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Optimal Transportation Flows 
R. Klotzler 

Abstract. This paper deals with a modification of L. C. Young's flow concept in application 
to transportation flow problems. There will be proved necessary and sufficient conditions for 
an optimal transport and its dual deposit problem. 
Keywords: Transportation flow problems, deposit problems, dual optimization problems, gen-

eralized Pontrijagin's maximum principle 
AMS subject classification: 49N15, 49Q15, 49Q20 

1. Introduction 
In 1969 L. C. Young [17] introduced a fundamental new concept in the calculus of vari-
ations which is based on substitution of curves and surfaces by so-called "generalized 
curves" and "generalized flows". He represents these generalized objects either by spe-
cial subclasses of regular Borel measures or by C(A), the dual of C(A), the space of 
continuous functions on a fixed bounded closed Euclidean set A. 

Here, we prefer an alternative approach highly based on the ideas of L. V. Kan-
torovië, M. K. Gawurin and G. S. Rubinstein (see [7] and [8]) on freight flow analysis 
and the use of proper set functions of bounded variation from Lm(Q)*, where ci is 
a bounded strongly Lipschitz domain of E and n denotes the number of different 
transport products within Q. However, contrary to this mentioned Russian model we 
do not assume the knowledge of the global cost of transport between two points A and 
B within ci, but only the local cost rate (dependent on the place and the direction of 
transport), which seems to be more realistic. First publications of this concept by the 
author are referenced in [11 - 13]. 

Let B be the u-algebra of all Lebesgue-measurable subsets of ci and a k (k = 
1,. . . , n) finite Borel measures on	which are equilized by the assumption 

in 
dc = 0	(k = 1,...,n).	 (1) 

We interprete ok(e) for each e E B, positive or negative, as the given consumption or 
production rate of e, respectively, with respect to the k-th product. We understand 
this system as a transport realized by a stationary (= independently of time) vector 
flow within Q. We describe it by a vectorial set function	(pa,. . . , p,,), where 
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pk( e) e Em expresses the vector of average flow of the k-th product on the set e 
dimensioned as transported mass times (average) velocity. We make the reasonable 
assumptions Ak E L,() or E L,m (cl), respectively, such that Pk represents an 
additive set function on of bounded variation with the property that tk(c) = 0 if the 
Lebesgue measure meas e is zero (comp. [5, 6]). Then, by a well-known representation 
theorem (see [5: p. 258] and [6: p. 194]), each linear continuous functional on 
can be represented via Radon integrals by 

(u k ,k ) = Ju k (x) T d k (x)	for all U  E L- (0)	 (2)
cc 

with a uniquely determined ILk E L() (up of equivalence). Here and later, the norm 
in L,(Q) is given by

IIukIIL	 IjUkI12 (3) 

for
Uk	 with u E L,(?) (k= 1,...,n; j = 

Then, each linear continuous functional on L() has the form 

	

(u, ) = f iJ(x) dIL(x) 

= /	
uk(x)TdIL(x)	 (4) 

for any
U = (u',.. ,u")	with Uk E L' (Q) (k = 1,... , 

We say that IL E L ,m ()* is a feasible flow (with respect to a = (ai, ..., an)) provided 
it satisfies the variational equalities (for k = 1,.. . , 

JvaTdLk(x) = Ja(x)dak(x)	for all a E W(1)	 (5) 

which we can interprete as the "continuity equation" for the k-tb product under consid-
eration of the given aj (cp. [11]). Namely, if a k possesses a summable density Ok and 
ILk a continuously differentiable density yk, then we obtain from (5), dak(x) = k(X)dX 
and dILk(x) = yk(x) dx the equivalent requirements 

divyk(x)=—êk(x) in Q	and	
I an
 =0.	(5)' 

whereby n(x) denotes the exterior unit normal vector of 3) in x. We denote the linear 
affine subset of all feasible flows IL by V and by V0 the subspace of all IL E L"(cl) CO 
satisfying the corresponding homogeneous form of (5).
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Finally, we evaluate each feasible flow it by means of a given local cost rate i- on 
,< E m with the following basic properties: 

• r(-, v) is summable on 

• r(x,.) is positiv homogeneous of degree one and convex on E' V x E Q	(6)


• 7M r(x,v) 721 V 1 (v E Em x  1) for some constants 71,72 >0. 

We do this by using the cost functional 

fr(x,d(x)) = sup {(u )	u E L--(), uT(x)v r(x,v) Vv € Enm}.	(7) 

We introduce the denotation 

(x) = f Z E Enm I z T v <r(x,v) for all V E E"' I 

called, in conformity with C. Carathéodory [2: p. 101), the figuratrix set with respect 
to r. By using F. H. Clarke's generalized gradient of r with respect to v [4: p. 27] that 
implies that (x) = ôvr(x, 0). So, r(x,.) is said to be the support function of (x). 

