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On the Operator-Valued Nevanlinna-Pick Problem

A. Ionescu

Abstract. In this note we construct a specific Schur-Nevanlinna type algorithm that will be
used in describing more precisely the solutions of the operator-valued Nevanlinna-Pick problem
with the so-called method of Weyl circles. We also present an approach to the Pick criterion
in the operator-valued setting.
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1. Introduction

The main purpose of this note is to present a variant of a Schur-Nevanlinna type al-
gorithm for the operator-valued Nevanlinna-Pick problem, and we also describe the
solution structure using the method of Weyl circles. We obtain the connections be-
tween the solvability of the operator-valued Nevanlinna-Pick problem and the classical
Pick criterion.

Let us give a short description of the results obtained in this note. In Section 2
we consider an operator-valued setting of the scalar Schur-Nevanlinna algorithm using
the Redheffer product [15]. We develop an operator-valued Schur-Nevanlinna type al-
gorithm similar to the scalar one (cf. [10: p. 202]), which yields the solutions ofthe
operator-valued Nevanlinna-Pick problem and extends the results in [4]. Then, as in the
scalar case, we obtain the correspondence between the operator-valued Nevanlinna-Pick
problem data and the associated Schur sequence. In Section 3 we derive the generalized
method of Weyl circles, which precisely describes the solution structure in the operator-
valued case. In Section 4 we obtain the well known Pick criterion in the operator-valued
setting, reflecting the close connection between the Pick matrices of the operator-valued
Nevanlinna-Pick problem and the Toeplitz matrices of the operator-valued Schur prob-
lem, and generalizing the approach in (4] and [11]. For a different approach to the Pick
criterion for the Nevanlinna-Pick problem see also [2: p. 398], [7: p. 197] and [16: p.
25). Such interpolation problems are of great interest in systems theory (see [2: Chapter
23] and [8: Chapter 6}).
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2. The operatorial Nevanlinna algorithm

We assume that the reader is familiar with the scalar Schur and Nevanlinna-Pick prob-
lems and the associated algorithms (see [10: p. 202]). We now introduce some notation
and terminology that are needed to formulate the problem in the operator-valued case.
Let IV be the set of positive integers, and let us denote by D the open unit disc and by
T the unit circle in the complex plane €. Let H; and H; be complex Hilbert spaces,
L(H1,H2) the set of bounded linear operators from H; into H,, and S(H;,H;) the set
of analytic and contractive operatorial-valued functions ® : D — L(H,,H:). Then we
consider the following operator-valued Nevanlinna-Pick problem:

(ONPP) Given any set of distinct points {zp}n>1 C D and any set of
contraction operators {Wy},>1 C L(H1,H2), does there exist
a function F' € S(H,,Hz) satisfying F(z,) =W, foralln € IN?

A sequence {zn, Wn}a>1 C (D, L(H1,Hz2)), where {Wp}n>1 are contraction operators,
is called a set of initial data. Let T € L(H,,H2) be a contraction and denote, as usual
(see [13: p. 7)), '

Dr=(I-T'T)"/? and Dr=(DrH,)". -

Let further z € D. In this context, we can define

T zDrp. ] (1)

me =g P

and then, clearly, J[T](z) is an operator from H; @ Dr- into Hy @ Dr. It is easy
to see that J[T] is inner from both sides and that J[T](1) is the elementary rotation
of T (see [13: p. 16]). In the operator-valued setting, it is useful to replace Mébius
transformations by the so-called cascade transformations (see [3] and [8: Chapter 6)).
Let X, and K, be Hilbert spaces and let '

S-= [g g] € L(H & K1, H; & K2)

be a contraction. For an arbitrary contraction X € L£(K2;K;) and I = Ix,, we define
the cascade transformation

Cs(X)= A+ BX(I - DX)™'C

whenever the inverse of (I — DX) exists. One immediately verifies that Cs(X) is a
contraction. In a similar way, we may define the cascade transformation for operator-
valued functions, and we have the following result (see [3]).

