On the Operator-Valued Nevanlinna-Pick Problem

A. Ionescu

Abstract. In this note we construct a specific Schur-Nevanlinna type algorithm that will be used in describing more precisely the solutions of the operator-valued Nevanlinna-Pick problem with the so-called method of Weyl circles. We also present an approach to the Pick criterion in the operator-valued setting.

Keywords: Cascade transformations, contractions, elementary rotations, operator-valued functions, positive definiteness

AMS subject classification: Primary 47 A 57, secondary 30 E 05, 42 A 82, 47 A 20, 93 A 20

1. Introduction

The main purpose of this note is to present a variant of a Schur-Nevanlinna type algorithm for the operator-valued Nevanlinna-Pick problem, and we also describe the solution structure using the method of Weyl circles. We obtain the connections between the solvability of the operator-valued Nevanlinna-Pick problem and the classical Pick criterion.

Let us give a short description of the results obtained in this note. In Section 2 we consider an operator-valued setting of the scalar Schur-Nevanlinna algorithm using the Redheffer product [15]. We develop an operator-valued Schur-Nevanlinna type algorithm similar to the scalar one (cf. [10: p. 202]), which yields the solutions of the operator-valued Nevanlinna-Pick problem and extends the results in [4]. Then, as in the scalar case, we obtain the correspondence between the operator-valued Nevanlinna-Pick problem data and the associated Schur sequence. In Section 3 we derive the generalized method of Weyl circles, which precisely describes the solution structure in the operator-valued case. In Section 4 we obtain the well known Pick criterion in the operator-valued setting, reflecting the close connection between the Pick matrices of the operator-valued Nevanlinna-Pick problem and the Toeplitz matrices of the operator-valued Schur problem, and generalizing the approach in [4] and [11]. For a different approach to the Pick criterion for the Nevanlinna-Pick problem see also [2: p. 398], [7: p. 197] and [16: p. 25]. Such interpolation problems are of great interest in systems theory (see [2: Chapter 23] and [8: Chapter 6]).

A. Ionescu: Texas A & M University, Dept. Math., College Station, TX 77843 - 3368, USA Current address: Texas Lutheran College, Dept. Math./CS, Seguin, TX 78155, USA

2. The operatorial Nevanlinna algorithm

We assume that the reader is familiar with the scalar Schur and Nevanlinna-Pick problems and the associated algorithms (see [10: p. 202]). We now introduce some notation and terminology that are needed to formulate the problem in the operator-valued case. Let \mathbb{N} be the set of positive integers, and let us denote by \mathbb{D} the open unit disc and by \mathbb{T} the unit circle in the complex plane \mathbb{C} . Let \mathcal{H}_1 and \mathcal{H}_2 be complex Hilbert spaces, $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ the set of bounded linear operators from \mathcal{H}_1 into \mathcal{H}_2 , and $\mathcal{S}(\mathcal{H}_1, \mathcal{H}_2)$ the set of analytic and contractive operatorial-valued functions $\Theta: \mathbb{D} \to \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Then we consider the following operator-valued Nevanlinna-Pick problem:

(ONPP) Given any set of distinct points $\{z_n\}_{n\geq 1}\subset \mathbb{D}$ and any set of contraction operators $\{W_n\}_{n\geq 1}\subset \mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$, does there exist a function $F\in \mathcal{S}(\mathcal{H}_1,\mathcal{H}_2)$ satisfying $F(z_n)=W_n$ for all $n\in \mathbb{N}$?

A sequence $\{z_n, W_n\}_{n\geq 1} \subset (\mathbb{D}, \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2))$, where $\{W_n\}_{n\geq 1}$ are contraction operators, is called a set of *initial data*. Let $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ be a contraction and denote, as usual (see [13: p. 7]),

$$D_T = (I - T^*T)^{1/2}$$
 and $\mathcal{D}_T = (D_T \mathcal{H}_1)^-$.

