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Abstract. The present paper studies the sharpness of error bounds obtained for approximate 
solutions of initial boundary value problems by finite difference schemes. Whereas the direct 
estimates in terms of partial moduli of continuity for partial derivatives of the (exact) solutions 
follow by standard methods (stability inequality plus Taylor expansion of the truncation error), 
the sharpness of these bounds is established by an application of a quantitative extension of the 
uniform boundedness principle. To verify the relevant resonance condition a general procedure 
is suggested, in contrast to our previous investigations which were based on rather specific 
properties of the discrete Green's functions associated. Exemplarily, details are worked out in 
connection with Crank . Nicolson, Du Fort-Frankel and Saulyev schemes. 
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1. Introduction 
The initial boundary value problems to be discussed are given via (with a < b for 
a, b E H?, the real axis) 

	

Lu(x,t) = (x, t)	for (x,t) E ci = { (x,t) : a < x <b, t >01

	

 
u(x,t) = o(x,t)	for (x,t) Er0 = { (x,t) : a < x <b, t= 01 	(1.1) 

	

u(x,t) = J. i (x,t)	for (x,t) Er 1 = { (x,t) :x E {a,b}, t > 0) 

where L is a linear (parabolic) differential operator and the data w., io and 01 are real-
valued functions defined on ci, r0 and r 1 , respectively. It is important to note that, we 
only discuss those problems (1.1) for which solutions u not only exist but indeed belong 
to appropriate Banach spaces C ( '' ( ci) of real-valued functions on ci = ci U r 1 which 
possess continuous partial derivatives of order r E Wo (:= iN U {0}, with f'J the set of 
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natural numbers) with regard to x and of order s E No with regard to t such that the 
norms

	

IUIIC(rf) = sup Iu(x,i)I	(u E C(i) = c(°°)(i)) 
(,t)Ecl

r $ 

	

ôu
+	5F ^IIUIIC(r,.)(i)rIIUIIC(?)+>	C(ii)	 C(?i) 

are finite. Let h	for n E JIV and k = A(h) for some positive function A with

A(h) = 0. On the uniform grid (no E No) 

x=a+ih, t=jk (1in-1, jENo,	no)} 

x=a+ih,t=jk (1in-1,jE No, 0<j< no) } 

	

rl,h = {(x, t): x E {a, b}, t = jk (j E	} 
= czh u ro,h U rl,h 

(no ^! 1 corresponds to multi-step methods, cf. Section 4) consider a discretization of 
(1.1) given by

	

Lhuh(x, t) = Jh(x , t)	for (x, t) E Q h 

	

uh(x,t) = o(x,t)	for (x, t) E rO,h	 (1.2) 

	

U h( X , t ) = 0 1 (x,t)	for (x,t) E rI,h 

where J,, is a linear averaging operator and Lh a finite difference operator of type 

Lh u h(x, t)	I	Yh,(x,t)(hl)tth(hl) 
iE 

with real-valued coefficients 7h,(,t)(77) such that the set {Th,(r,1)(11) : 77 E Ilh} is finite 
for every fixed (x, t) E Qh 

In the following we are interested in sharp estimates for the error huh - 
measured by sup-norms like (T> 0) 

	

hI Vhhh hT = sup {hvh(x,t)I: (x,t) E h,T	{(x,t) E nh: 0< i	T}}.	(1.3) 

The error bounds are given in terms of partial moduli of continuity for partial derivatives 
of solutions of (1.1), thereby confining ourselves to those problems (1.1) for which the 
solutions actually belong to the appropriate space C ( ' ) (cl). It may be mentioned that 
these error bounds are obtained by standard methods (stability inequality and Taylor 
expansion of the truncation error) and include those known for smooth solutions. On 
the basis of a quantitative extension of the uniform boundedness principle it is then 
shown that these error bounds are sharp in the following sense: There exists a problem 
(1.1) with suitabledata and 0 1 such that on the one side the solution belongs 
to the Lipschitz class under consideration, thus admits a certain (large-) 0-rate of
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approximation which, on the other hand, cannot be improved to the corresponding 
(small-) 0-rate. 

To work out this program, Section 2 does not only recall some basic facts concerning 
discrete Green's functions but also adapts the quantitative uniform boundedness prin-
ciple mentioned to the present situation of numerical approximations. Indeed, whereas 
our previous contributions (cf. [1, 2, 4]) were based upon rather specific properties of 
the discrete Green's functions in order to verify the relevant resonance condition, the 
procedure in Section 2 is quite general (see also the concluding remarks in Section 6). 
The following sections outline the details in connection with a general Crank-Nicolson 
scheme (Section 3), a Du Fort-Frankel scheme (Section 4) and a Saulyev scheme (Section 
5) in order to illustrate the wide applicability of the method. 

2. Discrete Green's functions and a quantitative uniform 
boundedness principle 

For the definition of discrete Green's functions and for a useful representation of errors 
we need some further properties of (1.2). 

(H1) For each h =	(n E V) and for all data , o and 0 1 there exists a unique 
solution of problem (1.2) which can be calculated via (7) = (x,,, t,,)) 

(1) 

	

U h( X , t)	 7(,l)('7)Jh'P(77) 
'iEclh, 1,7<1

(2) (3)	 (2.1) 
+	7(Z,j)(71)Tbo(7l) +	i	1(,)())I'1(77) 

'iE1'o,, i,,<i	 'IEI'l.h, t,,<1 

with coefficients -y1)(17) = $ il) (7) ) (, = 1,2,3) depending on h, (x,t) and 
i. Formula (2.1) means that for the computation of uh(x,t) one only uses 
informations at the points ij = (x q ,t,,) with t,, <i. 