The generalized integral definition (7) seems to be reasonable from the point of 
view that for given it E L m (S) C L(l) there is a unique summable density y with 
dp(x) = y(x)dx and a function u E L(?) with u r(x )y ( x ) = r(x,y(x)) and u.(x) E 

(x) such that f0 r(x,dp(x)) coincides with the Lebesgue integral fo r(x, y(x)) dx:. We 
summarize this in the following Lemma. 

Lemma 1: For all absolutely continuous flows p E Y there is a unique correspond-
ing density y E L''(1) such that 

Jr(x,d(x)) / r	 (8) a 

holds. If we denote the set of all those y by Y', then 

inf j r(x,dp(x)) 	i , fr(x, y(x)) dx.	-	 (8)b 

Now, following. [11 - 13], we can formulate our transportation flow problem (TFP) 
by

K() := Jr(x,dP(x))	min on Y	.	 (9) 

It is easily seen that this is a convex optimization problem.
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2. The dual deposit problem 

For each p E Y, we get from the definition (7) immediately 

Jr(x,d(x)) 2 (VS,p)	 (10) 

if the vector-valued function S = (S',.. , S) belongs to W() and satisfies the 
constraint

VS(x) E (x)	for a.e. x E ft	 (11) 

Therefore, with a = 5k, we conclude from (5), (9) and (10) that 

K(p) 2j E5xdakx = JsT(x)d(x) =: KD (S).	(12) 
0k=1	 0 

This inequality characterizes the optimization problem 

KD(S) = fS T(x)dc(x) —4 max on W()	 (13) 

under the constraint (11) as a dual problem of the (TFP)-problem (9) in the sense of 
[2: p. 341]. 

We can interprete (13) as a "deposit problem" for constructing n hills z = Sfc(x) 
on ) (k = 1,. .. ,n) under slope conditions (11) such that for given store prices ak the 
store profit KD(S) is maximal. In specialized form the duality between (9) and (13) is 
one of the oldest examples of dual optimization problems and was already discovered 
by G. Monge [14] and P. Appell [1]. 

Problem (13) is a usual multidimensional problem of optimal control of the Dieudon-
né -Rashevsky type according to L. Cesari (3]. By (1), without loss of generality we can 
reduce the study of problem (13) to the standardized set 

= {s E w'(c) VS(x) e (x) for a.e. x E c, 5(b) = o}	(14) 

where :io is any given point in ft 

Theorem 1: The deposit problem (13) has an optimal solution. 

Proof: As a consequence of the basic assumptions (6) on r the figuratrix sets 
(r) are uniformly bounded in E'" with respect to x E ft They are closed and 

convex. Moreover, the origin 0 of E" is an interior point of each (x). Therefore, by 
Sobolev's imbedding theorems, 6 is a closed and weakly compact subset in Wl(cl) for 
each p> m. The same reasoning implies that KD(S) is a linear continuous functional 
on W"(). By the generalized existence theorem of Weierstrass, this guarantees the 
existence of an optimal solution So of problem (13) at first in W, "(). Since 5o satisfies 
(11), it belongs also to W,'(cl) 0
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Now, we denote again an optimal solution of problem (13) by 5o• First, we can 
apply to 5o a generalized e-Pontryagin maximum principle due to R. Klötzler [9] and 
S. Pickenhain [10]. With reference to these papers the following necessary optimality 
condition holds. 

Theorem 2: If 5o is an optimal solution of problem (13), then for cache > 0.therc 
is a vector y e L m (Q) (depending on e) with 

e+J Y T (x)(vSo (x) —u(x))dx > 0	: for all u EL(1),	(15) 

u(x) 6 (x) a. e. on Q, and 

f Vo, T (-T)y(x) dx = Ju(x) T da(x)	for all o, E W(cl).	: (16) 

Now, we replace the number e by 1/it (K E IV) in Theorem 2 and denote the 
corresponding y by y,. For this sequence {y,} we obtain from (15) for any feasible u 
and K 6 IV the inequality	 . 

