Variational Bounds to Eigenvalues of Self-Adjoint Eigenvalue Problems with Arbitrary Spectrum

S. Zimmermann and U. **Mertins**

Abstract. In the present paper a method by Lehmann-Maehly and Goerisch is extended to self-adjoint eigenvalue problems with arbitrary essential spectrum. This extension is obtained by consequently making use of the local character of the method. In this way, upper and lower bounds to all isolated eigenvalues are derived. In our proofs, the close relationship to Wielandt's inverse iteration becomes quite obvious.

Keywords: *Eigenvalue problems, variational methods, upper and lower bounds to eigenvalues* AMS **subject** classification: 49R05, 65N25, 65N30, 35P 15

0. Introduction

The characterization of eigenvalues of self-adjoint eigenvalue problems by a minimummaximum principle for the Rayleigh quotient forms the basis for the famous Rayleigh-Ritz method. As is well known, the method allows for a straightforward and efficient computation of non-increasing upper bounds to eigenvalues below the essential spectrum. In [141 and [15], Lehmann and Maehly independently developed complementary eigenvalue characterizations that provide a possibility to calculate corresponding lower bounds (see also [21: Chapter 4.11]). More precisely, they introduce a spectral parameter and construct minimum-maximum as well as maximum-minimum principles for Temple's quotient. From this, upper and lower bounds are deduced. In particular, the Rayleigh-Ritz method can be interpreted as a special application of the Lehmann-Maehly method. In general, however, the Lehmann-Maehly method is applicable only if certain quantities can be determined explicitly. Especially when treating partial differential equations, difficulties may arise. Of great importance for practical applications is therefore a generalized version by Goerisch (see $[5, 8, 10]$) that combines high flexibility and good convergence properties. Usually, very satisfying inclusion intervals are obtained from a combination of Rayleigh-Ritz and Goerisch calculations (see [2 - 6, 10, 111).

Some very interesting eigenvalue problems however possess isolated eigenvalues $\lambda \in$ (ρ^-, ρ^+) , where both ρ^- and ρ^+ belong to the essential spectrum. Examples are the

U. Mertins: Techn. Univ. Clausthal, Inst. Math., Erzstr. 1, D - Clausthal-Zellerfeld

ISSN 0232-2064 / *S* 2.50 © Heldermann Verlag

S. Zimmermann: Techn. Univ. Clausthal, Inst. Math., Erzstr. 1, D - 38678 Clausthal-Zellerfeld

328 . S. Zimmermann and U. Mertins

Dirac equation (see [16: P. 952] and [20]), the Schrödinger operator [1] and the linearized equations of ideal magnetohydrodynamics (see [12: Chapters 1.2 and 3.2] and [17]).

So far, no bounds have been constructed for such interior eigenvalues λ . A Rayleigh-Ritz calculation does not necessarily give bounds. Moreover, it was shown that an additional convergence criterium has to be satisfied in order to guarantee convergence of Rayleigh-Ritz approximations (7, 18). In problems with interior eigenvalues, a spectral parameter appears to be particularly useful. We shall derive here an extension of the Goerisch method that gives bounds also to interior cigenvalues. In our development we generalize the Lehmann-Maehly variational principle in such a way that an appropriate discretization readily produces Goerisch's method - a result which in itself is at least of theoretical interest.

In Section 1, we characterize eigenvalues of a self-adjoint operator by new variational principles. In what follows, we consider two types of variationally posed eigenvalue problems as there .exist two non-equivalent versions of the Goerisch method. In Section 2, we apply results of Section 1 to left-definite eigenvalue problems, Section 3 giving a numerical example for the inclusion of interior eigenvalues. In Section 4, the rightdefinite theory is developed and applied.

1. Characterizations for eigenvalues of self-adjoint operators

Let H be a separable, complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, and suppose we are given a self-adjoint operator A in H with domain $\mathcal{D}(A)$. Denote by $\sigma(A)$ and $\sigma_e(A)$ the spectrum and the essential spectrum of *A*,

> $\sigma_{e}(A) = \{ \lambda \in \sigma(A) : \lambda \text{ is an accumulation point of } \}$ $\cup \big\{ \lambda \in \sigma(A) : \ \lambda \text{ is an eigenvalue of infinite multiplicity} \big\}.$

If the spectrum $\sigma(A)$ of A is bounded from below and begins with isolated eigenvalues of finite multiplicity,

$$
\lambda_1^- \leq \lambda_2^- \leq \ldots \ < \inf \sigma_e(A)
$$

(eigenvalues are always repeated according to their multiplicities), these eigenvalues can be characterized by well known variational principles, e.g. the Poincaré principle (cf. [22: Chapter 2])

$$
\lambda_i^- = \inf_{\substack{V \subset \mathcal{D}(A) \\ \dim V = i}} \max_{0 \neq v \in V} \frac{\langle Av, v \rangle}{\langle v, v \rangle}.
$$
 (1.1)

If in addition $\sigma_e(A) \neq \emptyset$, the number of isolated eigenvalues λ_i^- below $\sigma_e(A)$ is either infinite with $\lim_{i\to\infty}\lambda_i^- = \inf \sigma_e(A)$ or finite, i.e. equal to *k* for some $k \in \mathbb{N}$. We then set $\lambda_{k+1}^- = \lambda_{k+2}^- = \ldots = \inf \sigma_e(A)$. As a consequence, (1.1) holds for $i \in \mathbb{N}$ in both cases (cf. [21: Chapter 3.5]).

If $\sigma(A)$ is bounded from above and begins with isolated eigenvalues λ_i^+ , sup $\sigma_e(A)$ < $\ldots \leq \lambda_2^+ \leq \lambda_1^+$, an analogous principle is obtained, with "inf" and "max" being replaced by "sup" and "min", respectively.

Evidently, interior eigenvalues are not accessible for this kind of variational principles. Therefore, a spectral parameter ρ is introduced. For fixed $\rho \in \mathbb{R}$ set

$$
\rho^{-} = \sup \{ \lambda \in \sigma_{e}(A) : \ \lambda < \rho \} \in I\!\!R \cup \{-\infty\}.
$$

Provided $\rho^{-} < \rho$ and ρ is no accumulation point of $(\rho^{-}, \rho) \cap \sigma(A)$, this intersection is either empty or consists of a countable number of eigenvalues of finite multiplicity. It is then possible to introduce the following local notation for these eigenvalues:
 $\rho^{-} < ... \leq \lambda_{-k_{\rho}}^{\rho} \leq ... \leq \lambda_{-2}^{\rho} \leq \lambda_{-$ is then possible to introduce the following local notation for these eigenvalues: are not accessible for this
ter ρ is introduced. For fixed for the
 $\sigma_e(A)$: $\lambda < \rho$ \in $R \cup \{$
ccumulation point of $(\rho^-$,
ntable number of eigenval
llowing local notation for
 $\lambda^{\rho}_{-k_{\rho}^-} \leq ... \leq \lambda^{\rho}_{-2} \leq \lambda^{\rho}_{$

$$
\rho^{-} < \ldots \leq \lambda_{-k}^{\rho} \leq \ldots \leq \lambda_{-2}^{\rho} \leq \lambda_{-1}^{\rho} < \rho,
$$

where $k_{o}^{-} \in N_{0}$ denotes the number of eigenvalues we are interested in.

The definition of $\rho^+ \in \mathbb{R} \cup \{ \infty \}$ and λ^{ρ}_{+i} for $i = 1, \ldots, k^+_{\rho}$ is analogous and can thus be omitted.

If $\rho \in \mathbb{R}$ is no accumulation point of $\sigma(A)$ - though it may possibly be an eigenvalue of arbitrary multiplicity of *A -* we have the following situation:

e
$$
k_{\rho}^- \in \mathbb{N}_0
$$
 denotes the number of eigenvalues we are interested in.
\nthe definition of $\rho^+ \in \mathbb{R} \cup \{\infty\}$ and λ_{+i}^{ρ} for $i = 1, ..., k_{\rho}^+$ is analogous and can t
\nmitted.
\nIf $\rho \in \mathbb{R}$ is no accumulation point of $\sigma(A)$ – though it may possibly be an eigenva
\nbitrary multiplicity of A – we have the following situation:
\n $\rho^- \cdots \lambda_{-k_{\rho}^-}^{\rho} \cdots \lambda_{-2}^{\rho} \lambda_{-1}^{\rho} \rho \lambda_{+1}^{\rho} \lambda_{+2}^{\rho} \cdots \lambda_{+k_{\rho}^+}^{\rho} \cdots \rho^+$

In applications the boundary points in *JR* of the essential spectrum are often well known. They represent particularly well suited choices for our spectral parameter ρ (see the examples of Sections 3 and *4).*

First, we shall characterize the eigenvalues $\lambda_{\pm i}^{\rho}$ by three different variational principles which allow to construct lower bounds to λ_{-i}^{ρ} for $i = 1, \ldots, k_{\rho}$, and upper bounds to λ^{ρ}_{+i} for $i = 1, \ldots, k_{\rho}^{+}$. By an appropriate choice for ρ it is thus possible to reach every isolated eigenvalue of *A.*

In order to construct variational principles for $\lambda^{\rho}_{\pm i}$ let

$$
D_{\rho} = \{u \in \mathcal{D}(A): Au = \rho u\}
$$

and consider the restriction of $A - \rho I$ to

$$
\mathcal{D}(A) \ominus D_{\rho} = \left\{ u \in \mathcal{D}(A): \ \langle u, v \rangle = 0 \text{ for all } v \in D_{\rho} \right\}.
$$

As D_{ρ} is a reducing subspace for *A*, we have the inclusion

$$
\sigma(A) \subset \sigma(A_{|\mathcal{D}(A)\oplus D_{\rho}}) \cup \{\rho\}.
$$

$$
R_{\rho} = ((A - \rho I)_{|\mathcal{D}(A) \ominus D_{\rho}})^{-1}
$$

In particular, $(A - \rho I)|_{\mathcal{D}(A) \oplus D_{\rho}}$ is invertible. We set
 $R_{\rho} = ((A - \rho I)|_{\mathcal{D}(A) \oplus D}$

and consider the eigenvalue problem for the self-a
 $(\lambda, u) \in \mathbb{R} \times \mathcal{D}(A)$ with $\lambda \neq \rho$ is an eigenpair of A

eigenpair o and consider the eigenvalue problem for the self-adjoint operator R_{ρ} in D_{ρ}^{\perp} . Now, $(\lambda, u) \in \mathbb{R} \times \mathcal{D}(A)$ with $\lambda \neq \rho$ is an eigenpair of *A* if and only if $((\lambda - \rho)^{-1}, u)$ is an eigenpair of R_{ρ} . Set

$$
\sigma_i^- = (\lambda_{-i}^{\rho} - \rho)^{-1}
$$
 and $\sigma_i^+ = (\lambda_{+i}^{\rho} - \rho)^{-1}$

for $i = 1, ..., k_{\rho}^{\mp}$, so that we arrive at

ermanin and U. Mertins

\n, so that we arrive at

\n
$$
\lambda_{-i}^{\rho} = \rho + (\sigma_i^{\pi})^{-1}
$$
\nand

\n
$$
\lambda_{+i}^{\rho} = \rho + (\sigma_i^{\pi})^{-1},
$$
\n(1.2)

respectively.

a- 0 ... *y+* **^a** Poincaré's principle applied to *R* now gives the following characterizations.

