
Zeitschrift für Analysis und ihre Anwendungen 
Journal for Analysis and its Applications

Volume 14 (1995), No. 3, 441-468 

Degenerate Stieltjes Moment Problem 
and Associated J-Inner Polynomials 

V. Bolotnikov 

Abstract. In this paper we consider the truncated Stieltjes matrix moment problem when the 
so-called information matrices are degenerate and describe the set of all solutions in terms of 
the linear fractional transformation using the fundamental matrix inequality method. 
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1. Introduction 
The objective of this paper is to describe the solutions of a degenerate Stieltjes matrix 
moment problem. We begin with an ordered set of herrnitian non-negative matrices 
SO,.. . , SN E C"' m

HN = I SO, ... , S N}	 (1.1) 

(by cm xl we denote the space of rn x £ matrices with complex entries, and, throughout 
the paper Im stands for the identity matrix of the order m). Let K and K denote the 
associated Hankel block matrices 

lN/21	 l(N-1)/2) K = ( S .K 	and	K = (Si+j+i)a,j= 
Definition 1.1: We say that HN belongs to fl if the associated matrices K and 

K are non-negative. If, moreover, HN admits a non-negative extension (i.e. if there 
exists a matrix 5 N+1 E Ctmxm such that the extended block matrices (S+J)1)12l 

and (s+j+i)'.3j are still non-negative), then FI N is said to be in fl. 
Let Z(HN) denote the set of all solutions of the associated truncated Stieltjes 

moment problem, i.e. the set of non-decreasing right-continuous cm xm ...ued functions 
o(A) such that

= Sk	(k = 0,.. . , N - 1)	 (1.2) 

	

IAN da(A) S N .	 ( 1.3) 
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As in the scalar case (see, e.g., [16: §5.1]) Z(HN) is non-empty if and only if HN E fl 
Moreover, there is a one-to-one correspondence between Z(HN) and the class S(HN) 
of C' `-valuedfunctions s = s ( z ) analytic in D\1R (where JR+ = [0, ±oo)) and such 
that

^s(z) > 0 (QF > 0)	and	s(x) > 0 (x <0)	(1.4) 

and, uniformly in the sector Se={z=p&°€C: e <9< ir—e } (e>0), 

IV lim Z+iSZ +	SkZN 

I	

k} > . 

Indeed, if. K, K > 0 and or E Z(HN), then the function 

00 

S(Z) 
J('0

(1.5) -
0 

belongs to S(HN) and conversely, every S E S(HN) admits such a representation, 
where a is obtained from s by the Stieltjes inversion formula (see [16: Appendix]). The 
parametrization of the set S(HN) in terms of the linear fractional transformation for 
the non-degenerate case (K and K are both strictly positive) is given in [8]. 

We recall some necessary definitions. 

Definition 1.2: A C2m12m valued meromorphic function ® is of the class W, if 

e(z)Je(z)' = J (z E 111)	and	O(z)JB(z)* > J (z E (t)	(1.6) 

and

	

B(X)J,r®(X)* ^! J,r	(x <0) 
where

1	(irn 
ilm)	and	j,,= (j°

	 (1.7) 

and 0 is of the class 'W if it satisfies only conditions (1.6). 

The following theorem establishes the connection between the classes W and W,r. 
Theorem 1.3 (see [8: §4]): A C2mx2mvalued function  belongs to the class W, 

if and only if	 - 
OEW	and	0(z) = P(z)0(z)P(z) E W	(1.8) 

where

P(Z) 
= ( 

Zm 
0im 

Definition 1.4: Let {p, q} be a pair of Cmxmvaiued functions meromorphic in 
C\1fl. 

(1) {p, q} is called a Stieltjes pair if
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(cl) det (p(z)*p(z) + q(z)*q(z))	o
	

(non-degeneracy of the pair) 

-. o(z'v(z - n(zo(z '''
 z - z.	
^0	(9zO) 

	

zq(z)p(z) - p(z)q(z) >
	(z 0). (7)	- 

z — z 

(ii) {p,q} is said to be equivalent to another pair {pi,qi} if there exists a 
valued function Q with det l(z) 0 0 and meromorphic in C\JR..f such that pi = pQ and 
qi = qQ. 

The set of all Stieltjes pairs will be denoted by Sm. 

The degenerate scalar Stieltjes problem (m = 1) is simple: S(HN) consists of the 
unique rational function s = s(z). For the degenerate matrix case the description of 
S(HN ) depends on the character of degeneracy of the information matrices K and K. 

The main result of the paper is 

Theorem 1.5: The following statements are true. 

(i) All functions s E S(HN) are given by the linear fractional transformation 

S(Z) = (Oii (z)p(z) + 912 (z)q(z)) (921 (z)p(z) + 922(z)q(z)) 
—1	

(1.10) 

with the resolvent matrix 0 = (9k,) of class W, and parameters {p, q} E Sm of the 
form

(i3(z)	

2) 

) 

and	q(z) 
(

Io P( Z) 

	

(1.11) =
0v) 

where

= rank (Im,0,. . . , 0)Pi< eric	and	ii = rank (So,..., S[(N_i)/2])PKTj. 

Here PKCTK and	denote the orthogonal projections onto the kernels of K and K, 
respectively. 

(ii) Two pairs {p, q), {pi, qi) E Sm of the form (1.11) are equivalent if and only if 
they lead under the transformation (1.10) to the same function s. 

Note that the non-degenerate case corresponds to p = ii = 0. Theorem 1.5 will be 
proved in Section 5 under the assumption HN E 7.+. The general case can be reduced 
to this particular one in view of the following 

Lemma 1.6: Let HN E fl. Then the last moment SN can be perturbated in such a 
way that the set

H'N = { SU,... ON-IA}
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belongs to ?-C and the associated Stielijes moment problems have the same solutions: 
Z(HN) = Z(H'N) (or equivalently, S(HN) = S(H+N)). 

It will be shown also that the function 0 is the matrix polynomial of deg 0 = [N12] + 
1 which admits a realization (not minimal, in general) 0(z) = 0(0) + A(I - zF)' B 
with the state space CmR 2)/2]• To construct the resolvent matrix of the degenerate 
Stieltjes moment problem (which is a J—inner polynomial of the non-full rank, see, 
e.g., [5]) we follow the method of V. Dubovoj which was applied in the series [4] to 
the degenerate Schur problem. Using this method we obtain in Sections 3 and 6 some 
special decompositions (see (3.9) and (6.10)) of the state space which allow to construct 
the explicit formula for 0 for the case that K and K are not strictly positive (formulas 
(4.5) and (6.11)). In Section 2 we point out some peculiarities of the degenerate Stieltjes 
problem. For example, the condition HN E 1 (as against the non-degenerate case) does 
not ensure the existence of a measure o(A) in Z(HN) such that in the inequality (1.3) 
the equality sign prevails. 

