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A Generalized Topological Degree

in Admissible Linear Spaces 

T. Okon 

Abstract. The paper deals with the construction of a degree which extends the Generalized 
Topological Degree of Browder and Petryshyn to admissible linear spaces introducing the notion 
of approximation nets and approximation-compact maps. After discussing the usual properties 
of a degree the relationship between approximation compactness and the concept of condensing 
maps is analysed. The non-locally convex spaces 1", H", N, L[O, 11 and 5[0,1] (0 < p < 1) are 
considered for illustration. The main results are fixed-point theorems for this spaces. Concrete 
examples of operators are given for 1" and H". 
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1. Introduction 
The Leray-Schauder degree for compact perturbations of the identity has been gener-
alized in several directions. The aim of this paper is to join two such directions by 
constructing a more general degree. 

Sadovskii [15] has developed a degree for limit-compact operators in locally convex 
spaces. Operators which condense with respect to a measure of non-compactness are 
typical examples of limit-compact operators. 

Kaballo [6] has defined a degree for compact perturbations of the identity in admis-
sible topological vector spaces which are not necessary locally convex (see Subsection 
2.1).

The question of joining these developments appears in the paper of Kayser [7]: 

What about a degree for condensing operators in admissible topological vector spaces?

Analysing this question, a problem arises which only at first sight is a technical one. 

Using the classical way to construct a degree for condensing operators, a retract on a set 

called limit range of the operator must exist. It turns out that the convexity of this set 

is not only of topological necessity and the classical construction cannot be used. The 

relationship between retracts and admissibility has been analysed in (17] and [18]. Up 

to now it is unknown if there exists a topological vector space which is not admissible. 


The last result concerning Kayser's question is the paper of Alex and co-workers [1], 

where a degree for compact reducible operators in non-locally convex spaces is defined. 
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Alex and his co-workers use the notion of locally convex subsets in topological vector 
spaces. 

Our access to this problem has been motivated by the paper of Browder and 
Petryshyn [2]. The construction is free of convexity and turns out a set-valued degree 
which extends that of [6]. Our notion of measures of non-compactness and condensing 
operators is free of convexity, too. So, we get a more general class of condensing opera-
tors but the new degree is not defined for all of them. The question whether or not the 
new degree solves the problem of Kayser is given to the reader. 

2. Construction of the degree 

2.1 Approximation nets and approximation-compact maps. Let X be a Haus-
dorif topological vector space over the scalar field JR and U the system of all circled 
neighbourhoods of the origin in X. The space X is called admissible provided that for ev-
ery compact set K c X and every neighbourhood U E U we can find a finite-dimensional 
subspace X' of X and a continuous map I' : K -+ X' such that (I - I')(K) c U, where 
I denotes the identity. Since X is a uniform space and K is compact we can extend I' to 
a compact map defined on the whole space X by making use of the construction which 
leads to the Tietze-Urysohn extension theorem. Therefore, without loss of generality, 
let P be defined on X. 

There is a natural partial ordering on these maps: Let AC be the system of all 
compact subsets of X. For (K1 , U1 ) E AC x U (i = 1,2) we define 

(K1 , U1 ) > ( K2 , U2 )	 Kj D K2 and U1 c U2. 

By choosing such a map I' for every pair (K, U) E AC x U we get a directed system 
of approximations. This system motivates the notion of an approximation net we now 
introduce. 

Definition 1. Let X be an admissible space and (r, <) a directed system. For 
every 7 E r assume that finite-dimensional subspaces X C X and continuous maps 
P. : X -*. X.1 are given such that, for all K c X compact and for all U E U, there 
exists a 7° E r such that

(I—P.)(K)CU	for all 7>70. 

The system (P.).1E p is called an approximation net. 

In the following the notions linear approximation net and approximation sequence 
are used if the maps P. are linear or r is countable, respectively. 