(H2) Jh is a surjection in the sense that for every real-valued function vp, on ci,, there 
exists a real-valued , defined on ci, such that vh = JW on 

(H3) For the error (cf. (1.3)) 
RhU = 1 1Uh - 711	 (2.2) 

one has limh_o+ R,,u = 0 for all u of the Banach space C ( ' ) (i) under con-
sideration, where Uh is the solution of problem (1.2) corresponding to the given 
data = Lu, I'o = u and 01 = u. In other words, the discrete solutions tL/, 
should indeed converge to the exact one u. 

These requirements have to be verified for each concrete problem: Whereas hypotheses 
(H 1 ) and (H 2 ) are assumed to be known in the examples to be considered, condition 
(H 3 ) will in fact be equipped with rates, even establishing (inverse) discrete convergence.
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For (,ij) E	X Qh the discrete Green's function Gh(e,71) is then defined for each fixed

j E clh as the unique solution of 

(LhGh(.,))(e) = 1 1 if = 77	for e E Qh lo else 

Gh(e,) = 0	for	e Fe , ,, U r1,5. 

Note that Gh is well-defined in view of the assumptions (H i) - (11 2 ). Moreover, (2.1) 
implies that

Gh(e,1)) = 0	for all C = (x,t) with i < t,.	 (2.3) 

Lemma 2.1: Let Vh be a real-valued function on czh with vh( x , t ) = 0 for (x, t) E 

ro,h u r' l,h. Then for every C E Qs there holds true the representation 

Vh() =	Gh(e,71)Lhvh(17) =	 Gh(e,11)Lsvh(?7).	(2.4)

t1€cih,t,,<t 

Proof: First observe that the sum in (2.4) is indeed finite because of (2.3). Denoting 
the right-hand side of (2.4) by wh(), one has 

L h(wh - Vh)() = 0 for E Qs	and	(wh - vh)(e) = 0 for e rO,h U FI,h 

so that (2.4) follows from the unique solvability of (1.2), assumed by hypothesis (11 1 ) U 

In particular, since for the error Uh—U one has (uh — u)(x, t) = 0 for (x, t) E rO,hurl,h 
(cf. (1.1) and (1.2)), one can apply Lemma 2.1 to obtain the representation of the error 
(cf. (2.2)) 

Rh u =	G(, )L5(us - U)(77) =	G, ) Th u()ll	(2.5) 
qEOh	 I—	?7EOhT IIOh,T 

where the truncation error Th is defined by 

Th u	Lh(uh - u) J,cp -	J5LU - Lh u	 (2.6) 

(cf. (1.1) and (1.2)). 
As is well-known, to prove convergence (cf. hypothesis (1 -1 3 )), it is sufficient to show 

consistency and stability (note that for a consistent discretization stability is actually 
equivalent to (inverse) discrete convergence). Indeed, a stability inequality like 

IIt7 hII hr	M II L h vhIIclhTk	 (2.7) 

(with a constant M < oc, independent of h and k < T) where vs is defined on 
satisfying Vh = 0 on r'0,5 U r15, immediately leads to the estimate 

R5u < M II Lh( u h - u )IIohT. = M II rs u IIcr	 (2.8)
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(cf. (2.2) and (2.6)). It therefore remains to treat the truncation error (consistency). 
For this purpose we introduce the partial moduli of continuity 

(10)(8, U , QT) 

= sup {i u (x +c,i) — u(x,t)i : (X, t), (x + E, t) E nT, ci 
W(20 )(6, U, T) 

= sup {i u ( x +e,t) —2u(x,t) +u(x —e,t)i: (x ±e,t) E T, IEJ 

for 6? 0, with an analogous definition for the partial moduli W(0) (6,U,cl T) (j = 1,2) 
with respect to the variable I. Here P T = { (x, I) E 0 : t T} (cf. (1.3)). In our 
applications in Sections 3 -5 the approximation error Rhu will be estimated by a (linear) 
combination of partial moduli. The sharpness of these estimates will then be established 
in connection with Lipschitz classes, determined by abstract moduli of continuity, i.e. 

	

by functions w (e.g. w(6) = 6 with 0 < a	1), continuous on [0,00) such that, for

0 < 6,e,

0 = w(0) <w(6) <w(6 + c) <(6) + W(C).	 (2.9)


For moduli w additionally satisfying

(6) 

	

lim	= cc	 (2.10)
o—.o+ 6 

this will be achieved by an application of the following quantitative extension of the 
uniform boundedness principle. 

For a (real) Banach space X with norm lix let X be the set of all sublinear, 
non-negative-valued, bounded functionals F on X, i.e. F maps X into [0, cc) such that, 
for all f,g E X and a E JR, 

	

F(f + g) Ff + Fg	and	F(cxf) = laiFf 

ii F iix . : sup{Ff : ilfiix	i} <cc. 

Theorem 2.1: Suppose that for a sequence of remainders (F) 1 C X and for 
a measure of smoothness {S5 } 6 >0 C X there are test elements gn E X such that 
(6> 0, n - cc)

	

iigiix = 0(1)	 (2.11) 

Fg	0(1)	 (2.12) 

So9n <K min { 1 , 1l	. 
pn	

(2.13) 
J 

where a(6) is a function, strictly positive on (0, cc), and ( p ) .. 1 C (0, cc) is a strictly 
decreasing sequence with p = 0. Then for each modulus w satisfying (2.9) and 
(2.10) there exists a counterexample f,,, E X with 

	

S6 f,.., =0(w(o(6)))	(6 - 0+) 
o(w(pn))	(n —* cc).



352	H. Esser, St. J. Goebbels and R. J. Nessel 

For a proof and further comments see [2, 3] and the literature cited there. 