Let further $z \in \mathbb{D}$. In this context, we can define

$$J[T](z) = \begin{bmatrix} T & zD_{T^{\bullet}} \\ D_{T} & -zT^{\bullet} \end{bmatrix}$$
 (1)

and then, clearly, J[T](z) is an operator from $\mathcal{H}_1 \oplus \mathcal{D}_{T^*}$ into $\mathcal{H}_2 \oplus \mathcal{D}_T$. It is easy to see that J[T] is inner from both sides and that J[T](1) is the elementary rotation of T (see [13: p. 16]). In the operator-valued setting, it is useful to replace Möbius transformations by the so-called cascade transformations (see [3] and [8: Chapter 6]). Let \mathcal{K}_1 and \mathcal{K}_2 be Hilbert spaces and let

$$S = \left[egin{array}{cc} A & B \ C & D \end{array}
ight] \in \mathcal{L}ig(\mathcal{H}_1 \oplus \mathcal{K}_1, \mathcal{H}_2 \oplus \mathcal{K}_2ig)$$

be a contraction. For an arbitrary contraction $X \in \mathcal{L}(\mathcal{K}_2; \mathcal{K}_1)$ and $I = I_{\mathcal{K}_2}$, we define the cascade transformation

$$C_S(X) = A + BX(I - DX)^{-1}C$$

whenever the inverse of (I - DX) exists. One immediately verifies that $C_S(X)$ is a contraction. In a similar way, we may define the cascade transformation for operator-valued functions, and we have the following result (see [3]).

Theorem 1: For any $G \in \mathcal{S}(\mathcal{H}_1, \mathcal{H}_2)$ the equation $G = C_{J[T]}(F)$ has a unique solution $F \in \mathcal{S}(\mathcal{D}_T, \mathcal{D}_{T^*})$ where T = G(0).

We now present a way by which we may construct the Schur-Nevanlinna algorithm. For each contraction $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$, number $z \in \mathbb{D}$ and integer $n \in \mathbb{N}$ one defines the generalized elementary rotation

$$J^{n}[T](z) = \begin{bmatrix} T & b_{n}(z)D_{T^{\bullet}} \\ D_{T} & -b_{n}(z)T^{\bullet} \end{bmatrix} \quad \text{where} \quad b_{n} = \frac{|z_{n}|}{\overline{z_{n}}} \frac{z_{n} - z}{1 - \overline{z_{n}}z}.$$

We then consider the following cascade transformation of F in $\mathcal{S}(\mathcal{D}_T, \mathcal{D}_{T^*})$:

$$C_{J^n[T]}(F) = T\Big|_{\mathcal{D}_T} + b_n(z)D_{T^{\bullet}}F(z)\Big[I + b_n(z)T^{\bullet}F(z)\Big]^{-1}D_T\Big|_{\mathcal{D}_T}.$$

Clearly the operator $C_{J^n[T]}(F)$ makes sense because for |z| < 1 we have $|b_n(z)| < 1$, and since T and F(z) are contractions, $[I + b_n T^*F(z)]$ is invertible. A short computation shows that

$$I - C_{J^{n}[T]}^{*}(F)(z)C_{J^{n}[T]}(F)(w)$$

$$= D_{T} \left[I + \overline{b_{n}(z)}F^{*}(z)T \right]^{-1}$$

$$\times \left[I - \overline{b_{n}(z)}b_{n}(w)F^{*}(z)F(w) \right] \left[I + b_{n}(w)T^{*}F(w) \right]^{-1}D_{T}\Big|_{\mathcal{D}_{T}}$$

and, therefore, it results that, for each $n \in \mathbb{N}$, $C_{J^n[T]}(F) \in \mathcal{S}(\mathcal{D}_T, \mathcal{D}_{T^*})$. Thus, we have obtained the following result.

Corollary 2: Let $G \in \mathcal{S}(\mathcal{H}_1, \mathcal{H}_2)$ and $\{z_n\}_{n\geq 1} \subset \mathbb{D}$, and let us denote for each $n \in \mathbb{N}$, $T_n = G(z_n)$. Then the equation $G = C_{J^n[T_n]}(F)$ has a unique solution $F = F_n \in \mathcal{S}(\mathcal{D}_T, \mathcal{D}_{T^{\bullet}})$.

The main object used for the description of the Schur-Nevanlinna algorithm is the Schur sequence. A set of contractions $\{\Gamma_n\}_{n\geq 1}$ is called a *Schur sequence* if $\Gamma_1 \in \mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$ and, for each $n \in \mathbb{N}$, we have $\Gamma_n : \mathcal{D}_{\Gamma_{n-1}} \to \mathcal{D}_{\Gamma_{n-1}^*}$ where by definition $\mathcal{D}_{\Gamma_0} = \mathcal{H}_1$ and $\mathcal{D}_{\Gamma_0^*} = \mathcal{H}_2$.