Lemma 1.7: A measure o(A) which satisfies (1.2) and f ANdcy(A) = SN exists if 
and only if H N E fl. 

This fact (as well as the statement from Lemma 1.6) will be established separately 
for N odd and even in Sections 2 and 6, respectively. 

The Stieltjes moment problem is in fact the interpolation problem in the class of 
matrix—valued Stieltjes functions (which by definition are analytic in C\1R and satisfy 
(1.4); see, e.g., [8]) with the interpolating point at infiniy. It can presumably be solved 
using a number of approaches, e.g. reproducing kernels method (using this method, the 
moment problem on the whole axis was considered in [7]), methods based on operator 
theory [14, 151 or on realization of matrix-valued functions (such approach was applied in 
[10] to the interpolation problem with interpolating points from the upper half—plane). 
Inthis paper we follow the Potapov method of the fundamental matrix inequality (see 
[4, 5, 8 - 13]). The starting point is the following theorem which describes the class 
S(HN) in terms of a system of matrix inequalities. 

Theorem 1.8 (see [81): Lets be a C rnXrn -valued junction analytic in the upper half 
plane C. Then .s belongs to S(HN) if and only if it satisfies the system of inequalities 

(K (I - zFm,n) -' (e s(z) + FmnKe) ) ^
	 (1.12)S(Z) —s(z) 

z — E 

K B(I - zFm,n) ' (zes(z) + Ke))  

(* ZS(Z) — s(z)	 (1.13) 

for z E C where 

	

fOm	 0 \

	 ( OM

OM 

	

Fm, 
=

Im	
cm(n+j)xm(m+l) and e 

=
(1.14) 

	

im O,,, I	 )
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and the matrix B is 'm(,,+,) or (Im(n+1), O m(n+I)xrn) whenever N 2n+1 or N = 2n, 
respectively. 

Note that (1.12) itself is the fundamental matrix inequality of the Hamburger mo-
ment problem on JR (see, e.g, [13]). 

For the non-degenerate case the difference between "even" and "odd" Stieltjes prob-
lems is not essential: they are particular cases of the much more general moment problem 
[2] and can be considered in a unified way. For the degenerate case it is not so: the 
difficulties which are arised due to different sizes of K and K for N even are essential. 
In Sections 2 - 5 we consider the Stieltjes problem with odd number of moments and 
postpone the "even" problem up to Section 6. 

2. Some auxiliary lemmas 
For N = 2ri + 1 we have the moment conditions 

CO	 CK) I A kdo,(A) =S k (k=O,...,2n)	and	I A2n+ 'da(
A ) < S 

for prescribed non-negative matrices s 1 E cmxm (i = 1,. . . ,2n + 1). It sems to be 
more convenient to deal with associated Hankel block matrices instead of the set H2,,+1 
itself. So, we reformulate Definition 1.1 for this case as 

Definition 2.1: A pair {K,,,K,,} is said to be in )C,, if K,, and K,, are both 
non-negative and of the form 

K,, = (s+)_0	and	K,, = (s++ i )'._ 0	 (2.1) 

for some square matrices si of the same size. If, moreover, K,, admits a non-negative 
Hankel extension (i.e. if there exists a matrix S2n+2 E c mxm such that the block matrix 
K,,+1 = is still non-negative), then we say that the pair {K,,, K,,} belongs 
to ftC C AC,,. 

We put the index n in (2.1) to shorten some impending computations with the 
Hankel block matrices of different sizes. The following proposition can be easily checked 
by a direct calculation. 

Lemma 2.2: Let matrices A,C E Cm(n+1)xm(hl+1) be non-negative and let Fm,, be 
the matrix of the rn-dimensional shift in the space Cm(n+l) given by (1.14). Then the 
pair {A, C] belongs to AC,, if and only if 

Fm,,, (F ,T,A - C) =0. 
Given a non-negative matrix K let Q be a matrix such that 

QKQ > 0	and	rank QKQ* = rank K.	 (2.2)€
We introduce the pseudoinverse matrix K[_hl by 

K 1 ' 1 = Q*(QKQ*)IQ.	 (2.3) 
The pseudoinverse matrix defined by (2.2), (2.3) depends on the choice of Q, neverthe-
less, some its properties are independent of this choice.
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Lemma 2.3 (see [31): For every choice of the pseudoznverse matrix K[_hJ, 

I - KKH'1 = (i - KK[h) ) PKerK .	 (2.4) 

Lemma 2.4 (see [3]): The block matrix 

(KB 
B* C 

is non-negative if and only if 

K > 0,	PKerKB =0,	R := C - B*K[_ljB >0. 

Moreover, if
(K B\> 
k,. B* c)°' 

then the matrix R does not depend on the choice of K[—']. 

This last lemma is a reformulation of the well known lemma about the non-negativity 
of a block matrix (see, e.g., [6: §01 and [ 12: §4]). 

Lemma 2.5: Let {K,K} E ftC, and let £ be the subspace of C" m defined as 

	

£ = If e Clxrn: (fo,. . . , f_i,f) E KerK,, for some fo,. . .	e Ixm}	(2.5) 

Then the following statements are equivalent: 

(i) {K,K}EIC. 

(ii) Ker Kn C KerK.	 (2.6) 

(iii) The block s21 is of the form 

S2fl+I = (sfl+i,...,s2n)kT1(sn+I,...,s2n)*+R	 (2.7) 

for some non-negative matrix R E cmxm which vanishes on the subspace £ and does€

	

not depend on the choice of K 1 (according to (2.1), Kn i =	n-i 

(iv) There exists a measure dci(A) > 0 such that 

IAk do,(A) = 5 k	(k = 0,... ,2n + 1).	 (2.8) 

Proof: The implication (i) = (ii). Let K 1 = (s) 0 be a non-negative Han-
kel extension of Kn. From the non-negativity of K+i we receive 

( S2n+l)

s

PKerKn	:	 = 0	 (2.9)
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which in view of (2.1) is equivalent to (2.6). 

The implication (ii) = (i). Using Lemma 2.3 and taking into account (2.6) (or (2.9)) 
we conclude that Kn+i 2 0 if and only if 

S2n+2 - (sn+i,... ) s2fl+I) K (s fl+I,... , S2fl+j) 2 0. 