In case of a Banach space X and r = iN we get an approximation scheme 

({x}, {X}, { In}, {P}) 

in the sense of Browder and Petryshyn [2], at which In : X -' X denotes the embedding 
Of X, into X. 

Now an analogon of the A-proper maps of [2] will be defined.
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Definition 2. Let 0 54 Q ç X be open and 0 Y ç X. Let	be an

approximation net in X and Q. := l fl X (-y E n)., We call a continuous map 
F :	—+ X approximation-compact with respect to Y and ())Er if for any y E Y, 
subnet f' of r and system	 X the following property is fulfilled: 

(A) If for all ' E r'

x-1 E Q y,	and	lirn(x —	= -r 

then there exist a subnet r" of r' and an element x E l such that 

limx. ' =x	and	x — Fx=y. 
1" 

Let us agree on some notations again: By Q, and X. we always denote the sets in 
the preceding definitions. In case of Y = X or Y = {y} we call F approximation-compact 
or approximation-compact with respect to y, respectively. 

The following theorem is a first hint that the degree, which will be defined in Subsec-
tion 2.2, is an extension of Kaballo's degree which is defined for compact perturbations 
of the identity (see [61). It is also a first example of an approximation-compact map. 

Theorem 1. Let	be an approximation net in X and F: il —4 X a contin-




uous and compact map, where ci c X is open. Then F is approximation-compact. 

Proof. Let	be as in assumption (A). Thus, we have for a fixed y € X 

lirn (x -y, — P y Fx y )	 (1) 

Since (-r')r'cr' is an approximation net, for any U E  there exists a ' E r' such that 

	

(I — P) (F()) c U	for all - > '.	 (2)


Relations (1) and (2) lead to

lim(x —Fx.,) =y.	 (3) Y. 

Because of the relative compactness of {F(x.) .) I ' € I"), there exists a subnet r" of 
r' such that lim. " Fx " exists. Using (3) we get the existence of an x E	with 
lim "	x. Finally x — Fx = y follows from the continuity of F 

The following lemma deals with a separation property, which is a technical necessity 
for constructing a degree. 

Lemma 1. Suppose 0	ci c X is open and(-r)Er is an approximation net 
in X. Let the junction F :l —+ X be approximation-compact with respect to y E 
X \ (I — F) (A), where A C ci is closed. Then there exist U0 € U and 'ye € r such that 

F-11, (I— P.rF)(Aflci) +U0
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for every 7 ^! 7o• 
Proof. If the statement is not true, then for every 7 e r and U E U there exist 

= -y+(-y, U)> y and x-, E An L ' such that 

- P-,' Fx ' - P-1' 11 E U. 

By choosing such a ' for every pair (7, U) E r x U a subnet r' of r is defined by the 
partial ordering

y,^y and u1cu2. 
Assumption (A) holds for (x 7. )-i'Er' and the approximation compactness of F provides 
a subnet r" of r' and an element x E A with lim. " x.," = x E A and x - Fx = Y. But 
this contradicts y E X \ (I - F)(A)I 

2.2 Definition and properties of the generalized degree. In this subsection 
0 54 Q ç X is always open and (P. ) . €r denotes an approximation net in X. 

Since Q is open, there exists a -y j E  such that Q. 54 0 for 7 > 7' . Let F: - X 
be approximation-compact with respect to y E X \ (I - F)(acZ) and (P.)-rer. Using 
Lemma 1 with A = aQ we get a 72 e r such that Py (I - PF)(ôL) for > 

If we suppose the existence of a 73 E r such that 

(I— P.F)(P.y)	is bounded for every 7? 73,	 (4) 
then the Brouwer degree

deg (I - PF, a1 , P.y) 

is defined in the finite-dimensional space X.. Here, n, denotes the dimension of the 
space X.1. 