Theorem 3: The collection of solutions of the Nevanlinna-Pick problem (ONPP) with initial data $\{z_n, W_n\}_{n\geq 1} \subset (\mathbb{D}, \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2))$ is defined by the set of contractive operator-valued functions $F_{n+1} \in \mathcal{S}(\mathcal{D}_{\Gamma_n}, \mathcal{D}_{\Gamma_n^*})$ $(n \in \mathbb{N})$ satisfying

$$F_n = C_{S_n}(F_{n+1})$$
 where $S_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix}$

such that, for some set of contractions $\Gamma_{n+1}: \mathcal{D}_{\Gamma_n} \to \mathcal{D}_{\Gamma_n^*}$ $(n \in \mathbb{N})$, the operator-valued functions A_n, B_n, C_n and D_n are given in the following way:

$$A_{1}(z) = \Gamma_{1}, \quad B_{1}(z) = b_{1}(z)D_{\Gamma_{1}^{*}}, \quad C_{1}(z) = D_{\Gamma_{1}}, \quad D_{1}(z) = -b_{1}(z)\Gamma_{1}^{*}$$

$$A_{n+1}(z) = A_{n}(z) + B_{n}(z)\Gamma_{n+1} \left[I - D_{n}(z)\Gamma_{n+1} \right]^{-1} C_{n}(z)$$

$$B_{n+1}(z) = b_{n+1}(z)B_{n}(z)\Gamma_{n+1} \left[I - D_{n}(z)\Gamma_{n+1} \right]^{-1} D_{n}D_{\Gamma_{n+1}^{*}} + b_{n+1}(z)B_{n}(z)D_{\Gamma_{n+1}^{*}}$$

$$C_{n+1}(z) = D_{\Gamma_{n+1}} \left[I - D_{n}(z)\Gamma_{n+1} \right]^{-1} C_{n}(z)$$

$$D_{n+1}(z) = b_{n+1}(z)D_{\Gamma_{n+1}} \left[I - D_{n}(z)\Gamma_{n+1} \right]^{-1} D_{n}(z)D_{\Gamma_{n+1}^{*}} - b_{n+1}(z)\Gamma_{n+1}^{*}.$$

$$(2)$$

Proof: Let $F \in \mathcal{S}(\mathcal{D}_T, \mathcal{D}_{T^*})$ be a solution of the Nevanlinna-Pick problem (ONPP) with initial data given by the sequence $\{z_n, W_n\}_{n\geq 1} \subset (\mathbb{D}, \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2))$. Using Corollary 2 one can define an algorithm similar to the scalar one (see [12, 14, 17]). Let $F_1(z) = F(z)$ and $\Gamma_1 = F_1(z_1) = W_1$. Then F_{n+1} and Γ_{n+1} are implicitly defined by the equations

$$F_n = C_{J^n[\Gamma_n]}(F_{n+1})$$
 and $\Gamma_{n+1} = F_{n+1}(z_{n+1})$ (3)

where $\Gamma_{n+1}: \mathcal{D}_{\Gamma_n} \to \mathcal{D}_{\Gamma_n^*}$ is a contraction and $F_{n+1} \in \mathcal{S}(\mathcal{D}_{\Gamma_n}, \mathcal{D}_{\Gamma_n^*})$. We readily deduce from (3) that

$$F = C_{J^1[\Gamma_1]} \Big(C_{J^2[\Gamma_2]} \cdots \Big(C_{J^n[\Gamma_n]} (F_{n+1}) \cdots \Big) \Big). \tag{4}$$

It is easy to check that for any two contractions

$$S_{i} = \begin{bmatrix} A_{i} & B_{i} \\ C_{i} & D_{i} \end{bmatrix} \qquad (i = 1, 2)$$

we have

$$C_{S_1}(C_{S_2}(X)) = C_{S_1 \star S_2}(X)$$

where \star is the Redheffer product (see [15]) and $S_1 \star S_2$ is defined by the matrix

$$\begin{bmatrix} A_1 + B_1 A_2 (I - D_1 A_2)^{-1} C_1 & B_1 A_2 (I - D_1 A_2)^{-1} D_1 B_2 + B_1 B_2 \\ C_2 (I - D_1 A_2)^{-1} C_1 & C_2 (I - D_1 A_2)^{-1} D_1 B_2 + D_2 \end{bmatrix}$$

whenever the inverse of $(I - D_1 A_2)$ exists. Then, (1) and (4) give the relation

$$F = C_{J^1[\Gamma_1] \star J^2[\Gamma_2] \star \dots \star J^n[\Gamma_n]}(F_{n+1}) \qquad (n \in \mathbb{N}).$$