Thus, every choice of S2n+2 satisfying this last inequality leads to K+i 2 0 and there-
fore, {Kn,Kn} E 

The equivalence (ii)	(iii). Since K 2 0, then by Lemma 2.3, 

52n+1 - ( sn+i,. . ,s2)k1')(s+1,.. ,S2n) 20 

and hence, S 2fl+1 admits a representation (2.7) for some R 2 0. It remains to show that 
(2.6) holds if and only if R vanishes on the subspace £ defined by (2.5). Let (fo,.. . ,In) 
be an arbitrary vector from KerK. Then in particular 

S1	...	In 

(fo ..... f) 1=0 
In	...	S2n_1 

(Sn+1	52n 

and therefore,
.. S2n) = — (fo,. .. 

Using this last equality both with (2.9) and (2.4) we obtain 

fos+i + ... +fn-152n 

= (fo,.,fn_i) {i_k_ 1k'} (Sn+1,...,52n)* 

(fo,,fn_1){I_kn_I11}PKerI(Sn+I,...,S2n)* 

=0	- 

which in view of the representation (2.7) is equivalent to 

fOSn+I +... + fnS2n+1 = fA R.	 (2.10) 

The condition (2.9) means that 

fOn+1 +...+fnS2n+1 =0	for every vector (fo,...,fn) e KerK. 

The last one is equivalent, in view of (2.5) and (2.10), to fn R = 0 for all fn E L. By 
Lemma 2.3, the matrix 

Rs2+1 - (5n+1,,52n)kT(Sn+l,...,S2n)
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does not depend on the choice of K,T' 

The implication (iv) (ii). Let {K,K} € K and let K +1 be a non-negative 
Hankel extension of Kn for some S 2fl+2 E cmxm Since K,, and K,,+1 are both non-
negative, then by the solvability criterion of the Stieltjes moment problem, there exists 
a measure dci(A) > 0 such that 

00	 00 

fkda(A) = s k (k = 0,... ,2n + 1)	and	JA2n+2da(A) <S2n+2. 

In particular, this measure satisfies (2.8). 

The implication (1) = (iv). Let da satisfy (2.8) and therefore, 
CO 

KnJ(Im,...,AfIm)*d(A)(Im,...,AIm).	 (2.11) 

Let f = (fo,.. ,f,,) be a vector from KerK,,. Then 

CO I f(A ) d)f(A)* =0 

where
1(A) = Jo + Af1 + ... + A" fn = f(Im,... A"Im).	 (2.12) 

In particular, for every choice of 0 a < b < +00, 

I
f(A) d(A)f(A)* =0.	 (2.13) 

Let g E C1 xm be an arbitrary non-zero vector. By the Cauchy inequality, 

If(A) do,( 
A) ,\n+l g* ^ 

(f 
f(A) do,(A)f(A)* 

I A2

n+2 g da(A)g.  

1/2 

which in view of (2.13) implies

/ 1(A) d(A) AThg* = 0. 

Since a,b E JR+ and g € cm are arbitrary, then 

ff(A) da (A) An+11m = 0.
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Therefore, we have also

J 	0 

which on account of (2.8), (2.11) and (2.12) can be rewritten as fK = 0. Thus, every 
vector f E Ker Kn belongs also to Ker K and so, Ker K c Ker K, which ends the 
proof of the lemma I 

In connection with the statement (iv) from Lemma 2.5 we consider the following 
problem: 

To describe all matrices s E C tm '"" such that 

s = J .X2"'do(A) 
0 

for some a E Z(H2+1). 

Let again {K,K} be in ftC,,. Then k,, is non-negative and its block s2,,1 admits 
a representation

= (sn+i .... ,s2n).k,Ti'(sn+i,... ,s2 fl) +L	 (2.14) 

for some non-negative matrix L which does not depend on the choice of 

Lemma 2.6: Let {K,,,K,,} E ftC,,, let S2n+I be of the form (2.14), let £ be the 
subspace defined by (2.5) and let s be an arbitrary (m x m)-matrix. Then 

S = I A 2n+ 'da(A)	 (2.15) 

for some or E Z(H2 ,,+ 1 ) if and only ifs admits a representation 

S = (sn+i,. . . ,s2n)k,-i'(sfl+1,... ,s24* + Lo	 (2.16) 

with a non-negative matrix L 0	L such that L01,. = 0 (i.e. such that KerL0 C). 
Proof: Let us consider the Hankel block matrix 

S i	...	Sn	Sn+l 

ki
Sn	 S2n 

(Sn+1 ... 5 2n	5 ) 

which differs from K,, only by the block s ,,+i = s. According to Lemma 2.5, s admits 
a representation (2.15) for some a E Z(H 2 ,,+ 1 ) if and only if K,} E AC. This in 
turn is equivalent (by Lemma 2.5) to the representation (2.16) with some non-negative 
matrix L0 which vanishes on the subspace L. It follows from (1.3) and (2.15) that 
5 S 2n+1 which in view of (2.14), (2.16) is equivalent to L0 L 
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Lemma 2.7: Let £ be the subspace defined by (2.5), let S2fl+1 and s be matrices 
defined by (2.14) and (2.16), respectively, and let 

LoIz = 0	and	LoIi =	 (2.17)€

Then the Stieltjes moment problems associated with the sets of matrices 

H2+, = {so,... , s2fl, s2fl+1}	and	H2n'+1 = { S ,... ,S2fl,s} 

have the same solutions: Z(H 2 +,) = 

Proof: Let a belong to Z(H2 +,). According to Lemma 2.7, the matrix .i = 
f' \ 2 'da(A) is of the form (2.16) with some non-negative matrix L0 L such that 
L0i = 0. In view of (2.17) we have also L0 5 L0 . Therefore, .i < $ and a € Z(H1). 
So, Z(H 2 + 1 ) C Z (H +,) . The converse inclusion follows from the inequality s 
S2n+, I 

Remark 2.8: In view of Lemmas 2.5 - 2.7 we can assume without lost of generality 
that {K, K) € ftC. In other case we replace the block S2fl+1 (which is necessarily of 
the form (2.14)) by the block	= .s defined by (2.16) with L0 satisfying (2.17). By 
Lemma 2.5, {K, K} € Kt and we describe the set Z(H+,) of solutions of this new 
moment problem, which coincides, by Lemma 2.7, with Z(H2+,). 

3. On decompositions of the state space 
In this section we show that under assumption Ker Kn c Ker K,, there exist subspaces 
G and which are complements (not orthogonal, in general) to KerK,, and KerK,,, 
respectively, in Cm(T and such that QFm,n c Q c Q. This leads to special de-
compositions of 01 xm(n+1) which in turn allow to construct the resolvent matrix of the 
degenerate Stieltjes problem. As it was mentioned above, for the Schur problem (i.e. for 
the degenerate information matrix K of the form K = I - TT* where T is of the block 
Toeplitz structure and I is the identity matrix of the appropriate size) it was done in [4: 
Part 41. The case of the degenerate information Hankel block matrix (the degenerate 
Hamburger moment problem on the line, see, e.g., [11, 13]) was considered in [3]. 

