z € (z,1).

Let us show that this function u is also a solution of problem (P +) By letting
a = l(1) we can say that in the two cases above u satisfies

€ 0f*(z,a) forae. z€ K(a)
ul(z ){ "for ae. z € K°a)

where ' v .
K(a):{xG[O,l]: fg(x,0)<a} and  K%a) =[0,1]\ K(a).

Moreover since f¢(+,0) is non-increasing we have either K(a) = [0,1] in_the case where
I(z) = a or K(a) = (z,1] in the case where [ is defined as in the point (ii). In both of
these cases u'(z) > 0 for a.e. £ € K(a). This last result implies that u is also a solution
of problem (P ).

Note that l(z) = a with o < f¢(0,0) is not possible since in this case u'(z) < 0 for
a.e. z € (0,Z) for some £ > 0 and hence u(z) < 0 for z € (0, %), which contradJcts the
fact that u is a solution of problem (P%).
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(b) Suppose problem (Pls+) admits a solution. By proceeding as in the proof of
Theorem 2.3 (see relations (2) and (3)) there exist @ € IR and u € As (recall that
As = {u € WH*(0,1) : u(0) =0 and u(1) = S}) such that

a = fe(z,u'(z)) forae. z€ K(a) and u'(z) =0 for ae. z € K%a).

Since fe(-,0) is non-increasing we deduce that there exists 7 € {0,1] such that K = (z,1].
- Therefore by letting

(z)=a if 2=0 or 1(z)={-;:g:g§ i

we conclude that u is also solution of problem (P%) ®

Corollary 2.1: Let f, fe € C°([0,1] x R). Assume that f(z,-): IR — IR is convez
and fe(-,0) : [0,1] — IR is constant. Then in view of Theorems 2.5 and 2.6 the problems
(Ps), (PY) and (Pls+) are equivalent for all S > 0.

Before describing the interval to which § must belong to conclude at the existence
of a solution for the problem (P}) in the general case, we introduce a set E of functions
which will describe the solutions of the problem. The definition of this set is motivated
by the results of Theorem 2.4. We want to exhibit all the functions I which can satisfy
the conditions of this theorem.

Definition 2.2: We define E as the set of functions | € W1%(0,1) such that the
following conditions are fulfilled:

(E,) ! is non-increasing.
(By) c(z) < l(z) £ d(z) for every z € [0,1).
(E. ) For every z¢ € (0 1) at least one of the two followmg condltlons 1s satisfied:

(Ec)1 I(zo0) € 8f(20,0)
(E)2 I(z) = U(zo) (x € (zo — b0, 0 + 60)) for some ég > 0.

Remarks: (i) The condition (E.), is equivalent to f{(xo,O) < (zo) < f:(zo,O).
Note that the functions f?(~,0) : [0,1] -+ R and fe (,0): [0,1] — IR are continuous.

(ii) The set E can be empty. However if, for example, inf;ep,1yd(z) = dint > csup =
Sup,¢(o,1) ¢(z), then E is not empty since | = dins or | = ¢4up belongs to E.

Definition 2.3: In the case where E is not empty we define the functions
loup : [0 1) =+ RU {+o00} by kLup(z) =supl(z)
EE
ling : [0,1] — RU {—o0} by lni(z) = Ilg}f;l(a:)

We give below two examples how to obtain these function for a given function f.
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Example 2.5: Let us consider the function f : (0,1} x R — IR defined by f(z,¢) =
(I)QS({) Assume that f is continuous and satifies condition (H) (this is equivalent to
saying that p is continuous and ¢ is convex).

'} A
’ “- . .
\ d(x) / .
Lyup (X) /
\ / k
-.\\.\ /
ling (‘)\ kptx)/ -
N M=l ———ee]
ot VA . etn) yd
0 1.x 0 S 1 x

Figure 2: Construction of lgup and liny when f(z,€) = p(z)¢(£)

We suppose that ¢ satisfies the conditions

¢(E )

2l —¢g_>-00  and lim ¢+<+

f¢—-c0 § §—~+oo

Therefore we have c(z) = ¢_p(z), d(z) = ¢4p(z) and fg’(x 0) = kp(z), where k €
0¢(0). Fmally suppose that the set E associated to f is not empty. We then can
construct the functions lgyp and lins. In Figure 2 we give a representation of all these
functions in a general example. : ‘

Example 2.6: We take the same éxample with
. 7 '
p(z) = SIH(QWI) + ) and é(¢) = /(arcta.ns + m)ds.

Then we have i -

(a.rctan{ + )

(snern+ 7).