Considering the matrix functions

$$S_n = \begin{bmatrix} A_n & B_n \\ C_n & D_n \end{bmatrix} = J^1[\Gamma_1] \star J^2[\Gamma_2] \star \ldots \star J^n[\Gamma_n]$$

we get

$$F = C_{S_n}(F_{n+1}). (5)$$

By definition,

$$S_0(z) = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

and for $n \geq 1$, by induction, it easily follows that the operator-valued functions A_n , B_n , C_n and D_n satisfy the relations (2)

Corollary 4: For every $n \in \mathbb{N}$ we have the correspondence

$$W_n = C_{S_{n-1}}(\Gamma_n)$$

between the set of parameters $\{W_n\}_{n\geq 1}$ of the Nevanlinna-Pick problem (ONPP) and the associated Schur sequence $\{\Gamma_n\}_{n\geq 1}$.

The set $\{\Gamma_n\}_{n\geq 1}$ is a so called Schur (-Nevanlinna) sequence and, obviously, $\{\Gamma_n\}_{n\geq 1}$ is uniquely determined by F.

In order to study the converse, let us consider for each $n \in \mathbb{N}$ the decomposition

$$F(z) - A_n(z) = C_{S_{n-1}}(F_n)(z) - C_{S_{n-1}}(\Gamma_n)(z)$$

$$= B_{n-1}(z) \Big\{ F_n(z) \Big[I - D_{n-1}(z) F_n(z) \Big]^{-1} - \Gamma_n \Big[I - D_{n-1}(z) \Gamma_n \Big]^{-1} \Big\} C_{n-1}(z).$$

Then, from (2), we obtain

$$B_n(z) = \prod_{k=1}^n b_k(z) \widehat{B}_n(z)$$
 for $\widehat{B}_n \in \mathcal{S}(\mathcal{D}_{\Gamma_n^{\bullet}}, \mathcal{H}_2)$

and it follows that

$$F(z) - A_n(z) = \prod_{k=1}^n b_k(z) \widehat{F}_n(z)$$
(6)

where \widehat{F}_n is a bounded operator-valued function. As a consequence of (6), the sequence $\{A_n\}_{n\geq 1}$ converges uniformly to F on compact subsets of $\mathbb D$ if and only if the product $\prod_{k=1}^n b_k(z)$ converges uniformly to 0 on compact subsets of $\mathbb D$, and this happens if and only if $\sum_{n\geq 1} (1-|z_n|) = \infty$. In this case the function F is uniquely determined by the set $\{\Gamma_n\}_{n\geq 1}$ and, moreover, $\{\Gamma_n\}_{n\geq 1}$ uniquely determines the sequence $\{A_n\}_{n\geq 1}$.

3. The method of Weyl circles

In order to present the Method of Weyl circles in the operator-valued case we shall restrict our study to the non-degenerate case, where we have at least one solution of the problem (ONPP). The matrix case is intensively analysed in many papers (see, e.g., [4, 5, 9]). For the sake of simplicity we consider $\mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}$ and $\mathcal{S}(\mathcal{H}) = \mathcal{S}(\mathcal{H}, \mathcal{H})$. Let us consider a set of initial data $\{z_k, W_k\}_{k=1}^n$ for the problem (ONPP) and define, for each $z \in \mathbb{D}$,

$$W_n(z) = \Big\{ W \in \mathcal{L}(\mathcal{H}) \Big| \ W = F(z), \ F \in \mathcal{S}(\mathcal{H}), \ F(z_k) = W_k \ (k = 1, \dots, n) \Big\}.$$

Then, $W_n(z)$ is characterized by the following result.