Theorem 1.1: Let $\rho^- < \rho$. Then

so that we arrive at
\n
$$
\rho_{-i} = \rho + (\sigma_i^-)^{-1} \quad \text{and} \quad \lambda_{+i}^{\rho} = \rho + (\sigma_i^+)^{-1}, \quad (1.2)
$$
\n
$$
\sigma_{k\overline{\rho}}^- \quad 0 \quad \sigma_{k\overline{\rho}}^+
$$
\n
$$
\dots \quad \sigma_{\overline{k}\rho}^- \quad 0 \quad \sigma_{k\overline{\rho}}^+
$$
\n
$$
\dots \quad \sigma_2^+
$$
\n
$$
\text{nciple applied to } R_{\rho} \text{ now gives the following characterizations.}
$$
\n
$$
\therefore \text{ Let } \rho^- < \rho. \text{ Then}
$$
\n
$$
\lambda_{-i}^{\rho} = \rho + \left(\inf_{V} \max_{0 \neq v \in V} \frac{\langle Av, v \rangle - \rho \langle v, v \rangle}{\|(A - \rho I)v\|^2} \right)^{-1} \quad (1.3)
$$
\n
$$
\dots, k_{\rho}^-, \text{ the infimum being taken over all subspaces } V \text{ of } \mathcal{D}(A) \text{ that}
$$
\n
$$
\dim V = i \quad \text{and} \quad Av \neq \rho v \text{ for all } 0 \neq v \in V. \quad (1.4)
$$

holds for i = 1,..., k_{ρ} , the infimum being taken over all subspaces V of $\mathcal{D}(A)$ that *satisfy*

$$
\dim V = i \qquad \text{and} \qquad Av \neq \rho v \quad \text{for all} \quad 0 \neq v \in V. \tag{1.4}
$$

If $\rho < \rho^+$, we have

le applied to
$$
R_{\rho}
$$
 now gives the following characterizations.
\nlet $\rho^{-} < \rho$. Then
\n
$$
\lambda_{-i}^{\rho} = \rho + \left(\inf_{V} \max_{0 \neq v \in V} \frac{\langle Av, v \rangle - \rho(v, v)}{\|(A - \rho I)v\|^2} \right)^{-1}
$$
\n(1.3)
\n σ_{ρ}^{-} , the infimum being taken over all subspaces V of $\mathcal{D}(A)$ that
\n $V = i$ and $Av \neq \rho v$ for all $0 \neq v \in V$.
\n
$$
\lambda_{+i}^{\rho} = \rho + \left(\sup_{V} \min_{0 \neq v \in V} \frac{\langle Av, v \rangle - \rho(v, v)}{\|(A - \rho I)v\|^2} \right)^{-1}
$$
\n(1.5)
\nwith V as in (1.4).
\n $k_{\rho}^{-} \geq 1$. The spectral mapping theorem [13: Chapter III, Section
\n $\tilde{\sigma}(R_{\rho}) = (\tilde{\sigma}(A_{|\mathcal{D}(A) \oplus D_{\rho}}) - \rho)^{-1}$
\n $\tilde{\sigma}(S) = \begin{cases} \sigma(S) & \text{if } S \text{ is bounded} \\ \sigma(S) \cup \{\infty\} & \text{otherwise.} \end{cases}$
\n $= (\lambda - \rho)^{-1}$ transforms the eigenvalues λ_{-i}^{ρ} , $(i = 1, ..., k_{\rho}^{-})$ of A

for $i = 1, ..., k_{\rho}^{+}$ and with *V* as in (1.4).

Proof: Suppose $k_{\rho}^{-} \geq 1$. The spectral mapping theorem [13: Chapter III, Section 6.3] gives

$$
\tilde{\sigma}(R_{\rho}) = (\tilde{\sigma}(A_{|\mathcal{D}(A)\ominus D_{\rho}}) - \rho)^{-1}
$$

where

$$
\tilde{\sigma}(S) = \begin{cases} \sigma(S) & \text{if } S \text{ is bounded} \\ \sigma(S) \cup \{\infty\} & \text{otherwise.} \end{cases}
$$

The mapping $\lambda \mapsto \sigma = (\lambda - \rho)^{-1}$ transforms the eigenvalues λ_{-i}^{ρ} ($i = 1, \ldots, k_{\rho}^{-}$) of *A* into eigenvalues σ_i^- of R_ρ without changing their multiplicities. The spectrum of R_ρ is bounded from below and begins with the eigenvalues
 $\sigma_1^- \leq ... \leq \sigma_{k_\rho^-}^- < \inf \sigma_{\epsilon}(R_\rho)$. bounded from below and begins with the eigenvalues

$$
\sigma_1^- \leq \ldots \leq \sigma_{k_a^-}^- < \inf \sigma_e(R_\rho).
$$

We apply Poincaré's principle (1.1) ,

Now and begins with the eigenvalues
\n
$$
\sigma_1^- \leq \ldots \leq \sigma_{k_{\rho}}^- < \inf \sigma_e(R_{\rho}).
$$
\n
$$
\hat{\sigma}_i^- = \inf_{\substack{U \subset \mathcal{P}(R_{\rho}) \\ \dim U = i}} \max_{0 \neq u \in U} \frac{\langle R_{\rho}u, u \rangle}{\langle u, u \rangle} \quad \text{for } i = 1, \ldots, k_{\rho}^-, \tag{1.6}
$$
\n
$$
\mu \text{ and replace } U \subset \mathcal{D}(R_1) \text{ by } W \subset \mathcal{D}(A) \cap D_1
$$

substitute $w = R_{\rho}u$ and replace $U \subset \mathcal{D}(R_{\rho})$ by $W \subset \mathcal{D}(A) \ominus D_{\rho}$,

 ϵ .

$$
\sigma_i^- = \inf_{\substack{U \subset \mathcal{D}(R_\rho) \\ \text{dim } U = i}} \max_{0 \neq u \in U} \frac{\langle R_\rho u, u \rangle}{\langle u, u \rangle} \quad \text{for } i = 1, ..., k_\rho^-, \tag{1.6}
$$
\n
$$
v = R_\rho u \text{ and replace } U \subset \mathcal{D}(R_\rho) \text{ by } W \subset \mathcal{D}(A) \ominus D_\rho,
$$
\n
$$
\sigma_i^- = \inf_{\substack{W \subset \mathcal{D}(A) \ominus D_\rho \\ \text{dim } W = i}} \max_{0 \neq u \in W} \frac{\langle w, (A - \rho I)w \rangle}{\|(A - \rho I)w\|^2} \quad \text{for } i = 1, ..., k_\rho^-. \tag{1.7}
$$

Evidently, every subspace *W* admissible in (1.7) satisfies (1.4). Conversely, suppose that (1.4) holds for a subspace *V* of $\mathcal{D}(A)$, and denote by *P* the orthogonal projector in H onto the orthogonal complement of D_{ρ} . Then $W = PV$ is admissible in (1.7), and for $v \in V$ and $w = Pv \in W$ we have *h*, every subspace *W* admissible in (1.7) satisfies (1.4). Conversely, supples for a subspace *V* of $\mathcal{D}(A)$, and denote by *P* the orthogonal project orthogonal complement of D_{ρ} . Then $W = PV$ is admissible in (1. Variational Bounds to Ei

bspace *W* admissible in (1.7) satisfies (1.4). Conver

bspace *V* of $\mathcal{D}(A)$, and denote by *P* the orthogor
 $\in W$ we have
 $\in (A - \rho I)w$ and $\langle v, (A - \rho I)v \rangle = \langle w, (A - \rho I)v, (A - \rho I)v \rangle$
 $= \inf_{\substack{V$

$$
(A-\rho I)v=(A-\rho I)w\qquad\text{and}\qquad \langle v,(A-\rho I)v\rangle=\langle w,(A-\rho I)w\rangle.
$$

Thus, we find

$$
\sigma_i^- = \inf_{\substack{v \in \mathcal{D}(A) \\ (1,4)}} \max_{0 \neq v \in V} \frac{\langle v, (A - \rho I)v \rangle}{\|(A - \rho I)v\|^2} \quad \text{for } i = 1, ..., k_\rho^-
$$

giving (1.3). Formula (1.5) is obtained in exactly the same way \blacksquare

Note that equation (1.6) together with (1.2) already indicates a close relationship to Wielandt's inverse iteration dealing with matrix problems.

Motivated by Goerisch's approach we now generalize the characterisations (1.3) and (1.5) of the eigenvalues in two different ways, in order to enlarge the range of applicability of the derived methods (cf. Remark 2.2). two different ways, in order to enlarge
 f. Remark 2.2).
 tial assumptions suppose that **X** is

and that $T: \mathbf{H} \longrightarrow \mathbf{X}$ is an isometrical
 $s(Tu, Tv) = \langle u, v \rangle$ for $u, v \in \mathbf{H}$.

In addition to our initial assumptions suppose that X is a complex Hilbert space with inner product $s(\cdot, \cdot)$, and that $T: H \longrightarrow X$ is an isometry

$$
s(Tu,Tv) = \langle u,v \rangle \quad \text{for} \ \ u,v \in \mathbf{H}.
$$

The choice

r product
$$
s(\cdot, \cdot)
$$
, and that $T : \mathbf{H} \longrightarrow \mathbf{X}$ is an isometry
\n
$$
s(Tu, Tv) = \langle u, v \rangle \quad \text{for } u, v \in \mathbf{H}.
$$
\nwe
\n
$$
\mathbf{X} = \mathbf{H}, \quad s(u, v) = \langle u, v \rangle \quad \text{for } u, v \in \mathbf{H}, \quad Tv = v \quad \text{for } v \in \mathbf{H} \quad (1.8)
$$

gives the procedure of Lehmann-Maehly (cf. Remark 2.2).

Denote by

$$
\mathbf{X}^{\circ} = \left\{ w \in \mathbf{X} : s(w, Tu) = 0 \text{ for } u \in \mathbf{H} \right\}.
$$

the orthogonal complement of TH in X. The quantities X, *s* and *T* provide the following complementary variational principles.

Lemma 1.2: *Suppose S* is a self-adjoint operator in H with domain $D(S)$. Then *for* $v \in \mathcal{D}(S)$ *given, we have*

omplement of TH in X. The quantities X, s and T provide the following
variational principles.
\n2: Suppose S is a self-adjoint operator in H with domain
$$
\mathcal{D}(S)
$$
. Then
\nthen, we have
\n
$$
\langle Sv, Sv \rangle = \max \left\{ \langle Sv, f \rangle + \overline{\langle Sv, f \rangle} - \langle f, f \rangle : f \in H \right\}
$$
\n
$$
\langle Sv, Sv \rangle = \min \left\{ s(TSv + w^{\circ}, TSv + w^{\circ}) : w^{\circ} \in X^{\circ} \right\}. \tag{1.9}
$$
\n
$$
v \in \mathcal{D}(S), f \in H \text{ and } z = TSv + w^{\circ} \text{ with } w^{\circ} \in X^{\circ} \text{ one obtains}
$$

Proof: For $v \in \mathcal{D}(S)$, $f \in H$ and $z = TSv + w^{\circ}$ with $w^{\circ} \in X^{\circ}$ one obtains.

$$
0 \leq \langle Sv - f, Sv - f \rangle = \langle Sv, Sv \rangle - \langle Sv, f \rangle - \overline{\langle Sv, f \rangle} + \langle f, f \rangle
$$

and

$$
0 \leq s(z - TSv, z - TSv) = s(z, z) - \langle Sv, Sv \rangle
$$

which gives the assertion \Box

We mention that relation (1.9) still holds when $s(\cdot, \cdot)$ denotes a positive semidefinite sesquilinear form in X . For simplicity, we restrict our considerations to the positive definite case. It was pointed out in [9j that many well known complementary variational principles can be derived from (1.9) by an appropriate choice of **X**, $s(\cdot, \cdot)$ and *T*, e.g. those given in [19: Chapter 4.1.4]. ann and U. Mertins

at relation (1.9) still holds when

i X. For simplicity, we rest

i pointed out in [9] that many

erived from (1.9) by an appr

Chapter 4.1.4].

zations for $\lambda_{\pm i}^{\rho}$ can be deduce

cetively.

Let

New characterizations for $\lambda_{\pm i}^{\rho}$ can be deduced by application of (1.9) with $S = A$ and $S = A^{-1}$, respectively.

