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Abstract. The aim of our paper is to generalize the maximal point theorem of Bishop and 
Phelps and to apply this result to derive a new multicriteria Ekeland's principle in a direct 
way by induction without making use of Ekeland's original scalar result. 
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1. Introduction 

Suggested by the famous paper "On the variational principle" of Ekeland [8], many 
authors have published extensions and applications of Ekeland's variational principle 
as well as equivalent statements (cf. Borwein and Preiss [2), Brezis and Browder [3), 
Brondsted [4], Dane [5], Figueiredo [6], Georgiev [91, Penot [ 20], Phelps [21], Rockafellar 
[22], Rolewicz [23] and Takahashi [241). The results of Bishop and Phelps [1] from 1962 
concerning supporting points of (convex) sets can also be seen as a first contribution 
to the topic of Ekeland's variational principle, given in the form of a maximal point 
theorem. 

Even for the case in which the objective function takes its values in a partially 
ordered space, some authors have proved several variational principles. Loridan [16] 
derived a variational principle for vector optimization problems in finite-dimensional 
spaces. Nemeth [19) and Khanh [15] showed a general variational principle by using a 
cone-valued metric. Tammer [25] and Helbig and Pateva [7] proved variational principles 
via scalarization. Isac [13] presents an approach by using dynamical systems. 

The aim of our paper is to prove a new maximal point theorem in a product space 
X x Z, where X and Z are Banach spaces. This is a generalization of Phelps' maximal 
point theorem, which was shown in a product space X x R. In difference to Phelps' 
assertions it is possible to use our maximal point theorem in order to derive a variational 
principle for vector optimization problems in general spaces without any scalarization. 
This variational principle for vector optimization problems differs essentially from the 
variational principles given by Loridan [16], Nemeth [19], Khanh [15],. Tammer [25), 
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Helbig and Pateva [7] and Isac [13] in the assumptions, in the assertions and in the 
proof. 

We denote for a subset B of a Bariach space Z the topological interior of the set 
B by mt B and the topological closure of B by ci B. A functional z: Z — JR is called 
B - monotone if y' E y 2 + B implies z(y') ^! z(y2 ) for all y', y2 E Z. We say that a 
B-monotone functional z is even strictly B-monotone if, additionally, y' E y2 +(B\{O}) 
implies z(y 1 ) > z(y2). 

Using the cone

(1) 

where e is a parameter with 0 < e and X is a Banach space, Phelps [21] showed that 
Ekeland's variational principle [8] is a direct consequence of a maximal point theorem. 
First let us recall Ekeland's and Phelps' results. 

Theorem 1 (Ekeland [8]): Suppose that 8 is ,a closed subset of a Banach space 
X. Assume f : 8 —* JR is a proper, lower semicontinuous function, which is bounded 
from below, e > 0 and E B with f() ml f+e. Then there exists an element x 0 E 13 
such that

	

f(x°)	f() - vII x - eu	 (2) 

	

lix o - Cu	 (3) 

f(x) + /II x - x 0 11 > f(xO)	for all x	x.	.	(4) 

Theorem 2 (Phelps [21]): Let X be a Banach space and suppose A C X x JR is a 
non-empty closed set such that the set 

{r e .ii (x,r) E A for some x E x} 

is bounded from below. Then for any point (Cfl) E A there exists a point (x°, r°) E A 
such that

(xOrO) € An (c+(C,f3))	 (5) 

	

{(x°,r°)} =Afl (KR +(x°,r°)).	 (6) 

Theorem 2 simply means that under the given boundedness and closedness condi-
tions for A in the partial ordering (reflexive, transitive, antisymmetrica.l) defined by 
any point (C,i3 ) of A is dominated by at least one maximal point (x°, r°) of A. It is 
also possible to interprete especially (4) or (6) in the form that (x°,f(x°)) and (x°, r°) 
solves the multicriteria optimization problems 

(x, r) -+ max subject to (x,r)e epigraph f	 (7) 

	

(.T, r) -i max subject to (x, r) E A,	 (8) 

respectively, where X x JR is partially ordered by
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The first aim of our paper is to prove a new maximal point theorem, such that 
(5) and (6) hold even in X xZ (Z instead of ), where Z is a Banach space ordered 
by a given cone K. The point is to replace kr in (1) by an appropriate cone in 
X x Z (compare (9) in Section 2) and to evaluate a sequence of diameters of certain 
sets. Having proved such a maxima] point theorem, a multicriteria Ekeland's principle 
follows. Furthermore, approximate efficiency can be interpreted in the same way as 
efficiency in (7), replacing K in Z by K in X x Z (cf. (9) in Section 2). So, approximate 
solutions can be obtained by scanning epi f in X x Z with help of K. Finally, some 
interesting relationships exist with supporting properties of sets. 