In the context of this paper the Banach space X will always be identified with 
C ( ' ) (cl) for appropriate values of r,s E No, whereas the measure of smoothness {So} 
will be the combination of partial moduli of continuity of the exact solution mentioned. 
Clearly, for the remainder functional F we choose Rh for h = (cf. (2.2)). To 
prepare a suitable choice of test elements, the following property of discrete Green's 
functions will be useful in connection with the resonance condition (2.12) for the error. 
In fact, the next lemma is particularly important for a treatment of the case w(ö) = 
so far excluded by (2.10). 

Lemma 2.2: For T > 0 let g e C(")() ( such that Lg is well-defined ) be a 
function with g = 0 on r0 U 17 1 and, if no > 0, additionally with g = 0 on To , , for each 
h < öo (5 > 0), but g 0 on QT. Then there exists 8 > 0 such that, for all h <8, 

1 
Gh(.,7))JhLg(i)Lih.T >	IIII C( . ) > 0.	 (2.14) 

Proof: Obviously, g may be considered as a solution of problem (1.1), correspond-
ing to the data W = Lg, 0 = 0 and 0 1 = 0. In view of hypotheses ( H i) and (H 3 ) the 
solution g,, of the associated discrete problem (1.2) satisfies, for h — 0+, 

	

II9hI1h, - II g IkihT	Rg = 0(1). 

Since lim,1 _. 0 II g IrIh,T = there exists 8 > 0 (without loss of generality, let 
6 < 60 if no > 0) such that II9hII11,T > I1gII C() /2 for all h < 6. Therefore in view of 
Lemma 2.1 it follows that 

1	 II	 II 
IIIIc(iir) < II ghIIcl, =	Gh(,r)Lhgh(?l)	 (2.15) 

'I -IIhT 

already establishing (2.14) I 

Choosing the quantities in Theorem 2.1 as mentioned above, we can then give a 
sufficient condition for (2.12) to be fulfilled, namely to determine test elements g, such 
that

	

Thgn = MJh Lg	on 1 h	 (2.16) 
for a constant M 54 0 and a function g according to the conditions of Lemma 2.2. 
Indeed, because of (2.5) and (2.14) for j- = n —* 

nh gn =	Gh(.,)rhg(
	

= Ml	Gh(.,)JhLg()M	0(1). 

lIZ h,T	 llIZhT 

It is property (2.16) which will be verified for the examples in Sections 3 - 5. It may 
be mentioned that in [4) the resonance condition (2.12) has been established by means
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of a rather specific structure of the difference operators involved. The treatment given 
here in particular shows that one does not need any additional assumptions upon the 
discretization (1.2) to ensure (2.16). Moreover, note that if the discrete Green's functions 
are positive, say, we may continue the argument in (2.15) according to 

1	 II

	
^I ffh.T

2IIIIC(0) < II9hIIfz,	IIJhLgIIcI,T 

jkEnh,T  

If II Jh Lg II	is bounded independently of h, this implies that for h - 0+ 

G(•,	o(1).	 (2.17) 
'7EOh.T

IInhT 

In this situation, (2.12) (cf. (2.16)) can be replaced by the postulate (cf. 111) to deter-
mine test elements g such that (e.g.) 

Thg(x,i) > C > 0 

3. Crank-Nicolson scheme

for all (x, t) E h,T .	 (2.18) 

In this section the quantities in connection with problems (1.1) and (1.2) are specified 
as follows: For r = 2,s = 1 (or .s = 2) we choose 

a	8/  
Lu(x,t) = —u(x,i) - - I a(x) 

a 
_u(x,t))	 (3.1) 8x	8x 

for a coefficient function a E C[a, bj satisfying a(x) > 'c > 0 for all x E [a, b]. Here C[a, b 
is the space of real-valued functions a, continuous on [a, bJ with 11 all := max{Ia(x)I 
a x < b}, whereas C ( ' ) [a, b] (r e IV) will denote the subset of all r-times continuously 
differentiable elements. Concerning the difference scheme let us introduce the notations 

az Uh(X,t)	
uh(x + h, t) - Uh(X,i =

h 

8Uh(X,t)
Uh(X,t) - U h( X - h,t =

h 

aiUh(X,t) 
= u h( x , t + k) - uh(x,t 

k

8uh(x, t) = u h( x + h, t) - u h(x - h, t) 
2h 

8uh(x,t) 
= U h( X , t + k) 7l h( X ,t - k) 

2k 

For a parameter 19 E 10, 1] the operators L,, = Lh( I')	 (I) 

(no = 0)	
Aand	= Jh are then defined by 

Luh (x,t) = ôt U h( X , t ) - a (o^ 

(x - )	
[t9uh(x,t + k) + (1— 19)uh(xt)I) (3.2) 

J"(x, t) = 9(x, t + k) + (1 - i9)(x, t).
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Note that for t9 = 0 this scheme is an explicit Euler scheme, whereas 9 = 1 leads to 
the Crank-Nicolson scheme and t9 = 1 to an implicit backward Euler scheme (cf. [5: p. 
527] and [8: p. 118]). 

It is easy to show (cf. 15: pp. 525/528]) that hypotheses (H 1 ) and (H 2 ) of Section 
2 are satisfied for (3.2). Regarding (11 3 ), we need stability and consistency (cf. (2.8)). 
Concerning stability, let vj, be defined on satisfying v, = 0 on Fo, h U F 1,h• Suppose 
that either

or	2 () (1— 2 )IIII <C < 1.	 (3.3) 

	

2	 h2 

Then it was shown in [6] (cf. [8: p. 118]) that the stability inequality (2.7) holds true. 
Concerning consistency, we are in fact interested in the following (quantitative) estimate 
for the truncation error. 

