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Degenerate Stieltjes Moment Problem
and Associated J-Inner Polynomials

V. Bolotnikov

Abstract. In this paper we consider the truncated Stieltjes matrix moment problem when the
so—called information matrices are degenerate and describe the set of all solutions in terms of
the linear fractional transformation using the fundamental matrix inequality method.

Keywords: Moment problems, J— ezpansive matriz functions, fundamental matriz inequalities
AMS subject classification: Primary 47 A 57, secondary 30 E 05

1. Introduction

The objective of this paper is to describe the solutions of a degenerate Stieltjes matrix
moment problem. We begin with an ordered set of hermitian non-negative matrices
$0,...,sN € C™X™ ) '
HN={So,...,SN} o (11)

(by C™*! we denote the space of m x ¢ matrices with complex entries, and, throughout

the paper I, stands for the identity matrix of the order m). Let K and K denote the
associated Hankel block matrices

N/2 = N-1)/2
K = (S-'+j)[.~,,-/=g and K= (5-'+j+1)£(,,~=o 2,
_ Definition 1.1: We say that Hy belongs to H if the associated matrices K and
K are non-negative. If, moreover, Hy admits a non-negative extension (i.e. if there

exists a matrix sy41 € C™*™ such that the extended block matrices (s.~+,~)5.(;.v='§l)/ 2
and (s.<+,-+1)£h;/=23 are still non-negative), then Hy is said to be in H*.

Let Z(Hy) denote the set of all solutions of the associated truncated Stieltjes

moment problem, i.e. the set of non-decreasing right-continuous €™ *™-valued functions
a(A) such that

/,\"da(,\) =sx (k=0,...,N—-1) - | '(1.2)
0

o0

/ANda(A) < sw. (1.3)

0
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As in the scalar case (see, e.g., [16: §5.1]) Z(Hn) is non-empty if and only if Hy € H.
Moreover, there is a one-to-one correspondence between Z(Hy) and the class S(Hy)

of €™*™-valued functions s = s(z) analytic in C\Ry (where R4 =.[0,+00)) and such
that

¥s(z) 20 (¥220) and s(z)>0 (z<0) (1.4)
and, uniformly in the sector S, = {z =peeC: ¢

N
lim {_zN“s(z) + Z skzN'k} >0.

z—00
k=0

Indeed, if K, K>0andoe Z(Hn), then the function

[e o]

() = [ 542 (15)

z.
0

belongs to S(Hn) and conversely, every s € S(Hn) admits such a representation,
where o is obtained from s by the Stieltjes inversion formula (see [16: Appendix]). The
parametrization of the set S(Hy) in terms of the linear fractional transformation for

the non-degenerate case (K and K are both strictly positive) is given in [8].
We recall some necessary definitions.

Definition 1.2: A €*™*?™_valued meromorphic function © is of the class W if
O(2)JO(2)*=J (z€ R) and 0(2)J0(2)* > J (z€C4) (1.6)

and

O(z)J.0(z)* 2 Jr . (z<0)

0 il.) ‘ (0 I,
s (8 e ne (2B, an

and © is of the class W if it satisfies only conditions (1.6).

where

The following theorem. establishes the connection between the classes W and W .

Theorem 1.3 (see [8: §4]): A €*™**™ .yalued function © belongs to the class W
if and only if :
OeWw and O(z) = P(2)0(2)P(2) ' e W (1.8)

where

P(z) = ("‘{)"‘ I(,),.)' , (1.9)

Definition 1.4: Let {p,q} be a pair of C™*™-valued functions meromorphic in
C\R,. | 4

(1) {p,q} is called a Stieltjes pair if
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(a) det (p(z)‘p(z) + q(z)‘q(z)) #£0 (non-degeneracy of the pair)

) 9(2)*p(2) — p(z)*q(2)

2—-12

20 (3z2#0)

) zq(2)*p(2) — zp(2)*q(2)

22—z

2 0 (Sz #0).

(ii) {p,q} is said to be equivalent to another pair {p;,q;} if there exists a C™X™.
valued function 2 with det Q(z) # 0 and meromorphxc in C\EL,. such that p; = pQ2 and
q1 = qfd.

The set of all Stieltjes pairs will be denoted by Sp.

The degenerate scalar Stieltjes problem (m = 1) is simple: S(Hy) consists of the
unique rational function s = s(z). For the degenerate matrix case the description of
S(Hn) depends on the character of degeneracy of the information matrices K and K.

The main result of the paper is
Theorem 1.5: The following statements are true.

(i) All functions s € S(Hy) are given by the linear fractional transformation

(2) = (B11(2)p(a) + 812(2)a()) (B1(Iple) + 0a(@a(2)) T (1.10)

with the resolvent matriz © = (6;;) olf class W, and parameters {p, q} € Sm of the

form . ]
T O a (@) S
p(z) = . 0, and  §(z) = I (1.11)
I, : 0,

4 = rank (I;m,0,...,0) Pkek and v =rank (so,...,S(n=-1)/2]) P -2

where

Here Pkerk and Py = denote the orthogonal projections onto the kernels of K and I?,
respectively.

(ii) Two pairs {p, g}, {P1, ¢1} € Sm of the form (1.11) are equivalent if and only if
they lead under the transformation (1.10) to the same function s.

Note that the non-degenerate case corresponds to y = v = 0. Theorem 1.5 will be
proved in Section 5 under the assumption Hy € H*. The general case can be reduced
to this particular one in view of the following

Lemma 1.6: Let Hy € H. Then the last moment sy can be perturbated in such a
way that the set

Hy = {so,...,sN_l,s'N}
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belongs to H* and the associated Stieltjes moment problems have the same solutions:

Z(Hn) = Z(H'N) (or equivalently, S(Hy) = S(H'n)).

It will be shown also that the function © is the matrix polynomial of deg © = [N/2]+
1 which admits a realization (not minimal, in general) O(z) = ©(0) + A(I — zF)"'B
with the state space Cc™(N+2)/2] Ty construct the resolvent matrix of the degenerate
Stieltjes moment problem (which is a J-inner polynomial of the non-full rank, see,
e.g., [5]) we follow the method of V. Dubovoj which was applied in the series [4] to
the degenerate Schur problem. Using this method we obtain in Sections 3 and 6 some
special decompositions (see (3.9) and (6.10)) of the state space which allow to construct
the explicit formula for © for the case that K and K are not strictly positive (formulas
(4.5) and (6.11)). In Section 2 we point out some peculiarities of the degenerate Stieltjes
problem. For example, the condition Hy € H (as against the non-degenerate case) does
not ensure the existence of a measure ¢()) in Z(Hy) such that in the inequality (1.3)
the equality sign prevails.