Our paper is organized as follows. Section 2 deals with the new cone AC E , Section 3 
gives the main theorem and its proof, Section 4 contains the multiobjective Ekeland's 
principle and some remarks. In Section 5 an example is presented. 

2. The cone iCe 

Let X and Z be Banach spaces, Z partially ordered by a given cone K C Z, where K is 
convex, pointed and closed with intK 0. Furthermore, choose k° E intK such that 
II k°II = 1. For any E with 0 < E we define the set 

= {(x,y) e X x Z y + /k °II x II E _K}.	 (9)


is clearly a cone, it is the hypograph of the mapping - / k°II . 11 : X -p Z, recalling 

hypo (—/k°II II)	{(x,) Y  -v'k°pI 11 - K}. 

The cone K is pointed and closed, because K has those properties. The triangle 
inequality implies that K is convex and (0,—k°) E K. Finally, considering K as 
embedded in X x Z,

K = { (o, —y) I (x, y) E IC, for some 

as we can easily see. Indeed, 

(x,y) E K	implies y E —/k °II x II - K C —K 

and
(O,y) E {0} x (—K) implies y + v 0 1I 0 II E —K 

that means (0, y) E AC for all y E —K. 
Taking Z = .IR, K = 1R and k° = 1 the set K defined by (9) coincides with the 

set K C' defined by (1). Given g E —K, the second inclusion in (9) is fulfilled for a 
norm-bounded set in X, otherwise there is a sequence {x} with II x nII -i no, and so, 
for all n,

IIXnII/C°EK+ and	 Il
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but —1c'	K. 
Of course, conical support points are related to supporting points of convex sets (an 

overview can be found in Phelps [21]). Especially, if X is a Banach space and X its 
continuous dual, then taking -y with 0 < -y < 1 and x* E X with 11 x 11 = 1, the cone 

	

= {X E X -yj I x M x(x)} C X	 (10) 

is closed, linefree, convex and intftC(x*,) 0. It is just the cone, which was used 
by Bishop and Phelps to prove density theorems for supporting points and functionals 
for convex sets (although the corresponding maximal point lemma for the supporting 
points does not use convexity). The cone (10) is related to that in (1) and (9) in an 
interesting way. For clarifying we consider the cone (-y and X as above in (10)) 

JCX = {x E X x --yk°II xj I E K}	 (11) 

where K 0 is a convex, linefree cone in X with 0 E K and 101 54 K, and k° e K \ {0} 
with Il k0 II = 1. Thenis clearly a cone, it is convex (because of the triangle inequality) 
and linefree. Obviously, k° E	and if k E K, then it follows 

k E yk°ll k ll + K C K, 

that means AC C K and 

a) if -* 0, then ftC' approximates K 

b) if -y -* 1, then AC' approximates the jet given by k°. 

Now we obtain the following two results relative toICX in (11): 

(i) If ± E AC, then it follows ± - -yk' ll ±ll e K. Suppose ± E K \ {0} and 
±*(k O ) = 1. Then it holds 

	

- k 11 ± ll) >0	and therefore	±(±) ^: illII 

that means, comparing with (10),

ftC cK(±y).	 (12) 

(ii) Using AC' instead of ftC in (9) leads to an other kind of maximal point theorems 
which generalize support. properties of sets (see 111]). In AC' linear functionals x do 
not appear, so contrary to results obtained with the help of (10), corresponding conical 
supporting points (with help of (12)) do not only belong to the convex hull of A but 
even to A itself.



A New Maximal Point Theorem	383 

3. The main result 

Our main result is an assertion of the following kind: Under the assumption that a closed 
set A c X x Z satisfies certain boundedness condition, any point of A is dominated by 
a maximal point, where we use the partial ordering defined by the cone K (see (9)). 

Theorem 3: Assume that A is a closed subset of X  Z, where X and Z are Banach 
spaces. Further, SUO3C that K C Z is a pointed, closed, convex cone with non-empty 
interior, and assume 

a) k° E intK and 9 E Z 

b){yEZ(x,y)EA for some xEX}C+K 

c) BC Z is a set with clB + (K \ {O}) C intB 

d) e > 0. 