Definition 3. Let F : -+ X be approximation-compact with respect to y E 
X \ (I - F)(c9cz) and (Py )7€r. Suppose (4) holds. Then we can define the generalized 
degree of I - F with respect to y

deg (I - F,Q,y) 

by the set of all cluster points of the net 

(deg (I - P.F,fZ.,P..iy)) 
7^!71 72 -Y3 

inZU{±oo}. 

Since the definition of deg(I - F, Q, y) is independent of 71,72 and 73 we can write 
r instead of > 71,72,73 if (4) holds. 

Condition (4) is not as restrictive as one might think. For instance, if the maps 
P7 are compact or F is compact, then (4) holds. Especially the natural net, given by 
the Tietze-Urysohn extension theorem, can be used to define the degree. In case of a 
linear approximation net the compactness of F can be replaced by, boundedness since 
continuous linear maps map bounded sets into bounded sets. 

The next theorem shows that in contrast to the requirements on F we can get (4) 
also in a category of spaces.
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Theorem 2. Let X be a locally bounded space and(pn) neffv an approximation 
sequence in X. Suppose F - X is approximation-compact with respect to y E X 
and ()E• Then there exists a 73 = n 3 E 1V providing (4). 

Proof. Otherwise, we put A = (I - PF) 1 (Py) for n E IV and get a sequence 
(An,, )kENV of unbounded sets. Let pu name the Minkowski functional, generated by 
a bounded U E U. Since pu 1S unbounded on every An,, we can choose Xflk E An,, 
with pu(x fl ) 2 k for every k E W. The sequence (Xn,)kEW satisfies assumption (A), 
but (x,, )kE BV has no convergent subsequence. This contradicts to the approximation 
compactness of Fl 

Next we prove the characteristic properties of a topological degree followed by a 
result of "Borsuk type". 

Theorem 3. Let F : - X be approximation-compact with respect to y E X \ 
(I - F)(ô12) and (1)-er. Then we have 

(i) deg(I—F,1l,y)	0, 
(ii) deg(I - F, Q, y) {0} implies the existence of some x E Q with x - Fx = y 

and the normalization of the degree turns out as 

(G1)deg(I,cl,y)={ 

Proof. (i) holds, since the topological space Z  {±oo} is compact. Concerning (ii) 
we first notice that deg(I - F, ci, y) 54 {0} implies the existence of a subnet r' of r such 
that deg,,., , (I - P.7 F, Q,,, P.1 y) 0 0 holds for all 7' E r. The property of the Brouwer 
degree which corresponds to (ii) provides x. ' E ci., with x., - P7 Fx. = P...y for all 
7 ' E r. Now the assertion follows directly from the approximation compactness of F 
noting that (')€r' is also an approximation net and y (I - F)(Q) holds. 

To prove the normalization (Gi) we first handle the case y E ci: After choosing 
U E  with y + U + U c ci we can get -Yo E  such that P-1y E y + U and PO E  hold 
for all 7 2 7° . Now define 

H.(t,x) = x - tP.0	(x E fZ., t E [0, 11, 7>70). 

Since U is circled, we have H..,,(t, x) E x + U for x E 9ci-,, t E [0, 11 and 7 > 
That means H.(t, x) P-y for x E ôci., t E [0, 1] and 7 2 7 . Hence, the homotopy 
invariance of the Brouwer degree implies 

deg (I - P.O, ci., P.y) = deg (I, ci., Py)	(-V 2 7°) .	 (5)


Property (5) and the normalization of the Brouwer degree provide 

deg (I— P0,ci,Py) = 1	(7270). 

Since (7)po is a subnet of r and, on the other hand, every subnet of r and ()>. 
have a subnet in common we get deg(I,ci,y) = {1}. 