Theorem 1.3: Let $\rho^- < \rho$. Then,

The case in the points of an
$$
[0]
$$
 that many when the complementary variational 2.2 is given in [19: Chapter 4.1.4].
\nWe characterize the characteristic of X , $s(\cdot, \cdot)$ and T , e.g., given in [19: Chapter 4.1.4].
\nWe characterize the $\lambda_{\pm i}^{\rho}$ can be deduced by application of (1.9) with $S = A$.
\n $S = A^{-1}$, respectively.
\nTheorem 1.3: Let $\rho^- < \rho$. Then,
\n
$$
\lambda_{-i}^{\rho} = \rho + \left(\inf_{\substack{V \subset \mathcal{D}(A) \\ (1,4)}} \max_{0 \neq v \in V} \min_{w \in TA} \frac{\langle Av, v \rangle - \rho \langle v, v \rangle}{s(w, w) - 2\rho \langle Av, v \rangle + \rho^2 \langle v, v \rangle}\right)^{-1}
$$
\n(1.10)
\nFor $i = 1, \ldots, k_{\rho}^-$.
\nProof: Let $1 \leq i \leq k_{\rho}^-$. We apply Theorem 1.1 and relation (1.9) for $S = A$,
\n
$$
\sigma_i^- = \inf_{\substack{V \subset \mathcal{D}(A) \\ (1,4)}} \max_{0 \neq v \in V} \frac{\langle Av, v \rangle - \rho \langle v, v \rangle}{\min_{w \in TA} v + X^{\circ} \{s(w, w)\} - 2\rho \langle Av, v \rangle + \rho^2 \langle v, v \rangle}.
$$
\n(1.11)
\nto $\sigma_i^- < 0$ it suffices to take the infimum over subspaces V of $\mathcal{D}(A)$ satisfying

holds for $i=1,\ldots,k_{a}$.

$$
\int_{(1,4)}^{(1,4)} \int_{(
$$

Due to σ_i^- < 0 it suffices to take the infimum over subspaces *V* of $\mathcal{D}(A)$ satisfying

Inserting this into (1.11) provides

$$
\sigma_i^- = \inf_{\substack{v \in \mathcal{D}(A) \\ (1,4)}} \max_{0 \neq v \in V} \min_{w \in TAv + \mathbf{X}^{\mathbf{0}}} \frac{\langle Av, v \rangle - \rho \langle v, v \rangle}{s(w, w) - 2\rho \langle Av, v \rangle + \rho^2 \langle v, v \rangle}
$$

and thus (1.10)

Theorem 1.4: *Suppose* $0 \notin \sigma(A)$, $\rho > 0$ *and* $\rho^{-} < \rho$. *Then we have*

Due to
$$
\sigma_i^- < 0
$$
 it suffices to take the infimum over subspaces V of $\mathcal{D}(A)$ satisfying
\n
$$
\dim V = i \qquad \text{and} \qquad \langle Av, v \rangle < \rho(v, v) \quad \text{for all } 0 \neq v \in V. \tag{1.12}
$$
\nInserting this into (1.11) provides
\n
$$
\sigma_i^- = \inf_{\substack{v \in \mathcal{D}(A) \\ (1.4)} \text{diag}(v, v) \neq v \in T A v + X^o} \frac{\langle Av, v \rangle - \rho(v, v)}{s(w, w) - 2\rho \langle Av, v \rangle + \rho^2 \langle v, v \rangle}
$$
\nand thus (1.10)

for $1 \leq i \leq k_p^-$ *such that* λ_{-i}^{ρ} *is positive. Here, V varies over subspaces of* **H** *satisfying*

Proof: Due to our assumptions, $A : \mathcal{D}(A) \longrightarrow H$ is a bijection. We combine Theorem 1.1 and relation (1.9) for $S = A^{-1}$, giving

$$
\rho_{-i} = \rho + \rho \left(\inf_{V} \max_{0 \neq v \in V} \min_{w \in TA^{-1}v + X^c} \frac{\langle v, v \rangle - \rho(A^{-1}v, v)}{\langle v, v \rangle - 2\rho(A^{-1}v, v) + \rho^2 s(w, w)} - 1 \right)^{-1}
$$
(1.1)
\n
$$
r 1 \leq i \leq k_p^- \text{ such that } \lambda_{-i}^{\rho} \text{ is positive. Here, } V \text{ varies over subspaces of } H \text{ satisfy } i \text{ with } V = i \text{ and } v \neq pA^{-1}v \text{ for all } 0 \neq v \in V. \tag{1.1}
$$
\nProof: Due to our assumptions, $A : \mathcal{D}(A) \longrightarrow H$ is a bijection. We combi
\nneorem 1.1 and relation (1.9) for $S = A^{-1}$, giving
\n
$$
\sigma_i^- = \inf_{\substack{V \subset \mathcal{D}(A) \\ (1,4)} \text{ max}} \frac{\langle Av, v \rangle - \rho(v, v)}{\langle av, v \rangle - 2\rho(Av, v) + \rho^2(v, v)} = \inf_{\substack{V \subset \mathcal{D}(A) \\ (1,4)} \text{ max}} \frac{\langle v, A^{-1}v \rangle - \rho(A^{-1}v, A^{-1}v)}{\langle v, v \rangle - 2\rho(v, A^{-1}v) + \rho^2(A^{-1}v, A^{-1}v)} = \rho^{-1} \inf_{\substack{V \subset \mathcal{D} \\ (1,14)} \text{ max}} \frac{\langle v, v \rangle - 2\rho(v, A^{-1}v) + \rho^2(A^{-1}v, A^{-1}v)}{\langle v, v \rangle - 2\rho(v, A^{-1}v) + \rho^2 \min_{w \in TA^{-1}v + X^c} \{s(w, w)\}} - 1 \right).
$$

Here, $\lambda_{-i}^{\rho} > 0$ implies $\sigma_i^- < -\rho^{-1} < 0$. Thus, we can restrict the infimum to subspaces *V* of H satisfying Variational Bounds to Eigenvalues 333
 dimplies $\sigma_i^- < -\rho^{-1} < 0$. Thus, we can restrict the infimum to subspaces
 dim V = *i* and $\langle v, v \rangle < \rho \langle v, A^{-1} v \rangle$ for all $0 \neq v \in V$. (1.15)
 (1.15) we find

$$
\dim V = i \qquad \text{and} \qquad \langle v, v \rangle < \rho \langle v, A^{-1} v \rangle \quad \text{for all } 0 \neq v \in V. \tag{1.15}
$$

Employing (1.15) we find

Variational Bounds to Eigenvalues
\n
$$
\frac{\rho}{-i} > 0
$$
 implies $\sigma_i^- < -\rho^{-1} < 0$. Thus, we can restrict the infimum to su
\nsatisfying
\n
$$
\dim V = i \qquad \text{and} \qquad \langle v, v \rangle < \rho \langle v, A^{-1}v \rangle \quad \text{for all } 0 \neq v \in V.
$$
\n
$$
\lim_{\sigma_i^-} (1.15) \text{ we find}
$$
\n
$$
\sigma_i^- = \frac{1}{\rho} \left(\inf_{\substack{V \subseteq H \\ (1.14)} 0 \neq v \in V} \min_{w \in TA^{-1}v + X^c} \frac{\langle v, v \rangle - \rho \langle v, A^{-1}v \rangle}{\langle v, v \rangle - 2\rho \langle v, A^{-1}v \rangle + \rho^2 s(w, w)} - 1 \right)
$$
\nassertion is proved

\n**1**

and the assertion is proved \blacksquare

Through a reformulation of Theorems 1.3 and 1.4 one can derive characterization for λ_{-i}^{ρ} that involve the following generalized Temple quotients:

and the assertion is proved
\nThrough a reformulation of Theorems 1.3 and 1.4 one can derive characterizations
\n
$$
\lambda_{-i}^{\rho}
$$
 that involve the following generalized Temple quotients:
\n
$$
\frac{s(w, w) - \rho(Av, v)}{\langle Av, v \rangle - \rho(v, v)} \quad \text{for } v \in \mathcal{D}(A), w \in TAv + \mathbf{X}^{\circ}, \langle v, Av \rangle - \rho(v, v) \neq 0 \quad (1.16)
$$
\n
$$
\frac{\langle v, v \rangle - \rho(v, A^{-1}v)}{\langle v, A^{-1}v \rangle - \rho s(w, w)} \quad \text{for } v \in H, w \in TA^{-1}v + \mathbf{X}^{\circ}, \langle v, A^{-1}v \rangle - \rho s(w, w) \neq 0. \quad (1.17)
$$
\nthe situation of (1.8), these yield the classical Temple quotients
\n
$$
\frac{\langle Av, (A - \rho I)v \rangle}{\langle v, (A - \rho I)v \rangle} \quad \text{and} \quad \frac{\langle v, (I - \rho A^{-1})v \rangle}{\langle A^{-1}v, (I - \rho A^{-1})v \rangle}.
$$
\nobserve that by $\rho \longrightarrow \pm \infty$ in (1.16) and $\rho \longrightarrow 0$ in (1.17) the Rayleigh quotient of A

In the situation of (1.8) , these yield the classical Temple quotients

$$
\frac{\langle Av, (A - \rho I)v \rangle}{\langle v, (A - \rho I)v \rangle} \quad \text{and} \quad \frac{\langle v, (I - \rho A^{-1})v \rangle}{\langle A^{-1}v, (I - \rho A^{-1})v \rangle}.
$$

Observe that by $\rho \longrightarrow \pm \infty$ in (1.16) and $\rho \longrightarrow 0$ in (1.17) the Rayleigh quotient of *A* Observe that by $\rho \longrightarrow \pm \infty$ in (1.16) and $\rho \longrightarrow 0$ in (1.17) then
and the inverse of the Rayleigh quotient of A^{-1} is produced.
Corollary 1.5: Let $\rho^- < \rho$. Then
 $\lambda_{-i}^{\rho} = \sup_{\substack{V \subset \mathcal{P}(A) \\ (1,12)}} \min_{0 \neq v \in V} \max_{w \in$

Corollary 1.5: Let $\rho^- < \rho$. Then

$$
\lambda_{-i}^{\rho} = \sup_{\substack{v \in \mathcal{D}(A) \\ (1,12)}} \min_{0 \neq v \in V} \max_{w \in T A v + \mathbf{X}^{\mathbf{0}}} \frac{s(w,w) - \rho(A v, v)}{\langle Av, v \rangle - \rho(v, v)}
$$

holds for $i=1,\ldots,k_{\text{a}}$.

Corollary 1.6: *Suppose* $0 \notin \sigma(A)$, $\rho > 0$ *and* $\rho^- < \rho$. Then

Observe that by
$$
\rho \longrightarrow \pm \infty
$$
 in (1.16) and $\rho \longrightarrow 0$ in (1.17) the Rayleigh quotient of A
and the inverse of the Rayleigh quotient of A^{-1} is produced.
Corollary 1.5: Let $\rho^- < \rho$. Then

$$
\lambda_{-i}^{\rho} = \sup_{\substack{v \in \mathcal{D}(A) \\ (1.12)}} \min_{0 \neq v \in V} \max_{w \in TAv + X^{\mathfrak{o}}} \frac{s(w, w) - \rho(Av, v)}{\langle Av, v \rangle - \rho(v, v)}
$$

holds for $i = 1, ..., k_{\rho}^{-}$.
Corollary 1.6: Suppose $0 \notin \sigma(A)$, $\rho > 0$ and $\rho^- < \rho$. Then

$$
\lambda_{-i}^{\rho} = \sup_{\substack{v \in H \\ (1.15)}} \min_{0 \neq v \in V} \max_{w \in TA^{-1}v + X^{\mathfrak{o}}} \frac{\langle v, v \rangle - \rho(v, A^{-1}v)}{\langle v, A^{-1}v \rangle - \rho s(w, w)}
$$
(1.18)
holds for $1 \leq i \leq k_{\rho}^{-}$ such that λ_{-i}^{ρ} is positive.
Remark 1.7: In Theorems 1.3 and 1.4, interchanging "inf" and "sup" as well as

Remark 1.7: In Theorems 1.3 and 1.4, interchanging "inf" and "sup" as well as "min" and "max" gives characterizations for λ_{+i}^{ρ} , with (1.12) and (1.15) being replaced $\lambda_{-i} = \sup_{V \subset \mathcal{D}(A)} \sup_{\theta \neq v \in V} \min_{w \in \mathcal{T}} V_{w \in \mathcal{T}}$

holds for $i = 1, ..., k_{\rho}^{-}$.