Lemma 1.7: A measure o()) which satisfies (1.2) and [° ANdo()) = sy ezists if
and only if Hy € Ht.

This fact (as well as the statement from Lemma 1.6) will be established separately
for N odd and even in Sections 2 and 6, respectively.

The Stieltjes moment problem is in fact the interpolation problem in the class of
matrix—valued Stieltjes functions (which by definition are analytic in C\ R4 and satisfy
(1.4); see, e.g., [8]) with the interpolating point at infiniy. It can presumably be solved
using a number of approaches, e.g. reproducing kernels method (using this method, the
moment problem on the whole axis was considered in [7]), methods based on operator
theory (14, 15] or on realization of matrix-valued functions (such approach was applied in
(10] to the interpolation problem with interpolating points from the upper half-plane).
In this paper we follow the Potapov method of the fundamental matrix inequality (see
[4, 5, 8 - 13]). . The starting point is the following theorem which describes the class
S(Hy) in terms of a system of matrix inequalities.

Theorem 1.8 (see [8]): Let s be a €™ *™ -valued function analytic in the upper half
plane €. Then s belongs to S(Hy) if and only if it satisfies the system of inequalities

(K (I-2Fn.)""(es(2) + FrnnKe)

( . s(z) — s(2)* ) 20 (1.12)

z—2
K B(I - ::F,,,,,,)_1 (zes(z) + Ke) .

( . zs(z) — zs(2)* ) 20 (1.13)

z—2
for z € C4 where. )
0m 0 : ‘ In\
] I, . . Om
Frn= —_— € Crintlxm(ntl)  ghd o= . (1.14)
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and the matriz B is In(nt1) o7 (Im(,,+l), Om("+,)xm) whenever N =2n+1or N = 2n,
respectively.

Note that (1.12) itself is the fundamental matrix inequality of the Hamburger mo-
ment problem on IR (see, e.g, [13]).

For the non-degenerate case the difference between "even” and "odd” Stieltjes prob- -
lems is not essential: they are particular cases of the much more general moment problem
[2] and can be considered in a unified way. For the degenerate case it is not so: the
difficulties which are arised due to different sizes of K and K for N even are essential.
In Sections 2 - 5 we consider the Stieltjes problem with odd number of moments and
postpone the “even” problem up to Section 6.

2. Some auxiliary lemmas

For N = 2n + 1 we have the moment conditions
(e o] oo

‘//\"da(/\) =sx (k=0,...,2n) and //\Z"Hda(/\) < $2n+1
0 _ 0
for prescribed non-negative matrices s; € C™*™ (i = 1,...,2n + 1). It sems to be

more convenient to deal with associated Hankel block matrices instead of the set Hapyy
itself. So, we reformulate Definition 1.1 for this case as

Definition 2.1: A pair {K,, K.} is said to be in K, if K, and K, are both
non-negative and of the form

Kn = (si+5); j=o and  Kn = (si+j+1)] j=o (21)
for some square matrices s; of the same size. If, moreover, K, admits a non-negative
Hankel extension (i.e. if there exists a matrix szp4+2 € €™*™ such that the block matrix
Knyy = (s;.{.,-)?;:o is still non-negative), then we say that the pair {Kn, K,} belongs
to K} c K.

We put the index n in (2.1) to shorten some impending computations with the
Hankel block matrices of different sizes. The following proposition can be easily checked
by a direct calculation.

Lemma 2.2: Let matrices A, C € C™(+1)xm(nt1) 4, non-negative and let Fi, , be

the matriz of the m-dimensional shift in the space €™tV given by (1.14). Then the
pair {A,C} belongs to K, if and only if

Fnpn(Fr,A=C)=0.

Given a non-negative matrix K let  be a matrix such that

QKQ* >0 and rank QKQ* = rank K. (2.2)
We introduce the pseudoinverse matriz K(~1] by
K= = Q*(QKQ")™'Q. (2.3)

The pseudoinverse matrix defined by (2.2), (2.3) depends on the choice of Q, neverthe-
less, some its properties are independent of this choice.
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Lemma 2.3 (see [3]): For every choice of the pseudoinverse matriz K(=1,

I- KK = (1- KK1) Prarc. | (2.4)
Lemma 2.4 (see [3]): The block matriz

(K B
B* C
K >0, PxerkB =0, R:=C-B*kl"1B >0.

K B
(B. C)zo,

then the matriz R does not depend on the choice of K[~

is non-negative if and only if

Moreover, if

This last lemma is a reformulation of the well known lemma about the non-negativity

of a block matrix (see, e.g., [6: §0] and [12: §4]).
Lemma 2.5: Let {K,,,I?,,} € K, and let £ be the subspace of C'*™ defined as

L= {fe C'*™ : (fo,---» fa=1,f) € Ker K, for some fo,..., fn_1 € Clxm}. (2.5)

Then the followsng statements are equivalent:
(i) {K., K.} € K}. _
(ii) Ker K, C Ker K,,. (2.6)
(iii) The block szn+1 is of the form

S2n41 = (5n+la e ,Szn)f{’i—_ll] (Sn+], e ,82,,)‘ + R (27)

for some non-negative matriz R € C™*™ which vanishes on the subspace L and does
not depend on the choice of KE,__II] (according to (2.1), Kpn_y = (s,~+,~+1)?;=lo).

(iv) There ezists a measure do(\) > 0 such that
o
/A"da(,\) =sy (k=0,...,2n+1). (2.8)
0
Proof: The implication (i) = (ii). Let Kpnqy = (s.~+,~)?;=lo be a non-negative Han-
kel extension of K,. From the non-negativity of Kn41 we receive

Sn41
Pxer k., =0 (29)

S2n+41
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which in view of (2.1) is equivalent to (2.6).

The smplication (ii) = (i). Using Lemma 2.3 and taking into account (2.6) (or (2.9))
we conclude that K, 4, > 0 if and only if

San+2 — (Sn1y--- ,$2n+1)K!,_l](8n+1,.-~,82n+1)‘ >0.

Thus, every choice of san42 satisfying this last inequality leads to Kn41 > 0 and there-
fore, {Kn, Ko} € K.