Lemma 3.1: Let T,, = (t+)_0 and T. = (t1+1)',..0 be Hankel block matrices 
with non-degenerate blocks to, t 1 € clxi and let T,_ 1 and be block matrices defined 
by

_l{M_T T* =D çIT-}D_- and n—I 

where
M = (t+)_1, 

and

T- =D_I{M_TtT*}D_* (3.1) 

jW = 
( ) fl	 (3.2) 

t 1 ç'	0	...	0
ft,\	 /t2\ 

D=	
20	 .	:	,	T= (	) ,	r= (	) .	(3.3) 

0	 \j,,J 4 1	 —,	1 
10
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Under these assumptions the following statements are true: 

(i) If {T,i} E K, then {T,_1,	_} E n—i - 

(ii) If	E X, then {T_ 1 ,_ 1 } E 

Proof: From the block decompositions 

T -	 and- (t	
s\ 

M)	 '\\y*	
) 

we obtain on account of (3.1) the factorizations 

Tn = (,rI'	0 (to
	a \ (I, çT*\	

(3) to D ) o T) o D) 

	

(t'
	0 ' ( 11

	
(3.5) 

	

t i D ) 0	i) 0 D ) 

which imply that if Tn and i;n are non-negative, then T,_ 1 and T 1 are non-negative 
as well. 

Let {T,T} E AC,. We begin with the identities 

F, , _ 1 D'T = 0,	F:,_1F1_1F1,_1 = F1,_1 

and
M - F1, - 1 M + F,,iTçT = Tt'T	 (3.6) 

which follow immediately from (1.14), (3.2) and (3.3). Using these identities and taking 
into account (3.1) we get 

F1, _ 1 (FI _ I T_, - _ 1) 
= F, , _ 1 F,_ 1 (T_, - F1,_1T_1) 

= F1, _ 1 Fj_ 1 D' (M - Tç'V - F1,_1M+ F, , _ 1 Tt 1 r* ) D* 

= F1 _ 1 F1 _ 1 D'T (t - ' a —t o 'i- ) D* 

=0. 

Thus, F1_1(F,1T_1 - T,.. 1 ) = 0 and by Lemma 2.5, {T,_1,T,_1} E ACn_i. 

Let now {T,T} E AC and let f E C'' be an arbitrary vector from KerT,_1. 
In view of (3.5), the vector (—fD'Tt',fD') belongs to KerT. By Lemma 2.5, 
KerT C KerT, and thus, (—fD Tt',fD')T = 0. Substituting (3.5) into this last 
equality we obtain, in particular, fT_ 1 = 0. So, every vector f E KerT_ 1 belongs also 
to KerT,_ 1 and so, KerT_ 1 9 KerT_ 1 . By Lemma 2.5, {T_ 1 ,T_ 1 } e	U
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Lemma 3.2: Let {K,K} E X	and let rank K,, = r and rankK	F. Then 
there exist matrices Q	 and Q E CTx(n+1)m such that 

QKQ > 0	and	tK	> 0 (3.7) 

QFm,n = NQ	and	Q = NQ (3.8) 

for the shift Fm,n defined via (1.14) and some matrices N E Cl'x	and N E C". In 
other words, there exist subspaces 

Q=RanQ:={yEC1xm'1): y = f Q for some fec'} 

Q = Ran Q 

such that QFm,n 9 Q ç Q and

= KerK-j- Q = KerK-j-Q. (3.9) 

Proof: We prove this lemma by induction.	Let, for n = 0, rank so = 1, and 
ranks 1 = 1 (1,1	m). By Lemma 2.5, Kers0 c Ker.s 1 and therefore, 1< 1. Moreover, 
there exists a unitary matrix U e cmxm such that 

Us0U	
= (

0	
)	

and	Us1U*	
(	)	

(io,t1 >0) (3.10) 0	0 
M—

and hence, matrices 

Q = ( I1 ,0)U,	= (11 ,0)U	and	N = 0,	N = 

satisfy (3.7) and (3.8). 

Let us suppose the assertion of the lemma hold for all integers up to n - 1.	Let 
as above rank so = 1 > I = rank s 1 and so, s 1 be of the form (3.10). By Lemma 2.5, 
KerK	c Ker K,, which implies, in particular, 

Kers0 ç Kers 1 c ... c Kers2+i. 

Therefore,

(i = 1,...,2n+ 1) 
USU = (; 00m_j ) (3.11) 

for some matrices t e	Furthermore, let

ce 90
= ()

(a e C, 0 E c'', -y E C(1_0x() 
#*	-Y

(3.12) 

be the block decomposition of the matrix go from the representation (3.10). Introducing 
the matrices

= a	=(I, —,8')io 
(Itt) >0

(3.13)
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and
g	(Ii, -ff7, OIx(m_l)) U	 (3.14) 

we obtain immediately from (3.10) - (3.12) that 

= ti	(i = 0,... ,2n + 1).	 (3.15)

Let T,. and 7', be l(n + 1) x 1(n + 1) Hankel block matrices defined by 

T. = (t+ 1 ) = I',.K,.r	and	7',, = (t+ 1 ) = F,.K,.I'	(3.16)

where
fg	0\ 

rn =	 €	 (3.17)
g) 

It follows from (3.10) - (3.17) that 

rank T,. = rank K,, - (i - I) = r + 1-i and rank?',. = rankK,. = F.	(3.18) 

Since KerK,. c KerK,,, then in view of (3.10) -(3.16), KerT,. c KerT,. and by Lemma 
2.5, {T,.,1,,} € X. Let T_ 1 , T, 1 and D be matrices defined by (3.1) and (3.3), 
respectively. According to Lemma 3.1, {T,_1,T,_1} € X. Moreover, we obtain 
from (3.4), (3.5) and (3.18) that rank T,_ 1 = r - I and rank T,_1 = F - I. Hence, by 
the induction hypothesis there exist matrices 

Qi E c(._l)xmn	€	and Ni € C(r_l)x(_i) N1 E 

such that

> 0	and	Qii1	> 0	 (3.19) 
= N 1 Q 1	and	Qi = N1 Q 1 .	 (3.20) 

Furthermore, let é € C1 be the matrix defined by 

e= 	 (3.21)

We show that the matrices Q, Q and N, N given by 

( (I-i QjD- 'TtO 1 9

	00Q=0	I 4 0
	Q1D'I',._1 

(_1D''
0-, )r
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and
N-1 

- kQ i etot'g N1 

	

I	 Ix(I-i) 

N1 Q 1 D'(Tt 1 TF') 0	91 

(where 7,7, U and ë are matrices defined via (3.3), (3.11) and (3.21)) satisfy conditions 
(3.7) and (3.8). Indeed, in view of (3.4), (3.5), (3.10) - (3.17) and (3.19) we have 

to 0	0 

	

QKfl Q * = I0	0 1>0 
\o 0 Q1T,_1Q) 

	

f t 1	0 
Q1T1Q1) 

It follows from (3.23) and the block decompositions 

r=( r10-	
and and	1'=( F1,_1) 

that
f	o\ 

QFm,n - NQ = (N B, B2)	
(3.23) 

where
B1 = Q 1 Dg - Q i etoç'g + N1Q1D'Tt'g 

B2 = Q i DTn_ i Fm,n_ i - N1Q1DF_1. 

