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Abstract. In the present paper a method by Lehmann-Maehly and Goerisch is extended to 
self-adjoint eigenvalue problems with arbitrary essential spectrum. This extension is obtained 
by consequently making use of the local character of the method. In this way, upper and 
lower bounds to all isolated eigenvalues are derived. In our proofs, the close relationship to 
Wielandt's inverse iteration becomes quite obvious. 
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0. Introduction 
The characterization of eigenvalues of self-adjoint eigenvalue problems by a minimum-
maximum principle for the Rayleigh quotient forms the basis for the famous Rayleigh-
Ritz method. As is well known, the method allows for a straightforward and efficient 
computation of non-increasing upper bounds to eigenvalues below the essential spec-
trum. In [141 and [15], Lehmann and Maehly independently developed complementary 
eigenvalue characterizations that provide a possibility to calculate corresponding lower 
bounds (see also [21: Chapter 4.111). More precisely, they introduce a spectral pa-
rameter and construct minimum-maximum as well as maximum-minimum principles 
for Temple's quotient. From this, upper and lower bounds are deduced. In particular, 
the Rayleigh-Ritz method can be interpreted as a special application of the Lehmann-
Maehly method. In general, however, the Lehmann-Maehly method is applicable only 
if certain quantities can be determined explicitly. Especially when treating partial dif-
ferential equations, difficulties may arise. Of great importance for practical applications 
is therefore a generalized version by Goerisch (see [5, 8, 10]) that combines high flexi-
bility and good convergence properties. Usually, very satisfying inclusion intervals are 
obtained from a combination of Rayleigh-Ritz and Goerisch calculations (see [2 - 6, 10, 
111).

Some very interesting eigenvalue problems however possess isolated eigenvalues A E 
(p — , p+ ), where both p and p+ belong to the essential spectrum. Examples are the 
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Dirac equation (see [16: P. 952] and [20]), the Schrödinger operator [1] and the linearized 
equations of ideal magnetohydrodynamics (see [12: Chapters 1.2 and 3.21 and [17]). 

So far, no bounds have been constructed for such interior eigenvalues A. A Rayleigh-
Ritz calculation does not necessarily give bounds. Moreover, it was shown that an 
additional convergence criterium has to be satisfied in order to guarantee convergence 
of Rayleigh-Ritz approximations (7, 18). In problems with interior eigenvalues, a spectral 
parameter appears to be particularly useful. We shall derive here an extension of the 
Goerisch method that gives bounds also to interior cigenvalues. In our development we 
generalize the Lehmann-Maehly variational principle in such a way that an appropriate 
discretization readily produces Goerisch's method - a result which in itself is at least of 
theoretical interest. 

In Section 1, we characterize eigenvalues of a self-adjoint operator by new variational 
principles. In what follows, we consider two types of variationally posed eigenvalue 
problems as there .exist two non-equivalent versions of the Goerisch method. In Section 
2, we apply results of Section 1 to left-definite eigenvalue problems, Section 3 giving 
a numerical example for the inclusion of interior eigenvalues. In Section 4, the right-
definite theory is developed and applied. 

1. Characterizations for eigenvalues of self-adjoint operators 

Let H be a separable, complex Hilbert space with inner product (.,.) and norm 
and suppose we are given a self-adjoint operator A in H with domain V(A). Denote by 
a(A) and oe(A) the spectrum and the essential spectrum of A, 

a, (A) = {A E (A) : A is an accumulation point of 

U {A e a(A): A * is an eigenvalue of infinite multiplicity}. 

If the spectrum-a(A) of A is bounded from below and begins with isolated eigenvalues 
of finite multiplicity,

<inf(A) 

(eigenva.lues are always repeated according to their multiplicities), these eigenvalues can 
be characterized by well known variational principles, e.g. the Poincaré principle (cf. 
[22: Chapter 2])

.A'= inf max   VCD(A) 0;4vEV (V, V) 

If in addition ae(A) 54 0, the number of isolated eigenvalues AT below Ce(A) is either 
infinite with AT = infa(A) or finite, i.e. equal to k for some k E N. We then 
set Aj 1 = A 2 = ... = infa(A). As a consequence, (1.1) holds for i E .1W in both 
cases (cf. [21: Chapter 3.5]). 

If c(A) is bounded from above and begins with isolated eigenvalues A, sup a, (A) < 
an analogous principle is obtained, with "inf" and "max" being replaced 

by "sup" and "mm", respectively.
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Evidently, interior eigenvalues are not accessible for this kind of variational princi-
ples. Therefore, a spectral parameter p is introduced. For fixed p E JR set 

P - = sup JA E ae(A): A <p} e JR U {-oo}. 

Provided p < p and p is no accumulation point of (p, p) fl o(A), this intersection 
is either empty or consists of a countable number of eigenvalues of finite multiplicity. It 
is then possible to introduce the following local notation for these eigenvalues: 

	

P <...	A	... <A2	<p, 

where k E J,V0 denotes the number of eigenvalues we are interested in. 
The definition of p E RU fool and A, for i = 1,.. . , k is analogous and can thus 

be omitted. 
If p e JR is no accumulation point of a(A) - though it may possibly be an eigenvalue 

of arbitrary multiplicity of A - we have the following situation: 

	

A 2	A 1	p	A1	A2	'\Pk+ 

In applications the boundary points in JR of the essential spectrum are often well 
known. They represent particularly well suited choices for our spectral parameter p (see 
the examples of Sections 3 and 4). 