Corollary 1.6: Suppose $0 \notin \sigma(A), \rho$:
 $\lambda_{-i}^{\rho} = \sup_{V \subset H} \min_{0 \neq v \in V} \max_{w \in T A^{-1}}$

holds for $1 \leq i \leq k_{\rho}^{-}$ such that λ_{-i}^{ρ} $\leq k_{\rho}^-$ such that λ_{-i}^{ρ} is positive.

1.7: In Theorems 1.3 and 1.4, interchanging "inf" and "

iax" gives characterizations for λ_{+i}^{ρ} , with (1.12) and (1.15)

dim $V = i$ and $\langle Av, v \rangle > \rho \langle v, v \rangle$ for all 0

$$
\dim V = i \qquad \text{and} \qquad \langle Av, v \rangle > \rho \langle v, v \rangle \quad \text{for all } 0 \neq v \in V.
$$

and \cdot

S. Zimmermann and U. Mertins
\ndim
$$
V = i
$$
 and $\langle v, A^{-1}v \rangle > \rho \langle A^{-1}v, A^{-1}v \rangle$ for all $0 \neq v \in V$,
\nively. The same applies to Corollaries 1.5 and 1.6. In Corollary 1.6,

respectively. The same applies to Corollaries 1.5 and 1.6. In Corollary 1.6, however, $w \in TAv + \mathbf{X}^{\circ}$ is then further restricted by

$$
\langle v, A^{-1}v \rangle > \rho s(w, w).
$$

The proofs follow the exact pattern of the previous ones.

In applications one often finds eigenvalue problems which are given in variational form. In what follows we shall therefore employ the results of this section in order to construct variational bounds to eigenvalües of such problems.

2. The left-definite Goerisch method

Let H_a be a separable, complex Hilbert space with inner product $a(\cdot, \cdot)$ and norm $\|\cdot\|$. Suppose $b(\cdot, \cdot)$ is a continuous, Hermitian, sesquilinear form on $H_a \times H_a$ such that $u \in H_a$ and $b(u, v) = 0$ for all $v \in H_a$ implies $u = 0$. We then consider the left-definite, variationally posed eigenvalue problem

Find
$$
\lambda \in \mathbb{R}
$$
 and non-trivial $u \in \mathbf{H}_a$ such
that $a(u, v) = \lambda b(u, v)$ holds for all $v \in \mathbf{H}_a$.
unded self-adjoint operator in \mathbf{H}_a that satisfies
 $a(Bu, v) = b(u, v)$ for all $u, v \in \mathbf{H}_a$.

Denote by B the bounded self-adjoint operator in H_a that satisfies

$$
a(Bu,v) = b(u,v) \quad \text{for all} \quad u,v \in \mathbf{H}_a.
$$

By assumption, B possesses a self-adjoint inverse B^{-1} in $\mathbf{H}_{\mathfrak{a}^\perp}$ For an application of the results of Section 1, we make the identifications He bounded self-adjoint operator in H_a that satisfies
 $a(Bu, v) = b(u, v)$ for all $u, v \in H_a$.

(on, *B* possesses a self-adjoint inverse B^{-1} in H_a . For an appliction 1, we make the identifications
 $H = H_a$, $\langle u, v \rangle = a(u, v$

$$
\mathbf{H} = \mathbf{H}_a, \qquad \langle u, v \rangle = a(u, v) \quad \text{for all} \quad u, v \in \mathbf{H}_a, \qquad A = B^{-1}
$$

and we assume that **X** is a complex Hilbert space with inner product $s(\cdot, \cdot)$ and equipped with an isometry $T : H_a \longrightarrow X$. Fix $\rho \in \mathbb{R}$, $\rho > 0$. All assumptions of Section 1 are then satisfied with

$$
D_{\rho} = \left\{ u \in \mathbf{H}_a : a(u, v) = \rho b(u, v) \text{ for all } v \in \mathbf{H}_a \right\}.
$$

Evidently, (2.1) is equivalent to the eigenvalue problem for A. Hence, $\sigma(A)$ and $\sigma_{\epsilon}(A)$ represent the spectrum and the essential spectrum of (2.1), with $0 \notin \sigma(A)$. We adopt from Section 1 the definition of ρ^{\pm} , k_{ρ}^{\pm} and $\lambda_{\pm i}^{\rho}$.

In Theorem 1.4 and Corollary 1.6, we have formulated two equivalent characteri zations for λ_{-i}^{ρ} each of which is easily discretized. A discretization of (1.18) has the advantage that no transformation of eigenvalues is needed. Furthermore, $\rho \longrightarrow 0$ obviously produces the Rayleigh-Ritz method. In general, however, the finite-dimensional eigenvalue problem derived from (1.18) involves two indefinite matrices. For this reason we prefer (1.13) which produces right-definite matrix eigenvalue problems in any case. We thus continue with a reformulation of Theorem 1.4 for left-definite, variationally posed eigenvalue problems.

Corollary 2.1: Let $\rho^- < \rho$. Then

Variational Bounds to Eigenvalues 335
\nCorollary 2.1: Let
$$
\rho^- < \rho
$$
. Then
\n
$$
\lambda_{-i}^{\rho} = \rho + \rho \left(\inf_{\substack{V \subset \mathbf{H} \text{ of } \mathbf{H} \\ V \cap D_{\rho} = \{0\}}} \max_{v = i} \min_{0 \neq v \in V} \frac{a(v, v) - \rho b(v, v)}{w} \frac{a(v, v) - 2\rho b(v, v) + \rho^2 s(w, w)} - 1 \right)^{-1}
$$
\n(2.2)
\n1s for $1 \leq i \leq k_{\rho}^-$ such that λ_{-i}^{ρ} is positive, the minimum being taken over $w \in \mathbf{X}$
\n*h that*
\n*s(w, Tu) = b(v, u)* for all $u \in \mathbf{H}_a$.
\n**Proof:** Since (2.3) is equivalent to the inclusion $w \in TBv + \mathbf{X}^{\circ}$, the assertion
\nows immediately from Theorem 1.4

holds for $1 \leq i \leq k_o^{\dagger}$ such that λ_{-i}^{ρ} is positive, the minimum being taken over $w \in \mathbf{X}$ *such that*

Proof: Since (2.3) is equivalent to the inclusion $w \in TBv + \mathbf{X}^{\circ}$, the assertion follows immediately from Theorem 1.4 \blacksquare *holds for* $1 \leq i \leq k_p^-$ *such that* λ_{-i}^p *is positive, the minimum being taken over*
such that
Proof: Since (2.3) is equivalent to the inclusion $w \in TBv + \mathbf{X}^{\circ}$, the as
follows immediately from Theorem 1.4

An analogous characterization holds for λ^{ρ}_{+i} (see Remark 1.7).

For a discretization, suppose $n \in \mathbb{N}$, $m \in \mathbb{N}_0$, and suppose the following:

(L1) $v_1, \ldots, v_n \in H_a$ are linearly independent.

(L2)
$$
w_1^*
$$
,..., $w_n^* \in \mathbf{X}$ satisfy $s(w_i^*, Tu) = b(v_i, u)$ for all $u \in \mathbf{H}_a$ $(i = 1, ..., n)$.

requires w_i^* and w_j° depending on v_i and the choice of **X**, *s* and *T*.

Here v_1, \ldots, v_n are Rayleigh-Ritz trial functions. In addition, the Goerisch approach requires w_i^* and w_j^o depending on v_i and the choice of **X**, *s* and *T*.
 Remark 2.2: In the Lehmann-Maehly approach which **Remark 2.2:** In the Lehmann-Maehly approach which is characterized by (1.8), one has $w_m^o \in \mathbf{X}^o$, where $w_0^o = 0$ and w_1^o, \ldots, w_m^o are linearly independent.
 v_n are Rayleigh-Ritz trial functions. In addition, the Goerisch approach
 $d w_j^o$ depending on v_i and the choice of **X**, *s* and *T*.

$$
\mathbf{X} = \mathbf{H}_a, \qquad s(\cdot, \cdot) = a(\cdot, \cdot), \qquad T = I, \qquad \mathbf{X}^\circ = \{0\}
$$

so that w_i^* is the unique solution of the linear problem

Seek
$$
w \in H_a
$$
 such that $a(w, u) = b(v_i, u)$ for all $u \in H_a$. (2.4)

Only if this problem is too expensive or even impossible to solve, Goerisch's version is applied. It replaces (2.4) by the linear problem $X = H_a$, $s(\cdot, \cdot) = a(\cdot, \cdot)$, $T = I$, $X^{\circ} = \{0\}$
the unique solution of the linear problem
Seek $w \in H_a$ such that $a(w, u) = b(v_i, u)$ for all $u \in H_a$. (2.4)
oroblem is too expensive or even impossible to solve, Goerisch's versi

Seek
$$
w \in X
$$
 such that $s(w, Tu) = b(v_i, u)$ for all $u \in H_a$. (2.5)

Provided $X^{\circ} \neq \{0\}$, there exists a manifold of solutions. With X, *s* and T being chosen appropriately, it is much easier to find a particular solution of problem (2.5) than to solve exactly problem (2.4). Solutions $w_i^{\circ} \in X^{\circ}$ of the homogeneous equation (2.5) solve exactly problem (2.4). Solutions $w_j^o \in \mathbf{X}^o$ of the homogeneous equation (2.5) are then used to approximate the residual $Tw_{i,L}^* - w_{i,G}^*$, where $w_{i,L}^*$ and $w_{i,G}^*$ denote solutions of problems (2.4) and (2.5), respectively. Note that the idea of this approach is not to improve Lehmann-Maehly bounds but to enlarge widely the range of applicability Seek $w \in H_a$ such that $a(w, u) =$
Only if this problem is too expensive or even im
applied. It replaces (2.4) by the linear problem
Seek $w \in X$ such that $s(w, Tu) =$
Provided $X^{\circ} \neq \{0\}$, there exists a manifold of sol
app problem (2.4). Solutions $w_j \in \mathbb{X}$ of the homogeneous ed
d to approximate the residual $Tw_{i,L}^* - w_{i,G}^*$, where $w_{i,L}^*$ and
problems (2.4) and (2.5), respectively. Note that the idea of this
we Lehmann-Maehly bounds *v* $s(w, Tu) = b(v_i, u)$ for all $u \in H_a$. (2.5)

(2.5)

(2.6)

(2.7)

(2.7)

(2.7)

(2.5)

(2.8)

(2.8)

(2.8)

(2.8)

(2.8)

(2.8)

(2.8)

(2.6)

(2.

$$
V_n = \text{span}\{v_1, \ldots, v_n\} \quad \text{and} \quad X_m^{\circ} = \text{span}\{w_0^{\circ}, \ldots, w_m^{\circ}\}.
$$