The equivalence (ii) < (iii). Since K, > 0, then by Lemma 2.3,
S2n41 — (Sn+1,- . ,Szn)fﬁ.__ll] (3n+1, ceey Szn). >0
and hence, s2n4) admits a representation (2.7) for some R > 0. It remains to show that

(2.6) holds if and only if R vanishes on the subspace £ defined by (2.5). Let (fo, ..., fa)
be an arbitrary vector from Ker K,,. Then in particular

Sy Sn
(for--ifa) | © =0
Sn vee S2p-1
Spn41 ... Son

and therefore, _
f,,(s,,+1., e ,SQn) = —(fo, e 7fn—l)Kn—l~
Using this last equality both with (2.9) and (2.4) we obtain

f05n+1 +...+ fn—132n + fn‘(sn-f-l, e a52n)1?£,__11] (3n+la~ . 15271)‘
= (fo,...,fn_l) {I - E"_lkn__ll]} (3n+l,---y32n)‘

= (fo, e ,fn—l) {I - I?,.-]I?L__ll]} PKerl?,.-; (Sn+1,...,82")‘
=0

- which in view of the representation (2.7) is equivalent to
fo$n+1 +.o 4 faszatr = fnR. . (2.10)
The condition (2.9) means that
fosat1+ ...+ fasang1 =0 for every vector (fo,...,fn) € KerK,.

The last one is equivalent, in view of (2.5) and (2.10), to foR = 0 for all f, € L. By
Lemma 2.3, the matrix

R = S2n41 — (8n+1,. .. ,82,,)[?,[‘-_11] (3n+l, SN ,82,,).
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does not depend on the choice of K L___ll]

The implication (iv) = (ii). Let {Kn, K.} € K and let K,4, be a non-negative
Hankel extension of K, for some s3p42 € C™*™. Since K, and K,,, are both non-

negative, then by the solvability criterion of the Stieltjes moment problem, there exists
a measure do(A) > 0 such that

oo oo
//\*da(/\) = S (k =0,...,2n+ 1) and //\2n+2d0'()\) < S2n42-
0 0

In particular, this measure satisfies (2.8).
The implication (1) = (iv). Let do satisfy (2.8) and therefore,

o0

K, = /(1,,,,...,,\"Im)‘do(,\)(z,,.,...,,\"I,,.). (2.11)

Let f = (fo,...,f,.) be a vector from Ker K,,. Then

/ F)do(M)F(N)* =0
where

FO) = fo 4 M1 4o A A fn = E(Imye o AP L) (2.12)

In particular, for every choice of 0 < a < b < 400, .
b
/f(A) da(AN)f(A\)* =0. (2.13)
Let g € C'*™ be an arbitrary non-zero vector. By the Cauchy inequality,
5 b 5 1/2
JEC ( [rnassye [ da(A)g')
which in view of (2.13) implies
b
/f(A) do(A) A"t1g* = 0.
Since a,b € IRy and g € C'*™ are arbitrary, then

/ F(\) do(A) A" T, = 0.
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Therefore, we have also
o0
/f(/\) da(A)(I,,,, Moy, ... ,A"+'Im) =0
0

which on account of (2.8), (2.11) and (2. .12) can be rewritten as fK,, = 0. Thus, every

vector f € Ker K,, belongs also to Ker K, and so, Ker K, C Ker K,,, which ends the
proof of the lemma il

In connection with the statement (iv) from Lemma 2.5 we consider the following
problem:

To describe all matrices s € C™*™ such that

o]

s= /A’““da(,\)

0
for some 0 € Z(Hzpn4).
Let again {K,,,I?,,} be in K. Then I?,. 1s non-negative and its block syp41 admits
a representation
Sont1 = (s,,“, e ,sg,,)I?,[,__lll (s,,+1, ... ,sg,,). + L (2.14)
for some non-negative matrix L which does not depend on the choice of I?L__lll. A

Lemma 2.6: Let {K,,,I?n} € Kn, let sanyy be of the form (2.14), let L be the
subspace defined by (2.5) and let s be an arbitrary (m x m)-matriz. Then

o0

s = /,\2"+‘do(,\) _ (2.15)

0

for some 0 € Z(Hany1) if and only if s admits a representation
s = (S"+1, Cen ,52,,)1?!,__11] (sn+1, el Sgn)‘ + Ly (2.16)

with a non-negative matriz Ly < L such that Ly|c =0 (i.e. such that Ker Ly D L).
Proof: Let us consider the Hankel block matrix

S eee Sn Sn+1
=1
K, =
Sn S2n
Sn+41 ... S2n S

which differs from K, only by the block s}, ,, =s. According to Lemma 2.5, s admits
a representation (2.15) for some o € Z(Hz,41) if and only if {K,,,I?,lt} € K. This in
turn is equivalent (by Lemma 2.5) to the representation (2.16) with some non-negative
matrix Lo which vanishes on the subspace £. It follows from (1.3) and (2.15) that
5 < Sypn41 which in view of (2.14), (2.16) is equivalent to Lo < Ll
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Lemma 2.7: Let L be the subspace defined by (2.5), let s3n41 and s be matrices
defined by (2.14) and (2.16), respectively, and let

Lolc =0 and Lo|gr = Liga. (2.17)
Then the Stieltjes moment problems associated with the sets of matrices
Hypyy = {so,...,s;;,,,shﬂ} and H;nﬂ = {50,...,82",3}
have the same solutions: Z(Hg;.+1) = Z(H}np,) -

Proof: Let o belong to Z(H,41). According to Lemma 2.7, the matrix § =
fo A2"dg()) is of the form (2.16) with some non-negative matrix Ly < L such that
Lo|5 = 0. In view of (2.17) we have also Lo < L. Therefore, § < s and 0 € Z(H}, ;).
So, Z(H2a+1) C Z(H,,,). The converse inclusion follows from the inequality s <
S2n41 [

Remark 2.8: In view of Lemmas 2.5 - 2.7 we can assume without lost of generality
that {K,, I?,,} € K. In other case we replace the block sant1 (which is necessarily of
the form (2.14)) by the block s}, , = s defined by (2.16) with L, satisfying (2.17). By
Lemma 2.5, {Kn, K1} € K} and we describe the set Z(H},, ) of solutions of this new
moment problem, which coincides, by Lemma 2.7, with Z(Hz,41).

3. On decompositions of the state space

In this section we show that under assumption Ker K, C Ker K, there exist subspaces
G and g which are complements (not orthogonal, in general) to Ker K, and Ker K ns
respectively, in C™("*1) and such that QFnn C Q C Q. This leads to special de-
compositions of C! xm(n+1) which in turn allow to construct the resolvent matrix of the
degenerate Stieltjes problem. As it was mentioned above, for the Schur problem (i.e. for
the degenerate information matrix K of the form K = I — TT* where T is of the block
Toeplitz structure and I is the identity matrix of the appropriate size) it was done in [4:
Part 4]. The case of the degenerate information Hankel block matrix (the degenerate
Hamburger moment problem on the line, see, e.g., [11, 13]) was considered in [3].