Theorem 1: For any G € S(H;,H,) the equation G = Cyn(F) has a unique
solution F € S(Dr,Dr-) where T = G(0).
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We now present a way by which we may construct the Schur-Nevanlinna algorithm.
For each contraction T € £L(H,;,H:), number 2z € D and integer n € IN one defines the
generalized elementary rotation

n | T ba(2)Dr-
J [T](Z) - [DT —bn(Z)T‘

We then consider the following cascade tra.nsformation of F in S(Dr,Dr- ):

|z,.| Zn — 2

] where b, =

Zn 1 —Z52

Cyniry(F) = T|Dr + ba(2)Dr- F(2) [T + bu(2)T" F(2)] _IDTIDT

Clearly the operator C ja77(F) makes sense because for |z| < 1 we have |ba(2)| < 1, and
since T and F(z) are contractions, [I + b,T* F(z)] is invertible. A short computation
shows that

I- CSnm(F)(Z)CJ"[An(F)(w)
= Dr [I + b F ()T
x [1 = Bal@on(@)F* (2)P(w)] [1 + ba ()T Flw)] _IDT‘DT

and, therefore, it results that, for each n € IV, Cn (1)(F) € S(Dr, Dr-). Thus, we have
obtained the following result.

Corollary 2: Let G € S(H1,H2) and {za}n>1 C D, and let us denote for each
n € IN, Tn = G(2n). Then the equation G = Cn(1,)(F) has a unique solution F =
F, € §(Dy,Dr-).

The main object used for the description of the Schur-Nevanlinna algorithm is the
Schur sequence. A set of contractions {I'n}n>; is called a Schur sequence if T; €
L(H,;,Hz) and, for each n € IN, we have I, : Dp,_, — Dr: _, where by definition

= Hl a.nd 'Dr; = 7‘(2.

Theorem 3: The collection of solutions of the Nevanlinna-Pick problem (ONPP)
with initial date {z,, Wo}n>1 C (D,L(H1,H2)) is defined by the set of contractive
operator-valued functions Fnyy € S(Dr,,Drs) (n € IN) satisfying

A. B,
Cn D,

such that, for some set of contractions T'nyy : Dr, — Dr. (n € IN), the operator-
valued functions A,, B,,Crn and D, are given in the following way:

Ai(z) =T1, Bi(z) =bi(2)Dr;, Ci(2)=Dr,, Di(z)= —b,'(z)l"f )
Ant1(2) = An(2) + Bu(9)l s [T = Da(a)lans] Ca(2)

Fo=Cs,(Fat1) where S, = [

: -1
Bru41(2) = b1 (2)Ba(2)lnss [I = Da(2)lnts] DuDrr
+ bn+1(2)Ba(2)Dr;

Cat1(2) = iy [1 = Dale)lass]  Cat2)

+1

-1
Dn41(2) = bas1(2)Dr,,, [I - Dn(z)Fnﬂ] Dn(2)Dr;,, — bns1(2)Thyy
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Proof: Let F € S(Dr,Dr-) be a solution of the Nevanlinna-Pick problem (ONPP)
with initial data given by the sequence {zn, Wy }n>1 C (D, L(H;,Hz2)). Using Corollary
2 one can define an algorithm similar to the scalar one (see (12, 14, 17]). Let Fi(z) =
F(z) and Ty = Fi(z1) = W;. Then Fy4, and T'nyy are implicitly defined by the
equations i

Fo=Cr(Fat1)  and  Tayy = Fagi(zn41) (3)

where I'ny) : Dr, — Dr. is a contraction and F4; € S(Dr,, Drs ). We readily deduce
from (3) that

F=Cpnpry (Cﬂ[r,] (CJn[r.,j(Fn+1)"'))~ )

It is easy to check that for any two contractions

s=|a 2] 6=

we have

Cs,(Cs,(X)) = Cs,25,(X)
where * is the Redheffer product (see [15]) and S; x S; is defined by the matrix

Ay + By Ao(I — D1A2)"'C, By As(I — DyA)"' D, B, + B, B,
CZ(I - D1A2)—ICI Cz([ - DlAé)_lDle + D,

whenever the inverse of (I — D, Az) exists. Then, (1) and (4) give the relation

F =Cnrgerras ... sonra)(Fasr)  (n € IN).