For convenience, we assume

$$
V_n \cap D_\rho = \{0\}.\tag{2.6}
$$

to ρ . Let

336 5. Zimmermann and U. Mertins
\nWhenever (2.6) is violated, one eliminates from
$$
V_n
$$
 all exact eigenvectors corresponding
\nto ρ . Let
\n
$$
a_{ik}^{(1)} = a(v_k, v_i), \quad a_{ik}^{(2)} = b(v_k, v_i), \quad a_{ik}^{(3)} = a(Bv_k, Bv_i) \quad (i, k = 1, ..., n)
$$
\n
$$
c_{ik}^{(11)} = s(w_k^*, w_i^*) \quad (i, k = 1, ..., n)
$$
\n
$$
c_{ik}^{(12)} = \begin{cases} s(w_k^0, w_i^*) & \text{if } m > 0 \\ 0 & \text{if } m = 0 \end{cases} \quad (i = 1, ..., n; k = 1, ..., \max\{1, m\})
$$
\n
$$
c_{ik}^{(22)} = \begin{cases} s(w_k^0, w_i^0) & \text{if } m > 0 \\ 1 & \text{if } m = 0 \end{cases} \quad (i, k = 1, ..., \max\{1, m\})
$$
\n
$$
A_j = (a_{ik}^{(j)}) \quad (j = 1, 2, 3)
$$
\n
$$
C_{jl} = (c_{ik}^{(jl)}) \quad (j, l = 1, 2; j \le l).
$$
\nLemma 2.3: Let $v = \sum_{i=1}^n x_i v_i$ with $x = (x_1, ..., x_n)^t \in \mathbf{C}^n$, $w^* = \sum_{i=1}^n x_i w_i^*$,
\nand $w^0 \in \mathbf{X}_m^0$ with
\n
$$
s(w^0, w) = -s(w^*, w) \quad \text{for all } w \in \mathbf{X}_m^0. \quad (2.7)
$$
\nThen
\n
$$
x^H(C_{11} - C_{12}C_{22}^{-1}C_{12}^H)x = s(w^* + w^0, w^* + w^0)
$$

 $\sum_{n=1}^{\infty}$ *x,w,* $and \ w^{\circ} \in \mathbf{X}_{m}^{\circ} \ with$ $(j, l = 1, 2; j \le l).$
 $v = \sum_{i=1}^{n} x_i v_i \text{ with } x =$
 $s(w^{\circ}, w) = -s(w^{\star}, w)$

$$
s(w^{\circ}, w) = -s(w^{\star}, w) \qquad \text{for all} \ \ w \in \mathbf{X}_{m}^{\circ}.
$$
 (2.7)

Then

$$
x^{H}(C_{11} - C_{12}C_{22}^{-1}C_{12}^{H})x = s(w^{*} + w^{o}, w^{*} + w^{o})
$$

= min{s(w^{*} + w, w^{*} + w): w \in X_{m}^{o}}

$$
\geq x^{H}A_{3}x
$$

holds.

Proof: (i) For $m > 0$, there exists $y = (y_1, \ldots, y_m)^t \in \mathbb{C}^m$ such that $w^{\circ} =$ $y_iw_i^{\circ}$. The equation (2.7) is equivalent to $C_{22}y = -C_{12}^H x$, giving *.* (i) For $m > 0$, there exists $y = (y_1, \ldots, y_m)^t \in C^m$ such that $w^{\circ} =$
 . The equation (2.7) is equivalent to $C_{22}y = -C_{12}^H x$, giving $s(w^* + w^{\circ}, w^* + w^{\circ}) = s(w^* + w^{\circ}, w^*) = x^H(C_{11} - C_{12}C_{22}^{-1}C_{12}^H)x.$ (2.8) coul

$$
s(w^* + w^{\circ}, w^* + w^{\circ}) = s(w^* + w^{\circ}, w^*) = x^H(C_{11} - C_{12}C_{22}^{-1}C_{12}^H)x.
$$
 (2.8)

Trivially, equality holds in (2.8) for $m = 0$.

(ii) For arbitrary $w \in \mathbf{X}_{m}^{\circ}$, equation (2.7) gives

$$
s(w^* + w, w^* + w) = s(w^* + w^{\circ}, w^* + w^{\circ}) + s(w^{\circ} - w, w^{\circ} - w).
$$

(iii) Since $w^* \in TBv + \mathbf{X}^{\circ}$, $w^{\circ} \in \mathbf{X}_m^{\circ}$, Lemma 1.2 yields

$$
s(w^*+w^{\circ},w^*+w^{\circ})\geq \min\{s(TBv+w,TBv+w):\ w\in \mathbf{X}^{\circ}\}=a(Bv,Bv).
$$

Thus the assertion is proved **^I**

Consider the matrix eigenvalue problem

$$
\tau \in I\!\!R, x \in \mathbf{C}^n: (A_1 - \rho A_2)x = \tau \Big(A_1 - 2\rho A_2 + \rho^2 (C_{11} - C_{12} C_{22}^{-1} C_{12}^H) \Big) x. \tag{2.9}
$$

Assumption (2.6) guarantees the positive definiteness of $A_1 - 2\rho A_2 + \rho^2 A_3$. By Lemma 2.3, this implies the existence of *n* real eigenvalues and corresponding eigenvectors for

problem (2.9). Observe that $C_{11} - C_{12}C_{22}^{-1}C_{12}^H = A_3$ if the Lehmann-Maehly method problem (2.9). Observe that $C_{11} - C_{12}C_{22}^{-1}C_{12}^H = A_3$ if the Lehmann-Maehly method is applied. Denote all eigenvalues τ of problem (2.9) in $\mathbb{R} \setminus [0,1]$ by τ_i^- and τ_i^+ and arrange them in the order problem (2.9). Obset
is applied. Denote
arrange them in the
with $n^- + n^+ \leq n$.

$$
\tau_1^- \leq \ldots \leq \tau_{n^-}^- < 0 < 1 < \tau_{n^+}^+ \leq \ldots \leq \tau_1^+
$$

with $n^- + n^+ \leq n$. Then we set

$$
\tau_1^- \leq \ldots \leq \tau_{n^-}^- < 0 < 1 < \tau_{n^+}^+ \leq \ldots \leq \tau_1^+
$$
\nThen we set

\n
$$
\Lambda_{-i}^{\rho[n,m]} = \rho + \rho(\tau_i^- - 1)^{-1} \qquad \text{for} \quad i = 1, \ldots, n^-
$$
\n
$$
\Lambda_{+i}^{\rho[n,m]} = \rho + \rho(\tau_i^+ - 1)^{-1} \qquad \text{for} \quad i = 1, \ldots, n^+.
$$

Theorem 2.4: For $\rho^{-} < \rho$ and $1 \leq i \leq \min\{n^{-}, k_{\rho}^{-}\}\$, we have

$$
\Lambda_{-i}^{\rho[n,m]} \le \lambda_{-i}^{\rho}.\tag{2.10}
$$

For $\rho < \rho^+$ and $1 \leq i \leq \min\{n^+, k_{\rho}^+\}\$, we have

$$
\Lambda_{+i}^{\rho[n,m]} \geq \lambda_{+i}^{\rho}.
$$

Proof: We restrict ourselfes to the proof of (2.10) . With the notation introduced in Lemma 2.3, we find

rem 2.4: For
$$
\rho^- < \rho
$$
 and $1 \le i \le \min\{n^-, k_\rho^-\}$, we have
\n
$$
\Lambda_{-i}^{\rho[n,m]} \le \lambda_{-i}^{\rho}.
$$
\n($\Lambda_{-i}^{\rho[n,m]} \le \lambda_{-i}^{\rho}$ ($\Lambda_{-i}^{\rho[n,m]} \le \lambda_{-i}^{\rho}$ ($\Lambda_{i}^{\rho[n,m]} \ge \lambda_{i}^{\rho}$ ($\Lambda_{i}^{\rho[n,m]} \ge \Lambda_{i}^{\rho[n,m]} \ge \Lambda_{i}^{\rho[n]} \ge \Lambda_{i}^$

By construction, we have $V_n \text{ }\subset \text{ }\mathbf{H}_a, V_n \cap D_\rho = \{0\}$ as well as $s(w, Tu) = b(v, u)$ for $u \in H_a$ and $w \in w^* + X_m^{\circ}$. Thus,

$$
\lim_{u \to v_{\pm}} v_{\pm} \circ \neq v \in V \text{ we have } \mathcal{V}_n \subset \mathbf{H}_a, V_n \cap D_\rho = \{0\} \text{ as well as } s(w, Tu) =
$$

function, we have $V_n \subset \mathbf{H}_a, V_n \cap D_\rho = \{0\}$ as well as $s(w, Tu) =$
and $w \in w^* + \mathbf{X}_m^{\circ}$. Thus,

$$
\tau_i^- - 1 \ge \inf_{\substack{V \subset \mathbf{H}_a, d := v = 0 \\ V \cap D_\rho = \{0\}} \max_{v \in V} \min_{\substack{(u,v) \in V \\ (u,v) \in \{0\}} \frac{a(v,v) - \rho b(v,v)}{a(v,v) - 2\rho b(v,v) + \rho^2 s(w,w)} - 1.
$$

Corollary 2.1 provides 2.10 **^I**

Remark **2.5:** Note that the selfadjoint operator *A* in H is only of theoretical interest, and that it is not required in the calculation of bounds.

For convergence results, see [24].

3. Numerical example

We shall consider an eigenvalue problem for partial differential equations that was suggested in [7] as a model problem for the study of numerical phenomina in the spectral approximation of the ideal linear magnetohydrody gested in [71 as a model problem for the study of numerical phenomina in the spectral approximation of the ideal linear magnetohydrodynamics equations ("pollution effect").

Let

$$
\Omega = (-1,1) \times (-1,1) \subset \mathbb{R}^2 \quad \text{and} \quad \mathbf{H}_a = H_0^1(\Omega) \times (L_2(\Omega) \times L_2(\Omega))
$$

We define

$$
a(u, v) = \int_{\Omega} \left(\alpha \mathbf{grad} \, u_{\mathrm{I}} \cdot \mathbf{grad} \, \bar{v}_{\mathrm{I}} + \mathbf{grad} \, u_{\mathrm{I}} \cdot \bar{\mathbf{v}}_{\mathrm{II}} + \mathbf{u}_{\mathrm{II}} \cdot \mathbf{grad} \, \bar{v}_{\mathrm{I}} + u_{\mathrm{I}} \bar{v}_{\mathrm{I}} + 2 \mathbf{u}_{\mathrm{II}} \cdot \bar{\mathbf{v}}_{\mathrm{II}} \right) d\Omega
$$

$$
b(u, v) = \int_{\Omega} \left(u_{\mathrm{I}} \bar{v}_{\mathrm{I}} + \mathbf{u}_{\mathrm{II}} \cdot \bar{\mathbf{v}}_{\mathrm{II}} \right) d\Omega
$$

 \mathbf{f} or $u = (u_{\text{I}}, \mathbf{u}_{\text{II}}), v = (v_{\text{I}}, \mathbf{v}_{\text{II}}) \in \mathbf{H}_a$ with $\alpha \in C^{\infty}(\overline{\Omega}), \alpha(x, y) > 0$ and $(2\alpha - 1)(x, y) > 0$ for $(x, y) \in \Omega$.

The inner product $a(\cdot, \cdot)$ gives a norm in H_a which is equivalent to the natural norm of this product space. By partial integration one shows that (2.1) is a weak form of the boundary value problem

Here, the spectrum is non-negative and depends on the choice of α . In any case, $\lambda = 2$ is an eigenvalue of infinite multiplicity since for each $0 \neq u \in H^2(\Omega)$ an eigenpair of (2.1) is given by

$$
(2, (0, (u_y, -u_x))) \in \mathbb{R} \times \mathbf{H}_a.
$$

(a) In the Lehmann-Maehly approach (cf. Remark 2.2) we have $X = H_a$, $s(\cdot, \cdot) =$ $a(\cdot, \cdot)$ and $T = I$. Then, for each trial function $v_i \in H_a$, the equation (2.4) which is a weak form of the following second order boundary value problem has to be solved for $w_i^* = (w_{i,1}^*, \mathbf{w}_{i,II}^*) \in \mathbf{H}_a$: $(2, (0, (u_y, -u_x))) \in \mathbb{R} \times \mathbf{H}_a.$

Altamather and the sum of $v_i \in \mathbf{H}_a$, the equal owing second order boundary value problem
 \mathbf{H}_a :
 $-\text{div}(\alpha \operatorname{grad} w_{i,1}^* + \mathbf{w}_{i,II}^*)$ xative and depends on the choice of α . In any case, $\lambda = 2$

ultiplicity since for each $0 \neq u \in H^2(\Omega)$ an eigenpair of

2, $(0, (u_y, -u_x)) \in \mathbb{R} \times \mathbf{H}_a$.

ly approach (cf. Remark 2.2) we have $\mathbf{X} = \mathbf{H}_a$, $s(\cdot, \$ \in *H* × **H**_a.