Lemma 3.1: Let T, = (ti4+;)7 ;=0 and To = (t,‘+,‘+1):"]._0 be Hankel block matrices
with non-degenerate blocks to,t; € (Dl’d and let T2 _, and T} _, be block matncea defined
by

T, =D Y{M-Tt;’T*}D™* and T)_,=D*{M-Tt{'T*}D™* (3.1)
where .
M = (ti+;)i =15 M = (tigje1)ij=1 (3.2)
and
titg! 0 ... 0

o=l . . ty to )
=%, T=[: ], T=| ¢ ]. (33
: 0 tn tnt1

taty ! ... toty' titg!
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Under these assumptions the following statements are true:
() I {Ta, Ta} € Kn, then {T}_),T3_;} € Knes.
(ii) If {Tn, T} € K3, then {T}_,, T}, } € K7,

Proof: From the block decompositions

_(t T Fo(bn T
T"_(’T M> and T,,—.(T_ M)

we obtain on account of (3.1) the factorizations

— I 0 to 0 I; to_lT‘
= (e 5) (8 22,) (5 59
= _ (L 0\[(t. O L T
7= (70 2) (5 2,) (0 D" 49
which imply that if T, and T, are non- negative, then T, _, and T! _) are non-negative

as well.

Let {Tn, T} € Kn. We begin with the identities
E,n—lD—lT = 0, I;’I,n—lp‘l“n_lF'l,n—l = E,n—l

and . - _

M — FiaaiM + Fiao T4 T =TT (3.6)
which follow immediately from (1.14), (3.2) and (3.3). Using these identities and taking
into account (3.1) we get

F},n—l (Fl.,n—lTrll—l - Tvi—l)
= Fl,n—lp‘[‘,"_l ( n—1 En 1T )
= Fip_1F{p_ D™ (M =Tt T = Fins M + Fiana 747 74) D
— Fl,n—lF‘["n_lD—lT (tl—l?- _ t;l']—t) D"
=0.

Thus, Fin_1(F},_;Ti_; — T1_,) = 0 and by Lemma 2.5, {T}_,, T}_,} € Kn_,.

Let now {T,.,T } € K} and let f € €' *'™ be an arbitrary vector from Ker T_,
In view of (3.5), the vector (—fD~!'Tt;',fD~ l) belongs to Ker T,. By Lemma 2. 5
Ker T, C Ker T, and thus, (—fD~!T¢;! D 1T, = 0. Substituting (3.5) into this last
equality we obtain, in particular, T} -1 = 0. So, every vector f € KerT,,_, belongs also
to Ker T}_, and so, KerT!_, C KerT!_,. By Lemma 2.5, {T}_,,T) |} e Lol |
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Lemma 3.2: Let {K,.,I?n} € Kt alLd let rank K, = r and rank Kn = 7. Then
there ezist matrices Q € C™*"*V™ and Q € €)™ such that

QK.Q* >0 and

R.0° >0 @
QFm,n = NQ and N

=NQ (3.8)

O &

for the shift F,, , defined via (1.14) end some matrices N € Crx' and N € €%, In
other words, there ezist subspaces

Q@ =RanQ = {y € Cmnt) Ly = £Q for some f € Clxr}
Q= Ra.né
such that QFm, C @ C Q and

C™**1) = Ker K, +Q = Ker K, +0. (3.9)

Proof: We prove this lemma by induction. Let, for n = 0, rankso = I, and
ranks; =1 (I, < m). By Lemma 2.5, Ker sy C Kers; and therefore, | < . Moreover,
there exists a unitary matrix U € €™*™ such that

. 0 . (ti O .
UsoU (0 O l) and Us;U _<0 Om—i) (50,t1 > 0) (3.10)

and hence, matrices
= (I,0)U, Q = (Ii’O)U and N =0, N= (Ii’ol'x(l—l'))

satisfy (3.7) and (3.8).

Let us suppose the assertion of the lemma hold for all integers up to n — 1. Let
as above ranksy = | > | = ranks, and sq,s; be of the form (3.10). By Lemma 2.5,
Ker K, C Ker K, which implies, in particular,

Kersg C Kers; C ... C Kersan4.

Therefore,

UsU'—(t' 0 ) G=1,....2n+1) (3.11)
0 0,_;

for some matrices ¢; € C'*!. Furthermore, let

. _[a B ixi Ix(i=1) (I=Dx(i-)
so—(ﬂ. 7) (aec™, pee™tD yee ) (3.12)

be the block decomposition of the matrix o from the representation (3.10). Introducing .
the matrices

to=a— Py 18" =(I;, =B )0 ( {i) ‘> >0 (3.13)
-8
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and

9= (I =AY, Otgmon) U (3.14)

we obtain immediately from (3.10) - (3.12) that
gsig® = t; (i=0,...,2n+1). (3.15)

Let T, and T, be i(n + 1) x Ii(n + 1) Hanke! block matrices defined by -

Tn = (ti+j) = ToKaT, and Ty = (tizj41) = TuKalS (3.16)
where
g - 0
I-\" — € Ci(n+l)xm(n+l). (317)
0 g

It follows from (3.10) - (3.17) that
rank T, = rank K, — (I - i) =r+1l-1 and rankT, = ra.nkf?,, =F. (3.18)

Since Ker K, C Ker I?,,, then in view of (3.10) - (3.16), Ker T, C Ker i, and by Lemma
2.5, {Tn,Ta} € K}. Let T}_,, T}_, and D be matrices defined by (3.1) and (3.3),
respectively. According to Lemma 3.1, {T!_,,T!_,} € K}_,. Moreover, we obtain
from (3.4), (3.5) and (3.18) that rankT}_, = r — ! and rankT_, = 7 — I. Hence, by
the induction hypothesis there exist matrices .