+JVS(x)y(x)dx > Ju(x) T y(x)dx .	 (17) 

Because of the basic assumptions on r and (16), especially for o,= 5o, inequality (17) 
leads to

+JS(x)da(x) 

> sup { J u(x) T y (x)dx u 6 L(), Iu(x)I = -yja. e. on 

= 71 
J IYK( x ) I dx.	S	 S 

This shows the boundedness of the sequence {y} in L m (fl) such that the theorem 
of Alaoglu (see [15: p. 150]) implies the existence of a weak -convergent subsequence 
{ y .,) in L'-(Q) C L,m(l) with y —  po e L m(l) for c' —* oo. Hence, taking the 
limit K' —+ oo in (16) and (17), we conclude 

JVS(x)d/2o(x) > Ju(x)do(x)	for all u E.L"()	(19) Co 

with the constraint u(x) 6 (x) a.e. on Q, as well as 

fVaT(x) dio(x) = I a(x)Tda(x)	for all u E W(l).	(20) 

In total we have proved the following maximum principle.
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Theorem 3: If 5o is an optimal solution of the deposit problem (13), then there is 
a set function Yo E L(cl) which satisfies the conditions (19) and (20). 

Obviously, in case p = (p ' ,.. ,Pn) = Pa condition (20) is equivalent to the system 
(5). This has the consequence that pa E Y. The formulas (19) and (20) together, 
applied for a = So, yield by (7) and (12) the result K(po) = Kjj(S0 ) and allow the 
following conclusion. 

Theorem 4: Between the transportation flow problem (9) and the correspond-
ing deposit problem (13) strong duality is guaranted in the sense of miny K(p) = 
max6 KD(S). 

3. Special consequences of optimality 

In this section we intend to get more information about the structure of the optimal 
solutions Pa for the problem (TFP) and S0 for the deposit problem, respectively. 

Theorem 5: If r is continuous and pa E Y has a summable density Yo in a neigh-
bourhood B(x*,5) C ) of x, then for almost all x E B(x,5) the pointwise maximum 
principle

VS(x)yo(x) ^ vyo(x)	for all v E J(x)	 (21) 

holds 

Proof: We consider an arbitrary point x 0 e B(x*,5) where VS0 (x°) exists and 
which is a Lebesgue point of y, and VS0 . We choose an arbitrary v E (x°) and con-
struct a continuous function ü E L (B(x°, )) with B(x°, ) C B(x, ö), u(x) E (x) 
and ü(x°) = v. The continuity of r guarantees the existence of such an ft. According to 
the assumptions of Theorem 5 we get from (19) for 

U(X)
Iu(x)	in B(x°,) 

=
I. VS0 (x) elsewhere in Q 

the inequality

f
VS0 (x) T yo (x)dx > j u(x)Ty0(x)dx.	 (22) 

B(z°,Q)	 B(z°,e) 

Dividing this inequality by meas B(x°, p) and taking the limit Lo - 0, we get 

VS[(x°)yo(x°) vyo(x0)	for all v E (x0). 

Since x 0 is arbitrary choosen in B(x,8) this result expresses the validity of (21) I 
Remark 1: Because of (21) and the definition of the figuratrix set (x) in connec-

tion with (8) and (14) we deduce 

VS0 (x) T y0(x)= max v Tyo(x)=r(x,yo(x)) vE(z)
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as well as
VSO(X)TV r(x,v)	for all v e 

Both together implies the inequality 

	

r(x,v)—r(x,yo(x)) 2 VS(x)(v —yo(x))	for all v E iEThm. 

This gives, in accordance with (21), the inclusion 

VS0 (x) E ôr(x,yo(x)).	 (23)

The inclusion (23) allows in a further special case the following important conclusion. 

Theorem 6: We assume r to be continuous and r(x,v) to be differentiable with 
respect to v 0. If the optimal solution /o of the (TFP) has a summable density yo 
on Q, then there exists a vector function 5o E 6 with the property (23) a.e. on ft In 
points x E Q, where y0 (x) 76 0 holds, the condition 

	

VSO (X) = rv(x,yO(x))	 (24) 

is valid a. e. 

Remark 2: Obviously, condition (24) holds also on a subdomain Q 0 C Q if zo has 
a summable density yo(x) 54 0 on 

Now we continue our investigation under the assumption of Remark 2 and suppose 
that r and r are continuously differentiable outside of v = 0. Additionally, we re-
quire Yo E C'(1 0 ). Then, (24) implies that VS 0 E C 1 (1 0 ). Moreover, the positive 
homogeneity of r(x,.) gives 

r(x,y0 (x)) = Vs0(x)Ty0(x)	on Qo .	 (25)


We differentiate both sides of (25) with respect to xk and obtain 

rk (x ,yo( x )) +
fi=1 1=1 

=	S1(x)y(x) +	S(x)y(x) 
0=1 i=1	 6=1 i=1 

and consequently, using (24), 

n m ôri(x,yo(x)) 
rk (x ) y0(x)) =

	

	 y(x)	for k = 1,. . . ,ni.	(26)

9=1 i=1 aT 

We shall refer to these equations (26) as the system of "Euler's flow equations". In 
summary we obtain the following assertion.