Using (3.20) and identities 

= F1, _ 1 D',	 = F,_ 1 r_ 17	ti + Fm,n_ i Y = 7 

which follow immediately from (2.2), (3.3), (3.17) and (3.21), we get 

B 1 Q1 D (e9 - Dëtotg + F1,_1Tç1g) 

= Q

1 D' (et i — r + F' ,, _ 1 T) t i ig 

and
B2 = Qi D ' l'n_iFm,n_i - Q1F1,_1D1r_1 

= Q

1 D (rn_iFm,ni -

0.
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So, B 1 = B2 = 0 and (3.23) implies the first equality from (3.8). Similarly, in view of 
(3.20) and (3.23), 

-	/	 0 
Q-NQ	

9 =( -	-	- 
\-Q 1 DTt'g Q1D-'r,,_1 

	

(	g	 0 

- -91 Q 1 D'Tt'g N1Q1D-'r,,_1 

((NjQj- 0

	 0 

 1)D't'g (i - N1Q1)D'r,,_1 
=0. 

Thus, Q = NQ which ends the proof of the lemma I 
Corollary 3.3: Let Q and Q be matrices satisfying (3.8). Then for all 1 E .VV€

	

QF,',,,, = (NJ)'NQ	and	QF,L,, = (NN)'NQ = (IN)'Q.	(3.24) 

4. J-inner polynomials associated with {K, k,1 ) E )C 

In this section we associate to every pair { K,,, K,, } E K a function 0 of the class 
W,. It will be shown in Section 5 that this function is the resolvent matrix of the 
corresponding Stieltjes moment problem. To simplify the further computations, the 
index n will be omitted, and up to Section 6, by K, K and F we mean matrices K, 
K,, and Fm,,, given by (2.1) and (1.14). 

Lemma 4.1: Let {K, K} E K, let Q and Q be matrices satisfying (3.7) and (3.8), 
and let K[-11 and KH'] be pseudoinverse matrices defined as 

	

K 1 ' = Q(QKQ)Q	and	K111 = Q*(QKQa)_lQ	(4.1) 
Then, for all 1 E .lT\o, 

K'F' (i - KK[- ' ] ) = k'-' I F' (i - KKH1]) .=	 (4.2) 

k'-"F' (i - KKI- 1 1) = K' 1 F'' (i - KKH1I) = 0.	(4.3) 

Proof: It follows from (4.1) that 

	

Q (i - KKI-hi) = 0	and	Q (i - KK[- h 1) = 0.	(4.4) 

Using again (4.1) together with (3.24) we get 

K 11 F' = Q*(QK,, Q*) 1 (NN)I Q = Q*(QK,,Q*)_l(NN):NQ 

Kt ' 1 F'' = Q(QKQ)'(NN)'NQ = Q(QKQ)'(NN)''Q. 
Substituting these last equalities (for 1 = 0, 1,...) into (4.2) and (4.3) and taking into 
account (4.4) we obtain the required equalities I
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Lemma 4.2: Under the assumptions of Lemma 4.1 let 0 and 3 be the C2mx2m 
valued functions defined by

f

	

7K[—']	0 \ t e 0 \
 0	e* ) 0(z) = 12 m 

+ e*K 0	(z)	kt—'i) O Ke)	(4.5) 

and
0(z) = P(z)0(z)P 1 (z)	 (4.6)€

where P(z) and e are given by (1.9) and (1.14), respectively, and 

	

/ zF*(I - zF) 1	(I - zF*)_l 

\ —z(I - zF) 1 —z(I - zF*) 

Then 0 is of the class W,r (see Definition 1.2) and moreover, for all z,w E C \ JR, 

0(z)J0(w)* - J - ( e*KF*) (I - zF* )_I K 1 ' ] (I - iZYF)(FKe, —e) (4.7) €

	

i(w—z)	- 

- - () _ zF1kLn(I_Fy1(Ke,_e).	(4.8) 

Proof: Since {K, K} E K, then by Lemma 2.2, F(FK—K) = 0, or equivalently,

	

(I_ee*)K__FK.	 (4.9) 

This last identity implies that 

FKee* - ee*KF* = FK - KF* and Kee* - ee*K = FK - KF*. (4.10) 

Using (4.9) and (4.10) both with (4.2) and (4.3), it is easy to check that the functions 
0 and 0 admit the factorizations 

	

0(z) = { 12m + Z (e*KF*)(J - zF*)_1K[_1)(e,FKe)} W	(4.11) 

	

(z) = {12m +	( I - zF*)- 1 KHfl(e , Ke)} W	 (4.12) 

where
"Im e*KK[_h]Ke\ 

	

= 
0	'm	) 

and	= ( e*K[—'e 0I. 

Since the matrix 'I' is J-unitary, we obtain from (4.11) 

Ie\ 

	

0(z)J0(w) - =	— e'
*KF* )(I_ zF*)	(z,4(I—YF)'(FKe,—e) (4.14) 

where
1(z, w) = zK(I - OF) - (I - zF*)KH'1

(4.15) 
+ zwKH 1 J{FKee* - ee*KF*}K[_h].
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Substituting the first equality from (4.10) into (4.15) and using (4.2) we get 

(z _)KH1J + z{F'KH h 1 - K11 F + KH'](FK - KF*)K1-11} 

(z - ZIi)K [ ' l + zZ1{(I - Kt'lK)FKH') - KH 1 )F(I - KKI_11)} 

(z - 

which both with (4.14) implies (4.7). Similarly, taking into account the J-unitarity of 
'F we obtain from (4.8) 

- j = () (I- zF*)1(z,w)(I_wF)1(Ke,_e)	(4.16) 

where
z,w) = zKH'J(I - OF) -	-

(4.17) 
+zkl_h]{Kee* _ee*K}K(_hl. 