\.__/

f @0 = F@0) = fe(a.€) = (sin(2nz) +7 )

Nlﬂx

.d(x) 3m (SIn(zwx)+7) 'e.md: c(:z:;
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03 TF 0% 08 07 Loy 0B )]
Figure 3: Construction of lyyp and ling, f(z,€) = (sin(21rz) + i’-) (f:(a.rcta.n s+ ) ds)

The functions lsup and ljn¢ are given by

d(0) if 0<z<4d, (1) if 0<z<e
lsup(z): f:(I,O) if di<z<d lin((l‘)= f?(I,O) if ¢ <z<c
d(3) if dy<z<1 (1) if ;<z<1
where
l<d<l l<d<§ l< <l l< <§
g SUSy gsRsy  psasy  gsaesy

satisfy the equations

A0 = fel, 0, 4(3) = (@0, e(F) = felcrs0 1) = fe(ea,0).

In Figure 3 above the representation of all these functions is given.

With the definition of the set E we can study the problem (P%) in the general case.
We only restrict our work by introducing the following two weak assumptions:

(A1) f € C'([0,1) x R)

(A2) There exist disjoint open intervals Ji, ..., J, such that Ur_, Jx = [0, 1] and fe(-,0)
is monotone on the intervals Ji (k =1,...,n).

Observe that we can show the existence of a solution in the general case (i.e. f only
satisfies condition (H)) but we avoid deliberately this general proof, the notations being
too heavy in this case. Moreover the results are qualitatively not better.

The assumptions (A1) and (A2) imply that, for every function | € E, there exist
disjoint open intervals Iy, ..., I, such that |J;_, Ix = [0,1] and ! is either constant or
equal to f¢(z,0) on the intervals Iy (k = 1,..,n). However these assumptions are
not sufficient to prove that E is not empty. We give below a necessary and sufficient
condition to determine if E has an element.
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Lemma 2.6: Assume that the function f satisfies conditions (H), (A1) end (A2).
Then E 1s empty if and only if there ezist elements z, and z, such that 7, < z2 and
d(z1) < c(z2).

Proof: Let z; < z; and d(z)) < c¢(z2). Suppose that E is not empty and ! € E.
This implies that {(z,) > I(z;) and d(z,) > I(z;) > l(z2) > ¢(z2) which is absurd since
d(z1) < ¢(x2). Therefore E is empty.

" dex)

' X
1 o
T

XX *1 xgm!

Figure 4: Beginning of the construction of lsyp

Conversely, if for every z, € [0,1] we have d(z,) > ¢(z2) for every z, € [z1,1], then
we can exhibit a function which belongs to E. Indeed two'cases can happen

(a) If d(z) = +oo for every z € [0,1], then the function I(z) = maxye(o 1 ff(y,O)
belongs to E since for every z € [0, 1] we have

c(z) € fe(2,0) < max fe(y,0) < d(z) = +00.
ve(o,1)

(b) If inf o) d(z) < 400, then we can construct a function ly,, € W12(0,1)
which belongs to E. We will see that this function is actually the supremum of all the
functions which belongs to E. .

We construct lg,p from right to left, i.e. fromz =1toz =0. Let 7o = 1.

(i) Let z; = min{z € [0,z0) : d(z) = dint }. We let lyup(z) = din¢ for all z € [z, zo).

(i) If fe(z,0) < dint for all z € [0,y then we let lyup(z) = ding for all z € [0, 4]
and the construction is finished.

(iii) Assume that (i1) does not hold. We then let

Iy = max{:r €[0,z,]: fe(2,0) = dinr and fe(-,0) is det;reasing at z}
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and set lyup(z) = ding for all € [z2,z,). We finally consider
T3 = min{x € [0,z2): fe(-,0) is non-increasing on the interval [z,zg]}

and ! = inf ¢, z5) d(z). See Figure 4 on the previous page to observe what z,, z,, z3
and ! represent in a concrete example.

% din)

\ e e

Ji(x,0)

..............

Y-

x5 X3 Cox
Figure 5: Construction of lsyp

At this point of the construction two cases can happen:
(i1)g I = fe(z3,0). Then set lup(z) = fe(z,0) for all z € [1:3,:1:2]

(i1i)s I < fe(z3,0). Sincel > fe(z2,0) there exists z4 € (z3,z2) such that ff(a:4,0)
[. We then set lsup(z) = fe(z,0) for all z € [z4,22].

The points (i), (i1) and (iii) represent the first step of the construction of lyyp. To
go further it is sufficient to take again in account the following two cases:

(ii1), We replace z;, by z3 and dinr by fe(z3,0). We then return to point (ii).
(1i1)s We replace zy = 1by z4 and dinr by fe(z4,0). We then return to point (i).
In Figure 5 above the representation of such a construction is given. Since f¢(-,0)

15 piecewise monotone ly,p is constructed in a finite number of steps. Moreover we have
c(z) € Lup(z) < d(z) since liyp(z) is either equal to fe(z,0) or equal to a constant @

Lemma 2.7: Assume that the function f satisfies conditions (H), (Al) and (A2).
Assume that E is not empty.

