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On the Representation 
of Generalized Analytic Vectors 

P. Berglez 

Abstract. This paper is concerned with the representation of generalized analytic vectors 
which are defined as solutions of certain elliptic systems of linear first-order partial differential 
equations in two complex variables. For the explicite representation of solutions we give integral 
operators of Vekua type as well as differential operators of Bauer type which map holomorphic 
vectors onto the set of solutions. For the existence of the differential operators we give a 
necessary and sufficient condition. We discuss properties of these operators and show how 
to construct the kernels of the integral operators using the differential operators. Finally 
we present examples for systems of differential equations for which all the solutions can be 
represented explicitely. 
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1. Introduction 
For elliptic systems of differential equations of first order for 2n functions in the plane 
there exists a far developed theory. In the case n = 1 the investigations of L. Bers 
[4] and I. N. Vekua [17] lead to the theory of so called pseudo-analytic and generalized 
analytic functions. For n> 1 a wide list of publications deals with the function theoretic 
properties of the solutions and with boundary value problems (e.g. [5 - 7, 9 - 14, 20]). 
A summary of results and further references can be found in the monographs of R. P. 
Gilbert and J. L. Buchanan [8] and of W. Wendland [19]. 

Let iN denote the set of natural numbers, C the set of complex numbers, V a simply 
connected domain in the complex plane C, V = { z ECI z E V}, fl(j x k; 9) (j,k E IN) 
the set of all (j x k)-matrices defined on a domain ç (g ç C or 9 C C 2 ) the elements 
of which are analytic functions there, and E the unit matrix. 

Here we consider the following system of j linear partial differential equations of 
first order for a function w = w(z, () (w i ,... , w) of two complex variables z and ( 
in matrix notation

(1) 

with A,B E fl(j x j;V x ). Here w* 	wt ((,z) denotes the conjugate function to 
W = w(z, () in the sense of I. N. Vekua [18: p. 66]. 
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Solutions w E 7-(j x 1; 'D x ) of this system - which was introduced first by D. 
Pascali [16] - describe generalized analytic vectors. For conditions under which (1) is 
the normal form for a 2n x 2n real elliptic system see W. Wendland [19: p. 76ff]. 

This paper is concerned with explicite representations for generalized analytic vec-
tors. We prove a general representation theorem giving all the solutions using certain 
integral operators. Then we define special differential operators which map holomorphic 
vectors into the set of all the solutions of system (1). We give a necessary and sufficient 
condition on the coefficients of system (1) for the existence of such differential operators 
and show how to construct them. These differential operators can also be used to build 
the kernels of the integral operators introduced. 

If w €	x j; V x ) denotes a non-singular solution of the equation 

V C - Ap 0 

and w an arbitrary solution of equation (1), then the function v = p 1 w obeys the 
equation

v(=cv	 (2) 

with
c='B efl(j xj;VxV). 

Therefore it is sufficient to consider system (2) only. 

There is an interesting connection to certain systems of linear differential equations 
of second order. Every solution u of system (2) where c is assumed to be non-singular 
satisfies also the system

uZ—czcuC cc* U =0.	 (3) 

It can be proved that every solution v of equation (2) can be given in the form 

V = (u + ( c*)_1U*Z) 

1	 (4) 
V = - (u - (c*)_mu*z) 

21 

where u is a suitable solution of system (3). On the other hand every solution u of 
system (3) can be represented as

U = V1 + jV2 

where v 1 and V2 denote arbitrary solutions of equation (2). 

As in the scalar case (cf. [17: p. 140f]) we call the solutions of system (3) complex 
potentials of equation (2). This connection between the solutions of equation (2) and 
system (3) will be used to prove a general representation theorem for generalized analytic 
vectors using differential operators.
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2. Integral representations after Vekua 
By analogy with the method developed by I. N. Vekua [17: p. 66ff] which was gener-
alized by W. Wendland for the solution of generalized hypercomplex systems (cf. also 
[101) it can be proved that system (2) is equivalent to the integral equation 

v(z,() =Jc(za)Jc(a,$)v(sa)dsda +(z,()	 (5) 

with

(z, () = f c(z, a) (a) da + (z) 

where w e x 1; V) and z0 is a fixed point in V whereas (0 is a fixed point in V. 
Equation (5) can be solved iteratively by a Picard process. The solution can be written 
as