Lemma 3.1: For u E C(2'I)(i), a E C (3) [a, b] and T > 0 one has 

Th n il	 :=	 - 
()	Ii 

IIIlh.T_k	 nhT_k 
au \ i	 02u 

	

<W(oi) (k T) + IIaIIw(2,o) 1h__clT)	( 3.4)

\\. ax 

52u" 
+ h II a 'II w(Io) (h —clT) + K,.h2,49X2 , 

the constant Ku being given by

11

a2U1I 1	

11

au tI
Ia ii"	 + ik3ii—lx iK,. =	 II

3x2 IIC(?1T)	24 	O 

In the case V = 1 and u E C(2,2) (NT) the estimate can be improved to 

(1/2) ii	k	/	32u 
Th	till	L)(oi)	 +	kijw(2,O)	

- 

	

+ h I a 'Il w (l,o)	 +K,.h2. 

Proof: Let (x,t) E l h,T-k be arbitrary, fixed. In view of (1.1),(1.2) and (3.1), 
(3.2) one has for the truncation error (2.6) 

au	 1 
Th u(x,t)

 + [_a(X)a2U(X,t + 
k) - a'(x)—(x,t + k) + Or (a (x -	u(x,t + k))] 

Ox 

	

02 u	 On 
+ (1	)I —a(x)— 

Ox 
(x ,t) - a'(x)(x,i) + Or (a (X - h) u(x,t))] 

[  
(r(j) +19r( 2 ) + (1— 9)r(3))u(x,0,
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say. For T( 3 ) it follows that

/ ô2 u	- 
IT(3)U(X,t)I '.5a(x)	(X, t) + 3zôzu(xt)) + —(x, t) 

ax 
a(x + h) -a(x)	+ a(X) - a(x - 

+
h	 h 

=: S + 52. 

Concerning S 1 one immediately concludes
h 

I	 a2u 
h s)—(x+s,t)ds Si	h a il —--(x,t) +	

- 
0 

h	 I 

+ J( h - ) 02U 
—(x - s,t)ds	 (3.5) 
5x2 

0

(
h , 

32u 
ll a ll w(,o	 —clT) 

whereas for 52 a Taylor expansion of a at the point x with suitable fi, 2 leads to 

S2	(X) 
Ou 
—(x,t) 

1 f /h	h2 
+

	a' (X) +	a I, (x) +	a(3 ) ( i )) (u(x + h, t) - u(x,t)) 

Ih	h2	h3 
+	a (x) -	a	+	a(3)(e2)) (u(x,i) - u(x - h,i))) 

53 +54 

where
53 = ^—"(X)LU(X,t) + a'(x)aou(x,t) 

	

ax	z 

	

I	 I 

	

lI a 'hi	J(h -s) 
(az u	 ô2u 
—(x + s,t) -	(x - S, t)) ds 5x2 

	

I	0
57X 2 

<1/ill
au	\ 

2 a II w(io) 
(

h, 	lT) 

and
54 = at) 

	

+	 ± a(3)(2)hu(x,t)) 

-

	

 h 2 ll" II	
52 u II	 1	2 11a(3)II 

 
-	

+ —h 
ôxMC(T) 24	XiC(?i) 

= Kh2.
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An analogous estimate may also be obtained for 7(2) so that 

IT( 2 ) u(x, 01 + ( 1 - 9 )I r(3) u ( x , t)I 
1	/ 52 u / 52u 
IIIk,o (h,	+ h II a 'II w(l,o) (\h	 + Kh2. 

It remains to discuss 7(1). On the one hand side, 

au	 I

	

ISn 
I T(I) U ( X , t )I	(x,t + k) - 5 t u(x,t) + (1 - )	(x,t) - Sju(x,t) 

I	k	 I 

(ou(x,t+k)_	(x,i+s)) d 
k	5i_
10	 I 

I	k

I au	Sn 
(x,t+s))ds +(1_)J(x,t)_  

10 
/ Otz - 

On the other hand, if i9 = and u E C(22 ) ( T ) , then 

Ii (au 
T ) U ( X , t)I =	(x, t + k) + Tt (x, t)) 

k 

15u 52 u 
-	(\k(x,t)+f(k_s)--(x,i+s)ds 

k 

+k(x,t + k) - J(k - s) 
52 

(x,t + k - s)ds) 
0 

k
W(o , i) (k,	

UT) 
Summarizing, the assertions of Lemma 3.1 are completely established U 

With the aid of stability (cf. (2.7)) and consistency (with rates, cf. (2.6) and Lemma 
3.1) we obtain the following a-priori estimate for the error (cf. (2.8)). 

Theorem 3.1: Let a E C (3) [a,b], T > k and 0 19 1 be arbitrary, fixed. Given 
a problem (1.1), (3.1) with solution u satisfying u E C 2 '(c), let u, be the solution of 
the associated discrete problem (1.2), (3.2). 

a) If one of the assumptions (3.3) is satisfied, then for the remainder (2.2) there 
holds true

au	1	 52u - RU	M [W(0I) (kT) + IIaIiw(2,o)at	
(3.6) 

52 u 
+hIIa'IIw(l,o)	 \ +Kh2]
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with constants M and K given via (2.7) and Lemma 3.1, respectively. 


b) For 9 = 1 and if u additionally satisfies u E C(2,2) ( NT), then 

M [(oI) (k,	+ Ik a ll ''(2,o) (h	ilT) 

	

+ j hlIa'IIw(I,o )	 +K0h2] 

These direct estimates are sharp in the following sense. 
Theorem 3.2: Under the assumptions of Theorem 3.1 let a E C ( ' ) [a, bj and T > 0. 