(a) If d(z) = oo (if c(z) = —00, respectwely) for every z € [0,1], then Lyyp(z) =
+00 (liat(z) = —o0, respectively).

(b) If there ezists T € [0,1] such that d(z) < +00 (c(Z) > —oo, respectively), then
lsup € E (lint € E, respectively).
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Proof: We prove the statements (a) and (b) for the function lyyp only. For ling
proceed analogously.

(a) Suppose that d(z) = +oo. Let I(z) = k with k > max,eo,1] fe(z,0). Then
l € E since [ satisfies clearly the conditions (E;) - (E.) of Definition 2.2. Therefore
sup, g I(z) = +oo for every z € [0, 1].

(b) Let there exists z € [0, 1] such that d(Z) < +o00. Then for any | € E we have
I(z) < d(z) for all z > z. Moreover [ can be strictly decreasing at a point # only if
I(£) = fe(&,0). Therefore

_ liup(z) < max ( rg{g)i]ff(z,O), dinf) for every z € [0, 1]

where dint = inf,¢[o ;) d(z). Hence lsup satisfies condition (E;) since d(z) > fe(z,0) >
c(z) for all z € [0, 1].

The function lyyp, s non-increasing. Let 0 < y < z < 1. For every ¢ > 0 there exists
le,z € E such that ly,(z) < I, :(z) + €. Since [, ; is non-increasing, we have

sup(z) Slez(z)+e<lez(y) +€ < lsup(y) + &

Since this result is true for every € > 0 we conclude that ly,p satlsﬁes condition (E ).

The function ly,p is continuous from the right. Indeed, let zo € [0,1). For every
€ > 0 there exists Iz, € E such that lyyp(z0) < le,zo(Z0) + €/2. Therefore for every
T € [z0,1] we have

£
0 S Isup(zo) - Isup(z) S 5 + lc,zo(xo) - Iz,zo(z)~

Since I, z, is continuous, there exists § = 8(xg,€) > 0 such that |z — zo| < 6 implies

[e,zo(Z0) — le,zo()| < €/2 and finally
0<z—20 <620 < layp(zo) — lsup(z) <e.

The function lg,p is continuous from the left. Indeed, let zo € (0,1]. For every € > 0
there exists 6 = 8(zo,€) > 0 such that [z — zo] < 6 implies | fe(z,0) — fe(zo,0)| < €/2.

With the definition of the set E, these results implies that, for every | € E, |1 —z¢| <
§ yields |I(:z:o)—l(1:)| < &f2. Let z € [zg—§,z0). Then there ex1sts e € E and I,o .€E
such that

lz,z(x) < lsup(z) < lz,e(z) + Z and Izo,c(zo) < Isup(zo) < lzo,e(zo) + Z

This implies
0 < lsup(2) = Lsup(2o)

€
< Iz,e(x) + 4- - Izo,e(xo)

£ . ’ [
= 5 + l:,e(-”:) - l:,e(-‘Bo) + Iz.e(xo) - l;.,,e(-‘!:o) - Z
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Since - c .
lz,z(zo) S lsup(xo) S Izo,z(zo) + Z
we have finally- v
ST e
0< Isup(x) - lsup(zo) <= + I:,e(z) - Iz 6(10)-

Moreover since Iz, € E we know that 0 < zp—z < § implies 0 < |i,, e(z)—lz,é(z0)l < 5.
Therefore lgyp is continuous. We can-then show in‘an elementary way that lsup satlsﬁes
condition (E.). This implies that l;yp € E B

Now we are able to present the genera.l theorem on the problem (P¥).

Theorem 2.7: Assume that there ezists | belonging to the interior of E and assume
“that the function f satisfies conditions (H), (A1) and (A2) Then

(i) esther ling(z) = coup or there ezistbp =0<a; <by < .. <ar < by <..<a, <
bn <1 =an4) such that -

1. (z) _w{ ff(I,O) if = G.Ilc = (ak,.bk) (k=1,..,n)
inf - ff(bk,o) 1f T € [blc,ak+1] (k = 0,1,...,n),

(n) either lyup(z) = dint or there ezist by = 0 <@g <b <.<ap<b<.. <
an < b < l = a,.+1 such that -

) {ff(x,o') if 2.6 Ix = (ar, ba) (k;1,...,n)
sup\Z) = . .
’ febe,0) if = € [brdrsa] (k=0,1,..n).