Q€ C(r—l)xl-n’ O, € c-Dxin . 4 N, € C(r—l)x(i—.i); Ny e c(F=Dx(r=1)
such that

@QT,,Qi>0 and  QiT,,Q7>0 (3.19)
Qi Ffn, = M@ and Q1 = NQ,. (3.20)

Furthermore, let & € Ci"xf be the matrix defined by
' é= (I7,0,...,07)". (3.21)
We show that the matrices Q, 6 and N, N given by
Qa1
(G2 e o)
- D' Ttg'g  QuD™'Tney
Q

I 0\,
-G\D' Tt gD )"
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and 0
0 -
N = Ixi )
(Qlétotl—lg Ny

3.22)
I; Oix(l—i) 0 ) (

N = (" -1 -1 _ Fyu-1
N D" (Tty" —Tt;") 0 N,

(where T, T ,U and & are matrices defined via (3.3), (3.11) and (3.21)) satisfy conditions
(3.7) and (3.8). Indeed, in view of (3.4), (3.5), (3.10) - (3.17) and (3.19) we have

to O 0
QK,.Q* =] 0 « 0 >0
0 0 QT ,Q;

T = om.5)>0
TN TG '

It follows from (3.23) and the block decompositions

(9 O . _ (0 O
e (k) e me=(@on)

QFmn—NQ= (1(3)1 gz) (3.23)

that

where ~ ~
B] = Q]D_lég - Qlétotl_lg + N1Q1D_17t1_lg

By =Q1D'Ty_1Fpny — NyQ1 DTy

Using (3.20) and identities
D-IF‘I' = i,"_lD_la Fn—lFm,n—l = I'ﬂi,n_lr“n—l’ ét) +Fm,n—l’§:=T

n=—1

which follow immediately from (2.2), (3.3), (3.17) and (3.21), we get

By = QD™ (&g — Détot*g + Fy o, Tt7'9)
=D (8t - T + Fp,i 7))t
=0

and

B, = QID_lI‘n—lFm,n—l - QlFi’n_lD_IFn—l

= QD! (r,._,F,,,,,,_, - Fim_lr,,_l)
=0.



Degenerate Stieltjes Moment Problem 455

So, By = Bz = 0 and (3.23) implies the first equality from (3.8). Similarly, in view of
(3.20) and (3.23),

~ o~ g 0
- NO = _ N _
? ° <_Q1D_17t1-]9 QID—an—l)

[ 0
~-Ni@\ DTty N,QiD™'T,,

0 0
B ((N,Q, - QD' Tty (G - N)Q])D_]Fn—]>
=0.
Thus, Q = JVQ which ends the proof of the lemma il
Corollary 3.3: Let Q and @ be matrices satisfying (3.8). Then for alll € IN

QF. .= (NN)NQ@ and QF., .= (NN)NQ = (NN)*'@Q. (3.24)

4. J-inner polynomials associated with {Khn, I?,,} E Kt

In this section we associate to every pair {K,,,I?,.} € K} a function © of the class
W,. It will be shown in Section 5 that this function is the resolvent matrix of the
corresponding Stieltjes moment problem. To simplify the further computations, the
index n will be omitted, and up to Section 6, by K, K and F we mean matrices K,,
I?,, and Fy, , given by (2.1) and (1.14).

Lemma 4.1: Let {K, I?} e Kt, let Q and Q be matrices satisfying (3.7) and (3.8),
and let K171 and K1 be pseudoinverse matrices defined as
K =@ (QKQ)™'Q  and  KUMN=Q(QKQH)T'Q. (1)
Then, for alll € Ny,

KIIF (1- RRD) = RUUF (1- kK1) =0 (4.2)

Ri-npt (I - fa?l-‘l) = KPP (1- kKUY =0, (4.3)
Proof: It follows from (4.1) that

Q(r- KK[‘”) =0 and G(I- f{}?l-ll) =0. (4.4)

Using again (4.1) together with (3.24) we get
K[—I]Fl = Qt(QKth)—l(Nﬁ)lQ = Qt(QKth)—l(Nﬁ)INQ
RIIF = §1(QRQ) (VY NQ = §1@RE) (NG
Substituting these last equalities (for [ = 0,1,...) into (4.2) and (4.3) and taking into
account (4.4) we obtain the required equalities ll
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Lemma 4.2: Under the assumptions of Lemma 4.1 let © and © be the CT™*2™.
valued functions defined by

@(z)=12m+(e0K 0>Q()(Kl—l I?[o_”)(g z?e) (45)

0(z) = P(2)0(z)P~!(2) (4.6)
where P(z) and e are given by (1.9) and (1.14), respectively, and

2F*(I - zF*)"! (I — zF*)™!
Q(z):( ( ‘)_1 ( )~ )
—2(I — 2F*) —2(I = zF*)™!

and

Then © is of the class Wy (see Definition 1.2) and moreover, for all z,w € C\ R,

%Z)JTG(—“%;—_“( cHT )(I P KN GF) (FKe, —e) (4.7)
8(2)JOw) —J _ (e'K PO R 5P Ke. —e
" ( )(1 P RN —5F) " (Ke,—e).  (4.8)

Proof:” Since {K, K} € K+, then by Lemma 2.2, F(F*K — K) = 0, or equivalently,
‘ (I— ee’)K = FK. (4.9)

This last identity implies that
FKee® —ee’KF* = FK — KF* and Kee' —ee'K = FR — RF". (4.10)

Using (4.9) and (4. 10) both with (4.2) a.nd (4.3), it is easy to check that the functions
© and © admit the factorizations

0(z) = {12,,. +2 (e_KF) (I- )-1Kl-ll(e,pxe)} ¥ (4.11)
O(z) = {12,,, +z (e_e. ) (I - zF*)" K(=1(e, Ke)} ¥ (4.12)
where ' =] . I
I, e*KKl-UKe = m 0
‘I’ = ( 0 Im ) and ‘I’ = <e‘K[_l]e Im) . (413)

Since the matrix ¥ is J-unitary, we obtain from (4.11)
KF* - - |
0(2)JO(w)* - J = — (I-2F")7'®(z,w)(I -WF)  (FKe,—e) (4.14)

where

8(z,w) = 2KV —@F) — (I — 2F*)KI-Y

(4.15)
+ zBK[_ll{FKee' - ee‘KF‘}K[_”.