Substituting the second equality from (4.10) into (4.17) and using (4.2) we receive 

z,w) = (z - )KH'] + z{F'k Hh] -	+ K 1 ' J (FK - KF*)KH11} 

= (z - )K[ ' I + zi{(I - K(_hiK)F*K(_hI - k [-1] F(I - 

= (z - 

which both with (4.17) leads to (4.8). From (4.7) and (4.8) we conclude that 0 and 0 
belong to the class W, and hence, 0 belongs to W,r by Theorem 1.31 

Remark 4.3: Since the functions 8 and 8 are both J-unitary on the real axis, 
then by the symmetry principle, 0'(z) = J®()J and 8(z) = Je()*J, and on 
account of (4.7) and (4.8), the relations 

J - 0(w)JEY'(z) 

= J(J - O()JO())J	 (4.18)
= i( - z) (4F) (I - OF * )- ' KI- ' I (I - zF)'(e, FKe) 

and

P(w)JP(z) - 0(w)P(wJP(z)9'(z 
I e s \ 

= i( - z)P(w)	(I - wF*)lKlhl(I - zF)1(e,Ke)P(z)	
(4.19) 

are true. 

For the further purposes we need those J-forms of 0 and 0 which are dual to (4.7) 
and (4.8).
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• Lemma 4.4: Let 0 and 0 be the functions defined by (4.5) and (4.6), respectively. 
Then

0(w)*J0(z) - J = i(Zi- z)R* KH'] (I - JF)K(I - zF*)_ l KI_R (4.20) 

(w)*J0(z) - J =	- z)R*KJ (I -	- zF') 1 K 1 'R (4.21)€

where

R= (e,FKe)'J/	and	.ñ=(e,Ke) (e*i_iie	).	
(4.22)€

Proof: Using the representation (4.7) of 0 and taking into account (4.10) and 
(4.21), we obtain 

O()*J0(z) - J 

= __iR*{z(I - zF*)_ l K] - JK 1 (I - 7F)1 

+ z 3K[_ 1](I - F)'{FK - KF*}(I - zF*)-1K[_11}R
(4.23) 

= i( - z)R* Kt11 (I -F)'K(I - zF*)_lK(_hlR 

- izR*(I - KH']K)(I - zF)K1R 

+ i c;YR*K(T h I(I - OF) - ' (I - KK[-')R. 

Since
(I - zF*)_ l 1:=z'F',	(4.24) 

then by (4.3)

(I - KH']K)(I - zF*)_1K[_h] = 0	for all z E C. 

Substituting this last equality into (4.23) we obtain (4.20). The equality (4.21) can be 
checked quite similarly I 

Remark 4.5: Using (4.22), (4.13) and the equalities 

ee*KKH 1IKe + FKe = KK' 1 Ke + F(I - KK['])Ke 

e - Kee*K1- 1 ]e = (I - KKII )e + KF*K[_hle 

which follow from (4.9), we obtain 

R = (e, KK 1 Ke + F(I - KK 1 )Ke) (4.25) 

R = ((I - KKH'I)e + KF*Kt_fle , Ke). (4.26)

Note that in view of (4.5), (4.6) and (4.24), 0 and ® are matrix polynomials of degree 
n +1.
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5. Description of all solutions 
In this section we parametrize the set Z(H 2 + 1 ) of all solutions to the degenerate 
Stieltjes moment problem in terms of a linear fractional transformation. We begin with 
the following auxiliary results. 

Theorem 5.1 (see [10: §3]): Let 

(Z ) - (
911 (z) 912(z) 
- 021 ( Z) 922(z) 

be the block decomposition of a C2m12m.valuedflLnciion 8 E W into four C"' -valued 
blocks. Then the following statements are true. 

(i) All CrnXrnvalued meromorphic in C\1R+ solutions s of the system of inequalities 

	

(s) >0	 (5.1) 

(S(z)*, IM) 8) JP0	 > 0	 (5.2) 

are given by the linear fractional transformation (1.10) when the parameter {p, q} varies 
in the set Sm of all Stielijes pairs and satisfies the condition 

det (921 (z)p(z) + 922 (z)q(z)) 0 0.	 (5.3) 

(ii) Two pairs 1p, q) and {pi,qj} lead by (1.10) to the same function s if and only 
if these pairs are equivalent. 

Lemma 5.2 Let . and be two orthogonal subspaces in C1xm (i.e. fg' = 0 for 
all f E T and g E ). Let 

dim .F =	 and	dim c = V	 (5.4) 

and let P.r and Pc be the orthogonal projections onto F and G, respectively. Then every 
pair (p, q) E Em such that

P,p(z) PC q(z) 0	 (5.5) 

is equivalent to a pair {pi, qi } of the form 

fr3(z)	 f(z) 
PI(Z) = V	0,	 and	qi(z) = V	IA	 (5.6) 

I. )	 oj 

for some unitary (in x m)-matrix V which depends only on .F and . 

Proof: Since the subspaces .F and 9 are orthogonal, there exists a unitary matrix 
V E C rnxm such that 

V'P,V =	 I	 and VPçV = (	 0, oJ
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with p and ii given by (5.4). Therefore, the Stieltjes pair {Vp, V*q} satisfies 

(0 I, 0)(p ) Vp(z)	0	and	(0 0.1 X ,, I, ) Vq(z)	0 

and hence (see [3: Lemma 4.3]), it is equivalent to some Stieltjes pair of the form 

{ (13( Z )	 / 4(z)

0.)l
'M 

This in turn means that the initial pair {p, q} is equivalent to a pair { pi, q i } of the form 
(5.6)1 

The following theorem describes the set S(H21 ) under the assumption {K, K} E 
+ (or equivalently, Ker K. c Ker K). 

Theorem 5.3: Let {K,K} E ftC+ , let Q and Q be matrices satisfying (3.7) and 
(3.8), and let K [— ' 1 and K1) be the pseudoinverse matrices defined by (4.1). Then the 
linear fractional transformation (1.10) with the resolvent matrix e defined by (4.5) gives 
a parametrization of the set S(H 2 + 1 ) when the parameter {p,q} varies in Sm (the set 
of C"'-valued Stieltjes pairs) and is of the form 

(13(z)	 /4(z) 
P(z) = V (	0,	j	and	q(z) = V	I,.)	(5.7) 

IJ	 oJ 

with a unitary matrix V (which depends only on the initial data H2+1) and a Stieltjes 
pair { j3,4} € Sm_ j _,, where 

p = rank P1(erK e	and	v = rank PKar K -Ke.	 (5.8) 

More precisely: every functions € S(H 2 + 1 ) is of the form (1.10) for some pair {p,q}.E 
Sm of the form (5.7). Conversely, for every pair {p, q} E Sm of the form (5.7) the 
transformation (1.10) is well-defined (det(02 1 (z)p(z) + 022(Z)q(z)) 0 0) and leads to 
some 8€ S(H2 + 1 ). Two pairs lead by (1.10) to the same functions if and only if these 
pairs are equivalent. 