(%) n (97)

Let

z . R
trup() = i [ F24 (00 e(@) =) do, v(e) = lim [ £ (o, hue(o) +) do
0 : 1]

Then problem (P%) admits a solution for a certain S > 0 if ar.zd only if the two conditions
(al) veup(z) > 0 for every z € [0,1] '
(a2) vins(z) <0 for every €K

are fulfilled. Moreover, if conditions (al) and (a2) are 3attsﬁed then, et

Tgup = mm{:r: €10,1]: lup(z) = sup(l)}
Tinf = min{z €[0,1]: line(z) = lin;(l)}.
Then

1
SEp = liﬁ)l / fa* (0, dins ~ €) do, S.tf = max (O lim / fa7 (o, csup +€) da) .

Zaup Zint
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Remarks: (i) If E is empty, then problem (P}) does not admit any solution for
every S > 0. S

(ii) K is the open set where li5¢ and l,,, are equal and strictly decreasing. Moreover,
if z € K, then ug, (z) = uj ((z) = 0.

Proof of Theorem 2.7: Step 1: Necessary and sufficient condition for the ezis-
tence of a solution. Theorem 2.4 says that problem (P%) has a solution if and only if
there exist 1 € W12(0,1) and u € W1°°(0,1) such that

u(0)=0, u(l)=S5, u>0 . (4)
! is non-increasing v ' (5)
u'(z) € 8f*(z,1(z)) ae. in (0,1) ' (6)
I'(z)u(z) =0 a.e. in (0,1). (M

These relations imply that [ € E. Since E is not empty we can define the functions

lup(z) = supl(z)  and  lkng(z) = inf I(z).
leE leEE

They are respectively the smallest and the greatest function for which the relations (5)
and (6) are well defined. Moreover lyup(z) > dint and ling(z) < csup for every z € [0,1].

Step 2: Condition (al) is necessary. Let
Vsup(z) = liﬁ)l/f;-*- (0, lsup(0) — €) do, vint(z) = liﬁ)l/ fi (0, lnt(0) + €) do.
e e
0 ' 0

Letting | € E we define u € W' by u(0) = 0 and u'(z) € 8f*(z,I(z)). Then
vint(z) € u(z) < vsup(x). Therefore vsup(z) > 0 for every z € [0,1] is a necessary
condition for the existence of a solution of problem (P}).

Step 9: Condition (a2) is necessary. Letting [ € E we define u € W1 by u(0) =0
and u'(z) € 8f*(z,(z)). Such a function u is a solution of problem (P%¥) if and only if

S = fol u'(z)dz, u > 0 and I'(z)u(z) = 0 for a.e. z € [0,1]. Therefore we define
z
g-: E= 101 by 6-(0)@) =) [ 27 (0 10) do
0
g+: E - L*0,1) by g+(I)(z)= l'(.z)/f;+ (0,1(0)) do.
0
To explain the intoduction of the functionals g and g4 we consider | € E and u defined

as above, i.e. u € W1*(0,1), u(0) = 0 and v'(z) € 8f*(z,I(z)). We then obtain

g+ (D(z) <V (2)u(z) < g-(1)(z) for a.e. z € [0,1]
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since, for any [ € E, I'(z) < 0. With this definition, [ € E and u satisfy all the conditions
of Theorem 24 if a.nd only if

0+()(2) S0 g-(I)z)  ae in [0,1]. S ®)

<ga>n»<@z>

This is clearly an open set. Forevery z € K and for every [ € E we have I(z) = lip(z) =
loup(z) = fe(2,0) and I'(z) < 0.

Suppose that for a certain T € K we have ‘Umf(I) > 0. Then vyp(Z) > 0. Moreover
for every | € E we have .

Let

9+(lup )(Z) < 9+(1)(f) < 9-(D(Z) < g-(linr)(2) < 0.

Therefore the relation (7) cannot be satisfied for any I € E and problem (P}) does not
admit any solution for any S > 0. Condition (22) is then necessary.

Step 4: Conditions (al) and (a2) are sufficient. Observe first that 9+(lsup)(z) <0
forallz € (0,1], and for every leE a.nd for every z € {0 1] we have '

0+ (up)(2) < 9+ (D(2) < 9-(1(z) < g-(lhn)(z). ®
(a) Let z € K. Since conditions (al) and (a2) are valid we have I'(z) < 0 and
9+(lup)(z) <0 and g_(zinf)(x) >0 fo} all z € K.
(b) Let z ¢ K. We then have I, (z) =0 or Il ((z) = 0. Therefore we have
+(lup)@) =0 or  g(ha)&)=0  .forall z¢K.
The cases (a) a.n.d (b) composed with relation (9) imply finally that
| 0+ (loup)(®) SO< 0-(hu)(@)  forall z € [0,1]

Since the functionals g_ and g4 are continuous and E is connected there exists | € E
such that

gs(N(x) <0< g_(I)z)  forae z€[01].
It means that the function @ defined by #(0) = 0 and u'(:z:) € 8f*(z,1(z)) is a solution
of the problem (P}) for S = fo i'(z)dz.