398	R. Klotzler 

Theorem 7: Let po be an optimal solution of the (TFP), r E C' and r y E C', and 
suppose the existence of a continuously differentiable density yo of /o with the property 
Yo(x ) 54 0 in the subdomain Q0 . Then, Yo has to satisfy Euler's flow equations (26) in 
c0.

Another consequence of (24) is the following result. 

Theorem 8: Let P0 be an optimal solution of the (TFP), r E C' and r y E C', and 
suppose the existence of a piecewise continuous density yo of Pa in 10 where y0 (x) 54 0 
on ci0 is valid. We assume that the jumps of yo are only at a smooth hypersurface r 
which divides fo into two parts and 1l'. Then, in each point x e r for every tangent 
vector t of r

T 
1rv5 (x, y(x)) - r (x, y'(x))] t = 0	(/3 = 1,... ,n)	 (27) 

holds, whereby y and y are the limits 

'

	

,.	II( 

	

Y 
I,0 x) =	urn yo (x)	and	y,'(x) =	urn yo(xk). 

Proof: Let B be a smooth curve on I' starting from x 0 E r with the initial direction 
t such that for its analytical representation x = (r) there hold xo = (0) and (0) = t. 
Since S,' is continuous, we get from (24) 

o	S(r)) - So' (xO) 
= 	

VS((r) dr. 

= / r (V
I I	)) 

T
	di; 

= Jrv8(,y))T)d 

and, via differentiation by Tat r = 0, [rv(xo,y(xo)) - rv 5 (xo,y'(xo))] (.= 0 I 

4. An example 

It goes without saying that in general one can not expect to find elementar solutions of 
the (TFP) by analytic expressions. For such cases we propose approximate procedures 
by finite element methods according to the concepts of [11 - 13]. Nevertheless, for an 
illustration of our theory we shall consider at least one example. 

Let be given the rectangle Q = [0, a] x [0, b] in 2, two homogeneous sources 
and Q2 Q, for x' = 0 of different products and directly across two homogeneous sinks 
Z0 Z, and 72 Z3 for x 1 a (see Fig. 1). We put 

	

r(x, v) = /l v , 1 2 + Iv2 2	for Vi E £2 (i = 1,2)
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and characterize a 1 and a 2 by the variational equations 

Ja(x)da i (x) =J(a(a,x2)_ a(O,x2))dx2 

= f (,(a, x 2) - (0,x 2 )) dx2 

Furthermore, we require
b2 - b1 > 2a. 

x2 

::____

Z3

Yo2  

II

(a E W(cl)).

(28) 

(1)

 
Z1	Yoi0 

zo	 2:1 

Q = (0,b 1 ),	Q2 = (0, b2),	Q = (0,b) 

Z0 (a,0),	Z1 =(a,b i ),	Z2=(a,b2),	Z3=(a,b) 

Figure 1 

In this special case assumption (1) is satisfied, the constraint (11) means 

vs1 12 + IVS2 
1 2 < 

Q1 

0
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the condition (24) says 

- Sk(x) 
=	y(x)

k = 1,2) 
Vlyo i (x)1 2 + Il/02(x)12 

if y01 (x) 2 + IY02 ( x ) 1 2 > 0, and Euler's flow equations defined as in (26) are given by 

2 (_____________ 
0=: 

ifll V1Y01 1 2 + IYO2I2) 
y	for k = 1, 2. 

We confirm very easily the following solution of (TFP) (cp. Figure 1): 

for x2<b2 
1.	0 elsewhere 

y02(x) = I () for x 2 ? b2 
1 0 elsewhere 
fx'_____________ for x2<b1 

S(x) = J(xI)2 + (x 2 - b 1 ) 2 in the sector	ci1 
a elsewhere 

I X ' for x2>b2 
S(x) = J(x' )2 + (x 2 - b2 ) 2 in the sector Q2 

a elsewhere.

One proves immediately, by using Lemma 1 and the notation yo(e) = fe yo(x)dx (e E 
B), the equation

K(.io) (b - b2 )a + b,a = KD(So). 

This guarantees in virtue of Theorem 1 the optimality of yo and 5o with respect to our 
(TFP) and its dual problem, respectively. 

Remark 3: For the construction of the given solution, the requirement (28) is 
essential. If we have a smaller distance b2 - b 1 < 2a, then the optimal flows yo  and y02 
depend on attractions, which will be discussed in a next separate publication. 
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