Proof: According to Theorem 1.2 the set S(H 2 + i ) coincides with the set of all 
solutions of the system of inequalities (1.12) and (1.13) which is equivalent, by Lemma 
2.4, to the following system: 

s(z)—s(z) 

- (es(z) + FKe)* (I - zF)_*K(_h] (I - zF)(es(z) + FKe) 0 
ZS(Z)_S(Z)*	 (5.9) 

Z — Z	 . 

— (zes(z) + Ke) *(I - zF)KHfl (I - zF) (es(z) + Ke) > 0
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and

PKerK(I_ZF)'(eFKe)()) 0	 (5.10) 

KerR(1 zF)_(e,Ke)(Z))	.	 (5.11) 

It is easy to see that inequalities (5.9) can be written as 

(s(z)*,I){.(J) - ( e*F*)

( (I_zF*)_1KHh1(J_zF)TI(eFKe)	.s(z)\ }	i ) >0 

(TS (z)*,I)i 
1i(-z) - (e)

(\ (I_zF*)_1kHhJ(I_zFY1(eKe)}	
i 

zs(z) ) >0 

which in turn, on account of (4.17) and (4.18), can be represented in the form (5.1) 
and (5.2) with the function e defined by (4.5) which is of the class W, by Lemma 4.1. 
According to Theorem 5.1, all solutions s of the system (5.9) are parametrized by the 
linear fractional transformation (1.10) when the parameter {p, q} varies in the set Sm 
of all Stieltjes pairs and satisfies (5.3). It remains to choose among these solutions all 
functions s which satisfy also identities (5.10) and (5.11). The further proof is divided 
into three steps which we now detail. 

Step 1: The function s of the form (1.10) satisfies the identities (5.10) and (5.11) 
if and only if the corresponding parameter {p, q} satisfies 

PKerKep(z) P j Keq(z) 0.	 (5.12) 
Step 2: If a pair {p, q} € Sm satisfies (5.12), then it also satisfies (5.3). 
Step 3: There exists a unitary matrix V E C tmm such that every pair (p, q) E Sm 

satisfying (5.12) is equivalent to some pair {pi, q i } of the form (5.6) with z and v defined 
by (5.8). 

Proof of Step 1: Let s be of the form (1.10) for some pair {p,q} E Sm which 
satisfies the condition (5.3). Then 

(s)) = 
0(z) () (921(z)p(z) + 022(Z)q(Z)) 

and, in view of (4.6), the identities (5.10) and (5.11) are equivalent to 

PKerK( 1 zF)'(e,FKe)®(z) (p(z) 	0	 (5.13) q(z)) 

'DKer	zF)1(e,Ke)(z)P(z) (p(z)) = 0	 (5.14)
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respectively. To simplify (5.13) and (5.14) we begin with identities 

z(I - zF) {ee*KF - FKee*}(I - 

= K(I - zF)' - (I - zF)'K 

z(I - zF) 1 {eeK - Kee* }(I -	
( 5.15) 

	

= K(I -	- (I - zF)'K 

which follow from (4.10). Substituting (4.11) and (4.12) into (5.13) and (5.14), respec-
tively, and using (5.15), we rewrite (5.13) and (5.14) as 

PKer K(I - zF)'(I - KKI'1)R (PW	o	 (5.16) q(z)) 

	

1Ker —(I - zF)' (I -	t'l)RP(z)(p(z) = 0	 (5.17) 
q( z ) ) 

- 

respectively, where R and R are matrices given by (4.22). Using (2.4) one can rewrite 
(5.16) as

\ 

	

(i + ZPKerKF(I - zF'(I - KKH1)))PKer	z) KR	
z)) 0 N 

and since
det(I + ZPKer KF(I - zF)(I - KK I ' ] )) 0 0, 

then (5.16) is equivalent to

PKer KR ((z) '
	0.	 (5.18) z) j 

Similarly, the identity (5.17) is equivalent to 

P

	

kRP(.) ( q(z)) E 
0.	 (5.19) 

Substituting (4.25) into (5.18) and (4.26), (1.9) into (5.19) we get 

PKerK(eP( z) + F(I - KK[_h])Keq(z)) 0	 (5.20) 

p - K (z(I - KK [ ' 1 )ep(z) + Keq(z)) 0.	 (5.21) Ker  

Multiplying (5.20) by ZPKer K(1 - KK [ ' ] ) from the left, subtracting the obtained 
identity from (5.21) and using the assumption Ker K C Ker K, we obtain 

{ I - ZPKer KF(I - .kk[_hI)}PKer K —Keq(z) 0 

which is equivalent to
PKeq(z) 0.	 (5.22)
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Substituting (5.22) into (5.20) we conclude that PI(er Kep(z) 0, which ends the proof 
of Step I. 

Proof of Step 2: Let a pair {p,q} E 3., satisfy conditions (5.12). We introduce a 
pair {x,y} by

(x(z)' = 9(z) (7	 (5.23) y(z)j	\q(Z)J 
and show that det y(z) 0 0. Indeed, suppose that the point \ E C and the non-zero 
vector h  Ctmx1 are such that detO(A) 0 0 and 

y(.X)h = 0.	 (5.24) 

(x(A)\ h* (p(A)* q(A)*)O(A)*Je(.\) q(.\)
	 0) 

0	h*(p()*,q(A)*)J (()) h

\ = h(p(.X),q(.X)'){J - O\)*JO(A)} I\q(A) p(A ) h (  

<0. 

	

Substituting (4.20) (with z =	.\) into the last inequality we conclude that 

K(I— F')'K[']R 1A)' h - 0	 (5.25) - 

(where R is the matrix given by (4.22)). It follows from (4.11), (4.22) and (5.24) that 

	

x(A)h = (Im,Om)®(A)	h

\ = {(I,e*Kk[_h]Ke)+ Ae*KF*(I_ AF*)_1K[_h]R} q(A)
 (p(A ) h. 

Since
- AF*)l = (I - AF*)l - 

then on account of (5.25) 

x(A)h = {(I,e*KkHflKe) _e * KKH1] R}	h.	(5.26) 

The equalities 

KH'IF(I - kkH ']) = 0	and	K1'IKk['I = k111 

Since 

then
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(see (4.5)) both with (5.23) lead to 

KK1 ' 1 R = (KKHI]e,KkH1JKe). 

Substituting this last equality into (5.26) and using (2.4) we obtain 

(p\ 
h x(A)h = {e*(I_ KKH'])e,O(A) 

} q(A)  
= e*(I - KKH ' ] )PKer Kep(A)h 

=0. 

Since det E(A) 0 0, the equality x(A)h = 0 both with (5.24) and (5.23) implies 

( P( A) \ h - EY'(A) (x(A\ q(A)) - 

which contradicts (since A is an arbitrary point in C+) the non-degeneracy of the Stieltjes 
pair {p,q}. 