First, we shall characterize the eigenvalues by three different variational princi-
ples which allow to construct lower bounds to AP i for i = 1,... ,k, and upper bounds 
to A for i = 1,... , k. By an appropriate choice for pit is thus possible to reach every 
isolated eigenvalue of A. 

In order to construct variational principles for \'±i let 

Dp {uEV(A): Au=pu} 

and consider the restriction of A -- p1 to 

V(A)e D = {u E V(A) : (u v) = 0 for all v E D}. 

As D is a reducing subspace for A, we have the inclusion 

o(A) C a(AID(A)OD ) U {p}. 

In particular, (A — pI)Iv(A)QD, is invertible. We set 

Rp = ( ( A — pI)Iv(A)eD) 

and consider the eigenvalue problem for the self-adjoint operator R in D. Now, 
(A,u) E JR x D(A) with A p is an eigenpairof A if and only if ((A - p)-1,u) is an 
cigenpair of R. Set

= ( A " — p)'	and	at (Az- 'Y1
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for i = 1,..., k, so that we arrive at

andA P	 (1.2)


respectively. 

a- 	 0	 ...	y+	a 

Poincaré's principle applied to R now gives the following characterizations. 
Theorem 1.1: Let p < p. Then 

= p + (inf max (Av,v) - P(V,V)	
(1.3)
V O;"VEV I(A - pI)v 112 I 

holds for i = 1,.. . , k, the infimtLm being taken over all subspaces V of V(A) that 
satisfy

dim  = i	and	Av 54pv for all 0 v E V.	 (1.4)


If p < p, we have

= p+ (sup nn	 (1.5) 

for i = 1,... ,k and with V as in (1.4). 

Proof: Suppose k, > 1. The spectral mapping theorem [13: Chapter III, Section 
6.3] gives

= (( A I p(A)eD) - 
where

-	I a(S)	if S is bounded 
I. a(S) U {} otherwise. 

The mapping A a = (A - p)+ transforms the eigenvalues A (i = 1,.. . , k) of A 
into eigenvalues al of R, without changing their multiplicities. The spectrum of R is 
bounded from below and begins with the eigenvalues 

a <...<a	<infcre(Rp). 

We apply Poincaré's principle (1.1),

(Rpu,u) 
=	inf	max	for z = 1,... ,k, (1.6)
UCV(R) O^uEU (u, u) 

di,,, (I 

substitute w = Ru and replace U C D(R) by W C V(A) e D, 

a =	inf	max (w,(A—pI)w) for i = 1,... ,k. (1.7)

WCD(A)ODp O^WEW II( A - pI)w112 di,,, W
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Evidently, every subspace W admissible in (1.7) satisfies (1.4). Conversely, suppose that 
(1.4) holds for a subspace V of V(A), and denote by P the orthogonal projector in H 
onto the orthogonal complement of D. Then W = PV is admissible in (1.7), and for 
vEVandw — PvEWwehave 

(A - pI)v = (A - pI)w	and	(v, (A - pI)v) = (w,(A - pI)w).


Thus, we find

(v,(A —pI)v) 
= inf	max	 for i = 1,. .. ,
vcv(A) O#vEV 11(A - pI)v112 (1.4) 

giving (1.3). Formula (1.5) is obtained in exactly the same way I 

Note that equation (1.6) together with (1.2) already indicates a close relationship 
to Wielandt's inverse iteration dealing with matrix problems. 

Motivated by Goerisch's approach we now generalize the characterisations (1.3) and 
(1.5) of the eigenvalues in two different ways, in order to enlarge the range of applicability 
of the derived methods (cf. Remark 2.2). 

In addition to our initial assumptions suppose that X is a complex Hubert space 
with inner product s( . ,.), and that T: H -i X is an isometry 

s (Tu, Tv) = (u, v)	for u,vH. 

The choice 

X=H,	.s(u,v)=(u,v) for u,vEH,	Tv=v for vEH	(1.8) 

gives the procedure of Lehmann-Maehly (cf. Remark 2.2). 
Denote by

X°={wX: s(w,Tu)=O for uEH} 

the orthogonal complement of TH in X. The quantities X, s and T provide the following 
complementary variational principles. 

Lemma 1.2: Suppose S is a self-adjoznt operator in H with domain V(S). Then 
for v E D(S) given, we have 

(Sv,Sv) = max {(sv,f) + (Sv,f) - (f,f): f E H} 

	

(Sv,Sv) = min {s(TSv + w* , TSv + w°): w° E X- 	(1.9) 

Proof: For vED(S),fEH and z=TSv+w° with w' EX° one obtains. 