v(z, () = (z, () +11 r(z, (; C, ,7 )	, ) dCd77 .	 (6) 
zo Co 

Here r E ?-I(j x j; V x	x V x ) denotes the resolvent of the integral equation (5) 
which itself obeys the integral equations 

r(z,(;t,r) = c(z,r)c*(r,t) + f J c(z,a)c*(a,$)r(s,a;t,r)dsda 

s=t =r 

r(z, (; t, r) = c(z, T)c*(T, t) + f J f(z, (; s, a)c(s, r) c*(r, t)dsda. 
s=t =r 

With the aid of the functions 

ri(z,(;t,r) =J r(z,(;t,)d	 (7) 

T2(z,(;t,r) = c(z,r) + f J	
77) 	 (8) 

=t 71=r 

equation (6) can be written as 

v(z,()	(z) + f r, (z, 	0)(e) d + f r2(z,(;z0,)'()d.	(9) 
=ZO 

The functions 1', r1 and 172 are called Vckua resolvent3; r is the principal resolvent and 
17 1 , r2 are the first and second resolvent, respectively. 

Now we can establish the following representation theorem using arguments similar 
to those of Vekua for the scalar case.
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Theorem 1. For every solution v E fl(j x 1;D x ) of equation (2) there exists a 
function w e x 1;V) such that for v the representation (9) holds. The function p 
is then given by

W(Z) = v(z,(o). 

On the other hand, every function cp E I(j x 1; D) generates a solution v of equation 
(2) by (9). 

In order to determine the resolvents needed we investigate some properties of these 
functions now. 

From (7) and (8) it follows 

r(z, (; t, T) = r2 (z, (; t, r)c(r, t) 

and from (8) we get 

	

r2 (Z, r; t, r) = c(z, r)	and	172(t, (; t, r) = c(t, T).	(10)

Inserting the expression (9) into the equation (2) we get the relations 

- c(z)r((,z;r,t) = 0 

	

r2 (, (; i, T) - c(z,	r, ((, z; r,t) = 0. 

It can be proved now that the functions 

Wi (z,;t,r) =	(ri(z,<;t,r) + r2(z,(;t,1)) 

	

1	 (11)
W2 (z 7 (;t,r) = - (r 1 z,;t,r - r2(z,(;t,1)) 

satisfy equation (2) and obey the conditions 

	

Wi (z,r;t,r) = c(z,r)	and	W2(z,r;t,r)	c(z,T). 

Then W1 and W2 satisfy the differential equation of the complex potentials (3) also. 
From (11) it follows that the functions 

F 1 (z, (; I, r) = W1 (z, (; t, r) + i W2 (z, (; t, r) 

F2(z,(;t,7) = Wi(z,(;t,r) - i VV2(z,<t,7) 

are solutions of system (3) also. 

In view of (10) we can prove the following
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Lemma 1. Let w(z,(;t,r) be a two-parametric solution of system (3) which satis-
fies the conditions 

	

w(z, r; t, r) = c(z, r)	and	w(t, C; t, r) = c(t, r). 

Then the Vekua resolvents for equation (2) are given by 

r2 (z, (; t, r) = w(z, (; I, r) 

r1 (z, (; I, r) = (c*((, z)) —' [
	

f2 (z, (;t, r)] .	 (12) 

In order to determine the function w introduced in Lemma 1 we set 

w(z, C; t, r) = c(i, r) ii(z, (; t, r). 

Now iZ has the following properties: 
• iZI is a solution of system (3) 
• ii(t,C;t,r)=E 
• ui(z,r;t,r) = c(t,r)c(z,T). 

These conditions define after [18: p. 160f] the Riemann matrix function RL. = 
RL.(z,(;i,T) for the system adjoint to system (3) (cf. also [2]). The Riemann ma-
trix function Ri. for system (3) is then given by Rt(z , C; t , r ) = RL.(t,r;z,C). With 
this we have the following relation between the second Vekua resolvent for equation (2) 
and the Riemann matrix function for system (3). 

Lemma 2. Let Ri. be the Riemann matrix function for system (3). Then 

172 (Z, C; t, T) = c(t, r) RL(t, r; z, C) 

is the second Vekua resolvent for equation (2). 