a) If ?.9 E [0, 1] is arbitrary, fixed and k = ih 2 for a constant y > 0 (i.e. .X(h) = 
1zh2 ), then for every modulus of continuity w satisfying (2.9) and (2.10) there exists a 
counterexample u E C(2 " ) (cl) such that (8 - 0+) 

/ a2u—\ 
W(o,i) (2	T) + W(2 ,o) (8, -_, T) 

(6,
 32uw-

(3.8) 
+ 5W(1,o) 	-j- IT) = 

thus	= 0(w(h2 )) (cf. (3.6) for k = zh 2 ), but on the other hand (h - 0+) 

	

(i9)	 2 

	

Rh u	o(.(h )).	 (3.9) 

Moreover, the counterexample can in fact be chosen such that additionally either 

/ ô2u\ 
W(20)	 +5w(Io) 6,---i--MT = 0(82 )	(3.10) 

or
- 

	

)(o,i) (62, ---clT) = 
0(52)	 (3.11) 

is satisfied, i.e.if (3.10) holds true, then the sharpness is based on the remaining module 
W(o,i) (8 2 ,	 (cf. (3.8)), whereas in the situation of (3.11) the sum 

o, ç 4.L ,T) + Sw (1 o ) (o, c,T) becomes relevant. W(z , o) (  

b) Let 10 = and k = A(h) = h. Then for every modulus of continuity w satisfying 
(2.9) and (2.10) there exists a counterexample u, E C (2 ' 2) (?) such that 

492 tLu 82 u, - 
8w(0,1)	 +L(2,o)(8,--j_clT) 

	

a2 u -	
(3.12) 

+ &Q(1O)	jIlT) = 

thus R (' 12 u = 0(w(h2 )) (cf. (3.7) for k = h), but on the other hand 

R( 1/2)U	o(w(h2)).



= 0(1) 

g

2 IIIICT) 
S	

{ 

I 2 
Iät2IlC(iT)

(-40+, rz.—). 

= 0(62 n 2) 0 
U(b) 
pn) 
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Proof: The assertions follow as applications of Theorem 2.1 in connection with 
(2.16). To show statement a) with respect to (3.10), choose 

X = C'() I and 

- 
S6 11= W(o,i) (ö2 _._ 

1 (4 gn(x,t) = —sin 2 
W2

( Fu = Rh
I') U with

n 

T) I	

(8)= 2	=	 (3.13) 

) Lg(x,
/ 27rn2i 

1) =	sin(b)2) Lg(x,t) n2 

where g is an arbitrary, fixed function such that g E C ( ' )() for each r, sE Wo, 
= 0 on r0 u r 1 , but g	0 on TT (cf. Lemma 2.2). Note that Lg e C(4 ' 2) (?i) since 
E C (5) [a, b]. Elementary calculations establish conditions (2.11) and (2.13) since 

Concerning (2.12) we proceed via (2.16): On the one hand side, Lg = 0 on 1h since 
g,2 (x,t) = 0 on 1 h - On the other hand, for every (x, t) E f2h 

r 
- a)2 

(24) Lg(x,t)	
2i 

=	 cos

  OLg	 a2Lg + -sin (24 

	

[ OLg
-(x,t) -
	

( X, t) - 

2ir 
=	Lg(x,t). 

- a)2 

Therefore it follows for the truncation error (cf. (2.6)) that. 

(6)	 _________ 2,r 
Th g(x,t) = JLg(x,i) - Lg(x,t) =

	

	
JLg(x,t) 

p(b - a)2 

which establishes (2.16). Having verified all the conditions of Theorem 2.1 we obtain 
a counterexample u E C (41) () (C C (2 " ) ()) satisfying (3.9) and S6 u = 0(w(82)). 
Note that because of the additional smoothness of u with regard to the variable x we 
further have 

0) (b, a2u, -	 ô2u.

'(2

- 
lT) ± 8w	I(io) (8,	jThST) 0(82)	[7 0(w(62))1 

estabilishing (3.8) and (3.10).
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To construct a counterexample in connection with (3.11) we proceed in the same 
manner. Again we use the quantities F,,, i and p,, of (3.13), but now in connection 
with X = C( 2 2)(i) and 

Sou = W(2o) (s, — clT) + &4.'( 1 ,o) (6, 

	

1 (
	

1	x_.a\)L9(xi) 
i g,,(x,t) = — 1—cost 2irn— 1 

	

\	b — a)	a 

Note that because of a(x) > ic > 0 and a E C (5) [a,b] the test elements g,, even 
belong to the class C(42) (Q). Therefore conditions (2.11) and (2.13) immediately follow. 
Again the resonance elements g, have been constructed such that g,,(x, t) = 0 for each 
(x,t)EIh. Together with 

	

/ ir \ 2 Lg(x,t)	V r 
2 

	

Lg,,(x,t) = —a(x) (-)	a(x) = -	 ) Lg(x,t)	((X, t) E lh) 

this establishes (2.16) (cf. (2.6)). Therefore by Theorem 2.1 there exists a counterex-
ample u,, E C (2 '2) (c) (C C(21) ()) which satisfies (3.9) and (3.8) as well as (3.11). 

Part b) is a further consequence of Theorem 2.1. Recalling that k = h = we use 
(3.13), but replace the space X, the measure of smoothness S5 and the test elements 
g,, by X = c(4'2)(), 

	

S6 u = 5W(0 , i) (6, ___lT)	and	g,,(x,i)	1 sin Mnt
a ) 

= -  2	 Lg(x,t), 

respectively. Thus the theorem is completely established I 

For the Crank-Nicolson scheme (6 =) with constant coefficient function a(x) 1 
the sharpness in the remaining case () = 8 has been shown in [4) using a rather 
concrete telescope argument applicable to the discrete Green's functions under consid-
eration. Note that the discrete Green's functions for i9 = 1 do not have any positivity 
properties (cf. (2.17)). Here let us continue with another approach, namely to construct 
a counterexample for w(8) = 8 using Lemma 2.2. 