0 (Sv - 1, Sv - 1) = ( Sv, Sv) - (Sv, Jr) - (Sv, 1) + (1,1) 
and

0 .s(z - TSv, z - TSv) = s(z, z) - (Sv, Sv) 

which gives the assertion I
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We mention that relation (1.9) still holds when s( . ,.) denotes a positive semidefinite 
sesquilinear form in X. For simplicity, we restrict our considerations to the positive 
definite case. It was pointed out in [9j that many well known complementary variational 
principles can be derived from (1.9) by an appropriate choice of X, .s(,.) and T. e.g. 
those given in [19: Chapter 4.1.4. 

New characterizations for Al i can be deduced by application of (1.9) with S = A 
and S = A- ', respectively. 

Theorem 1.3: Let p <p. Then, 

inf maxmm	 (Av, v) — p(v, v) 

	

VCD(A) O#vEVwETAv+X 0 s(w,w) - 2p(Av,v) + P2(V,V))	
(1.10) 

\	(1.4) 

holds for i=1,...,k; 

Proof: Let 1 i k. We apply Theorem 1.1 and relation (1.9) for S = A, 

= inf	max	.	 (Av,v) - p(v,v)	 .	
(1.11) VCD(A) 00vEV m1nWETAV+x{ .s ( w , w )} - 2p(Av,v) + p2(v,v) (1.4) 

Due to o <0 it suffices to take the infimum over subspaces V of D(A) satisfying 

dimV = i	and	(Av,v) <p(v,v) for all 0 54 v E V.	(1.12) 

Inserting this into (1.11) provides 

= inf max	mm	 (Av,v) - p(v,v) 
VCV(A) 03dvEV wETAv+X° s(w,w) - 2p(Av,v) + p2(v,v) (1.4) 

and thus (1.10) I 
Theorem 1.4: Suppose 0 V a(A), p >' 0 and p <p. Then we have 

	

(v, v) - p(A'v,v)	 —1 

= + (
	

max	mm
OOvEV wETAv+X 0 (v, v) - 2p(A'v, v) + p2 s(w, w) - 

i)	(1.13) 

for 1 < i < k; such that .\", is positive. Here, V varies over subspaces of H satisfying 

dimV = i	and	v pA'v for all 0 54 v E V.	 (1.14) 
Proof: Due to our assumptions, A : D(A) —p H is a bijection. We combine 

Theorem 1.1 and relation (1.9) for S = A', giving 

= inf max	(Av,v) - p(v,v) 
VCD(A) OOvEV (Av,Av) - 2p(Av,v) + p2(VV) 

(1.4) 

= inf max	(v,A'v) -p(A'v,A'v) 
YCH OOVEV (v, v) - 2p(v,A 1 v) + p2(A1v,A'v) 
(1.14) 

= p' inf max
	

(v, v) - p(v, A'v)	
- i) vcH O*vEV (v,v) - 2p(v, A'v) + p2 min (1,14)	 WETA_IV+xo{s(w,w)}
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Here, A!. i > 0 implies i < —p <0. Thus, we can restrict the infimum to subspaces 
V of H satisfying 

dimV=i	and	(v, v) <p(v,A'v) for all O 54vE V.	 (1.15)


Employing (1.15) we find 

-	1	
f max	mm	 (v,v)—p(v,A'v)	

—1 a	in I	
p (v C H 096VEVWETA_1V+Xo  (1.14)	 (v,v) — 2p(v,A 1 v) +p2s(w,w)	) \  

and the assertion is proved U 

Through a reformulation of Theorems 1.3 and 1.4 one can derive characterizations 
for AP i that involve the following generalized Temple quotients: 

s(w,w) - p(Av,v) 
for v E V(A), w E TAv + X°, (v,Av) — p(v,v) 0 0	(1.16)
(Av,v) — p(v,v) 

(v, v) —p(v,A'v)	for v E H, w  TA_1v+X0, (v,A 1 v) —ps(w,w) 54 0. (1.17)
(v,A 1 v) — ps(w,w) 

In the situation of (1.8), these yield the classical Temple quotients 

	

(Av, (A — pI)v)	and	(v, (I — pA' )v) 

	

(v,(A—pI)v)	 (A'v,(I—pA)v) 

Observe that by p -p ±oo in (1.16) and p -i 0 in (1.17) the Rayleigh quotient of A 
and the inverse of the Rayleigh quotient of A' is produced. 

Corollary 1.5: Let p <p. Then 

= sup min	max s(w, w) — p(Av, v) 
VCD(A) OOVEVWETAV+X° (Av,v) — p(v,v) 

(112) 

holds for i=1,...,lç. 

Corollary 1.6: Suppose 0 V a(A), p> 0 and p <p. Then 

A P	 .	 . .	(v, v) —p(v,A' v) 
= sup mm	max	 (1.18) 

vcji Oi4 VE V WETA_ I V+X o (v,A'v) - ps(w,w) 

holds for 1	i	such that Ap i is positive. 