Remark 2.2) we had
 $v_i \in$ **H**_a, the equadary value problem
 $= v_{i,1}$ in Ω
 $= v_{i,II}$ in Ω
 $= 0$ on $\partial \Omega$.

$$
-div (\alpha \operatorname{grad} w_{i, I}^* + \mathbf{w}_{i, II}^*) = v_{i, I} \quad \text{in} \quad \Omega
$$

$$
\operatorname{grad} w_{i, I}^* + \mathbf{w}_{i, II}^* = \mathbf{v}_{i, II} \quad \text{in} \quad \Omega
$$

$$
w_{i, I}^* = 0 \quad \text{on} \quad \partial \Omega.
$$
 (3.1)

(b) In Goerisch's approach we set

$$
\mathbf{X} = L_2(\Omega) \times (L_2(\Omega))^2 \times (L_2(\Omega))^2
$$

$$
s(u, v) = \int_{\Omega} \left(\alpha \mathbf{u}_{\text{III}} \cdot \overline{\mathbf{v}}_{\text{III}} + \mathbf{u}_{\text{III}} \cdot \overline{\mathbf{v}}_{\text{II}} + \mathbf{u}_{\text{II}} \cdot \overline{\mathbf{v}}_{\text{III}} + u_{\text{I}} \overline{v}_{\text{I}} + 2 \mathbf{u}_{\text{II}} \cdot \overline{\mathbf{v}}_{\text{II}} \right) d\Omega
$$

for

$$
u = (u_{\text{I}}, u_{\text{II}}, u_{\text{III}}), v = (v_{\text{I}}, v_{\text{II}}, v_{\text{III}}) \in \mathbf{X}
$$

and

$$
T: \mathbf{H}_a \ni (f_I, \mathbf{f}_{II}) \longmapsto (f_I, \mathbf{f}_{II}, \mathbf{grad} f_I) \in \mathbf{X}.
$$

The linear equation (2.5) reduces to a weak form of a first order partial differential (b) reduces to a weak form of a first order partial differential

ic equation for $w_i^* = (w_{i,1}^*, \mathbf{w}_{i,II}^*, \mathbf{w}_{i,III}^*) \in \mathbf{X}$:
 $(\alpha \mathbf{w}_{i,III}^* + \mathbf{w}_{i,II}^*) + w_{i,II}^* = v_{i,II}$
 $\mathbf{w}_{i,III}^* + 2 \mathbf{w}_{i,II}^* = v_{i,II}$
 $= \$

for
\n
$$
u = (u_{\text{I}}, u_{\text{II}}, u_{\text{III}}), v = (v_{\text{I}}, v_{\text{II}}, v_{\text{III}}) \in \mathbf{X}
$$
\nand
\n
$$
T: \mathbf{H}_a \ni (f_{\text{I}}, f_{\text{II}}) \longmapsto (f_{\text{I}}, f_{\text{II}}, \text{grad } f_{\text{I}}) \in \mathbf{X}.
$$
\nThe linear equation (2.5) reduces to a weak form of a first order
\nequation plus an algebraic equation for $w_i^* = (w_{i, \text{I}}^*, w_{i, \text{II}}^*, w_{i, \text{III}}^*) \in \mathbf{X}:$
\n
$$
-\text{div}(\alpha \mathbf{w}_{i, \text{III}}^* + \mathbf{w}_{i, \text{II}}^*) + w_{i, \text{I}}^* = v_{i, \text{I}} \qquad \text{in} \quad \Omega.
$$
\nThese are solved by
\n
$$
w_i^* = \left(v_{i, \text{I}}, \frac{\alpha}{2\alpha - 1} v_{i, \text{II}}, \frac{-1}{2\alpha - 1} v_{i, \text{II}}\right) \in \mathbf{X}.
$$
\nFor each $\mathbf{w}_j \in H^1(\Omega) \times H^1(\Omega)$ admissible solutions of the homogen

These are solved by

$$
w_i^* = \left(v_{i,1}, \frac{\alpha}{2\alpha - 1} \mathbf{v}_{i,II}, \frac{-1}{2\alpha - 1} \mathbf{v}_{i,II}\right) \in \mathbf{X}.
$$

For each $w_j \in H^1(\Omega) \times H^1(\Omega)$ admissible solutions of the homogeneous equation are given by

$$
w_j^{\circ} = \left(\text{div}\left(2\alpha - 1\right)\mathbf{w}_j, -\mathbf{w}_j, 2\mathbf{w}_j\right) \in \mathbf{X}^{\circ}.
$$
 (3.2)

In our calculations of bounds we restrict the problem to the symmetry classes (invariant subspace)

$$
\begin{aligned} \text{subspace)}\\ \mathbf{H}_a &= H_0^1(\Omega)^{(0,0)} \times \left(L_2(\Omega)^{(1,0)} \times L_2(\Omega)^{(0,1)} \right) \\ \mathbf{X} &= L_2(\Omega)^{(0,0)} \times \left(L_2(\Omega)^{(1,0)} \times L_2(\Omega)^{(0,1)} \right) \times \left(L_2(\Omega)^{(1,0)} \times L_2(\Omega)^{(0,1)} \right), \end{aligned}
$$

respectively. Here, $L_2(\Omega)^{(a_1,a_2)}$ denotes the subspace of $L_2(\Omega)$ formed of all functions symmetric with respect to the *i*-th axis, if $a_i = 0$ and antisymmetric with respect to the same axis, if $a_i = 1$ $(i \in \{1, 2\})$.

We use polynomial trial functions $v_1, \ldots, v_n \in H_a$, orthogonalized with respect to the inner product $b(\cdot, \cdot)$ and generated via a suitable enumeration by the following functions in H_a :

$$
A = L_2(\Omega)^{k+1} \times (L_2(\Omega)^{k+1}) \times L_2(\Omega)^{k+1} \times (L_2(\Omega)^{k+1}) \times (L_2(\Omega)^{k+1})
$$
\nrespectively. Here, $L_2(\Omega)^{(a_1, a_2)}$ denotes the subspace of $L_2(\Omega)$ formed of all functions
\nsymmetric with respect to the *i*-th axis, if $a_i = 0$ and antisymmetric with respect to the
\nsame axis, if $a_i = 1$ ($i \in \{1, 2\}$).
\nWe use polynomial trial functions $v_1, ..., v_n \in H_a$, orthogonalized with respect
\nto the inner product $b(.,.)$ and generated via a suitable enumeration by the following
\nfunctions in H_a :
\n $(x, y) \longmapsto ((x^2 - 1)x^{2i}(y^2 - 1)y^{2k}, (0, 0))$
\n $(x, y) \longmapsto (0, (x^{2i+1}y^{2k}, 0))$
\nfor $i, k \in \mathbb{N}_0$.
\n $(x, y) \longmapsto (0, (0, x^{2i}y^{2k+1}))$
\nFurthermore, the solutions $w_1^o, ..., w_m^o \in X^o$ of the homogeneous equation are con-
\nstructured according to (3.2) with the following functions in $H^1(\Omega)^{(1,0)} \times H^1(\Omega)^{(0,1)}$:
\n $(x, y) \longmapsto (x^{2i+1}y^{2k}, 0)$ and $(x, y) \longmapsto (0, x^{2i}y^{2k+1})$ for $i, k \in \mathbb{N}_0$.
\nMathematica [23] was employed for the summable equations of all in the

structed according to (3.2) with the following functions in $H^1(\Omega)^{(1,0)} \times H^1(\Omega)^{(0,1)}$.

$$
(x,y)\longmapsto (x^{2i+1}y^{2k},0) \quad \text{ and } \quad (x,y)\longmapsto (0,x^{2i}y^{2k+1}) \quad \text{ for } i,k\in \mathbb{N}_0
$$

Mathematica [23] was employed for the symbolic evaluation of all inner products and for the calculation of all eigenvalues with high precision.

At first consider $\alpha(x,y) = 1$ for $(x,y) \in \Omega$. The corresponding eigenvalue problem can be solved explicitly: A second eigenvalue of infinte multiplicity is given by $\lambda = 1$ with eigenfunctions $(u, -\text{grad } u) \in H_a$ for every $0 \neq u \in H^2(\Omega) \cap H_0^1(\Omega)$. Let $(\mu_{k,l}, u_{k,l}) \in$ $\mathbb{R} \times H_0^1(\Omega)$ (k, $l \in \mathbb{N}$) be the eigenpairs of the Laplacian operator $-\Delta u = \mu u$ with

Elimmermann and U. Mertins

\nconsider
$$
\alpha(x, y) = 1
$$
 for $(x, y) \in \Omega$. The corresponding eigenva

\ndevibility: A second eigenvalue of infinite multiplicity is given by

\nns (u, −grad u) ∈ **H**_a for every 0 ≠ u ∈ $H^2(\Omega) \cap H^1_0(\Omega)$. Let $(k, l \in \mathbb{N})$ be the eigenpairs of the Laplacian operator $-\Delta u = \mu_{k,l} = (k^2 + l^2) \left(\frac{\pi}{2}\right)^2$

\n $u_{k,l}(x, y) = \sin\left(\frac{k\pi}{2}(x + 1)\right) \sin\left(\frac{l\pi}{2}(y + 1)\right)$ for $(x, y) \in \Omega$.

\nother eigenpairs of problem (2.1) are given by

\n $\left(2 + \mu_{k,l}, (\mu_{k,l} u_{k,l}, \text{grad } u_{k,l})\right) \in \mathbb{R} \times \mathbf{H}_a$ $(k, l \in \mathbb{N})$.

\nPoincaré principle characterizes $\lambda = 1$ only,

\n $1 = \inf_{\substack{u \in \mathbb{R}^d \\ u \neq v}} \max_{\substack{a(v, v) \\ \text{div } \mathbb{R}^d}} \frac{a(v, v)}{b(v, v)}$ for all $i \in \mathbb{N}$,

\nBut a general, the eigenvalues are the eigenvalues of u is the eigenvalues of u

Then the further eigenpairs of problem (2.1) are given by

$$
(2 + \mu_{k,l}, (\mu_{k,l} u_{k,l}, \operatorname{grad} u_{k,l})) \in \mathbb{R} \times H_a \qquad (k,l \in \mathbb{N}).
$$

As the Poincaré principle characterizes $\lambda = 1$ only,

$$
1 = \inf_{\substack{V \subset H_{\mathfrak{a}} \\ \dim V = i}} \max_{0 \neq v \in V} \frac{a(v, v)}{b(v, v)} \quad \text{for all } i \in \mathbb{N},
$$

the Rayleigh-Ritz approach does not give bounds to eigenvalues in $[2, \infty)$.

From the explicit knowledge of all eigenvalues $\lambda > 2$, we obtain

$$
2 < \lambda_1 < 22 < \lambda_2 = \lambda_3 < 40 < \lambda_4 < 60 < \lambda_5 = \lambda_6 < 78 < \lambda_7 = \lambda_8 < 112 < \lambda_9
$$

which allows to identify local notations for these eigenvalues with $\rho = 2$, 22, 40, 60, 78, 112. Consequently by Theorem 2.4, the upper [lower) triangle indicated in Table 1 contains upper [lower] bounds to $\lambda_1, \ldots, \lambda_8$.

We will continue our example setting $\alpha(x,y) = 1 + x^2y^2$ for $(x,y) \in \Omega$ at the end of the next section.