Then for any point ( X , Y) E A there exists a point (x 0 , y0 ) E A such that 

( X0, Yo) E An(K +(x,y))	and	{(x0, y0 )} = An (K +(ro,yo)). 

Proof: Consider a sequence JAn j n EBV of sets 

An = An(IC, + (Xn,yn)). (13) 

Under the given assumptions the sets A are closed. We define the sequence {(x, y,)} 
inductively as follows:

(x1, y 1 ) = ( x , Y). 

When we have obtained (x1,y1),(x2,y2),...,(x,y), then we choose (x+ i ,y+ i ) E A 
such that

,(x, y) E A	with	y  yi -	- (B \ {o}).	(14) 
n+1 

Such an element must exist because of the inclusion 

{yEZ(x,y)EA forsomexEX}C+K. 

The inclusion (Xn+1,yn+1) E An implies the inclusion ( X n+I, yn+I) E AC + (x,,,y,,) 
and so we can conclude that 

K + ( x,,+1, y,,1) C ACe +)C, +(x,,,y,,) C AC +(Xn,yn) 

where the last inclusion follows from the fact that AC is a cone. So we get from the 
definition of the sets An in (13) that 

A,, 1 = An (ACe +(x,,+I,yn+I)) c An(AC +(x,,y,,)) = An 

and hence
A,,+1 C A,,.	 (15)
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Further, we have for an arbitrary element (x, y) E An the inclusion (x, y) E k, + (x c , y) 
such that the inclusions 

(x, y) - (xe , y) E ftC	and	y - y + ,/ II x - x II k° E —K 

hold, and so we can conclude that 

y  y - v"II x - x II k° - K.	 (16) 

Because of (14) and the inclusion (x, y) E An C A_ 1 we get the inequality vIx- x M < 
1/n and so

lix - x[ < 	 (17) 

On the other hand, we introduce a functional z : Z -p 1R defined by 

z(y) = inf{t E 1R y  —clK +tko}, (18) 

which is continuous, sublinear, strictly mt K-monotone with the range (—oo, oo) and 
z(ak°) = a for all a E JR (compare [101 and [25]). Then for (x, y) E An from the 
sublinearity of the functional z in (18) and from (14) and (15) it follows that 

/	\	 /	1\ z(Y)+zk° >	
1 )	inf z y+ —k ) _ pwh Z y+ ko ) ^ z(Yn) 

(,v)EA	 (,)EA_j 

and so z(y) + z(k°) ^! z(y,) such that 

z(y) - z(y)	1-.	 (19) 

Moreover, it holds
0 <Z(yn) - z(y). 

This we can show in the following way: For an arbitrary (x, y) E An because of (16) it 
holds

ynyE V'llXxnii k°+ K and so y— viIx—x li k° Ey+K. 

Further, the K-monotonicity of the functional z in (18) (compare [10]) implies the 
inequality

z(yn - VCIIX - x ii k°) ^! z(y). 

Taking into account the sublinearity of the functional z we get 

z(yn) + z ( — /Ii x - xIik°) > z(y). 

So we can conclude

1 Z(yn) - z(y) ^! v'il x - x	0 and regarding (19) 0 z(yn ) - z(y)	- 
n
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For n - oo we get Z(y) - z(y) -i 0. Because of (14) it follows from the definition 
of the functional z in (18) that y, - y -i 0 as n -i oo and hence Il yn - y < S, for 
all n,S, - 0 as n —p 0. Using (17) we get 

li x - x + 11Y. - Y 11 !^ 7^ + S	and so	diamA - 0. 
n 

The completeness of Z and the closedness of the sets An yield that n " A n contains only 
one element. Let be (x 0 , y0 ) this element. Of course we have 

(x0 , y0 ) E A i = An (ACe + (x, y))	which implies (x 0 , y0 ) E IC, + (X, Y). 

Further,
(x0, y0 ) E An = An ()C, + ( X n, Yn))	(n E V) 

implies
(X0' Yo) E K +(Xn,yn)	(nEW) 

and so
(xo, YO) +Ke	 (nEW). 

Finally, we get 

An ()C + (x0, y0)) C An (c + (xn,yn)) = A	(n E IN) 

and this implies An (c + (X 0 ' Y0)) = {(x 0 , y0 )} I 
Remark 1: It is also possible to prove that diamA —i 0 by using projections 

onto kO Pkolc = ak° (a 0, k E K). 