Considering the matrix functions

A, B, ]
Sn = [Cn Dnjl = JI[FI]*JQ[PQ]* " [Pn]

we get

F =Cs, (Fat1)- (5)
By definition,

0 I
Sol2) = [1 o]

and for n > 1, by induction, it easily follows that the operator-valued functions A,, By,
Cn and D,, satisfy the relations (2) il

Corollary 4: For everyn € IN we have the correspondence
Wh = CSn-I(F")

between the set of parameters {W,.}">1.of the Nevanlinna-Pick problem (ONPP) and
the associated Schur sequence {T'n} 5.
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The set {T'.}, ,, is a so called Schur (-Nevanlinna) sequence and, obviously, {T.}
is uniquely determined by F'.
In order to study the converse, let us consider for each n € IV the decomposition

F(z) — An(2) = Cs,_,(Fa)(2) - Csa-i(Ta)(2)
= Bus(){ Fa()[1~ Dacs(2)Fu(a)]

~Ta[I= Dacs(a)0W]  JCalaa).

n>1

Then, from (2), we obtain
Bu(z) = [[ be(2)Ba(z)  for Ba € S(Drs,H,)
' k=1

and it follows that n
F(2) - An(z) = [] 0x(2)Ful2) (6)
) k=1

where F,, is a bounded operator-valued function. As a consequence of (6), the sequence
{An}, 5, converges uniformly to F on compact subsets of D if and only if the product
| | b—k(z) converges uniformly to 0 on compact subsets of D, and this happens if and
only if 37 - (1 — |2a]) = co. In this case the function F is uniquely determined by the
set {Ln},>, and, moreover, {I',}, ., uniquely determines the sequence {An} >

3. The method of Weyl circles

In order to present the Method of Weyl circles in the operator-valued case we shall
restrict our study to the non-degenerate case, where we have at least one solution of the
problem (ONPP). The matrix case is intensively analysed in many papers (see, e.g., [4,
5, 9]). For the sake of simplicity we consider H; = H, = N and S(H) = S(H, H). Let

us consider a set of initial data {zx, Wi}, _, for the problem (ONPP) and define, for
each z € D,

Wa(z) = {W € L(’H)| W= F(), FeS(H), F(z) = Wi (k=1,...,m)}.

Then, Wy (2) is characterized by the following result.

Theorem 5: For the elements W € W, (z) we have the representation
W= [A,,(z) + Ba(2)D}(2)Dp? (Z)C,,(z)]
_ . 1/2 . N 1/2
+ [B,.(z)DDi(t)B,,(z)] ,Z[C,,(z)DD?‘(z)Cn(z)]

where Z € L(H), and the operator-valued functions A,, B,,C, and D, are given by

(2).
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Proof: As a consequence of (5) we get
Wa(z) = {W € L(H)| W = Cs,(1(T), T € S(Dr,, Dry)}

and thus, for each W € W,(z) we have the decomposition
W = An(2) + Ba(2)T[1 = Du()l]  Cale). )

Let us consider the relations

Y = r[z - D(z)l"] 7 ad v= [1 + YD(z)] r
which give
| YY* = [1+ YD) [+ D)y < [1+ YD(2)| 1+ YD (:)y"]
and we obtain

Y [1 - D(z)D'(z)] Y* ~YD(z) - D*(z)Y* — I < 0.
A short computation yields

{Y [1 - D(z)D‘(z)] Y D) [1 - D(z)D‘(z)] _1/2}

-1/2

< {¥[r- D(2)D"(2)] YD |1~ D)D* () ! }V < [r-pr@ne)]

and we also have the factorization

v[r- D(z)D'(Z‘)] vy D)1~ D)D" (2) -1z _ 1= 0000 i

for X € L(H). It results that Y = D‘(z)DB?z) + DB:I)XD'l(z) and by (7) we infer
that, for some X € L(H), '

W = An(2) + Ba(2)D}(2)Dp? () Cn(2) + Ba(2)Dp! (,, XD}, Ca(2).
Another factorization leads to ‘

W = [4n(2) + Ba(:)D3(2)Dp2 ,,Cn(2)]

-2 * 1/2 - -2 1/2
+ [B,,(z)DD“ (Z)Bn(z)] Z[Ca(2)D 2 (1 Cal2)]
where Z = E X F for some E,F € L(H)1

Corollary 6: For any z € D and for every n € IN the set Wn(z) may be thought
of as a closed sphere with “center”

O(z) = Au(2) + Ba(2)D;(2)Dp’ (,,Cn(2)
and right and left “radii” given by
Ry(2) = Co(:)D52,Calz)  and  Ri(2) = Ba(2)D32 () Bi(2),

respectively.