For  E X\ci, deg(I—ci,y)= {0} can be shown in the same way 
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Theorem 4. Let 0 0 Q1, S12 c ci be open and disjoint. Suppose F Ti —+ X is 
approximation-compact with respect to y E X \ (I - F) (l \ (ci i U ci 2 )) and ()Er 
Then the restrictions F : —p X (i = 1,2) are approximation-compact with respect to 
y and (P,) 7 , and we have 

(G2)deg(I—F,c2,y)9deg(I—F,cl1,y)+deg(I—F,S12,y) 

under the convention that co + (—co) = z holds for every z E Z U {±oo}. 
If there exist i E {1,2} and z E Z such that deg(I — F,ci,y) = {z}, we have ' = 

instead of' C 'in (G2). 

Proof. Since l \ (cii U 112) is closed, there exists a 10 E F such that 

P7 (I—P7F)((i\(1l i Ucz2 ))flX)	for 

Now we can deal with the finite-dimensional case. The property of the Brouwer degree 
which corresponds to (G2) provides 

deg , (I —	Q, P- y) 

= deg , (I — PF, cii, Py) + deg (I - PF, 112,, Py)	
^ o) . (6) 

If deg(I — F, 11, y) fl Z 0 we choose z E deg(I — F, 11, y) fl Z. There exists a subnet r' 
of F such that deg , , (I—	 = z for ' Er. 

If there exists a subnet 

(deg. , ,, (I—	
" €r" of 

(deg., , (I - 

converging to z' E Z we obtain, using (6), that 

(deg.., ,, (I —	 converges to z — z'. 

If there is no such subnet, Theorem 3/(i) guarantees the existence of a subnet 

(deg. , ,, (I —	
-y"Er" 

converging to ± oo, 

respectively. Again, using (6), 

(deg. , ,, (I - P..,oF, P2.,,,, P-y" Y) 7" Er" converges to ± 00, 

respectively. 
In case of ±00 E deg(I — F, Ii, y) the argumentation is analogous. 
To prove the equality statement we only note that, for example, deg(I — F, 11, y) = 

{z} 9 Z provides the existence of a	E F such that deg,,., (I —	 = z for 
7^! -Yo 1
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In contrast to the classical degrees - for example the Leray-Schauder degree - our 
degree bases on a family of approximations. The effect on the homotopy invariance is 
that we have to assume "stronger continuity" than in the classical case. 

Theorem 5. Let F: [0, 1] x - X and y : [0, 11 -+ X be continuous. Suppose that 
F(t,.) is approximation-compact with respect to y(t) and for every t E [0, 11. 
Furthermore, suppose the following three conditions: 

(i) The map t i-i F(t,.) is continuous with respect to the topology of uniform 
convergence on Ti. 

(ii) y(t) 54 x - F(t, x) holds for t E [0, 11 and x E OQ. 

(iii) For (a. ) 7Er, (b.)- Er 9 F ([0,1] x ) with lim7(a. - b.1 ) = 0 the relation 
lim 7 (Pa 1 - P7b) = 0 holds. 

Then deg (I - F(t, .), , y(t)) is independent oft E [0,1]. 

Proof. Referring to the homotopy invariance of the finite-dimensional Brouwer 
degree it is sufficient to show the existence of a ° E r such that 

P- y( t )	(I - P..F(t, .)) (ô1l)	for t E [0,1], -y ^! Yo• 

Otherwise, for any -y E F there exist 7' > ,t E [0, 11 and x- ' E O ' such that 

P.y(t.) = x.,	 (7) 

Choosing such a -y' for every 7 E F a subnet I" of r is defined. Without loss of generality 
we can assume the convergence of (t )i €r" to a t E [0, 1]. Using (i) we have 

lim	 - F(t,xs)) = 0. 

Condition (iii) holds for all subnets F' of F - fill up (G,V).)Ef and (b ) .) Y. Er ' with zeros. 
Therefore,

li(P7F(t,x)_PF(t,x,.)) =0.	 (8) 

Using that	is also an approximation net we have 

lirnP,.' y(t) = 
-Y 

since { y(t .. )I' E F'} is relatively compact and y is continuous. Together, (7) - (9) 
yield

urn	- P.. ' F	xe)) = y(t). 