Step 5: Characterization of S} and S} . Suppose that conditions (al) and (a2)
are satisfied. Then there exists a solution of problem (P¥) for a certain $> 0. It means

that there exists a function I € E.such that

g+(D(z) <0< g_(D(x) for ae. ¢ €[0,1].
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We then consider the following two cases:

(i) 1(0) < din¢. Then since lsup(z) > ding we conclude that | = djqs satisfies the
conditions of Theorem 2.4 and we obtain

1
S:!.lp il Ssup = lim /f;+ (I,C!) dz

aTdmf

“(ii) 1(0) > dins. Then since I(1) < dinr we let 7 = = min{z € [0,1) : {z) = dinr},
() =l(z) if z < % and I(z) = din if > Z. Then [ satisfies the conditions of Theorem
2.4. To obtain the maximal value of § it is sufficient to replace z by zsy, = rmn{:l: €
[0,1] 1 Lup(z) = Liup(1) = .nf} and we have

S“p—hm / ot a dmf—e)d

Zoup

For the minimal value of S we consider ;¢ = min{x € [0,1] : lint(z) = Iin[(l)}. Taking
into account that S must be positive we obtain .

Sit‘ = max O’Iiff,l / fa(o,coup + 6) do

Zinf

and the statement is proved B

3. Comparison between the three problems

In this section we want to compare the minimal and the maximal values of S for the
three problems (Ps), (Pls+) and (P%). We suppose that the function f : [0,1]x R — IR
is continuous and satisfies conditions (H), (A1) and (A2). Note that the assumptions
(A1) and (A2) can be relaxed but we avoid deliberately to consider the general case,
the notatlons being too heavy. Observe that these two assumptlons are not very strong.

3.1 Comparlson between the max1mal values of S

In Sectlon 2 we characterized the maximal values Sg.,p, Sk, and Ssjp for the three
problems. Here we give relations between these values. .

Theorem 3.1: Assume ‘that there ezist numbers S; € R and S2 > 0 such that

problems (Pgs,) and (P+ )} have a solution. Then Syp < S;tp < S,u+p
Remark: S,up, S, and Ssu'*'p are allowed to take the value +oco.

The. proof of Theorem 3.1 is given by the following two lemmas. -
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Lemma 3.1: Assume that there ezist numbers S; € IR and Sz > 0 such that
problems (Ps,) and (P%,) have a solution. Then the following statements are true.

(i) Ssup < S35,

(ii) If Ssup is bounded, then Ssup = usup(l) and SF,, = Ssup — minz¢(o,1) Usup(z)
for ugup : [0,1) = R U {+00} defined by ugup(z) = limatd, fy f3¥ (0,a) do with
dint = inf26[0,1] d(l?)

Proof: (i) Since problem (Ps) admits a solution for some S € IR we can apply
Theorem 2.2, i.e.

dm

Seup = lim /f *(0,a) do.

Since problem (P}) admits a solution for some S € IR we can apply Theorem 2.7, i.e.
there exists { € E such that l(m) 2 dins for all z € [0,1] and

Sup —hm/f'+ 0,l(0) —€)do

Since the function fc‘,+(a: -) is non-decreasing and I(:c) > dint for all z € [0,1] we
conclude that Sgup < S}

(ii) If limatg,,, ff *(o,a)do < +oo, then we can define ugyp : (0,1] — R by

z

usup(:z:) = o'Irlm fa+ (o,a)do.

dint

Let zo be the smallest z € [0,1] such that ding = lime—too f?(xo,f). This implies
that f3t(zo,dint) = +oco. Let 7 be the smallest z € [0,1] sucht that ug,p(Z) =
min,e[o’lj usup(z). This means that if £ > 0, then ugyp(Z) < usup(z) forevery 0 < z < z.
We then consider the following two cases:

(a) usup(Z) = 0 (i.e. £ =.0).. Then ugp(z) > 0 for every z € [0,1] and ugyp is a
solution of the problem (P+) with S = Sqp. Consequently S;f,p > Ssup- It is therefore
sufficient to show that- Ssup < Ssup- :

Let u : [0,1] — IR be a solution of problem (P}) for a certain number S. Then
there exists [ € E (see Subsection 2.5 for the definition of the set E) such that

u'(z) € Of" (;z,l(z)) - andl U'(z)u(z) =0 ~ae in [0,1].