Degenerate Stieltjes Moment Problem 457

Substituting the first equality from (4.10) into (4.15) and using (4.2) we get -

&(z,w) = (z —@)KI"Y + zw{F'Kl-'l - KI=Mp 4 K-U(PK - KF‘)K[“]}
= (z — @)K 4 2m{(1 - KV K K170 - KU R(T - KK!-1)})
= (z —w)KY

which both with (4.14) implies (4.7). Similarly, taking into account the J- umtanty of
¥ we obtain from (4.8)

O(2)JO(w)* - J = (e_:" ) (I - 2F*)'&(z,w)(I - ©F)" (Ke, —e) -(4.16)

where - - _
&(z,w) = zKI"W(I - oF) — o(I — zF*)K(-Y
. . ‘ (4.17)
+zBK[_l]{Kee‘ —ee‘K}K[_I]. '

Substituting the second equality from (4.10) into (4.17) and using (4.2) we receive
3,w) = (z —@)KY 4 zw{F'I?l-ll - KIFIFp 4 REVFE - I?F')f(l-ll}
= (z —@)KY 4 zU{(I — KFUR)P RN _ RIpR( - 1?1?[-11)}
=(z —@)K[Y

which both with (4.17) leads to (4.8). From (4.7) and (4.8) we conclude that © and ©
belong to the class W, and hence, O belongs to W, by Theorem 1.3 8

Remark 4.3: Since the functions © and © are both _J-unitary on the real axis,
then by the symmetry principle, ©~!(z) = JO(z)*J and 0~ !(z) = JO(2)*J, and on
account of (4.7) and (4.8), the relations

J—Ow) " IO Y(2)
=J(J-0@)JO(z)")J

| (4.18)
= i@=2) (oo ) ([=TF) K = 2F) (e, FKe)
and |
P(w)* JP(z) — O(w)™* P(w)* JP(2)0}(2)
(4.19)

= i@~ 2)P(w)" (e‘f;{) (I -@F*) ' KI=(I - zF)~'(e, Ke) P(2)

are true.

For the further purposes we need those J-forms of © and © which are-dual to (4 7)
and (4.8).
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. Lemma 4.4: Let © and © be the functions defined by (4.5) and (4.6), respectively.
Then

O(w) JO(2) - J = i(@ — 2)R* K-Vl —wF) ' K(I - zF*)'KI"R  (4.20)
O(w)* JO(z) — J = i(@ — 2)R*KI"N(I —@F)"'K(I - zF*)'KI"MR  (4.21)
where
~ ~ I 0
R = (e,FKe)¥ and  R=(e,Ke)¥ (_e, Kol ) . (4.22)

Proof: Using the representation (4.7) of © and taking into account (4.10) and
(4.21), we obtain

O(w)* JO(z) - J |
= —iR {1 - zF*) " KUY - mK (1 - oF) ™

+ KNI - GF) Y {FK — KF*}(I — zF‘)“K["]}R

(4.23)
=i@—2)R KNI -&F) ' K(I - zF*)'K"UR
—izR*(I - KFUVKYI - :F*)'KIFYUR
+iwR* KNI - wF)™ (I - KKI"R.
Since ' i
(I-2F)™' =3 2FY, (4.24)

i=0

then by (4.3) '
(I-KFUKYI - zF)'KI"1 =0 forall z€C.

Substituting this last equality into (4.23) we obtain (4.20). The equality (4.21) can be
checked quite similarly il

Remark 4.5: Using (4.22), (4.13) and the equalities
ee'KKI"Ke + FKe = KK["'Ke + F(I - KK"!)Ke
e— Kee'Kl"lle = (I - KK["e + KF*Kl-lle
which follow from (4.9), we obtain
R= (e, KKI"Ke + F(I - REI-‘I)Ke) (4.25)

R= ((1 — KKI"ye + KF K-, Ke) : (4.26)

Note that in view of (4.5), (4.6) and (4.24), © and © are matrix polynomials of degree
n+1. .



Degenerate Stieltjes Moment Problem 459
5. Description of all solutions

In this section we parametrize the set Z(Hz,4)1) of all solutions to the degenerate
Stieltjes moment problem in terms of a linear fractional transformation. We begin with
the following auxiliary results.

Theorem 5.1 (see [10: §3]): Let
O (z 612(z
G(Z) = (Gglgzg Ogggz;)

be the block decomposition of a C*™**™ .valued function © € W into four C™*™ -valued
blocks. Then the following statements are true.

(i) AllC™*™ -valued meromorphic in C\ IR, solutions s of the system of inequalities

s(z O(z)"*P(2)* JP(2)07(2) [ s(z)
(s(2)", Im) e ( - ) > (5.2)

are given by the linear fractional transformation (1.10) when the parameter {p,q} varies
in the set S, of all Stieltjes pasrs and satisfies the condition

det (92,(2),;(2) + ogg(z)q(z)) #0. (5.3)
(ii) Two pairs {p,q} and {p1,q1} lead by (1.10) to the same function s if and only
if these pairs are equivalent.

Lemma 5.2 Let F and G be two orthogonal subspaces in C'*™ (i.e. fg =0 for
all f € F and g € G). Let

dim F =p and dim G =v (5.4)

and let Px and Pg be the orthogonal projections onto F and G, respectively. Then every
pair {p,q} € S\ such that

Prp(z) = Pog(z) =0 (55)
is equivalent to a pair {p1,q1} of the form

B(2) 4(z)
niz)=V 0, and q(z)=V I, (5.6)
I, 0,

for some unitary (m x m)-matriz V which depends only on F and G.

Proof: Since the subspaces F and G are orthogonal, there exists a unitary matrix
V € C™*™ such that

Om—y—v Om—p—v
V*PrV = I, and V'PV = 0,
0, I,
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with p and v given by (5.4). Therefore, the Stieltjes pair {V*p, V*q} satisfies
(0 I, OIpx.,)V‘p(z) =0 and (0 Ouxx L)V*q(2)=0

and hence (see [3: Lemma 4.3]), it is equivalent to some Stieltjes pair of the form

() ()

This in turn means that the initial pair {p, ¢} is equivalent to a pair {p,, ql} of the form
(5.6)1

The following theorem describes the set S (Hg,,+1) under the assumption {K, K} €
K* (or equivalently, Ker K. C Ker K).

Theorem 5.3: Let {K, K} € K*, let Q and Q be matrices satisfying (3.7) and
(3.8), and let K[~ and K11 be the pseudoinverse matrices defined by (4.1). Then the
linear fractional transformation (1.10) with the resolvent matriz © defined by (4.5) gives
a parametrization of the set S(Hzn41) when the parameter {p,q} varies in S, (the set
of C™*™ -valued Stieltjes pairs) and is of the form

B(2) 4(z)
p(z)=V ( 0, ) and ¢(z) =V ( I, ) (5.7)
‘ L/ , 0./

with a unitary matriz V (whtch depends only on the initial data Hany) and a Stieltjes
pair {p,§} € Sm—n—, where

4 = rank PKe,K e and v = rank PK wKe. (5.8)

More precisely: every function s € S(Hany1) is of the form (1. 10) for some pair {p,q} €

Sm of the form (5.7). Conversely, for every pair {p,q} € Sm of the form (5.7) the
transformation (1.10) is well-defined (det(61(2)p(z) + 622(2)g(2)) # 0) and leads to
some s € S(Han41). Two pairs lead by (1.10) to the same function s if and only if these
pairs are equivalent.