I. Conclusions 

Now we will show that a variational principle for an optimization problem with an 
objective function which takes its values in a partially ordered space is a direct conse-
quence of our Theorem 3. The following Theorem 4 is an assertion about the existence 
of an efficient solution of a slightly perturbed vector optimization problem in a certain 
neighbourhood of an approximately efficient element of the original vector optimization 
problem. 

In the following X and Z are considered to be real Banach spaces and K C Z is a 
pointed, closed, convex cone with non-empty interior. 

Now, we introduce a function f : X - Z and assume that f is bounded from 
below and lower semicontinuous with respect to k° and K. A function f : X —i Z is 
said to be bounded from below on X if there exists an element z E Z with 1(X) c z+K. 
We say that I is lower semi continuous with respect to k° E mt K and K (for short: f 
is (0, K)-lower semicontinuous), if 

M,? = {XEX f(x)ErkO_.K} 

is a closed set for each r E IR.
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Remark 2: PutZ=JR,K={zEJRIz>O},k°:=landletbeM,?'={xE 
X I f(x) < r} a closed set for each r E R. In this special case our definition of (k°,K)-
lower semicontinuity coincides with the well known definition of lower semicontinuity 
for functionals f: X - JR. 

Remark 3: Luc [18] uses the following cone-continuity concept: Let K be a cone 
in Z. A function f is K-semicontinuous if {x E Xl 1(x) E z - clK} is a closed set at 
any point z of Z. It is easy to see: If K is a closed cone, then every K-semicontinuous 
function is (k°, K)-lower semicontinuous. 

Firstly, we will introduce approximately efficient elements of vector optimization 
problems. The reason for introducing approximately efficient solutions is the fact that 
numerical algorithms usually generate only approximative solutions anyhow and more-
over that the efficient point set may be empty in the general non-compact case, whereas 
approximately efficient points always exist under very weak assumptions (see Tammer 
[26], where existence results for approximate solutions of a vector optimization problem 
were shown, especially under the assumption that the objective function is bounded 
from below). 

Definition 1: An element f(x) E 1(X) is called an approximately efficient point 
of f(X) with respect to K, k° E intK and e > 0, if 

1(X) fl (f (x,) - C k° - (K \ {0})) = 0. 

The set of approximately efficient points of 1(X) with respect to K, k° and C is denoted 
by

Eff(f(X), Keko), 

where Kko = ek° + K. If we put e = 0, then the set Eff(f(X), Keko) coincides with 
the set of efficient points of 1(X) with respect to K, denoted by Eff(f(X), K). 

Theorem 4: Assume that I : X -p Z is a (k°, K)-lower semicontinuous function 
which is bounded from below. Then for any e > 0 and any f(x°) E Eff(f(X),Kko) 
there exists an element x E X with the following properties: 

1. f(x) E f(X 1 ) - / iI Xe - x°II k ° - K 

2. IIxe_0Il</ 

3. fko(xC) E Eff(f ko(X),K), where fko(x) = 1(x ) + / iI x - xIIk°. 

Proof: The assumptions that f is (k°, K)-lower semicontinuous and intK 54 0 
imply that the set	

epif = {(x,y) e X x Z y  f(x) + K} 

is closed. Now, we put A = epi f and consider 

K C + (x°,f(x°)) = {(x,y) EX x Z	II x—x°II k ° E _y+f(x0)_K}. 

Obviously, we have

(xO,f(xO)) E epiffl (e +(x0,f(x0)) 54 0.
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So the assumptions of Theorem 3 are fulfilled and we get a pair (xe, y) with 

(xc,ye) E epif n (	+ (x°,f(x°))	 (20) 
and

{(Xe,ye)} =epifn ()C +(xe,ye)).	 (21) 
From (21) we get because of the inclusion (x,, y,) E epi I that epi In (K +(x, f(x)) = 
{(x,f(x))}. This means that there is no x E X, x 56 x with 

(x,f(x)) E AC + (x ,f(x )) =I ( X I Y)  y - f(x) + / II x - x II k ° E_K}. 

So we can conclude that 

	

1(x) - f(x)+ /]]x - x II k ° —K	for all x e X, 

which implies that for all x E X it holds 

fko(X) n (fko(xC) - ( K \ {0})) = 0, 
where

fk0(x)	f(x) + vII x - x I1 k0. 
Hence, we get f ko(x) E Eff(f ko(X), K) and so we have shown that statement 3 holds. 