Since | € E we have l(z) < din for all z € [z0,1]. Then two possibilities can happen:
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(a)1 There exists Z > zo such that u(Z) = 0. Since ugup(Z) > Usap(Z) = 0 we have

S =u(l) - u(z)
= /fc',+ (0, I(U)) do < /f;*’(a, dint) do

= Ugyp(1) - Usup(Z) = Ssup — usup(Z)
< Ssup~

‘ l;m)(x) ]

Rl

Figure 6: Representation of usup When zo > 7
(3)2 u(z) > 0 for every z > zo. Let # < z¢ such that u(Z) = 0 and u(z) > 0 for all
z € (Z,1]. Such a point Z exists since u(0) = 0. Since u(z) > 0 for all z € (,1] there

exist k € IR such that I(z) = k for all z € (Z,1] (i.e. '(z) =0 for all z € (%,1]). Hence
for £ > Z we have

u(z) = / fit(0,1(0)) do = / fi* (0, k) do.

Moreover, we know that k < 'dj,y. 'Theréfore we obtain
1 1 . .
S=u(l)-u(z)= /f;+(o, k)do < /f;+(a, dint) do = ugup(1) — tgup(Z) < Ssup.

Considering that Sto 2 Seup this last inequa.lity implies that S,tp = Ssup-

(b) Ugup(Z) <0. .

(b)y zo > 7 (see Flgure 6) We then consxder the followmg problem Fmd u €
W1e(0,z) and | € E such that

(P:z) u(0) = u(:c) =0, u(z) 2 0 for every z € (0,%)



316 F. Weissbaum

l(:f) = djnf .
u'(z) € 8f*(z,1(z)) and I'(z)u(z) = 0 a.e. in [0, Z). _
(b):1 Problem (P:z) admits a solution @ : [0,Z] — IR. Then we can extend this
function on [0, 1] by letting

17.(1,') = /f;+(0, dinf)dU lf.‘l: € (.i‘, 1].

With such a definition @ is a solution of problem (P}) where S = Saup — usup(z). This
implies that S} > Seup — Usup(Z).

su -
The reverse ?nequa.lity can be shown as follows. Suppose that there exists a solution
u of problem (P¥) for a certain $ > 0. Let Z € [0,1] such that u(Z) = 0 and u(z) > 0
for all z € (Z,1]. Such a Z exists since u is continuous, u(0) = 0 and u(1) = § > 0.
Then there exists k < di¢ such that

1 1
§= /f;+(0, k) do < /f;‘-(a’ dinf)da = Ssup - usup(i) < Ssup - usup(j)~

(b)12 Problem (P;:) does not admit any solution. Then we show that this case is
impossible. Suppose that there exists a function u which is solution of problem (P})
for a certain number S > 0. Then u(Z) > 0 since otherwise problem (P:) admits a
solution. Since u is a solution of problem (P}) there exists { € E such that

w'(z) € 8f*(z,l(z)) - and-  [l'(z)u(z) =0 . ae. in [0,1].

Let £ < Z such that u(z) = 0 and u(z) > 0 for every z € (Z,z]. This implies that
Nz)=k and  u(z)= /f;+(a,k)da for all z € (%,%]

z

where k = f?(i,O) Since u(z) > 0 and u(%) = 0 we have

0 < u(z) — u(F) = /f;+(a,k)da.

Moreover

02 toup(Z) — sup(d) = / f2+(0,dng) do

which implies that k > digs. Since l(a:o)A < digg, I(Z) =k > dinr and I'(a:)u(:z:).= 0 ae.
there exists £ € (Z,zo) such that u(i) = 0. We finally obtain

1

Usup(E) — usyp(Z) = /f;+(o, dint)do < /f;f(a,k)do = u(Z) — u(z) '<’0

x
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which is absurd since usup(z) — usup(z) > 0 for every z € [0,1]. This implies that, for
every S > 0, problem (P+) does not admit any solution. This is in contradiction with
the hypothesis of the lemma.

(b.2) 2o < % (see Figure 7). This last case is impossible since we can show that if
zg9 < Z, then problem (P ) does not admit any solution.