4. The Right-definite Goerisch method

Let H_b be a separable, complex Hilbert space with inner product $b(\cdot, \cdot)$, and suppose that $a(\cdot, \cdot)$ is a Hermitian sesquilinear form in H_b with domain H_a . Furthermore, $a(\cdot, \cdot)$ is assumed to be bounded from below and closed. We then consider the right-definite eigenvalue problem Variational Bounds to Eigenvalues 341

efinite Goerisch method

le, complex Hilbert space with inner product $b(\cdot, \cdot)$, and suppose

tian sesquilinear form in H_b with domain H_a . Furthermore, $a(\cdot, \cdot)$

unded from belo

Since
$$
\lambda \in \mathbb{R}
$$
 and non-trivial $u \in \mathbf{H}_a$ such that $a(u, v) = \lambda b(u, v)$ holds for all $v \in \mathbf{H}_a$.

\n(4.1)

Problem (4.1) is equivalent to the eigenvalue problem for the self-adjoint operator *A* defined by

$$
\mathcal{D}(A) = \left\{ u \in \mathbf{H}_a : a(u, v) = b(\hat{u}, v) \ (v \in \mathbf{H}_b) \text{ for some } \hat{u} \in \mathbf{H}_b \right\}
$$
\n
$$
b(Au, v) = a(u, v) \quad \text{for all} \quad u \in \mathcal{D}(A), v \in \mathbf{H}_a
$$
\n[13: Chapter VI, Section 2]). The operator A is bounded from belo\n
$$
\mathbf{H} = \mathbf{H}_b \qquad \text{and} \qquad \langle u, v \rangle = b(u, v) \quad \text{for all} \quad u, v \in \mathbf{H}_b
$$
\n
$$
\text{for } A \text{ satisfies the assumptions of Section 1, where}
$$

(see, e.g., [13: Chapter VI, Section 2]). The operator *A is* bounded from below. With

$$
\mathbf{H} = \mathbf{H}_{b} \quad \text{and} \quad \langle u, v \rangle = b(u, v) \quad \text{for all} \ \ u, v \in \mathbf{H}_{b}
$$

the operator *A* satisfies the assumptions of Section 1, where

$$
D_{\rho} = \left\{ u \in \mathbf{H}_a : a(u, v) = \rho b(u, v) \text{ for all } v \in \mathbf{H}_a \right\}.
$$

Again, we assume that X is a complex Hilbert space with inner product $s(\cdot, \cdot)$ and isometry $T : H_b \longrightarrow X$. For fixed $\rho \in I\!R$, application of Theorem 1.3 gives the following characterization for λ^{ρ}_{-i} . *Let* $D_{\rho} = \{u \in \mathbf{H}_a : u(u, v) = p_{\theta}(u, v)\}$
 Let π is sometry $T : \mathbf{H}_b \longrightarrow \mathbf{X}$. For fixed $\rho \in \mathbb{R}$, approximally characterization for λ_{-i}^{ρ} .
 Corollary 4.1: Set
 $\mathbf{H}_\bullet = \{v \in \mathbf{H}_a : a(v, u) = s(w, Tu) \mid (u$ $\mathbf{C} = \mathbf{C}(u, v)$ for all $u \in \mathcal{D}(A), v \in \mathbf{H}_a$
 $\mathbf{C} = \mathbf{H}_b$ and $(u, v) = b(u, v)$ for all u ,
 $\mathbf{C} = \mathbf{H}_b$ and $(u, v) = b(u, v)$ for all u ,
 $\mathbf{C} = \mathbf{H}_b$ and $(u, v) = b(u, v)$ for all $u \in$
 $D_\rho = \left\{ u \in \mathbf{H}_a : a(u,$ *A* satisfies the assumptions of Section 1, where
 $D_{\rho} = \{u \in \mathbf{H}_a : a(u, v) = \rho b(u, v) \text{ for all } v \in \mathbf{H}_a\}$.

ssume that X is a complex Hilbert space with inner product $s(\cdot, \cdot)$ and
 \vdots $\mathbf{H}_b \longrightarrow \mathbf{X}$. For fixed $\rho \in \$

Corollary 4.1: *Set*

$$
\mathbf{H}_{\bullet} = \Big\{ v \in \mathbf{H}_{a} : a(v, u) = s(w, Tu) \ \ (u \in \mathbf{H}_{a}) \ \ \text{for some} \ \ w \in \mathbf{X} \Big\}.
$$

$$
\text{invariant, } \{c \in H_a : \text{ for } a \in H_a\} \text{ for some } w \in X\}.
$$
\n
$$
H_{\bullet} = \left\{ v \in H_a : a(v, u) = s(w, Tu) \ (u \in H_a) \text{ for some } w \in X \right\}.
$$
\n
$$
- \langle \rho \text{ and } 1 \le i \le k_{\rho}^-, \text{ Then } H_{\bullet} = \mathcal{D}(A) \text{ and}
$$
\n
$$
\lambda_{-i}^{\rho} = \rho + \left(\inf_{\substack{V \in H_a, d|mV = i \\ V \cap D_{\rho} = \{0\}}} \max_{0 \ne v \in V} \min_{w} \frac{a(v, v) - \rho b(v, v)}{s(w, w) - 2\rho a(v, v) + \rho^2 b(v, v)} \right)^{-1}, \qquad (4.2)
$$
\n
$$
\text{minimum being taken over } w \in X \text{ such that}
$$
\n
$$
s(w, Tu) = a(v, u) \qquad \text{for all } u \in H_a. \qquad (4.3)
$$
\n
$$
\text{Proof: Evidently, } \mathcal{D}(A) \subset H_{\bullet}. \text{ To show the inclusion } H_{\bullet} \subset \mathcal{D}(A), \text{ suppose } v \in H_{\bullet}
$$
\net $w \in X \text{ be such that condition (4.3) holds. Since } TH_b \text{ is a closed subset of } X \text{ is a non-zero matrix of } X \$

the minimum being taken over $w \in X$ *such that*

$$
s(w,Tu) = a(v,u) \qquad \text{for all} \ \ u \in \mathbf{H}_a. \tag{4.3}
$$

Proof: Evidently, $\mathcal{D}(A) \subset \mathbf{H}_{\bullet}$. To show the inclusion $\mathbf{H}_{\bullet} \subset \mathcal{D}(A)$, suppose $v \in \mathbf{H}_{\bullet}$ and let $w \in X$ be such that condition (4.3) holds. Since TH_b is a closed subset of X it possesses an orthogonal projector. Denote by \hat{w} the orthogonal projection of w onto TH_b , $\hat{w} = T\hat{u}$ for some $\hat{u} \in H_b$. From $s(w - \hat{w}, T u) = 0$ for all $u \in H_a \subset H_b$ then there follows *a*(*x*) \subset **H**. To show the inclusion **H**. $\subset \mathcal{D}(\mathcal{D})$
 ach that condition (4.3) holds. Since $T\mathbf{H}_b$ is a
 *a g*onal projector. Denote by \hat{w} the orthogonal \hat{w}
 me $\hat{u} \in \mathbf{H}_b$. From $s(w - \hat{$

$$
a(v,u)=s(\widehat{w},Tu)=b(\hat{u},u) \qquad \text{for all} \ \ u\in \mathbf{H}_a
$$

giving the inclusion $v \in \mathcal{D}(A)$. Assertion (4.2) is now an immediate consequence of Theorem 1.3, since the inclusion $w \in TAv + (T\mathbf{H}_b)^{\perp}$ is equivalent to the equality $a(v, u) = s(\hat{w}, Tu) = b(\hat{u}, u)$ for all $u \in H_a$
 n $v \in \mathcal{D}(A)$. Assertion (4.2) is now an immedi

the inclusion $w \in TAv + (TH_b)^{\perp}$ is equivalent to
 $s(w, Tu) = s(TAv, Tu)$ for all $u \in H_b = \overline{H}_a$,

on (4.3)

$$
s(w,Tu) = s(TAv,Tu)
$$
 for all $u \in H_b = \overline{H}_a$,

and also to condition (4.3)

We sketch briefly the discretization of (4.2), which is of course analogous to the discretization of (2.2). Suppose $n \in \mathbb{N}$, $m \subset \mathbb{N}_0$, and suppose the following:

(R1) $v_1, \ldots, v_n \in \mathcal{D}(A) \subset \mathbf{H}_a$ are linearly independent.

(R2) w_1^* , \ldots , $w_n^* \in X$ satisfy $s(w_i^*, Tu) = a(v_i, u)$ for all $u \in H_a$ $(i = 1, \ldots, n)$.

(R3) $w_0^{\circ}, \ldots, w_m^{\circ} \in X^{\circ}$, where $w_0^{\circ} = 0$ and $w_1^{\circ}, \ldots, w_m^{\circ}$ are linearly independent.

 $H_b, s(\cdot, \cdot) = b(\cdot, \cdot)$ and $T = I$. Set

Again, the classical Lehmann-Maehly method is obtained by (1.8), choosing
$$
X = s(\cdot, \cdot) = b(\cdot, \cdot)
$$
 and $T = I$. Set
\n
$$
V_n = \text{span}\{v_1, \ldots, v_n\}, \quad X_n^{\circ} = \text{span}\{w_0^{\circ}, \ldots, w_n^{\circ}\}
$$
\n
$$
a_{ik}^{(0)} = b(Av_k, Av_i), \quad a_{ik}^{(1)} = a(v_k, v_i) \quad a_{ik}^{(2)} = b(v_k, v_i) \quad (i, k = 1, \ldots, n)
$$
\n
$$
b_{ik}^{(11)} = s(w_k^*, w_i^*) \quad (i, k = 1, \ldots, n)
$$
\n
$$
b_{ik}^{(12)} = \begin{cases} s(w_k^{\circ}, w_i^*) & \text{if } m > 0 \\ 0 & \text{if } m = 0 \end{cases} \quad (i = 1, \ldots, n, k = 1, \ldots, \max\{1, m\})
$$
\n
$$
b_{ik}^{(22)} = \begin{cases} s(w_k^{\circ}, w_i^{\circ}) & \text{if } m > 0 \\ 1 & \text{if } m = 0 \end{cases} \quad (i, k = 1, \ldots, \max\{1, m\})
$$
\n
$$
A_j = (a_{ik}^{(j)}) \quad (j = 0, 1, 2)
$$
\n
$$
B_{jl} = (b_{ik}^{(jl)}) \quad (j, l = 1, 2; j \le l).
$$

As in Section 2 we suppose $V_n \cap D_\rho = \{0\}$. Here, we have

$$
s(w^* + w^{\circ}, w^* + w^{\circ}) = x^H (B_{11} - B_{12} B_{22}^{-1} B_{12}^H) x \geq x^H A_0 x
$$

for

$$
A_j = (a_{ik}) \t\t (j = 0, 1, 2)
$$

\n
$$
B_{jl} = (b_{ik}^{(jl)}) \t\t (j, l = 1, 2; j \le l).
$$

\n
$$
B_{jl} = (b_{ik}^{(jl)}) \t\t (j, l = 1, 2; j \le l).
$$

\n
$$
s(w^* + w^o, w^* + w^o) = x^H (B_{11} - B_{12} B_{22}^{-1} B_{12}^H) x \ge x^H A_0 x
$$

\n
$$
v = \sum_{i=1}^n x_i v_i \t\t with \t x = (x_1, ..., x_n)^t \in \mathbf{C}^n \t\t and \t w^* = \sum_{i=1}^n x_i w_i^*
$$

\n
$$
\in \mathbf{X}_m^o \text{ defined by}
$$

\n
$$
s(w^o, w) = -s(w^*, w) \t\t for all \t w \in \mathbf{X}_m^o.
$$

and $w^{\circ} \in \mathbf{X}_{m}^{\circ}$ defined by

$$
s(w^{\circ}, w) = -s(w^{\star}, w) \quad \text{for all} \ \ w \in \mathbf{X}_{m}^{\circ}.
$$

Consider the right-definite matrix eigenvalue problem

$$
s(w^{\circ}, w) = -s(w^*, w) \quad \text{for all } w \in \mathbf{X}_m^{\circ}.
$$