Theorem 5: For the elements $W \in W_n(z)$ we have the representation

$$W = \left[A_n(z) + B_n(z) D_n^*(z) D_{D_n^*(z)}^{-2} C_n(z) \right]$$

$$+ \left[B_n(z) D_{D_n(z)}^{-2} B_n^*(z) \right]^{1/2} Z \left[C_n^*(z) D_{D_n^*(z)}^{-2} C_n(z) \right]^{1/2}$$

where $Z \in \mathcal{L}(\mathcal{H})$, and the operator-valued functions A_n, B_n, C_n and D_n are given by (2).

Proof: As a consequence of (5) we get

$$\mathcal{W}_n(z) = \left\{ W \in \mathcal{L}(\mathcal{H}) \middle| W = C_{S_n(z)}(\Gamma), \ \Gamma \in \mathcal{S}(\mathcal{D}_{\Gamma_n}, \mathcal{D}_{\Gamma_n^*}) \right\}$$

and thus, for each $W \in \mathcal{W}_n(z)$ we have the decomposition

$$W = A_n(z) + B_n(z)\Gamma \Big[I - D_n(z)\Gamma\Big]^{-1}C_n(z). \tag{7}$$

Let us consider the relations

$$Y = \Gamma \Big[I - D(z) \Gamma \Big]^{-1}$$
 and $Y = \Big[I + Y D(z) \Big] \Gamma$

which give

$$YY^{\star} = \left[I + YD(z)\right]\Gamma\Gamma^{\star}\left[I + D^{\star}(z)Y^{\star}\right] \leq \left[I + YD(z)\right]\left[I + YD^{\star}(z)Y^{\star}\right]$$

and we obtain

$$Y \Big[I - D(z)D^*(z) \Big] Y^* - YD(z) - D^*(z)Y^* - I \le 0.$$

A short computation yields

$$\left\{ Y \Big[I - D(z) D^*(z) \Big]^{1/2} - D^*(z) \Big[I - D(z) D^*(z) \Big]^{-1/2} \right\} \\
\times \left\{ Y \Big[I - D(z) D^*(z) \Big]^{1/2} - D^*(z) \Big[I - D(z) D^*(z) \Big]^{-1/2} \right\}^* \le \Big[I - D^*(z) D(z) \Big]^{-1}$$

and we also have the factorization

$$Y\Big[I-D(z)D^*(z)\Big]^{1/2}-D^*(z)\Big[I-D(z)D^*(z)\Big]^{-1/2}=\Big[I-D^*(z)D(z)\Big]^{-1/2}X$$

for $X \in \mathcal{L}(\mathcal{H})$. It results that $Y = D^*(z)D_{D(z)}^{-2} + D_{D(z)}^{-1}XD_{D^*(z)}^{-1}$ and by (7) we infer that, for some $X \in \mathcal{L}(\mathcal{H})$,

$$W = A_n(z) + B_n(z)D_n^*(z)D_{D_n(z)}^{-2}C_n(z) + B_n(z)D_{D_n(z)}^{-1}XD_{D_n^*(z)}^{-1}C_n(z).$$

Another factorization leads to

$$W = \left[A_n(z) + B_n(z) D_n^{\bullet}(z) D_{D_n(z)}^{-2} C_n(z) \right]$$

$$+ \left[B_n(z) D_{D_n(z)}^{-2} B_n^{\bullet}(z) \right]^{1/2} Z \left[C_n^{\bullet}(z) D_{D_n^{\bullet}(z)}^{-2} C_n(z) \right]^{1/2}$$

where Z = E X F for some $E, F \in \mathcal{L}(\mathcal{H})$

Corollary 6: For any $z \in \mathbb{D}$ and for every $n \in \mathbb{N}$ the set $W_n(z)$ may be thought of as a closed sphere with "center"

$$O(z) = A_n(z) + B_n(z)D_n^*(z)D_{D_n(z)}^{-2}C_n(z)$$

and right and left "radii" given by

$$R_n^{\mathsf{r}}(z) = C_n^{\mathsf{r}}(z) D_{D_n(z)}^{-2} C_n(z)$$
 and $R_n^{\mathsf{l}}(z) = B_n(z) D_{D_n^{\mathsf{r}}(z)}^{-2} B_n^{\mathsf{r}}(z)$

respectively.

4. The Pick criterion

In this section, following the method in [11] (note that the same method is used in the matricial case by the authors of [4]), we consider the connection between the problem (ONPP) and the classical Pick criterion.