Remark 1.7: In Theorems 1.3 and 1.4, interchanging "inf" and "sup" as well as 
"mm" and "max" gives characterizations for A, with (1.12) and (1.15) being replaced 
by	.	 . 

dim V=i	and	(Av, v) > p(v, v) for all 0vEV
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and
dim  = i	and	(v,A'v) > p(A'v,A'v) for all 0 54 v E V, 

respectively. The same applies to Corollaries 1.5 and 1.6. In Corollary 1.6, however, 
w E TAv + X° is then further restricted by 

(v,A'v) > ps(w,w). 

The proofs follow the exact pattern of the previous ones. 

In applications one often finds eigenvalue problems which are given in variational 
form. In what follows we shall therefore employ the results of this section in order to 
construct variational bounds to eigenvalües of such problems. 

2. The left-definite Goerisch method 
Let Ha be a separable, complex Hilbert space with inner product a( . ,.) and norm 
Suppose b( . ,.) is a continuous, Hermitian, sesquilinear form on Ha X Ha such that 
U E Ha and b(u, v) = 0 for all v E H 0 implies u = 0. We then consider the left-definite, 
variationally posed eigenvalue problem 

Find \ E JR and non-trivial u E Ha such )
(2.1) 

that a(u,v) = Ab(u,v) holds for all v E Ha. J 

Denote by B the bounded self-adjoint operator in H 0 that satisfies 

a(Bu,v) = b(u,v)	for all U,V E Ha. 

By assumption, B possesses a seif-adjoint inverse B' in Ha. For an application of the 
results of Section 1, we make the identifications 

H=Ha,	(u,v)=a(-a,v) for all U,VEHa,	A=B' 

and we assume that X is a complex Hilbert space with inner product s( . ,.) and equipped 
with an isometry T : H 0 - X. Fix p E 1R, p > 0. All assumptions of Section 1 are 
then satisfied with 

D = { u E H 0 : a(u,v) = pb(u,v) for all v E H0} 

Evidently, (2.1) is equivalent to the eigenvalue problem for A. Hence, o(A) and e(A) 
represent the spectrum and the essential spectrum of (2.1), with 0 a(A). We adopt 
from Section 1 the definition of p, k and .\. 

In Theorem 1.4 and Corollary 1.6, we have formulated two equivalent characteri-
zations for .X each of which is easily discretized. A discretization of (1.18) has the 
advantage that no transformation of eigenvalues is needed. Furthermore, p -* 0 obvi-
ously produces the Rayleigh-Ritz method. In general, however, the finite-dimensional 
eigenvalue problem derived from (1.18) involves two indefinite matrices. For this reason 
we prefer (1.13) which produces right-definite matrix eigenvalue problems in any case. 
We thus continue with a reformulation of Theorem 1.4 for left-definite, variationally 
posed eigenvalue problems.
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Corollary 2.1: Let p <p. Then

—1 

	

= p + p (	inf	max mm	a(v, v) - pb(v, v)	
-	(2.2)
VCH.dim V=i O ^ v E V w a(v, v) - 2pb(v, v) + p2 s(w, w) VflD

,
=(0) 

holds for 1 < j	k; such that A . , is positive, the minimum being taken over w E X

such that

s(w,Tu) = b(v,u)	for all u E Ha.	 (2.3) 
Proof: Since (2.3) is equivalent to the inclusion w E TBv + X°, the assertion 

follows immediately from Theorem 1.4 I 

An analogous characterization holds for ) (see Remark 1.7). 

For a discretization, suppose n E N, m E EV0 , and suppose the following: 
(Li) Vi,. . . , V E Ha are linearly independent. 

(L2) w,... , w E X satisfy s(w, Tu) = b(v, u) for all u e H. (i = 1,. . . , n). 

(L3) w00 ,... , w°m e X°, where w0 = 0 and w ,. .. ,w °	 ° are linearly independent. 
Here v1,.. ,v, are Rayleigh-Ritz trial functions. In addition, the Goerisch approach 
requires w, and w° depending on v- and the choice of X, s and T. 

Remark 2.2: In the Lehmann-Maehly approach which is characterized by (1.8), 
one has

	

X	Ha,	s(.,.) = a( . ,.),	T= I,	X° = {0} 

so that wt is the unique solution of the linear problem 

Seek w E Ha such that a(w,u) = b(v,u) for all U E Ha.	(2.4) 

Only if this problem is too expensive or even impossible to solve, Goerisch's version is 
applied. It replaces (2.4) by the linear problem 

Seek w E X such that s(w,Tu) = b(v,u) for all U E Ha.	(2.5) 

Provided X° 54 {0}, there exists a manifold of solutions. With X, s and T being chosen 
appropriately, it is much easier to find a particular solution of problem (2.5) than to 
solve exactly problem (2.4). Solutions w° E X° of the homogeneous equation (2.5) 
are then used to approximate the residual Tw - where and WiG denote 
solutions of problems (2.4) and (2.5), respectively. Note that the idea of this approach is 
not to improve Lehmann-Maehly bounds but to enlarge widely the range of applicability 
of the method.	 . 

Set
V. = span{v i ,...,vn}	and	X = span{w,... , W° m}. 