Since F is approximation-compact, there exist a subnet F" of F' and an x E l with 
limo x.1,, = x and x - Fx = y. Since x-,, ' E 8 " 9 oci holds for all 7" E F", we have 
the contradiction x E M I
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Clearly, condition (iii) of Theorem 5 is a purely technical one. For example, it holds 
for a uniformly equicontinuous approximation net. 

Our last theorem is of "Borsuk type". 
Theorem 6. Let 0E ci for an ci which is symmetric with respect to the origin, i.e. 

ci = —ci. Suppose F ci -' X is odd, i.e. F(—x) = —F(x) for x E ci. Suppose further 
that F : - X is approximation-compact with respect to 0 and (P y ) r . Finally let 
(11)rEr consist of odd mappings and 0 (I - F)(oci). Then deg(I - F, ci, y) is odd, 
i.e. deg(I— F,ci,y)fl 2Z = 0. 

Proof. Fix -y E F. The set	is symmetric with respect to the origin, 0 E ci., 
holds and the map I - P.1 F is odd. So, using the finite-dimensional Borsuk theorem, 

deg (I - P.,F, ci.,, 0)	is odd if 0 (I - P.1F)(aci.,). 

Therefore, it is sufficient to show the existence of a -to E F such that deg., (I— P..F, ci.,, 0) 
is defined and 

deg (I - P.,F, ci.,, P.,o) = deg (I - P.,F, ci.,, 0)	for -y ^!-yo. 

We apply Lemma 1 with A = M. Since aci., c ôci (y E F), we have the existence of 
some 71 E F and Uo E U such that 

(I—P.1F)(acl.,)n(P.o+u0)=o	for ^!-y1. 

Further on, noting lim., P.O = 0, we have the existence of a 72 E F such that 0 
P.10 + U0 ( ^! 72). Finally, choose 70 ^! 71,72 and use, noting the circledness of Uo, 
the homotopie invariance of the Brouwer degree I 

2.3 Three fixed-point theorems. At the end of this section we transfer two fixed-
point theorems from Kaballo [6] to our situation and prove a theorem of Hahn and 
Potter [4]. 

Theorem 7. Let X be a topological vector space and (P.,).yEr an approximation 
net in X. Suppose that every P., maps bounded sets into bounded sets ' and that 
assumption (iii) of Theorem 5 holds. Furthermore, let ci be an open neighbourhood of 
zero and F : ci - X a continuous map with bounded image. For every i E (0, 1] suppose 
that tF is approximation-compact with respect to 0 and ( P.y) . Er . Then either F has a 
fixed point or there exist at0 E [0,1) and ax0 E ôci with xo = t0Fx0. 

Proof. If F has a fixed point nothing is to do. Otherwise, because of the suppo-
sitions, P.7tF has bounded image for every I E [0, 1) and y E F. Therefore, (4) holds 
for any tF and we can use our degree concerning these maps, i.e. deg(I - iF, ci, 0) is 
defined for I E [0, 11. 

1) In case of a locally bounded space X and an approximation sequence this assumption is 
redundant.
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Define the homotopy

	

H(t,x)=tFx	(xE,tE[O,1]). 

The assumptions (ii) and (iii) of Theorem 5 hold for y(t) 0. Assumption (i) of 
Theorem 5 follows from the bounded image of F and so the homotopy invariance (G3) 
provides in conclusion with the normalization (Gi) 

deg(I — F,ci 3 O) = deg (I,ci 3 O) = {1}, 

noting that ci is a neighbourhood of zero. Because of Theorem 31(u), we have the 
existence of a fixed point and thus a contradiction I 

Theorem 8. Suppose the same assumptions as in Theorem 7. Suppose further that 
ci is a shrinkable neighbourhood of zero and F(ci) c ci. Then F has a fixed point. 