Let $\mathcal{C}(\mathcal{H})$ be the Carathéodory class of positive operator-valued analytic functions on \mathbb{D} . We then define for each $G \in \mathcal{C}(\mathcal{H})$ the function $F \in \mathcal{S}(\mathcal{H})$ given by

$$F(z) = [I - G(z)][I + G(z)]^{-1} \qquad (z \in \mathbb{D}).$$
 (8)

This also yields a one-to-one correspondence between the functions $F \in \mathcal{S}(\mathcal{H})$ with F(0) = 0 and the functions $G \in \mathcal{C}(\mathcal{H})$ with G(0) = I. For any set $\{z_n\}_{n \geq 0} \subset \mathbb{D}$ and for any sequence of contractions $\{W_n\}_{n \geq 0} \subset \mathcal{L}(\mathcal{H})$ (by definition $z_0 = 0$ and $W_0 = 0_{\mathcal{H}}$) one can define the sequence of matrices

$$P_n = \left[\frac{I - W_k^* W_l}{1 - \overline{z_k} z_l}\right]_{k,l=0}^n \qquad (n \ge 0).$$

Let us assume that the inverse of $(I + W_n)$ exists for $n \ge 0$, and consider the correspondence given by

$$Y_n = (I + W_n)^{-1}(I - W_n)$$
 and $W_n = (I - Y_n)(I + Y_n)^{-1}$. (9)

For the problem (ONPP) with initial data $\{z_n, W_n\}_{n\geq 0}$ and a solution F such that $F(z_n) = W_n$ we clearly have $G(z_n) = Y_n$ $(n \geq 0)$, where the Y_n are given by (9). For $n \geq 0$ and k = 0, 1, ..., n let

$$\zeta_k = \prod_{\substack{0 \le l \le n \ l \ne 1}} (z_k - z_l)^{-1}$$
 and $U_n = \left[\zeta_k (I + Y_k) (z_k)^l \right]_{k,l=0}^n$.

Thus, we conclude that $M_n = \frac{1}{2}U_n^*P_nU_n$ is an $(n+1)\times (n+1)$ Hermitian Toeplitz matrix for $n\geq 0$. It is easy to see from the definitions that each M_n is a compression of each M_N with $N\geq n$. Therefore, the sequence $\{M_n\}_{n\geq 0}$ can be used to define a single Toeplitz form, indexed by Z, which we denote by T. The positivity of T is equivalent to the positivity of each M_n for $n\geq 0$. In this case, we obtain that T on Z is a realization of a semispectral measure E on T (a semispectral measure on T is a linear positive map $E:C(T)\to \mathcal{L}(\mathcal{H})$ where C(T) denotes the set of continuous functions on T). For every $m\in Z$ we define $S_m=E(e_m)$ and $e_m(e^{it})=e^{imt}$. Obviously, we have $S_{-m}=S_m^*$. Let us assume that P_n are non-negative definite for all $n\geq 0$. Taking into account (8) we may define $G_n\in C(\mathcal{H})$ that satisfies problem (ONPP) with data $\{z_k,Y_k\}_{k=0}^n$. First we consider the semispectral measure $E_n:C(T)\to \mathcal{L}(\mathcal{H})$ defined by

$$E_n(f) = \frac{1}{2} E\left(|m_n|^2 f\right)$$
 where $m_n(e^{i\theta}) = \prod_{k=0}^n \left(e^{i\theta} - z_k\right)$

and the family of continuous functions

$$g_z: T \to \mathcal{L}(\mathcal{H})$$
 given by $g_z(e^{i\theta}) = \frac{e^{i\theta} + z}{e^{i\theta} - z}$.

We then consider

$$G_n \in \mathcal{C}(\mathcal{H})$$
 given by $G_n(z) = E_n(\dot{g}_z)$ $(z \in \mathbb{D})$.