‘ Ugp(X)

Figure 7: Representation of ug,p when zo < z

¢

Suppose that there exists a function u : [0,1] — IR that is solution of problem (PE) for
a certain § > 0. It means that there exists a function [ € E (see Subsection 2.5) with
I(z) < ding for all z € [zo,1] such that u(z) = [ f2*(o,1(0)) do. Hence for z > zo we
obtain

)= ]°f;+ (0:0) o + / f2* (0.e)) do
u(zo) / £+ (0, 1(0))d

< u(IO) + /f g dlnf)d

Since Z > o we have

u(i) < u(zo) + /fz;+(°" dint)do = u(:z;o) + usup(Z) _- tUsup(Zo)-

To

Since u(Z) > 0 and ugup(Z) — usup(z0) < 0 we conclude that u(zo) > 0.
Let £ < z¢ such that u(Z) = 0 and u(z) > 0 for every z € (%, zo]. Such an # exists
since u(zo) > 0 and u(0) = 0. Moreover since u(z) > 0 for all z € (Z,z¢) there exists a
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constant k < djr such that I(z) = k for all z € (£,z¢) and
u(z) = /f;+ (0,1(0)) do for all r € [z,1].
Finally since u(Z) > 0 and u(Z) = 0, we have

0 < u(Z) ~ u(@) = / fot(0,(0)) do < / F2t (0, diar) 40 = tgup(Z) — tgup(E).

This last result is in contradiction with the fact that Z is the smallest element of [0, 1)
which realizes the minimum of the function usyp. It implies that problem (P;) does not
admit any solution in this case @

Lemma 3.2: Assume that there ezzsts a number § > 0 such that problem (P) has
a solution. Then S} < S.t

sup = “sup-

Proof: In Subsection 2.4 we have shown that
sup / f‘+(0 dmf)

where-K = {:c € [O,ll] : ff_(m,O) < dinf}. From the ﬁreceding_lémrﬁa we know that

SS-*l.lp = Ssup - rérf(l)n] (/ f;+(0',din{.)d0) .
o 0

Let Z € [0,1] be a point which realizes the minimum of f; f3*(o,dinr). Therefore we
have

Ss+up sup /f.+(0 dmf)da - /fc:+(a d,n()da—/f‘+(0 dinf) do

- / 2+ (0, ding) do — / f2* (0, ding) do

/ fa (ad.nf)do— / fa (ad,nf)do

Ken(z,1) - Kn(0,z)
<0

since fo+(z,din) < 0if ¢ € K€ dnd fi*(z,dng) > 0ifz € K B
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3.2 Comparison between the minimal values of S

We first recall that S::} is always zero. Concerning Sia¢ and S, it is not possible
in general to say if one is greather than the other. As we will see in the following
examples, Sing and S;:, are in general independent. Recall that we suppose the function

f to satisfy conditions (H), (A1) and (A2). In particular it implies that f?’(r,f) =

Examples 3.1: Let us consider the situation described in Figure 8 where zq is
that point in which c realizes its maximum and Z is defined as a point where f¢(-,0) is
decreasing and such that csyp = f¢(Z,0). Note that here we have csyp = c(zp = 1).

? e d(x)

I\
Y.

max ¢(x)
x /

fe(x,0)

Figﬁre 8: Graph of the functions ¢,d and f(,O) in Example 3.1

We suppose that inf; d(z) > max; f¢(z,0). This hypothesis implies that for some S > 0
there exists a solution for each one of the three problems (Pgs), (PIS+) and (P}). With
the example presented in Figure 8 we construct in Figure 9 the values of S;,1 and Si+nf'
In Figure 9 we can observe that the point Z is the global minimum of the function

uin((2)=/f;"(a,csup)da.
. 0

Note that Sint = uiag(1). Moreover, by continuity, there exist z; < T and a; > cayp (see
Figure 9) such that

oy = fe(21,0) and /f;_(a,al)do =0.
. S L



320 F. Weissbaum

Therefore by using Theorem 2.4 and by letting

) if 0 <z S Ty z
(z)={ fe(2,0) if 21<2<7 and u(z)= /f;- (0,1(0)) do
Csup if 2<z<1 .0 .
d(x)
S'inr A -
Siar -

o)

A Csup

Je(x,0)

Figure 9: Construction of Sj,; and Sitf in Example 3.1

we conclude that u is the minimal solution of problem (P%). It means that S}, =

S inf —
Sint — uinf(Z), and since ujp((z) < 0 we have 5;, > Siat.

To show that this last result is not true in general we consider a second example.

Xo

-
e /
x

x|

f¢(x,0)

Figure 10: Graph of the functions c¢,d and f¢(-,0) in Example 3.2
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Example 3.2: Let the situation described in Figure 10. In this figure, z is always
the point where c realizes its maximum, and 7 is defined as a point where f¢(-,0) is
decreasing and f¢(Z,0) = ¢(zo). Here again we suppose that the three problems (Ps),
(P?) and (P§") admit a solution for some S > 0.