For convenience, we assume
V. fl D = {0}.	 .	(2.6)
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Whenever (2.6) is violated, one eliminates from V all exact eigenvectors corresponding 
to p. Let

	

= a(vk,v),	1	-	 (3) (2)	b(vk,v	= a(Bvk, By1)	(i, k	1,... , n) ), a ik - 
(11)	*	*	(z,k = 1,... ,n) Cik = S ( W k, W 

(12)_ fs(w,w) if in >0	(i = 1,.. . ,n; k = 1,... ,max{1,m}) Ck	10	if m = 0 
(22) - f s(w°,w°) if m >0	(z,k = 1,... ,max{1,m}) C:k	1,	if in = 0 

(a)	(j = 1,2,3) ik 

C31 = (cj)	(j,l = 1,2;j	1). 

Lemma 2.3: Let v = 
I:n xv1 with x = (x i ,. .. ,x) 1 E C', W * =	x,w, 

and w° E X 0 with

s(w°,w) = _s(w*,w)	for all w E X.	 (2.7) 

Then
(C11 - C12CC)x = s(w* + W* , W* + w°) 

=min{s(w*+w,w*+w): wE X} 

> XH3X 

holds. 

Proof: (i) For in > 0, there exists y = (yi,... ,ym)t E Ctm such that w° = 
YzW. The equation (2.7) is equivalent to C22 y = —Cfx, giving 

.s(w* + W * ' w * +w°) = .s(w* + w o , w*) =	(C11 - C12 C'C)x.	(2.8) 

Trivially, equality holds in (2.8) for in = 0. 
(ii) For arbitrary w E X°equation (2.7) gives M , 

s(w* + w, w + w) s(w* + w°, w + w°) + s(w° - w, w° - w). 

(iii) Since w e TBv + X°, w° E X 0 , Lemma 1.2 yields 

s(w* + w°, w + w°) ^! min{s(TBv + w, TBv + w): w E X°} a(Bv, By). 

Thus the assertion is proved I 
Consider the matrix eigenvalue problem 

T E IR,x E C: (A 1 - pA2 )x = T(Al - 2pA2 + p2 (Cii - Ci2 CCj'))x. (2.9) 

Assumption (2.6) guarantees the positive definiteness of A 1 - 2pA2 + p2 A3 . By Lemma 
2.3, this implies the existence of n real eigenvalues and corresponding eigenvectors for
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problem (2.9). Observe that C11 — C12 C 1 C = A3 if the Lehmann-Maehly method 
is applied. Denote all eigenvalues r of problem (2.9) in JR \ [0, 1) by r and r7 and 
arrange them in the order 

with n + n	Then we set 

AmJ=P+P(T._1)_1	for i=l,.,n 

for i=1,...,nt 

Theorem 2.4: For p < p and 1 <i < min{n, k}, we have

(2.10) 

For p < p and 1 < i min{n,k}, we have 

AP+mj 

Proof:  We restrict ourselfes to the proof of (2.10). With the notation introduced 
in Lemma 2.3, we find 

	

0 > r 
t 
7 = min max	 x"(Ai pA2)z 

00zEV xH(A i —2pA2 +p2 (Cii —Ci2C'C))x 

	

= min max	 a(v, v) — pb(v, v) 
VCvn 

dim V, OVEV a(v, v) - 2pb(v, v)+ p2s(w* +w°, w ,+ W0)


	

= min max	mm	a(v,v)—pb(v,v) 

dim V, 0 0 vEV wEw*+X ,, a(v, v) - 2pb(v, v) + p2s(w, w) 

By construction, we have V, C Ha, V, fl D = (0) as well as s(w,Tu) = b(v,u) for 
tiE Ha and w  w +X. Thus, 

—1 >	inf	max mm	a(v,v) - pb(v,v) 
VCH,dmV O^vEV (23) a(v, v) - 2pb(v, v) + p2.s(w, w) — 

1 

Corollary 2.1 provides 2.10 I 

Remark 2.5: Note that the selfadjoint operator A in H is only of theoretical 
interest, and that it is not required in the calculation of bounds. 

For convergence results, see [241.
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3. Numerical example 

We shall consider an eigenvalue problem for partial differential equations that was sug-
gested in [71 as a model problem for the study of numerical phenomina in the spectral 
approximation of the ideal linear magnetohydrodynamics equations ("pollution effect"). 

Let 

ci =(-1,1) x (-1,1) C JR2	and	Ha = H(Q) X (L2 (Q) X L2(ci)). 

We define 

a(u, v) = f (a grad u grad i + grad uj ii + ui grad ij + u l fi l + 2ujj 

b(u,v) = f (Ulf)l + un 

for u = ( u I, u IJ), v = (vi, vii) E Ha with a E C(), a(x,y) >0 and (2a— 1)(x, y) > 0 
for (x, Y) E ci. 

The inner product a( . ,.) gives a norm in Ha which is equivalent to the natural norm 
of this product space. By partial integration one shows that (2.1) is a weak form of the 
boundary value problem 

	

—div (a grad u + u ll) = (A - 1)u i	in ci 

	

gradu1 + uu = (A - 1)uii	in ci 

u i = 0	 on 511. 