Proof. If there exists a fixed point on 311 we are done. In the other case we use 
the homotopy

	

H(t,x) = tFx	(x E ci, t E [0, 11) 

again. Noting that ci is shrinkable assumption (ii) of Theorem 5 holds and the rest of 
the proof is obvious  

Theorem 9(see Hahn and Potter [4]). Let 0 j4 ci ç X be an open neighbourhood 
of zero and F ci - X be continuous and compact. Moreover, suppose that, for all 
x E ôci and a E [0, 11,

	

F(x) = ax	implies a 1. 

Then F has a fixed point. 

Proof. The maps iF (t E [0, 1]) are approximation-compact with respect to 0 
and the natural approximation net. If F has a fixed point on ôci we are done. In the 
other case we have to prove the requirements of Theorem 5 concerning the homotopy 
H(t, x) = tFx (x E ci, t E [0, 1 ]): Condition (i) follows from the compactness of F and 
to prove condition (iii) we only have to look at the indices of the natural net. Finally, 
condition (ii) is provided by the assumed implication noting that a 1 is valid in the 
current case I 

The next section deals with the relationship between condensing maps and approxi-
mation-compact maps. It turns out that, if we consider the generalized degree as an 
extension of the degree for condensing maps, the results are not as natural as in case of 
compact maps.
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3. Measures of non-compactness and -condensing maps 

The purpose of a measure of non-compactness r is the identification of relatively compact 
sets. In contrast to the definition of Sadovskii [15] at which the measure is invariant if 
we pass to the convex hull of a given set A, i.e. r(A) - r(convA), we omit this part of 
the definition, because of our setting of a general topological linear space. 

Definition 4. Let X be a topological linear space and M a system of subsets of X 
which includes all relatively compact sets. For a given set A 0 0 let ..T(A, [0, no)) denote 
the system of all functions defined on A with values in [0, no]. There is a natural partial 
ordering on .T(A, [0, no]) given by 

f > g	 1(a) ^! g(a) for all a E A. 

A map r: M .-. .F(A, [0, no)) is called a measure of non-compactness if for all M E M 

(RI) r(M) = 0 if and only if M relatively compact 

(R2) M' E M implies r(M) = r(M). 

If A consists only of one element we identify A, [0, no]) with [0, no]. 

Example 1. The ball measure 2) of non-compactness is defined as follows: Let 
A = (f()-EA be a family of F-seminorms defining the topology of a complete topological 
linear space X. For every a e A let B(x,i9) (x E X, 19 e [0, no)) denote the ball of 
radius 0 around x with respect to the semimetric induced by f0,. In connection with this 
let us agree with B,(x, no) = X. We define for M E M = P(X) 

rb( M)(fa) : inf 19 > 0 M c U Ba(m',i9) for some finite M' c M 
m'EM' 

Proof. Clearly, we have property (112), and property (Ri) follows from the equiv-
alence of relative compactness and precompactness in complete spaces I 

Furthermore, the above defined bail measure has the following two important prop-
erties of a measure of non-compactness: 

Monotonicity, i.e. for all M,N E M, M c N implies r(M) r(N) 

Algebraic semi-additivity, i.e. for all M,N E M, M + N E M implies r(M + N) < 

r(M) + r(N). 

Example 2. Let X be a complete F-normed linear space with F-norm . and 
(Pn ) nEiN an approximation sequence in X. Suppose that Pn maps bounded sets into 
bounded sets. Let M denote the system of all bounded subsets of X. Then 

rp (M) = lim sup 
( zEM

sup11(1-P)xII	(M E M) 
n	 M	 I 

defines a monotonous measure of non-compactness. 

2) Sadovskii [15) uses the term "Hausdorif measure" instead of "ball measure".
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Proof: Property (R2) follows from the continuity of I, P and fi . The monotony 
is evident and the sufficiency of property (Ri) holds, since (Pfl ) flE jJv is an approximation 
sequence. 