‘ ’ e d(x)
L /P2 i il -
X 1 x x2 x
S*ine=0 / :
23] - ’
. |
Si(x,0) o
e(x)

Figure 11: Construction of S;;¢ and S;, in Example 3.2

In Figure 11 we can observe that the point Z is the global minimum of the function
z
wni(2) = [ £37(0,cunp) do
- -

Note that Sint = uinf(1) > 0. Moreover, by continuity, there exist z, < Z, z, > %
@) > Csup and g < csup (see Figure 11) such that - .

L]

E 2 1
ay = fe(21,0), a2 = fe(z2,0), /f;_(aval)da =0, /f;_(d,az)dU =0.
0 . I3

Therefore by using Theorem 2.4 and letting

a; if 0<z<1 - z
z)={ fe(z,0) if z; <z <19 and u(z) = /f;' (0,1(0)) do
a, if zo<z<1 0

we conclude that u is the minimal solution of problem (PZ%) since u(z) > 0 for all
z € [0,1] and u(1) = 0 (i.e. S =0). It implies in this example that 0 = St < Siat.
This last inequality, composed with the inequality obtained in Example 3.1 (see Figure

9), shows that S;* and Sins are in general independent.
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3.3 Independence of the problems (Ps) and (P¥).

3.3.1 Existence of a solution of problem (Ps) for every S € R and non-
existence of a solution of problem (P%) for every S > 0. In this subsection we
exhibit a function f such that problem (Pgs) has a solution for every S € IR and, for

the same f, problem (P%) does not admit any solution for every § > 0. In Figure 12
we illustrate such a possibility.

N s(o

A fx,0)

n;lnd(x) - Poo

Figure 12: Problem (PZ) does not admit any solution

In this example we assume that Z, and 7, are two points in which d realizes its minimum,
le. d(Z,) = d(Z2) = dint and fe(z,0) < d(z) for all z € [0,%,]. This means that

lsup(z) = dint. Moreover we suppose that there exists Z € (Z;,Z2) such that

aldiag

lim /f;+(a,a) do < 0. (10)
0

Let o € (¢sup,dint) and define

z

ua(:i) = /f;+(a,a)o and S(a) = ua(.l).

0
We suppose that

lim S(a)=+4cc - and ~ ‘lim S(a)= —oo.
atdiar alceup
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This means that problem (Ps) admlts a solution for any S € IR. We then consxder the
function

Vsup(z) = lzlﬁ)l/f;+ (a, loup(o) — e) do.
0

But since relation (10) is valid and since lsyp(z) = dinr we conclude that v is not always
greater than zero since vsyp(Z) < 0. This implies (see Theorem 2.7) that problem (P¥)
does not admit any solution for every S > 0.

3.3.2 Existence of a solution of problem (P%) for every S > 0 and non-
existence of a solution of problem (Pg) for every S € IR. In this subsection we
show that we can construct a function f for which problem (P}) has a solution for every
S > 0 and, for the same f, problem (Ps) does not admit any solution for every S € IR.
To exhibit such an example, it is sufficient to consider a function f € C!([0,1] x RR)
such that :

(a) fe(+,0), d and c: [0,1] — IR are continuous and decreasing,
(b) ¢(0) > d(1).

The conditions (a) and (b) imply that cap = ¢(0) > d(1) = din¢. Therefore (see
Subsection 2.3) problem (Ps) does not admit any solution for every S € R.

However conditions (a) and (b) imply that there exists Z € (0,1) such that f¢(z,0) =
d(1). We deduce that '

_ fg(:l:,()) if 0<z<z
() = {fe(f,O) if £<z<1.

Therefore Isup(:c)‘= d(1) for all z € 4[5, 1]. Moreover assume that
S A
lifgl/f_:_l (0,d(1) — €) do = +oo0. . (11)
. \

Then problem (P%) has a solution for every S > 0. Let £ € (z,1]. We consider
1€ C°[0,1]) and u € W' defined by -.

) {fg(x,O) f0<z<i

fe3,0) iti<z<1 2 ue) = O/f“”("a (9)) do,

respectively. Then u(z) = 0 for all z € [0,%] and u'(z) > 0 for ae. z € (,1].
implies that both { and u satlsfy the conditions of Theorem 2.4. Hence uis a solutlon
of problem (P¥) for S = fo u'(z)dz = f u'(z) dz.
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In Figure 13 we can see how to construct such a solution u for problem (P%) by

considering the function | € E associated to the function u (see Subsection 2.5). Finally
we obtain that S} = +oco by using relation (11).

A

u(x)
.d(x) - .
R X x, . x
; ) e >
R SO T e )
o Tl » . N
" fu0)

Figure 13: Problem (Ps) does not admit any solution
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