3. Differential operators after Bauer 

In view of the close relation between the solutions of equation (2) and the complex 
potentials, which are solutions of system (3) of formally hyperbolic equations, now we 
turn our attention to systems of linear partial differential equations of second order. In 
[2] certain differential operators were defined to map holomorphic vectors into the set 
of solutions of such systems generalizing the operators introduced by K. W. Bauer (cf. 
[1: Chapter 1]). 

Consider the system
W, ( + A'A2 w + Bw =0	 (13) 

with A, B E fl(j x j; V x ), A non-singular, and the diffrentia1 operators 

	

Kfl=ak(z,()--	and 
k=O	 k=O
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with
ak E?1(j xj;Dx) for k=O,...,nE JIVU{O} 

bk .Efl(jxj;Dx) for k=O,...,rnEIVU{O}. 

If an 0 0 in V x V or bm 0 in V x V and if Kg or Kmh is a solution of system (13) 
in V x V for all g E 71(j x 1;V) or h E K(j x 1;), then we call Kn a Bauer matrix 
operator of the first kind of equation (13) in V x V (or a Be-operator) and Km a Bauer 
matrix operator of the second kind of equation (13) in V x V (or a 8"'-operator). 

In [2] the following theorem concerning the existence of Bauer matrix operators for 
systems of the form (13) was proved. 

Theorem 2. For the system (13) there exists a Be -operator of the first kind in 
V x 15 if and only if there is an n E II such that with 

An = A 

B = B
(14) 

A± 1 Ak_i,z = B'Aj'Ak,Bk + B'Bk,	(k = n,... 1) 

Bk_i Bk +(A'-, Ak-1,.)( 

we have	 - 
B0 0	in D V.	 (15)€

Then the opererator Kn is given by 

K = F_ 1 F0	with Fk =	+ A'Ak, .	 (16)€

Now we consider the differential equation of the complex potentials (3). According 
to Theorem 2 there exists a L3-operator for (3) if and only if with 

A = c and B = _cc* (17) 

and the relations (14) the condition (15) is satisfied. By the transformation ü = c1w 
we get from (3) the system

i z+AAiz+Bi0	 (18) 

with A	c and B = c-1 ((cc- ') ( - cc*)c . In view of B = B_ and AAc =€
(A i An _ i, i)* and using B_ = B and A ! 1 A_1,c =A- ' A(  we have 

7 Dn_k = Dn_k
(k=1,... n). 

A:kAfl_kC = (A-1kAfl_k,%)* 

In regard to (14) and (15) it follows B0	0 in V x f. Therefore the existence of a 
B'-operator K_ 1 for system (18) in the form 

	

Kn_i = Fn-2	with Pk = + (Afl1Ac
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is ensured: 
Now all the solutions of system (3) can be represented as 

w(z, () = K. g(z) + c(z, () K8 - 1 h(() = K. g(z) + c(z, () (K8 _ 1 h(z)) 
.	(19) 

(see [2: Theorem 3.3]). Using G = —B' ô/ô( and [2: Lemma 2.2] we see that the 
composition G F8 _ 1 of the two operators G 8 and F8 _ 1 acting on a solution of the 
equation

L,;,( + A ! 1 A8_i,w +Bn_ i w = 0 
gives the identity mapping. As the term w = K8 _ 1 h(z) is such a solution we get for 
the solution to of system (3) the representation 

w(z,() = K8 9(z) + (c((,z))'!- (K8 h(z))'	 (20) 

and the following theorem holds. 
Theorem 3. Suppose for system (3) there exists a Br -operator K8 of form (16). 

Then the following statements are true. 

a) For system (3) there exists a Bauer matrix operator of second kind K8 _ 1 also 
and it is given by

= c(F8 _ 2 . . . FO)* = (c*)_l	(K8). 

b) For every solution w E fl(j x 1; V x ) of system (3) there exist two holomorphic 
vectors g and h such that (19) and (20) hold. 

c) Conversely, for arbitrary holomorphic vectors g and h the expressions in (19) 
and (20) are solutions of system (3) in V x V. 

In order to achieve a representation for the solution v of equation (2) we use the 
first relation in (4) and choose for the solution u of system (3) the expression (19). Thus 
we have

v(z, () = K. (g(z) + h(z)) + c(z, () (K81 (g(z) + h*(z))) 

which can be converted into 
v(z, ) = Kn 1(z) + c(z, (K8_1 f(z))* 

using g + h' = 2f. Therefore the following theorem holds. 
Theorem 4. For the solutions of equation vC = cv defined in V x there exists 

a representation using Bauer matrix operators if and only if with 
B8 = —cc	and	An ' An,,, —crc'€

and relations (14) the condition B0 0 in V x 15 holds. 