Proof of Step 3: Let us consider the subspaces 5F and 9 defined by 

SF = Ran (Per K e)	and	G = Ran (pKerK -Ke).	(5.27) \  

For such a choice of .1 and 9 the equalities (5.4) and (5.5) are equivalent to (5.8) and 
(5.12), respectively. Meaning to apply Lemma 5.2 we show that the subspaces SF and 

in (5.27) are orthogonal. Indeed, let f  5F and g E g. Then f = le and g = Ke 
for some vectors f E Ker K and E Ker K. Using (4.9) we obtain 

fg = fee*K = fKJ' - J(I - ee*) K* = fK - fFk* 0. 

The application of Lemma 5.2 to subspaces (5.27) finishes the proof of Step 3. 

By Theorem 5.1, different pairs lead under the transformation (1.10) to the same .s 
if and only if they are equivalent. Hence, instead of all Stieltjes pairs satisfying (5.12) 
we can substitute in (1.10) all pairs of the form (5.7). This ends the proof of Theorem 
5.31 

In view of Remark 2.8, the condition {K, K} E ftC is not restrictive and hence, the 
description obtained in Theorem 5.3 is applicable to the general situation {K, K} E 
"Sn.
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6. Even Stieltjes moment problem 

As it was mentioned above the Stieltjes moment problem for N 2n is solvable if and 
only if the information matrices Kn and K_ 1 defined by 

K.	(s 1+)'_0	and	 = (s^+ i )' 0	(6.1) 

are non-negative. Similarly to the odd case we denote by K,, the set of all such pairs 
{ K,,, K,,_ 1 I. If, moreover, K,,_ 1 admits a non-negative Hankel extension (i.e. if there 
exists a matrix S2fl+1 E cmnxm such that the block matrix K,, = (.s1+j+i)7 0 is still 
non-negative), then we say that the pair {K,,, K,,_1 } belongs to K C X,,. 

It can be easily checked that matrices K,, and K,,_ 1 are of structure (6.1) if and 
only if

(I - ee)KnB - CK,,_ 1 0	 (6.2) 
where

e = ( Im	,	B = Omxmn \ 
),	

C = (Im,,,Omxmn)	(6.3) 
( 

\ Omnxm) 

(an "even" analogue of Lemma 2.1). Note that Fm,,, = CB, where Fm,,, is a shift given 
by (1.14). 

We commit proofs of the following lemmas which are obtained closely to the corre-
sponding results from Sections 2 - 5. 

Lemma 6.2: Let {K,,,K,,_1} E K,, and let £ be the subspace of cm defined as 

Z= 
{f 

E	(fi,. . . ,f,,—i,f) E Kerk,,_1	) 
-	 for some fi,.. .	e C 1 X_ j	(6.4) 

Then the following statements are equivalent: 

(i) {K,,,k,,_1} E AC. 

'Ker j	(s,, f ,. . . , S2t,+i) = 0	 (6.5) 

(iii) The block S2n is of the form

[- 

	

= (s,,,...,s2,,_i)K,,_11] (s,,,...,s2,,_i) +L	 (6.6) 

for some non-negative matrix L e cmXm which vanishes on the subspace £ and does 
not depend on the choice of K11. 

(iv) There exists a measure dci(A) > 0 such that 

IA
k da(A) = Sk	(k=0,...,2n).
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Lemma 6.3: Let {K, K_ 1 } E K, let S2n be of the form (6.6), let £ be the 
subspace defined by (6.4) and let s be an arbitrary (in x m)-matrix. Then 

= I A2n 

for some a e Z(H2 ) if and only ifs admits a representation 

	

S = (s n ,... ,s2n_i)Ki(sn,...,s2_1) +Lo	 (6.7) 

for some non-negative matrix Zo E cmxm such that Zo L and Z O I F = 0. 
If, moreover, LoIj = L IZ.j., then the Stieltjes moment problems associated with the 

sets
H2 = { 5o,. . . , S2 fl _1,S2 fl }	and	H2n = {so,. . . )s2n-1,8} 

have the same solutions: Z(H2 ) = Z(H). 

Lemma 6.4: Let {K, K_1 } E K, let rank K = r and rank K 1 = 7, and 
let B and C be matrices given by (6.3). Then there exist matrices Q E Crxm(Tfl and 
Q e CrXmn such that

QKQ* > 0	and	QK_1Q > 0	 (6.8) 

QC = NQ	and	QB = NQ	 (6.9) 

for some matrices N E CrXr and N E C 7>< . In other words, there exist subspaces 
Q = Ran Q and Q = Ran  such that QC c Q and QB c Q, and 

= KerK--Q	and	Cm = KerK_ 1 --Q.	(6.10) 

Lemma 6.5 : Let {K, K1 } E )C, let Q and Q be matrices satisfying conditions 
(6.8) and (6.9), let K — '] [—'1 and K [ _ 1 be pseudoznverse matrices defined as 

K hj = Q*(QKQ*)_lQ	and	= Q*(QK1Q*)_1Q 

and let 'I' E 02m,2m be the J-unitary matrix given by 

, (Im e*KB*K1BKe 

(In	
T 

 (so,... 
0	 IM 

Then the C2mx2mvalued function 

(e*KnFm e(z) = { 12m +Z	_e**n) (I— zF ,n )_'K_' I (eFm,nKne)}	(6.11)
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is of class W,. 

Theorem 6.6: Let {K,K_ 1 } E AC (or equivalently, let H2 E fl+). Then the 
linear fractional transformation (1.10) with the resolvent matrix 0 defined by (6.10) gives 
a parametrization of the set S(H 2 ) when the parameter {p, q} varies in 3,n (the set of 
C" '-valued Stieltjes pairs) and is of the form (5.6) with a unitary matrix V (which 
depends only on the initial data H2 ,,) and a Stielijes pair {, 41 E	where 

p = rank Pi<er K,e = rank (I,0,. .. ,0)PKerK	 (6.12)€

= rank PKer j	BK,,e = rank (Se,... Sn_1) PKer	 (6.13) 

In conclusion we note that Lemmas 1.6 and 1.7 follows immediately from Lemmas 
2.7, 6.3 and 2.5, 6.2, respectively. Theorem 1.5 is a consequence of Theorems 5.3 and 
6.6. Distinction of parameters in (1.11) and (5.6) is not essential: the linear fractional 
transformation with the resolvent matrix 0 E W,r and parameters {p, q} of the form 
(5.6) is equivalent to the linear fractional transformation with the resolvent matrix 

O(z)=0(z)(	
,) 

and parameters of the form (1.11) Since the matrix V is unitary, it is easy to see that 
the function 0 is still of the class W. 
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