Moreover, (20) implies 

	

v"II x e —x °II k°Ef(x°)— y — K	with y Ef(x)+K 
and so we get

vIIxc - x°k° E f(x0) - f(x) —K - K 
and

f(x) € f( l 0 ) - / ll x - x °II k ° - K 

which means that statement 1 is true. 
Finally, for f(x0) E Eff(f(X),K ko) it holds 

x E X: 1(x) E f(x°)—k° —(K\ 101). 

Taking into consideration statement 1 we get /fl x - x°II e and statement 2 holds. 
This completes the proof U 

Remark 4: In [25] one of the authors proved a variational principle for optimiza-
tion problems where the objective function takes its (more general) values in a linear 
toplogical space. In this proof we applied a separation theorem for non-convex sets and 
Ekeland's original result. In the proof of our Theorem 4 we don't use any scalarization 
of the vector optimization problem. 

Remark 5: We can use the third assertion in Theorem 4 in order to prove nec-
essary conditions for approximately efficient elements. Under differentiability assump-
tions we have shown that approximately efficient elements are solutions of approximate 
variational inequalities (compare Henkel and Tammer [12]). Moreover, for general ap-
proximation problems we have used the third statement in Theorem 4 in order to de-
rive e-Kolmogorov conditions for approximate solutions of vector * valued approximation 
problems (see [271).
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5. Example 

Finally, we will show, taking a vectorial approximation problem as example, that it 
is possible to use the third assertion in Theorem 4 in order to derive e-Kolmogorov 
conditions. 

Let us assume that (X,	llx) (Z,	liz) and (1", 11 . 1k') are real reflexive Banach 

spaces. 

Additionally to the assumptions of Theorem 4 in Section 4 we suppose that K c Z 
is a closed convex cone with mt K 0 0 having the Daniell property, which means that 
every decreasing net {x 1 } i (i.e. i j implies x3 x) having a lower bound, converges 
to its infimum (see [141). Further, we assume that K has a weakly compact base. 

In order to formulate our vector optimization problem, we will introduce a vector-
valued norm (compare [14): 

The mapping I . lii : Y -i K is called a vector-valued norm if for all y , y l,112 E Y 
and for all \ E JR it holds: 

I.	hIll 111=0'	1/0 
2. fflAy III= I A I llIihl 

3. 111 Y1 --Y2 III E III y i III-- III y2 Ill—K. 

We suppose that	is continuous. 
The set of linear continuous mappings from X to Z is denoted by L(X, Z). Suppose 

that C E L(X, Z), A E L(X, Y) and a is a real non-negative number. Now, we consider 
the vector-valued function

f(x) := C(x) + a III A(x) - a 

with x E X and a E Y. Suppose that f is bounded from below on X. 

Now, we will derive necessary conditions for approximately efficient elements of the 
vectorial approximation problem 

(P) Compute the set Eff (1(X), K) 

by using the directional derivative of f at x E X in the direction v E X: 

f'(x)(v) = lim 
f(x+tv)—f(x)

 
t 

Using the directional derivative of the vector-valued norm and Theorem 2.27 of 
[14] we can conclude from statement 3 in Theorem 4 that for any e > 0 and any 
approximately efficient element

f(xO) e Eff(f(X),Kko) 

there exists an element x E X with 

f(x) E f(x0) - / hl x - x°llx k° - K	 (22)
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II x c — x°IIxV'	 (23) 

such that for any direction v at x with II v IIx = 1 there is a linear continuous mapping 
M E £,, where

= {M E L(X,Z) M(A(x) - a) = II A(z) - a 
and III Y III — M( y)E KV yeYJ 

with
M, A(v) E {MA(v)} + K	for all M E	 (24) 

and

	

C(v)+aMA(v) —./k° — intK.	 (25) 

Remark 6: Relation (25) can be considered as an c-variational inequality or c-
Kolmogorov condition. 

Remark 7: Putting c = e = 0 we have elements Xe and MF E L,:,according to 
(22) - (24) such that in condition (25) it holds 

C(v) + aMeA(v) —mt K 

for all directions v at x f with II v IIx = 1. For the special case C = 0 and A = I this 
is a well-known necessary condition for weakly efficient elements of a certain class of 
vector-valued approximation problems (see [141). But it has already been pointed out 
that the assumptions of the variational principle (Theorem 4) by themselves do not 
guarantee that such an element xF exists. 
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