For f E fl(j x 1; V) the functions 
= K8 I + c(K8_i f)*	 (21) 

v=Kflf+(c*)-1_(Knf)*	 (22) 

with K8 according to (16) represent solutions of equation (2) in V x 
Conversely, in this case every solution of equation (2) defined in V x V can be 

represented in the form (21) or (22) with a vector f holomorphic in V.
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4. Differential operators and integral representations 

In this section we give an interesting connection between the integral operators after 
Vekua and the differential operators used just above. 

In consequence of the relation between the second Vekua resolvent 172 for the equa-
tion (2) and the Riemann matrix functions for the system (3) stated in Lemma 2 we can 
reduce the determination of the Vekua resolvents to the determination of the Riemann 
matrix function for the corresponding differential equation of the complex potentials. 

In the case of existence of a Bauer matrix operator for a system of form (13) the 
Riemann matrix function can be represented explicitely using this operator (cf. [2: 
Theorem 3.1]). Summarizing we have the following assertion. 

Theorem 5. Suppose for system (3) there exists a Be-operator K according to 
Theorem 3. Then the second Vekua resolvent r2 for the equation v = cv is given by 

r2(z,(;t,7.) = c(t, T) Kn E ... Ei (A1(z,T)Ao(t,T)) 

using the notation

EkX=B(t,r)	(k=1,...,n) 

and the functions A0 ,B 1 ,. . . , Bn according to (17) and (14). The first Vekua resolvent 
F 1 is then given by

Fi(z,(;t,r) =J F2(z,(;t,)c(,t)d 

or by the expression (12). 

5. Examples 

We consider the system

+ Bw 0	(B E 1-(j x j;D x ))	 (23) 

of formally hyperbolic equations. We denote by flR(j x k; ) the set of all functions 
I E fl(j x k; 9) for which f* = f holds. Let p e HR() xj;V x V) be a particular, 
non-singular solution of system (23) and to E fl(j x 1; V x V) an arbitrary solution of 
system (23). After [3: Theorem 1] the function v = p w represents a solution of the 
system

V + P_ I PC V + P 1 Pz V = 0.	 (24) 

If V E flR(j x 1;V x Ti) is a solution of system (24), then u = V is a solution of the 
system

UC = pp( U - P_ I PZ  U'.
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Transforming according to u = p U the function U satisfies the system 

= PzP U.	 (25)
The differential equation of the complex potentials to system (25) runs 

U ZC + (pz p ' -	 - P:P 'P(P u = 0. 
A solution of this system is given by

= p (P-1 W) 

where W E flR(j x 1;D x ) denotes an arbitrary solution of system (23). Now if a 
representation of the solution of system (23) using differential operators is known, the 
solution of system (25) can be given by differential operators also. 

Especially, for the matrix B = (B 3 ) e 11R(j x j; V x ) given by 

_ n(n t l) for r=s, 1sj 
'7 

Bra	-1	 for r=s+1, 1sj-1 

0	for rs,s+1 
with i = z + (, all solutions of system (23) can be given for n	- 1 with the aid of 
the Bauer matrix operator K8 as

w = K8 g + (K8 h*)* 

with
' 

K8 -

	

	 a  =	1R(3 xj;V x 
k=O

(_i)8_k_3(2( - r + s) - k)!
for 0 <r - s	- k a	=	(r - s)! k! (n - r + s - k)! '7 nk2r423	 - 

{ otherwise 
gEfl(jxl;V),	hefl(jx1;) 

(cf. [3]). Then the solutions wR E 71j(j x 1;V x ) of system (23) have the form 
WKflg(Kflg)*	with gElI(jxl;V). 

With a particular solution p E 7 R(i x j; V x ) of system (23) we get for the solution 
U of system (25)

a 
U=p - (p wR). 

For example, the function p = ( pra) E ?1R(j x j;V x ) with 

( (_1)h1+3(2(n_r--s))! 

	

I -2+2
	

for r>s 
p,.. =	(r - .$)! (n - r + s)!	r S	 - 

for r<s 
is a suitable particular solution of system (23).
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