A short computation shows that

$$\frac{G_n^*(z_k) + G_n(z_l)}{1 - \overline{z_k} z_l} = \frac{Y_k^* + Y_l}{1 - \overline{z_k} z_l} \qquad (k, l = 0, 1, \dots, n)$$

and it is clear that, for a fixed $n \ge 0$ and for any k = 0, 1, ..., n, $G_n(z_k) = Y_k$. On the other hand, for the problem (ONPP) with initial data $\{z_n, W_n\}_{n \ge 0}$ let us consider the sequences

$$\{G_n\}_{n\geq 0}\subset \mathcal{C}(\mathcal{H})$$
 satisfying $G_n(z_k)=Y_k$ $(0\leq k\leq n)$
 $\{F_n\}_{n>0}\subset \mathcal{S}(\mathcal{H})$ satisfying $F_n(z_k)=W_k$ $(0\leq k\leq n)$

(see (5) and (8)). The sequence $\{F_n\}_{n\geq 0}$ has a subsequence converging (weakly) to an operator-valued function $F\in \mathcal{S}(\mathcal{H})$ which clearly satisfies the problem (ONPP) with initial data $\{z_n,W_n\}_{n\geq 0}$.

Theorem 7: A necessary and sufficient condition for the solvability of the problem (ONPP) is that, for each $n \geq 0$, P_n is non-negative definite.

Proof: Sufficiency was already proved, and necessity is a consequence of the Riesz-Herglotz theorem for functions in the class $C(\mathcal{H})$

Remark: This paper is part of the author's Ph.D. thesis, written at Texas A&M University under the direction of Professor Carl Pearcy.

References

- [1] Adamjan, V. M., Arov, D. Z. and M. G. Krein: Infinite Hankel matrices and generalized problems of Carathéodory-Fejèr and I.Schur. Funkc. Anal. Pril. 2 (1968), 1 17.
- [2] Ball, J. A., Gohberg, I. and L. Rodman: Interpolation of Rational Matrix Functions. Basel - Boston - Berlin: Birkhäuser Verlag 1990.
- [3] Constantinescu, T.: Operator Schur algorithm and associated functions. Math. Balkanica (New Series) 2 (1988), 244 252.
- [4] Delsarte, P., Genin, Y. and Y. Kamp: The Nevanlinna-Pick problem for matrix valued functions. SIAM J. Appl. Math. 36 (1979), 47 61.
- [5] Dubovoj, V. K., Fritzsche, B. and B. Kirstein: Matricial Version of the Classical Schur Problem (Teubner-Texte zur Mathematik: Vol. 129). Stuttgart – Leipzig: B. G. Teubner 1992.
- [6] Fedčina, I. P.: A criterion for the solvability of the Nevanlinna-Pick tangent problem. Mat. Issled. 7 (1972), 213 - 227.
- [7] Foiaş, C. and A. E. Frazho: The Commutant Lifting Approach to Interpolation Problems. Basel - Boston - Berlin: Birkhäuser Verlag 1990.
- [8] Kailath, T.: Linear Systems. Englewood Cliffs, N.J.: Prentice Hall 1980.

- [9] Kovalishina, I. V. and V. P. Potapov: An indefinite metric in the Nevanlinna-Pick problem. Akad. Nauk. Armjan. SSR Dokl. 59 (1974), 129 - 135.
- [10] Krein, M. G. and A. A. Nudel'man: The Markov Moment Problem and Extremal Problems. Providence, N.J.: Amer. Math. Soc. 1977.
- [11] Krein, M. G. and P. G. Rehtman: On the problem of Nevanlinna and Pick. Trudi Odes'kogo Derž. Univ. Mat. 2 (1938), 63 69.
- [12] Nevanlinna, R.: Über beschränkte Functionen, die in gegebene Punkten vorgeschriebene Werte annehmen. Ann. Acad. Sci. Fenn. (Ser. A) 13 (1919), 1 71.
- [13] Sz.-Nagy, B. and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. Amsterdam - Budapest: North Holland Publ. Comp. 1970.
- [14] Pick, G.: Über die Beschränkungen analytischer Functionen, welche durch vorgegebene Functionswerte bewirkt sind. Math. Ann. 13 (1916), 7 - 23.
- [15] Redheffer, R. M.: Inequalities for a matrix Riccati equation. J. Math. Mech. 8 (1959), 349 - 377.
- [16] Rosenblum, M. and J. Rovnyak: Hardy Classes and Operator Theory. Oxford: University Press 1985.
- [17] Sarason, D.: Generalized interpolation in H_{∞} . Trans. Amer. Math. Soc. 127 (1967), 179 203.
- [18] Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Part I. J. Reine Angew. Math. 147 (1917), 205 - 254.
- [19] Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. Part II. J. Reine Angew. Math. 148 (1918), 151 163.

Received 02.08.1994