Proof: According to Theorem 1.2 the set S(H2n+1) coincides with the set of all
solutions of the system of inequalities (1.12) and (1.13) which is equivalent, by Lemma
2.4, to the following system:

s(z) - s(2)"
~ (es(z) + FKe)"(I — zF)~*KI- l1(1 -~ zF)_ (es(2) + FKe) >0
zs(z) — 7s(z)*

— (zes(z) + Ke)"(I - zF)_'I;([_I](I —zF)™! (:Ees(z) + Ke) >0

(5.9)
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and

Pxer (I = zF)"\(e, FKe) ( s(;)> 0 (5.10)

P g~ 2F)7!(e, Ke) (Zs§z)) 0. (5.11)

It is easy to see that inequalities (5.9) can be written as

(s(z)‘,I){ﬁ ~(eser)

(I -zF*) 1K1 - zF)‘.‘(e,FKe)} (3(;)) >0

(fs(z)‘,f){ﬁ - (%)
(I = 2F*) P KU1 = 2F) (e, Ke)} (”5”)) >0

which in turn, on account of (4.17) and (4.18), can be represented in the form (5.1)
and (5.2) with the function © defined by (4.5) which is of the class W by Lemma 4.1.
According to Theorem 5.1, all solutions s of the system (5.9) are parametrized by the
linear fractional transformation (1.10) when the parameter {p,q} varies in the set S,
of all Stieltjes pairs and satisfies (5.3). It remains to choose among these solutions all
functions s which satisfy also identities (5.10) and (5.11). The further proof is divided
into three steps which we now detail. '

Step 1: The function s of the form (1.10) satisfies the identities (5.10) and (5.11)
if and only if the corresponding parameter {p, q} satisfies

Pgerkep(z) = P, xKeq(z) =0. (5.12)
Step 2: If a pair {p,q} € Sy satisfies (5.12), then it also satisfies (5.3).

Step 3: There ezists a unitary matriz V € C™*™ such that every pair {p,q} € Sm
satisfying (5.12) is equivalent to some pair {p,q,} of the form (5.6) with u and v defined
by (5.8).

Proof of Step 1: Let s be of the form (1.10) for some pair {p,q} € S which
satisfies the condition (5.3). Then

(s(IZ)) = 0(z) (523) (921(z)p(z) + 022(2)¢I(z)) -1
and, in view of (4.6), the identities (5.10) and (5.11) are equivalent to

Pxer k(I — 2F)" (e, FKe)O(2) (;’8) =0 (5.13)

Pyee g1 = 2F) 7' (e, Ke)B(2)P(2) (p(Z))

@) ) =0 (5.14)
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respectively. To simplify (5.13) and (5.14) we begin with identities
z(I — zF)™ ' {ee’KF* — FKee*}(I — zF*)™!
=K(I-zF)"'-(I-2F)'K
z(I - zF)"'{ee'K — Kee*}(I — zF*)™!
=K(I-zF")"'—(I-2F)'K

(5.15)

which follow from (4.10). Substituting (4.11) and (4.12) into (5.13) and (5.14), respec-
tively, and using (5.15), we rewrite (5.13) and (5.14) as

PKerK(I—ZF)_l(I—KK[—l])R (zgzg) =0 (516)
Py, g —zF)7'(I - KKI")RP(2) (ZES) =0, (5.17)

respectively, where R and R are matrices given by (4.22). Using (2.4) one can rewrite
(5.16) as

(1 + zPger k F(I — 2F)™Y(I - KK["‘])) PxerkR (;’8) =0

and since

det (I + 2Pger k F(I — 2F)™ V(I - KK["])> £0,
then (5.16) is equivalent to

p(Z)) -
Pe: xR (q(z) =0. (518)
Similarly, the identity (5.17) is equivalent to
7 p(2)\ 2
P, <RP(z) (q(z)> =0. (5.19)

Substituting (4.25) into (5.18) and (4.26), (1.9) into (5.19) we get

Preri (ep(2) + F(I - ER-M)Keq(2)) =0 (5.20)

P % (z(I — KK!"Mep(z) + Keq(z)) =0. (5.21)

Multiplying (5.20) by 2P (I — KK[=1) from the left, subtracting the obtained
identity from (5.21) and using the assumption Ker K C Ker K, we obtain

{1 - 2P kF(1 - KRN P pKeq(z) =0

which is equivalent to

P . wKeq(z) =0. (5.22)
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Substituting (5.22) into (5.20) we conclude that Pker kep(z) = 0, which ends the proof
of Step 1.

Proof of Step 2: Let a pair {p,q} € S satisfy conditions (5.12). We introduce a

pair {z,y} by
(i) -e0 (23) o)

and show that det y(z) # 0. Indeed, suppose that the point A € €4 and the non-zero
vector h € C™*! are such that det O(\) # 0 and

y(Mh =0. (5.24)
Since
S (pm',q(A)‘)eo)'Je(A)‘(;’g;) h=w 07 () a0,
then
0 < k()97 (2] ) 1
= 1 (o), a7 - oy 7o} () )

<O0.

Substituting (4.20) (with z = w = }) into the last inequality we conclude that

K(I - F)'kUR (;’8;) h=0 (5.25)

(where R is the matrix given by (4.22)). It follows from (4.11), (4.22) and (5.24) that

2(A)k = (Im, Orn)O(N) (’;8;) h

Since

AF*(I=AF*)™' = (I - AF*)"' _ ],

then on account of (5.25)

2Nk = {(I,e"KKIIKe) ~ e KKI-R) (;’85) . (5.26)

The equalities

KNP - KKy =0 and  KIPUKEKISU = K-



464 V. Bolotnikov

(see (4.5)) both with (5.23) lead to
KKI-IR = (KKl-lle,Ki('l-”Ke) .

Substituting this last equality into (5.26) and using (2.4) we obtain

z(A\)h = {e*(I — KK!")e,0} (58;) h

=e*(I - KK["1)Px., xep(A)h
=0.

Since det ©(A) # 0, the equality z(A)h = 0 both with (5.24) and (5.23) implies

(5 D )2 =0
which contradicts (since A is an arbitrary point in €4) the non-degeneracy of the Stieltjes
pair {p,q}.