Here, the spectrum is non-negative and depends on the choice of a. In any case, A = 2 
is an eigenvalue of infinite multiplicity since for each 0 54 u e H2 (ci) an eigenpair of 
(2.1) is given by

(2, (0, (u p , —u i ))) E JR X Ha. 

(a) In the Lehmann-Maehly approach (cf. Remark 2.2) we have X = Ha, .s( .. ) = 
a( . ,) and T = I. Then, for each trial function v 1 e Ha, the equation (2.4) which is a 
weak form of the following second order boundary value problem has to be solved for 
W = j,( w 1 , w 11 ) E Ha: 

—div (a grad w' 1 +w ,11 ) = Vi,l	in	ci 

grad w' 1 + w 11 =	 in ci	 (3.1) 

= 0	on 511. 

(b) In Goerisch's approach we set 

X = L2( Q) x (L2 (ci)) 2 x (L2(cl))2 

s(u, v) = jo (
au lli V111 + urn Vii + ull . V111 + ulvi + 2 Un vii)dci
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for
U = (ui, U 11 7 UI11), v = (UI, VII, viii) E X 

and
T: H. D (fi, fii)'— (fi, fii, grad fi)EX. 

The linear equation (2.5) reduces to a weak form of a first order partial differential 
equation plus an algebraic equation for w = ( w 1 , w 11 ,w 111 ) E X: 

	

—div (cw 111 + w 11 ) + W Vi,I	
in ft 

w 111 + 2w :11 = Viii J 

These are solved by

Wi =	2a— 1	2a— 1	
E X. 

For each w2 E H'(Q) x H'(l) admissible solutions of the homogeneous equation are 
given by

	

;= (div(2a - 1)w, —w i , 2w,.) E X°.	 (3.2) 

In our calculations of bounds we restrict the problem to the symmetry classes (in-
variant subspace) 

Ha = H(Q) ( °'° ) < (L2(f)(''0) X 

X = L2 (°'°	(L2(10) x L2()(0 ' 1) ) x (2oo x 

respectively. Here, L 2 (fl)(0 1 a2) denotes the subspace of L2 (l) formed of all functions 
symmetric with respect to the i-th axis, if a = 0 and antisymmetric with respect to the 
same axis, if a = 1 (i E {1,2}). 

We use polynomial trial functions v 1 ,... , v E H 0 , orthogonalized with respect 
to the inner product b( . ,.) and generated via a suitable enumeration by the following 
functions in H0: 

(x,y) _((x2 - 1)x2'(y2 - 1)y21 (0, 0)) 
1 

(X Y) 	(0,(x2i+1y2k,o))	

J	
for i,kEvo. 

(X Y)	(o, (0, x221)) 

	

Furthermore, the solutions w',. . . ,	E X° of the homogeneous equation are con-




structed according to (3.2) with the following functions in H'(l) ( "° ) x 

(X1 Y)	(x2i+1 
Y 
2k 0)	and	(x,y) - (0, x 2t y2k + I ) . for i,k E W0. 

Math ematica [23] was employed for the symbolic evaluation of all inner products and 
for the calculation of all eigenvalues with high precision.
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At first consider a(x,y) = 1 for (x, y) E ft The corresponding eigenvalue problem 
can be solved explicitly: A second eigenvalue of infinte multiplicity is given by A = 1 with 
eigenfunctions (u, -grad u) E Ha for every 0 54 u E H2 (Q) fl Hol 	Let ( pk,l, U k,,) E 
JR x H I (Il) (k, I E liv) be the eigenpairs of the Laplacian operator -Au = ji u with 

1k,l = ( k 2 + 12) 
()2 

(k7r 
u k,(x,y) = sin -(X+ l) sin(hr + 1)) for (x,y) E ft2	 2 

Then the further eigenpairs of problem (2.1) are given by 

(2 + ILk,!, (ILk,, U k,!, grad U k,!)) E JR X Ha	(k, 1 E 

As the Poincaré principle characterizes A = 1 only, 

(v, v) 1 = inf max a	.for all i vcH OvEV b(v,v) dir,,V 

the Rayleigh-Ritz approach does not give bounds to eigenvalues in [2, ). 
From the explicit knowledge of all eigenvalues A > 2, we obtain 

2 < A 1 < 22 < A 2 = A 3 <40 < A <60 < A 5 = A 6 <78 < A 7 = A 8 < 112 < A9 

which allows to identify local notations for these eigenvalues with p = 2, 22, 40, 60, 78, 
112. Consequently by Theorem 2.4, the upper [lower) triangle indicated in Table 1 
contains upper [lower] bounds to A,,. . . , A8. 