To this end, let a(x) 1 and let i9 E [0, 11 be arbitrary, fixed. Using the abbreviation 
d=	consider the function 

g(x, t) = [1 - exp(_d2 t)J sin(d(x - a)) 

in connection with Lemma 2.2. Obviously, 

Lg(x, i) = d2 exp(—di) gin(d(x - a)) + d2 [1 - exp(—d2 i)] sin(d(x - a)) 
= d2 sin(d(x - a)) 

and therefore
J,"Lg(x,i) =Lg(x,t)=d2 sin (d(x —a)).	 (3.14)
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To discuss the case w(5) = 5, one may then use 

	

u,(x,t) = sin(d(x - a))	 (3.15)

as a counterexample. Indeed, Lu,(x, t) = d2u(x, t) and 

Lu(x,t) = _[sin(d(x + h - a)) - 2 sin (d(x - a)) + sin(d(x - h - a))] 

= _[ sin (d(x - a)) cos(dh) - sin(d(x - a))] 

so that for the truncation error (cf. (2.6)) 

	

t) = Jj"Lu,(x, t) -	t) 

	

- sin(d(x - a)) [d2 +	(cos(dh) - 1)]

2j-4 1 •	 = sin(d(x - a))	+ 2d4	(-1(dh)	
h2. 

	

j=3	(2j)! 

In view of (2.5), (2.14) and (3.14) we finally obtain 

) V 

	

R(t9)u.	G,rj)r (u)iI 
•

	

	 IIIIhT


d2
+ 2d2

	

(-1))(dh)2)4 h
2	Gh(., )JLg( 

	

=	 (2j)!  j=3	 IIEh,r	 IIh,T 

o(h2) 

but obviously	satisfies (3.10) - (3:12) for w(5) = 5. 

4. Du Fort-Frankel scheme 
For this and the nextsection let r = 2,s = 1 and (cf. (1.1)) 

	

Lu(x,i) 
= (	-	2) u(x,t).	 (4.1)


The Du Fort .Frankel scheme (cf. (8: p. 41]) is given by (cf. (1.2)) 
L h u h(x , t) = ô° Uh(X, t) 

h2 Uh(X -	 + h, ) - U h(X , t + k) - u h( x , i - k) + U h(X - h, t)]	(4.2)


Jh'p = (p. 

Because of the three time levels involved, this multi-step procedure requires initial data 
for t = k, too, so that we have to choose n0 = 1. Let (h) : throughout. Since 
properties (H 1 ) and (H2 ) of Section 2 are obvious (cf. proof of Lemma 4.1 below), to 
discuss the convergence property (H 3 ), let us start with the following stability inequality, 
a proof of which is included for the sake of completeness.
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Lemma 4.1: If T> k and i(h) < 1, then 

II VhIIjh T <2T II Lh vhII0hT_k	(4.3) 

for every function vh defined on cip, with vh(x,t) = 0 for each (x,t) e r0 , ,, U I'i,,. 
Proof: One may interpret v, as the solution of (1.2), (4.2) corresponding to the 

data b0 0, b, 0 and Jhp = L h vh . Then 

vh(x,t+k)= l+2(h)(vh+h,t)+vh(_h,) 

1-2z(h)	2k 
+ 

1 +2iz(h)Vht - k)+ 
1 +2(h) t 

Using the matrix
A = 2 i t ( h )(a ,j)' 1 E	x 

with
Ii for t = j + 1 or =.i + 1 

a, =
0 else 

and the vectors 

Vi = (vh (a+h,jk),v h(a+2h,jk), ... ,vh(a+(n-1)h,Jk)) 

Qj = (Lhvh(a+h,jk),L h vh (a+2h,jk), ..: ,Lhvh(a+(n_1)h,jk)) 

one may write (4.4) as (j > 1) 

vtr -	1	
AVtT 

1 —_21L(h)Vtr	2k	tr 

- 1 + 2(h)	+ 1 + 2(h)	+ 1 + 2(h)'' 
Vtr denoting the transposed of V. Note that the shape of the matrix A already re-
flects the (homogeneous) boundary condition 0 1 = 0, whereas the initial condition is 
considered via V0 = V1 = 0. In terms of the sup-norms 

II V II	= II(v i,. . . ,v_,)II	=	sup 1<i<n-1 
IIAVtnII 

II A IIc,o =	sup 
O^VE1R 	II"Ioo 

one has II A II <4(h). Moreover,

- 
= 

	

0<p(h) 
1	1-2 

	

2	1+2p(h) 

so that, for i 2 1,
1	 1-21i(h)11	 2k 

1 + 2 z(h) II V,+,1100 <	IIAIIIIViII	+ 1 ± 2,(h) Vj_iIIoo 
+ 1 + 2,(h)3 0 -  

maxi II%II,IIVj,II} +2kIIQII. 

Iteration yields 

11 v 1100 <max {II VoII,II ViII,,,} +2(j - 1)k max IIQiIIoo 

= 2(j - 1)k max IIQII 

already establishing (4.3) 1
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b n'Lemma 4.2: There exists a constant fi > 0 such that for every h =	t and

E C(2 ' I )(ri) (with T> k = i(h)h2)

-


	

Th U IIflh,Tk	'(o,2) (k au-T)
at 

	

(k, 
ôu	"	1

+ t4h)(o,i) 	T) + W(2,0) (h, aX2 lT). 