Consider the right-definite matrix eigenvalue problem

$$
\tau \in \mathbb{R}, \ x \in \mathbb{C}^n: \qquad (A_1 - \rho A_2)x = \tau \left(B_{11} - B_{12} B_{22}^{-1} B_{12}^H - 2\rho A_1 + \rho^2 A_2 \right)x.
$$

Denote its non-zero eigenvalues by τ_i^- and τ_i^+ , Denote its r
 $n^- + n^+ \leq$

$$
\tau_1^- \leq \ldots \leq \tau_{n^-}^- < 0 < \tau_{n^+}^+ \leq \ldots \leq \tau_1^+
$$

n, and set

$$
n_1 \geq \dots \geq n_n - \langle 0 \rangle \cdot n_n + \langle 0 \rangle \cdot \langle 1 \rangle
$$

\nt
\n
$$
\Lambda^{p[n,m]}_{-i} = \rho + (\tau_i^{-})^{-1} \quad \text{for all} \quad i = 1, \dots, n^{-1}
$$

\n
$$
\Lambda^{p[n,m]}_{+i} = \rho + (\tau_i^{+})^{-1} \quad \text{for all} \quad i = 1, \dots, n^{+}.
$$

Theorem 4.2: Let $\rho^- < \rho$ or $\rho < \rho^+$. Then, we have

Variational Bounds to Eigenvalues 343
\nLet
$$
\rho^- < \rho
$$
 or $\rho < \rho^+$. Then, we have
\n
$$
\Lambda_{-i}^{\rho[n,m]} \leq \lambda_{-i}^{\rho} \quad \text{for } i = 1, ..., \min\{n^-, k_{\rho}^-\}
$$
\n
$$
\Lambda_{+i}^{\rho[n,m]} \geq \lambda_{+i}^{\rho} \quad \text{for } i = 1, ..., \min\{n^+, k_{\rho}^+\},
$$
\n(4.4)

respectively.

Proof: We will prove the first inequality of (4.4) only. Here, one has

$$
\tau_{i}^{-} = \inf_{\substack{v \in C_{n} \text{ only } v \neq v \in V}} \max_{v \neq v \in V} \frac{x^{H}(A_{1} - \rho A_{2})x}{x^{H}(B_{11} - B_{12}B_{22}^{-1}B_{12}^{H} - 2\rho A_{1} + \rho^{2}A_{2})x}
$$
\n
$$
= \inf_{\substack{v \in V_{n} \text{ only } v \neq v \in V}} \max_{v \in w^{*} + X_{m}^{e}} \frac{a(v, v) - \rho b(v, v)}{s(w, w) - 2\rho a(v, v) + \rho^{2}b(v, v)}
$$

with $V_n \subset \mathcal{D}(A)$ and $w^* + \mathbf{X}_m^{\circ} \subset TAv + \mathbf{X}^{\circ}$. Theorem 1.3 yields

$$
\Lambda_{-i}^{\rho[n,m]} = \rho + (\tau_i^-)^{-1} \le \rho + (\sigma_i^-)^{-1} = \lambda_{-i}^{\rho}
$$

and the assertion is proved **^U**

According to Theorem 4.2, the bound $\Lambda_{\pm i}^{\rho [n,m]}$ Theore
 $\sum_{i=1}^{n} \rho + (c_i - c_i)$
 $\sum_{i=1}^{n} \rho_i$
 $\sum_{i=1}^{n} \rho_i$ is obtained through a shift and inversion process resembling Wielandt's inverse iteration. Here, only one step of the iteration is applied. Instead, the numbers n, m are increased in order to achieve sufficient accuracy. In particular, the Lehmann-Maehly method for right-definite problems can be regarded as one step of Wielandt's inverse iteration for the subspace $V_n \subset \mathcal{D}(A)$. Consequently, Wielandt's eigenvalue approximations are in fact bounds to eigenvalues.

In order to compare the right- and left-definite methods, assume that problem (4.1) satisfies also the assumptions of Section 2. Then, both versions can be applied, each of them involving the Rayleigh-Ritz matrices $A_1 = (a(v_k, v_i))_{ik}$ and $A_2 = (b(v_k, v_i))_{ik}$. In addition, *Av*<sub>**n**</sup> $\mathbf{A}v_i = \left(-\frac{1}{2} \int \frac{1}{2} \$

$$
B_{11} - B_{12}B_{22}^{-1}B_{12}^H \simeq A_0 = (b(Av_k, Av_i))_{ik}
$$

$$
C_{11} - C_{12}C_{22}^{-1}C_{12}^H \simeq A_3 = (a(Bv_k, Bv_i))_{ik}
$$

are required in the respective approaches, $B = A^{-1}$.

Consider e.g. the eigenvalue problem given in Section 3. With $v_i \in \mathcal{D}(A)$ the elements *Avi* can be obtained through differentiation,

$$
Av_i = \left(-\operatorname{div}(\alpha \operatorname{grad} v_{i, I} + \mathbf{v}_{i, II}) + v_{i, I}, \operatorname{grad} v_{i, I} + 2\mathbf{v}_{i, II}\right)
$$
(4.5)

whereas Bv_i is the (weak) solution of a boundary value problem, namely (3.1). When applying the right-definite version difficulties mostly arise in finding trial functions v_i which are sufficiently smooth and fulfill all boundary conditions.

Continuing the numerical example of Section 3, we set $\alpha(x, y) = 1 + x^2 y^2$ for $(x, y) \in$ Ω . In this case, there exists essential spectrum $\sigma_{\rm e} = [1, \frac{3}{2}] \cup \{2\}$ and point spectrum in $(2, +\infty)$. Denote the *i*-th eigenvalue above 2 by λ_i . Since the operator *A* in **H** is well known the right-definite Lehmann-Maehly method can be applied to the trial functions $v_i \in \mathcal{D}(A)$ of Section 3 and the elements given in (4.5). Again, $\rho = 2 = \max \sigma_e$ provides 344 S. Zimmermann and U. Mertins
 $v_i \in \mathcal{D}(A)$ of Section 3 and the elements given in (4.5). Again, $\rho = 2 = \max \sigma_e$ provides

upper bounds to λ_i . We then successively choose $\rho \approx 0.9 \Lambda_{+i}^{2[56,0]}$ for $i = 2,4,5,7,9$. Under the heuristic assumption that

$$
2 < \lambda_1 < 25 < \lambda_2 \leq \lambda_3 < 46 < \lambda_4 < 62 < \lambda_5 \leq \lambda_6 < 82 < \lambda_7 \leq \lambda_8 < 117 < \lambda_9
$$

Theorem 4.2 gives upper [lower] bounds to $\lambda_1, \ldots, \lambda_8$ shown in the upper [lower] triangle of Table 2.

Table 2:
$$
\Lambda_{+i}^{\rho} = \Lambda_{+i}^{\rho[56,0]}
$$
 for $\rho = 2$ and $\Lambda_{\pm i}^{\rho} = \Lambda_{\pm i}^{\rho[84,0]}$ for $\rho \neq 2$; $\alpha(x,y) = 1 + x^2 y^2$;
\n $\Lambda_{+9}^{2[56,0]} = 130.32$.

Acknowledgement. The authors would like to thank Professor Waldemar Velte whose comments helped to improve the presentation of this paper.

References

- [1] Alama, S., Deift, P. A. and R. Hempel: *Eigenvalue branches of the Schrädinger operator* $H - \lambda W$ in a gap of $\sigma(W)$. Comm. Math. Phys. 121 (1989), 291 - 321.
- *[2] Albrecht, J.: EinschlieJJung von Eigenwerten bei Schwingungen von Kreisbögen. Z.* Angew. Math. Mech. (ZAMM) 63 (1983), 387 - 389.
- *[3] Albrecht, J. and F. Goerisch: Anwendungen des Verfahrens von Lehmann auf Schwingungsprobleme.* In: Numerical Treatment of Elgenvalue Problems (Vol. 4) (Intern. Ser. Numer. Math.: Vol. 83) (eds: J. Albrecht et al). Basel-Boston: Birkhäuser Verlag 1987, *pp.* 1 - 9.
- *[4] Behnke, H.: Calculation of bounds for sloshing frequencies with the use of finite elements.* Z. Angew. Math. Mech. (ZAMM) 67 (1987), T 347 - T 349.
- [5] Behnke, H. and F. Goerisch: *Inclusions for eigenvalues of selfadjoint problems.* In: Topics in Validated Computations (ed.: J. Herzberger). Amsterdam: Elsevier (North-Holland) 1994, pp. 277 - 322.
- [6] Behnke, H. and U. Mertins: *Eigenwertschranken für das Problem dci' freischwingenden rechteckigen Platte und Untersuchungen zum Ausweichphdnomen. Z.* Angew. Math. Mech. (ZAMM) 75 (to appear).
- [7] Descloux, J., Nassif, N. and J. Rappaz: *On spectral approximation.* Parts 1 and 2. RAIRO Anal. Numér. 12 (1978), 97 - 112 and 113 - 119.
- *[8] Goerisch, F.: Eine Verallgemeinerung eines Verfahrens von N. J. Lehmann zur Emschlieflung von Eigenwerten. Wiss. Z.* Tech. Univ. Dres. 29 (1980), 429 - 431.
- *[9] Goerisch, F.: Eigenwertschranken und komplementäre Extremalprinzipien.* Habilitationsschrift. Clausthal: Techn. Univ. 1986.
- *[10] Goerisch, F. and H. Haunhorst: Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichtrngen. Z.* Angew. Math. Mech. (ZAMM) 65 (1985), 129 - 135.
- [11] Goerisch, F. and S. Zimmermann: *On Trefftz's method and its application to eigenvolue problems. Z.* Angew. Math. Mech. (ZAMM) 66 (1986), T 304 - T 306.
- *[12) Gruber, R. and J. Rappaz: Finite Element Methods in Linear Ideal Magnetohydrodynam*ics. Berlin - Heidelberg: Springer-Verlag 1985.
- [13) Kato,T.: *Perturbation Theory for Linear Operators* (2nd ed.). Berlin Heidelberg New York: Springer-Verlag 1976.
- *[14] Lehmann, N. J.: Beiträge zur numerischen Lösung linearer Eigenwertprobleme.* Parts I and II. Z. Angew. Math. Mech. (ZAMM) 29 (1949), 341 - 356 and 30 (1950), 1 - 16.
- *[15] Maehly, H. J.: Ein neues Verfahren zur gendherten Berechnung der Eigenwerte hermitescher Operatoren.* Helv. Phys. Acta 25 (1952), 547 - 568.
- [16] Messiah, A.: *Quantum Mechanics. Vol. 2.* Amsterdam: North-Holland. 1970.
- *[17] Raikov, G. D.: The spectrum of a linear magnetohydrodynamic model with cylindrical symmetry.* Arch. Rat. Mech. Anal. 116 (1991), 161 - 198.
- *[18] Rappaz, J.: Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of plasma.* Numer. Math. 28 (1977), 15 - 24.
- [19] Velte,W.: *Direkte Methoden der Variationsrechnung.* Stuttgart: B. C. Teubner 1976.
- *[20] Weidmann, J.: Oszillationsmethoden für Systeme gewi.hnlicher Differentialgleichungen.* Math. Z. 119 (1971), 349 - 373.
- *[21] Weinberger, H. F.: Variational Methods for Eigenvalue Approximation.* Philadelphia (Pennsylvania): SIAM 1974.
- *[22] Weinstein, A. and W. Stenger: Methods of Intermediate Problems for Eigenvalues.* New York - London: Acad. Press 1972.
- [23] Wolfram, S.: Mathematica. A System for Doing Mathematics by Computer (2nd ed.). Redwood City (California): Addison-Wesley 1991.
- *[24] Zimmermann, S.: Comparison of errors in upper and lower bounds to eigenvalues of selfadjoint eigenvalue problems.* Numer. Funct. Anal. Optim. 15 (1994), 943 - 960.

Received 23.09.1994