A, = = = = '6 = 18 = P	1^

6.93480220 26.6740110 26.6740110 46:41322 66.15243 66.15243
1 85.892 85.892 

2
AP- AP	- AP	. AP	- 

+4
- 

+5
AP	- 

+6
AP	- 

+7 +8 - 
6.93480220 

Api -
26.6740112 

API =
26.6740112 

AP2=
46.41562 
A.3 =

6615690 
A.4 =

66.15690 
A.5 =

86.684 
A .6 =

86.957 
AP7= 22 6.93480220 

-
26.6740138 

A 2 =
26.6740138 

A1=
46.42534 
A,=

66.17674 
AP2=

66.17679 
.A .3 =

88.141 
AP4=

88.424 
A.5= 40 6.93480220 26.6740098 26.6740098 

A 2 =
46.46094 
A'1=

66.20349 
A P 1=

66.20366 
A.2=

89.057 
A .3 =

89.361 
1t4.4 

6.93480220 26.6740105 266740105 46.39284 66.39106 66.39200 91.032 91.340 

6.93480220 
A8=

26740106 26740106 
A6=

46.40672 
A=

602755 
iY4=

66.02806 
A.3=

1 99.496 
A 2 =

99. 6 67 
A P , 112 6.93480220 26.6740108 26.6740108 46.41070 66.12991 66.12996 82.463 82.881

Table 1: A" - " 72 ' 561 for p = 2 and A" - A"'° 8 ' 561 for p 2; (x, y) = 1. +i	A -4-i ±t	±1 

We will continue our example setting &(x, y) = 1 + X2 y2 for (x, Y) E l at the end 
of the next section. 
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4. The Right-definite Goerisch method 

Let Hb be a separable, complex Hubert space with inner product b(., .), and suppose 
that a( . ,.) is a Hermitian sesquilinear form in H b with domain H 0 Furthermore, a(.,.) 
is assumed to be bounded from below and closed. We then consider the right-definite 
eigenvalue problem

Seek A E JR and non-trivial u E Ha such	1
>	 (4.1) 

that a(u,v)	Ab(u,v) holds for all v E Ha. J 
Problem (4.1) is equivalent to the eigenvalue problem for the self-adjoint operator A 
defined by

D(A) - {u e H0 : a(u,v) = b(ü,v) (v E Hb) for some U E H6} 

b(Au,v) = a(u,v) for all u E V(A), v E Ha 

(see, e.g., [13: Chapter VI, Section 2]). The operator A is bounded from below. With 

H = Hb	and	(u, v) = b(u,v) for all u,v E Hb 

the operator A satisfies the assumptions of Section 1, where 

Dp{uEHa: a(u, v) = pb(u, v) for all vEH0}. 

Again, we assume that X is a complex Hubert space with inner product .s( . ,.) and 
isometry T : Hb —i X. For fixed p E li?, application of Theorem 1.3 gives the 
following characterization for A,. 

Corollary 4.1: Set 

H. = fv E H,: a(v,u) = s(w,Tu) (u E Ha) for some wE X}.


	

Let p - <p and 1	k. Then H. =V(A) and 

I	.	a(vv)-pb(vv) 

	

A p i = P + I	inf	max mm	 I	,	(4.2) %\VCH..dinV) OOvE V w .s(w,w) - 2pa(v,v) + p2b(v,v)j 

the minimum being taken over w E X such that 

.s(w,Tu) = a(v,u)	for all u E H0 .	 (4.3) 
Proof: Evidently, V(A) C H,. To show the inclusion H, C V(A), suppose v E H, 

and let w E X be such that condition (4.3) holds. Since TH b is a closed subset of X 
it possesses an orthogonal projector. Denote by the orthogonal projection of w onto 
TH 6 , 1i = TU for some ü E H b . From s(w -,Tu) = 0 for all u E H. C Hj, then there 
follows

a(v,u)=s(iZ,Tu)=b(U,u)	for all uEH0 
giving the inclusion v E D(A). Assertion (4.2) is now an immediate consequence of 
Theorem 1.3, since the inclusion w E TAv + (THb)1 is equivalent to the equality 

s(w,Tu) = s(TAv,Tu)	for all u E H b = H0, 
and also to condition (4.3) 1
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We sketch briefly the discretization of (4.2), which is of course analogous to the 
discretization of (2.2). Suppose n E W, m C V0 , and suppose the following: 

(RI) vi, . . ., vn E V(A) C Ha are linearly independent. 

(R2) w,.. . , w E X satisfy s(w,, Tu) = a(v, u) for all u E Ha (i = 1. . . , n). 

(R3) w0°,.. . ,w°, E X°, where w0° = 0 and w,... ,w are linearly independent. 

Again, the classical Lehmann-Maehly method is obtained by (1.8), choosing X = 
Hb, s( . ,.) = b( . ,.) and T = I. Set 

V, =span{vI,...,vn}, X,, =span{w,...,w,,} 

a = b(Avk, Ay 1 ), a, = a(vk, /c v 1 )	a	= b(vk , v 1 )	(i,	= 1, . . . , n)
ik 

(II) *	* S( W k, w ) (z. k = 1,. . . , n) 

b2 =	k,Wt) fm >0 (i = 1,...,n,	k = 1,...,max{.1,m}) 
0 ifm=0 

b2 
ik

o,

= { 
.S(W	w) If m > 0 (i, k	1,..., max{1,m}) 
1 ifrn=0 

A = (a) ik (j = 0,1,2) 

B, = (b') (j,1 = 1,2;

As in Section 2 we suppose vn fl D, = {0}. Here, we have 

s(w* +w 0 ,w + w°) = XH (B11 - B i2 BB)x ^ x'A0x 22	12

for

	

v = Y: x i v i with x = (x 1 ,... ,	C	and	w 
=	

xw 

and w° E	defined by 

s(w°,w) = _s(w*,w)	for all w E X,,. 