Proof: For arbitrary, fixed (x, t) E 1 h,T—k one has 

	

au	 ô2u	- 

	

Th U ( X , t ) =	(X, t) - 5u(x,t)) - (— . (x,t) - aau(x,t)) 

1 
-(u(x,t+k)-2u(x,t)+u(x,t _k)) 

=: (T(I) + 7(2) + T(3))U(X,t), 

say. Taylor expansion yields (cf. (3.5)) 

II	k 
Iii f/ôu	 au 

	

II T(I) U IIOh,Tk =	j	(x,t + s) - 2(x,t) +	(x,t - s)) dsM 
II	0	 IIIlhT_k 

au 
W(0 , 2) (k, .0clT) 

1 	32u 
IIT(2)UIIfZ,,,r_k	W(2,0) (h,	2,1T) 

	

Ilk	 II 
ill f/au	 au 

	

=	
J

(x,t + s) -	(x,t - k + s)) dsM 
/ 

1(h) 0,1	
k,au - 

lT) 

so that the assertion follows I 

As in the previous section, Lemma 4.1 and 4.2 fit together to the following a-priori 
estimate for the error (2.2). 

Theorem 4.1: Let z(h) < 1 and T> k. Given a problem (1.1), (4.1) with solution 
u satisfying u E C(2 ' 1 )(i) , let Uh be the solution of the associated discrete problem 
(1.2),(4.2), -using exact starting values Uh(x,t) = u(x,t) on ro,h. Then 

au- 
RhU T I Tw(O2) (k	1) 

+2L(h)w(o,i) (kT) +Ü(2,0) (hç-T)].	

(4.5) 

The sharpness of this estimate is again a consequence of Theorem 2.1.
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Theorem 4.2: Let p(h)	and T > 0. For every modulus of continuity 
satisfying (2.9) and (2.10) there exists a counterexample u L, E C(2I)(i) such that (k = 

=	<

- 
(0,2) (A(t5),	1lT) + /2(6)o I ) (..\ ( 5), at , ?

iT) 
02 u - + Q(2,O) (6,	i- lT) = 

thus Rhu = 0((h2 )) (cf. (4.5)), but on the other hand (h -, 0+) 

Rhu, 54 o(w(h2)). 
Proof: Applying Theorem 2.1 we choose (cf. proof of Theorem 3.2) 

X = C 2 ' 3 ),	Fu = Rh U with h = 

S6 u = W(2 , o) °(h	1lT)	(6) = 62	=	2 

g(x,t)=	( - cos (2--) Lg(x,t)	 - 

=	
( 

	2rnx— a) ) Lg(x,t) 

where g is an arbitrarily often differentiable function as described in Lemma 2.2. Con-
ditions (2.11) and (2.13) are satisfied. To examine (2.16) we compute the truncation 
error (cf. (2.6), (x, t) E nh): 

Thg(x,t) = Lg(x,t)= - V)
2 

Lg(x, t) = - 
a	 (b — a) 

Hence Theorem 2.1 provides a counterexample u as specified, in fact u E C2'3)(l) 
so that, additionally,	 -	 S	 - 

au 

W(02) (.x(6),	ThT) + /1(6)w(o,I) (.x(6),	ThlT) = 0(62) = 0(w(62)).0. 
Therefore the assertions are completely established • -	- 

Let us mention that for ,u(h) the discrete Green's functions associated with 
(4.2) are in fact positive so that it is sufficient to examine (2.18) instead of (2.16). In 
the case that the abstract modulus of continuity is given via (6) = 6, the function 
u,,(x,t) =	may be used as a counterexample ((x, t) E Qh). Indeed, 

Lu,(x,t)=-12x2 

Lhu(x,t) = _((x + h) 4 - 2x 4 + (x - h)4 ) = — 12x2 - 2h2 

rh u.(X,t) =.(L - Lh)u(x,t) = 2h2. 

Therefore in view of (2.5) and (2.17) we have shown that Rh u,, 54 o(h2 ), taking advan-
tage of the positivity of the discrete Green's functions associated.
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5. Saulyev scheme 

Another discretization of (1.1), (4.1) in connection with solutions U E C(2 " )() is given 
by the Saulyev scheme 

Luh(x,t) = OjUh(X,t) 

19 
-	 - h,t + k) - u h( x , t + k) - U h(X , t ) + uh(x + h, t)]	

(5.1) 
19)a1oLh(X,t) 

() 
h	(x, t) = t9ço(x,t +.k) + (1 - 0)cp(x,t) 

where i9 E [0,1] and no = 0. For every , o'i there exists a unique solution of (1.2), 
(5.1) (cf. [7: p. 31]), and there holds true the following convergence theorem which in 
particular implies that hypotheses (H 1 ) - (H 3 ) of Section 2 are satisfied. 

Theorem 5.1: Let i9 E [0, 1], T > k be arbitrary, fixed and suppose that k = 1ih2 
with 1C' ^ max{ - 19,1 - i9 + /iT} . Given a problem (1.1),(4.1) with solution 
u E C(2,1) (Q), let uh be the solution of the associated discrete problem (1.2), (5.1). Then 
for the remainder (2.2) there holds true 

Ru T (w(o I ) (k au  

(5.2)a2 
& nT) 

u	au 
+W(2,o)  

( ^X̂ 2 +19w(l ,O) (h T)). 

For a proof one may refer to [4] and the literature cited there, in particular to [7: 
p. 35]. It may be mentioned that for 19 = 0 the scheme passes into the explicit Euler 
scheme already considered in Section 3. 