Proof of Step 3: Let us consider the subspaces F and G defined by
.F=Ran(Pxeexe) and G= Ra.n( .. KKe) (5.27)

For such a choice of F and G the equalities (5.4) and (5.5) are equivalent to (5.8) and
(5.12), respectively. Meaning to apply Lemma 5.2 we show that the subspaces F and
G in (5.27) are orthogonal. Indeed, let f € 7 and g. € §. Then f = feand g = jKe
for some vectors f € Ker K and § € Ker K. Using (4.9) we obtain

fg* = fee"K§* = fK§* — f(I - ee*)K§* = fK§* — fFK§* = 0.

The application of Lemma 5.2 to subspaces (5.27) finishes the proof of Step 3.

By Theorem 5.1, different pairs lead under the transformation (1.10) to the same s
if and only if they are equivalent. Hence, instead of all Stieltjes pairs satisfying (5.12)
we can substitute in (1.10) all pairs of the form (5.7). This ends the proof of Theorem
531

In view of Remark 2.8, the condition { Ky, I~{,,} € K} is not restrictive and hence, the

description obtained in Theorem 5.3 is applicable to the general situation {K,,,I?,,} €
K.
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6. Even Stieltjes moment problem

As it was mentioned above the Stieltjes moment problem for N = 2n is solvable if and
only if the information matrices K, and K,_; defined by

Kn = (si+;)7j=0 and Kot = (sivje1)7 52 (6.1)

are non-negative. Similarly to the odd case we denote by K., the set of all such pairs
{Kn, K Kn_ 1}. If, moreover, K,_; admits a non-negative Hankel extension (i.e. if there
exists a matrix szn41 € €™*™ such that the block matrix K, = (s.+,+1) j=0 1s still
non-negative), then we say that the pair {K,, Kn_ 1}  belongs to 1C+ C K.

It can be easily checked that matrices K, and K,, 1 are of structure (6.1) if and
only if

(I-ee")K,B*~CKpn_, =0 (6.2)
where ' :
e=( Im~ B = ( Omxmn C = (Imn, Omxmn) (6.3)
OmnXm ) Imn b . mna;vYmxmn .

(an "even” analogue of Lemma 2.1). Note that Fy, , = CB, where Fi n is a shift given
by (1.14).

We ommit proofs of the following lemmas which are obtained closely to the corre-
sponding results from Sections 2 - 5.

Lemma 6.2: Let {K,,,I?,,_l} € ﬁn and let L be the subspace of clxm defined as

L= {fe(D"‘"‘ (6.4)

(f]"")fﬂ—l,f) € Ker}?{'"_l
for some fi,..., fai € CVX™ |

Then the following statements are equivalent:
(i) {Km]?n—l} Gﬁ;t .
() Py (Sne1,eey52041)T =0 (6.5)
(iii) The block s, 1s of the form

San = (s,,,...,sgn_l)KL'_ll](sn,..,,sz,,..l)' +L (6.6)

for some non-negative matriz L € C™™™ which vanishes on the subspace L and does
not depend on the choice of K[ 1] '

(iv) There ezists a measure do()\) > 0 such that

/,\"da(/\) =sx  (k=0,...,2n).
0
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Lemma 6.3: Let {Kn,Ka_1} € Kan, let s3q be of the form (6.6), let L be the
subspace defined by (6.4) and let s be an arbitrary (m x m)-matriz. Then

= 7A2"da(A)

for some o € Z(Hz,) if and only if s admits a representation
s = (sn, yS2n— I)K[_I] (s,,, . ,82"_1)‘ + Zo (67)

for some non-negative matriz Ly € C™*™ such that Lo < L and I~’°|Z = 0.

If, moreover, ZOIZL = Z'Z*’ then the Stieltjes moment problems associated with the
sets '

H;, = {So,~~~,82n—1,32n} and  Hj, = {s0,...,52n-1,5}
have the same solutions: Z(H,,) = Z(HJ,).

Lemma 6.4: Let {K,,,K,, 1} € IC+ let rank K, = r 'and rank I~{,._1 =7, and
let B and C be matrices given by (6.3). Then there ezist matrices Q € cr¥m(ntD) gnd
Q € C™*™" such that

QK.Q* >0 and QK.1Q* >0 (6.8)
QC = NQ and QB =NQ (6.9)

for some matrices N € €% and N € C%". In other words, there ezist subspaces

Q = RanQ and @ = RanQ such that QC C Q and QB C Q, and

C™ ) = KerK,+Q  and €™ =KerKnoy+0. (6.10)

Lemma 6.5 : Let {K,, I?,,_,} € ﬁ,‘f, let Q and é be matrices satisfying conditions
(6.8) and (6.9), let KW and K,[,__l,] be pseudoinverse matrices defined as

KM= Q'(QKaQ)T'Q  and K =Q(QKaaQM)7Q
and let ¥ € C*™*?™ be the J-unitary matriz given by

\I’_(Im e'K.B'K\ 1 BK, e)

0 Iy
— Im (So,...,sn_l)I?L—_ll](SO,...,5"_1)T
0 Inm '

Then the C*™*?™ .yalued function

o(z) = {12m+z (e KaFy, )(1 m_n)‘lKL“](e,Fm,nKne)} ¥ (6.11)
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Theorem 6.6: Let {Kn, Kn_1} € K} (or equivalently, let Hy, € H*). Then the
linear fractional transformation (1.10) with the resolvent matriz © defined by (6.10) gives
a parametrization of the set S(Hg,,) when the parameter {p,q} varies in S, (the set of
C™*™ -valued Stieltjes pairs) and is of the form (5.6) with a unitary matriz V (which
depends only on the initial data Hj,) and a Stieltjes pair {p,§} € Sm—,—, where

p = rank Pger k@ = rank (I;n,0,...,0) Pker (6.12)
v=rank P » BKne = rank (50,..ySn-1)P er - (6.13)

In conclusion we note that Lemmas 1.6 and 1.7 follows immediately from Lemmas
2.7, 6.3 and 2.5, 6.2, respectively. Theorem 1.5 is a consequence of Theorems 5.3 and
6.6. Distinction of parameters in (1.11) and (5.6) is not essential: the linear fractional
transformation with the resolvent matrix ® € W, and parameters {p, ¢} of the form
(5.6) is equivalent to the linear fractional transformation with the resolvent matrix

8(z) = 6(z) (‘S 3)

and parameters of the form (1.11). Since the matrix V is unitary, it is easy to see that
the function O is still of the class W .
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