Consider the right-definite matrix eigenvalue problem 

	

rE JR, x E C:	(A1 - pA2 )x = r(Bii - B12BB H - 2pA 1 +p2A2)x. 
22	12 

Denote its non-zero eigenvalues by r and r, 

<0<T+<...<T 

n + n	n, and set

= p + (r[) ' for all i = 1,...,.n 

	

= p+(r)	for all i = 1.....,nt 
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Theorem 4.2: Let p <p or p < p+. Then, we have 

Am] <A	for i = 1,... ,rnin{n,k}	
() Amj	A	for i = 1,... ,min{n,k}, 

respectively. 

Proof: We will prove the first inequality of (4.4) only. Here, one has 

= inf max 
VCC096vEVxH(BiI 

= inf max mm 
dirnV 0^ve V wEw+X

x"(Ai - pA2)x 
- B12 B'B - 2pAi + p2A2)x


22 12 

a(v,v) - pb(v,v) 
. s(w,w) - 2pa(v,v) + p2b(v,v) 

with V C V(A) and w + X,, C TAv + X°. Theorem 1.3 yields 

= p + (r)' p + (ai)' = 

and the assertion is proved U 

According to Theorem 4.2, the bound A p nmJ i ±	s obtained through a shift and in-
version process resembling Wielandt's inverse iteration. Here, only one step of the 
iteration is applied. Instead, the numbers n, in are increased in order to achieve suffi-
cient accuracy. In particular, the Lehmann-Maehly method for right-definite problems 
can be regarded as one step of Wielandt's inverse iteration for the subspace V, C D(A). 
Consequently, Wielaridt's eigenvalue approximations are in fact bounds to eigenvalues. 

In order to compare the right- and left-definite methods, assume that problem (4.1) 
satisfies also the assumptions of Section 2. Then, both versions can be applied, each of 
them involving the Rayleigh-Ritz matrices A 1 = (a(vk,v,)),k and A2 = (b(vk,v,)),k. In 
addition,

B11 - B12B1B H A = (b(Avt,Av)), 
C11 - Cl2C 1 CI'2 A3 = (a(Bvk,Bv,)).k 

are required in the respective approaches, B = A'. 
Consider e.g. the eigenvalue problem given in Section 3. With v, E V(A) the 

elements Av i can be obtained through differentiation, 

Av, = (- div(a grad v,,i + V II) + v ,i, grad v,,i + 2v n)	(4.5) 

whereas By, is the (weak) solution of a boundary value problem, namely (3.1). When 
applying the right-definite version difficulties mostly arise in finding trial functions v, 
which are sufficiently smooth and fulfill all boundary conditions. 

Continuing the numerical example of Section 3, we set ci(x, y) = 1 +x2 y2 for (x, y) 
Q. In this case, there exists essential spectrum a = [l,] U {2} and point spectrum in 
(2, +). Denote the i-th eigenvalue above 2 by A,. Since the operator A in H is well 
known the right-definite Lehmann-Maehly method can be applied to the trial functions
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V 1 E V(A) of Section 3 and the elements given in (4.5). Again, p 2 max a, provides 
upper bounds to A,. We then successively choose p	0.9 A+1 2[56,0) for i = 2,4,5,7,9. 
Under the heuristic assumption that 

2<A 1 <25<A2 <A 3 <46<A4 <62<A5<A6<82<A7<A8<117<A9 

Theorem 4.2 gives upper [lower] bounds to A 1 ,... , A 8 shown in the upper [lower] triangle 
of Table 2. 

L P 11
A ' = A A A A 

7.206691786 
KT

27.473166 
A.1 =

28.305436 
A.2 =

50.5920 
A.3 =

68.6623 
=

68.7772 
A 5 =

91.718 
A .6

96.518 
A7 = 

7.206691735 
A P 3

27.473373 
A 2 =

28.305513 
A!1=

50.5943 
A=

68.6639 
A . 2 =

68.7786 
A 3 =

91.811 
A 4 = .

96.699 
A.5= 46  

7.206691744 27.473124 
A 3 =

28.305411 
A2=

50.6110 
A=

68.6672 
A .1 =

68.7814 
A 2 =

91.896 
A .3 =

96.896 
A4= 

7.206691747 27.473138 
A=

28.305419 
1Y4=

50.5824 
iY3=

68.6833 
A! 2 =

68.7949 
A! 1 =

92.036 
A 1 =

97.186 
A2= 

7.206691749 
A8=

27.473144 
A.7=

28.305422 
Ai6=

50.5877 
A5=

68.6493 
A 4 =

68.7658 
A! 3 =

92.844 
A 2 =

98.844 
A1= 117 7.206691750 27.473148 28.305424 50.5894 68.6573 68.7730 91.215 94.973

Table 2: A ., = p(56,0] for p = 2 and A 1 = A'°1 for 	2; cr(z,y)= 1 + z2y2; 

A2[560] - 130.32 +9 - 
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