On the Operator-Valued Nevanlinna-Pick Problem 437
4. The Pick criterion

In this section, following the method in [11] (note that the same method is used in the
matricial case by the authors of [4]), we consider the connection between the problem
(ONPP) and the classical Pick criterion.

Let C(M) be the Carathéodory class of positive operator-valued analytic functions
on D. We then define for each G € C(H) the function F € S(H) given by

F(z) =[I - G [I + G(2)]" (z € D). (8)

This also yields a one-to-one correspondence between the functions F € S(H) with
F(0) = 0 and the functions G € C(H) with G(0) = I. For any set {za},2>0 C D and for
any sequence of contractions {Wn}, 5, C L(H) (by definition zp = 0 and Wy = 0%) one
can define the sequence of matrices

I-wW;wi "

]“o (n>0).

Pn =
[ 1—Zgz;

Let us assume that the inverse of (I + W,,) exists for n > 0, and consider the correspon-
dence given by

Ya=(I+Wo)'(I-W,) and Wy=I-Y.)(I+Ya) " (9)

For the problem (ONPP) with initial data {z,, W, }n>o and a solution F such that
F(zp) = W, we clearly have G(zp) = Y, (n > 0), where the Y, are given by (9). For
n>0and k=0,1,...,n let

[l Gx=2)"  and Un= |G+ Yk)(zk)l]k o
0<i<n n

T#h
Thus, we conclude that M, = %U,‘,PnU,, is an (n + 1) x (n + 1) Hermitian Toeplitz
matrix for n > 0. It is easy to see from the definitions that each M,, is a compression of
each My with N > n. Therefore, the sequence {My},, can be used to define a single
Toeplitz form, indexed by Z, which we denote by 7. The positivity of T is equivalent to
the positivity of each M,, for n > 0. In this case, we obtain that 7 on Z is a realization
of a semispectral measure E on T (a semispectral measure on T is a linear positive map
E: C(T) — L(H) where C(T) denotes the set of continuous functions on T'). For every
m € Z we define Sy, = E(em) and em(e't) = ™. Obviously, we have S_,, = §3,.
us assume that P, are non-negative definite for all n > 0. Taking into account (8) we
may define G, € C(H) that satisfies problem (ONPP) with data {z,Yx};_,. First we
consider the semispectral measure E,, : C(T) — L(H) defined by

En(f) = %E (|mn|2f) where ma(e'f) = H (e‘o — zy)

k=0
and the family of continuous functions

et0+z
el —z°

g: : T = L(H) given by g¢. (e .o) =
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We then consider

Gn€C(H) givenby Ga(z) = En(g:) (z €D).
A short computa.tion shows that

Gi(2k)+Galz)) _ Y2 +Y
1—Zx2; T 1- FT% 1]

(k,1=0,1,...,n)

and it is clear that, for a fixed n > 0 and for any k = 0,1,...,n, Gn(2x) = Y. On the
other hand, for the problem (ONPP) with initial data {z,, W }">0 let us consider the
sequences

{Gn}aso CC(H)  satisfying Ga(z) =Yi (0<k<n)
{Fa}nyo CS(H) satisfying Fp(zx)=Wi (0<k <n)

(see (5) and (8)). The sequence {F,}, 5, has a subsequence converging (weakly) to an

operator-valued function F € S(H) which clearly satisfies the problem (ONPP) with
initial data {zn, W}, 5,

Theorem 7: A necessary and sufficient condition for the solvability of the problem
(ONPP) is that, for each n > 0, P, is non-negative definite.

Proof: .Sufﬁciency was already proved, and necessity is a consequence of the Riesz- '
Herglotz theorem for functions in the class C(H) il

Remark: This paper is part of the author’s Ph.D. thesis, wntten at Texas A&M
University under the direction of Professor Carl Pearcy.
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