Theorem 5.2: Let i9 € (0, 1], T > 0 and p > max{ 1 - 19,1-19 + /1 —19). 
For every modulus of continuity w satisfying (2.9), (2.10) there exists a counterexample 
u, E C (2 " ) () such that

- - 
W(i)	 +W(2,o)

- 
+&.'(l ,o) 

(
6 , 1MT) = 

thus	= O(w(h)) (cf. (5.2) for k = ph2 ), but on the other hand (h - 0+) 

R( ' ) u, u	o(w(h)).
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Proof: We specify the quantities in Theorem 2.1 according to 

X = C 21 (i), Fu = Ru with h =	o@5) = 8,	n = n1 
n 

a2 u	\	/ u au 9	 - 
S6t1 W(o j ) (s2_T)	 +L)(1,O) 6,1lT 

g(x,t) = .-I (i - cos 21r	 Lg(x,t) 

= - -	27rn— ii Lg(x,t) 2 (1 cos(	
x —a" 
b—a)) 

where g are the same resonance elements as used in the proof of Theorem 4.2. Then 
(2.11) is satisfied, whereas (2.13) is a consequence of (6 - O+,n - oc) 

2 h	+ 4 
IIô2gII 

Ot MC()	ôxMC(i) 
9 	{ 62 1 9n 11	81a3nII 

IC()	IIC(ii) 

Since we have for the truncation error

ii 
2 ^^ Ign	 = 0(1) 

+ ii	II	= 0(8n). 
II 

/ .ir )
2 

Thgn = -Lg(x,t) 

condition (2.16) is fulfilled, and Theorem 2.1 provides the desired counterexample U 

In the case w(6) = 6, t9 E (0, 11 the function u(x, I) = xi satisfies R( 19 ) u, = 0(6), 
but on the other hand	o(h) (cf. [4]). 

6. Concluding remarks 

So far the resonance elements have been constructed on the basis of condition (2.16). 
But note that the test elements gn, actually considered in the examples of the previous 
sections, additionally satisfy the conditions (M 0 0) 

Lg = ML9	on	 (6.1) 

9n = O	 on clh
	

(6.2) 

where g is an arbitrarily often differentiable function as described in Lemma 2.2. Obvi-
ously, (6.2) implies Lhg = 0, and therefore (2.16) is valid since (cf. (2.6)) 

Th9n = Jh Lg - Lhg = MJhL9 

It may be mentioned that the two conditions (6.1) and (6.2) allow a further interpre-
tation of the resonance condition (cf. (2.12)): Because the functions	and g induce
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the same data for the discrete problem, namely W LL- =Lg on Qh and g, = g = 0 
on r'O,h U 17 1,1,, their discrete counterparts (via (1.2)) are equal: () = g. The fact 
that lim,',_o I ghII = IIII C() then implies that Rhg is bounded away from zero 
(h=):

(9n)	
K9)	

gii	— ! I( 9n Rh	=	?	-
	

clh,r — II M)hIIciT = IIghIIcIh,T	
(6.3) 

lim Rhg = MI IIII C(I) > 0 n —c 

In other words, we have established condition (2.12) of Theorem 2.1 without using 
discrete Green's functions explicitly. Nevertheless the representation of the error via 
(2.5) is still used to derive a lower bound in connection with the abstract modulus of 
continuity w(5) = 6 (cf. (3.15)). 

The methods employed in this paper are not restricted to initial boundary value 
problems. In [1] we were concerned with the sharpness of an error bound obtained for 
the five point discretization of the Dirichlet problem 

	

Lu(x,t)=(x,t)	for all (x,t)e1=(O,1)2 

	

u(x,t)=b(x,t)	for all (x,t)eF	
(6.4) 

where L = A =+	is the Laplace operator and F the boundary of ft Thus the

discretization is given by the formula 

L1,u1,(x, t) = (x, t)	for all (x, t) E Qh
(6.5) 

u h (x, t) = 0 (x, t)	for all (x, i) E ['1, 

where for h = (uniform grid)

x=ih and t=jh (i,j12Vo)} 

cl1,=cl1,flcl,	rh=chnr 
L 1, u 1,(x,t) = ô1 OUh(X,t) + aUh(X,t). 

Theorem 6.1: For a solution tt E C(2'2)(i) of (6.4) and its discrete counterpart 
Uh of (6.5) there holds true 

R1,u= huh UIh1l h 5 1 [11(2,0)(h,ç) +W(o , 2) (h,
 a2u	

.	( 6.6) 

For a proof of this well-known estimate see also [1] where, above all, it was shown 
that (6.6) is indeed sharp. It may be mentioned that the relevant argument in [1] was 
based upon the fact that the discrete Green's functions associated are non-positive-
valued (maximum principle). Using the method of this paper, however, one may imme-
diately proceed as follows.
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Theorem 6.2: For every modulus of continuity w satisfying (2.9) and (2.10) there 
exists a counterexample u E C(2 , 2) M) such that 

W(20) (
	

( 5, O2') =
 0(w(52)), 

thus Rh u,.., = O((h2 )) (cf. (6.6)), but on the other hand (h - 0+) 

Rhu,., 54 o(w(h2)). 

Proof: Using Theorem 2.1 we choose 

X = C 2 ' 2 (),	Fu = Rh u with h = I 

ô2 u	 8U	 2	 2
19X2 ,(6, Sóu =W(2,o)

\	/ 
+c(O,2)	

—	
a(S) = 62,	= 

gn (x,t) = W2- ( I —cos(27rr1x))Lg(x,t) 

where g 0 0 is a function arbitrarily often differentiable on l such that g(x, t) = 0 for 
(x, t) E F. Again conditions (2.11) and (2.13) follow by simple calculations, whereas 
(2.12) is a consequence of the considerations at the beginning of this section (cf. (6.3) 
with M = 47r 2 ), replacing nT and ['o U 17 1 by ci and F, respectively U 
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