To prove the necessity of property (Ri) choose M E M with r(M) = 0. We show 
that every sequence (Xm)mEj'v in M has a Cauchy subsequence. Since r is monotonous, 
we have

	(mEEV 
rp({xml m E iN)) = limsup  sup 11( 1 - Pn)xmII ) = 0.	(10) 

n 	 I 

The sets {PnmI m E IN} (n e ITV) are relatively compact, noting that P, maps 
bounded sets into bounded sets and using the theorem of Heine-Borel. Therefore, we 
have inductively 

n = 1 : (P1 X m)m E UV has a Cauchy subsequence (PlXmk(,))kEJN 

n - n + 1 : (Pn+lXmk(,,))kElN has a Cauchy subsequence (Pn+lZmk(,,+I))kEIpJ 

For every n E IIV we have

(Xrnk(+,))jp,, c (Zm))kIl, 

and it turns out that the diagonal sequence (Xmn(fl))	is a Cauchy sequence. Indeed,

fix e > 0. Because of (10) there exists an n 1 E IN with 

11( 1 - Pn i )XvnII <	(m € IV). 

Again, (10) provides the existence of an n2 € iN such that 

C 
Xm () - Pn l Xm 'C	 (n,n > max{n i , 772)), 

noting that (P.,Xm,(-,))k,BV is a Cauchy sequence. Finally, 

Xm () - Xm, ( , )M	II xm() - PniXmM 

+ P., Xm () - P111 

- Xm() 

shows that (Xmfl(fl)) EJN is a Cauchy sequence and, together with (Xmfl(fl)) EIN 
( Xm)mE, the relative compactness of M is shown I 

Now we introduce the notion of a -condensing map which links approximation-
compact maps with measures of non-compactness. The motivation of the following 
definition is due to Subsection 4.4, but it can also be seen as a generalization of the 
notion of a condensing map defined by Sadovskii [15].) 

3) Sadovskii uses the character ik to name the measure of non-compactness.
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Definition 5. Let 0 54 Q ç X be open and r: M - F( A , [0,1) be a measure of 
non-compactness with M fl Q E M for every M E M. Suppose a map F: n - X with 
the property that F(M fl 1) E M holds for every M E M. Let 0 : F(A, 10, oc]) - 
.F(A, [0, oc]) be a monotonously increasing map with &(f) = 0 if and only if f 0, for 
every f e .F(A, [0, oo]). Then F will be called -condensing with respect to the measure 
of non-compactness r if the implication 

,b(r(Mfli)) r(F(Mfli)) =	Mfl1 is relatively compact 

holds for every M E M. 

If the measure of non-compactness is fixed let us agree to call such a map "v' -
condensing". In the same manner let us use "k-condensing" if = kI, and "condensing" 
if 1, = I which is in accordance with the definition of Sadovskii. 

The following lemma links -condensing mappings and approximation-compact 
mappings. 

Lemma 2. Let X be a Hausdorff linear space and (P.y ).yer an approximation net 
in X. Suppose a measure of non-compactness r : M - .1(A, [0, oc]) 4) and a function 

as in Definition 5. Let 0 0 Q c X be open and suppose a continuous map F: - X 
which is ,b-condensing. Finally, assume the following estimates: 

(i) There exists 0 j4 V C X such that, for all y E Y and r' c r, if 

lirn	- P.Fx7 ) = y	for some XY e 

then
r({xI71Er'})<r({P'FxI71er'}) 

(ii) For all I" ç I' and (x.r').v'r' c F (fl), 

0 (r({P'x'I7'EF'})) <r({x.I'y'er'}). 

Then F is approximation-compact with respect to Y and 

Proof. Let (x.y').y.er' and  E Y as in assumption (i), i.e. ( X. ') . 'Ef' fulfils assump-
tion (A). Linking assumptions (i) and (ii) and the monotony of 0 we have 

E F'))) <r({Fx7.I-y' e r'}) 

which implies the relative compactness of {x.7 -y' E r, ). There exists a subnet r" 
of r' and an element x E n such that lim. " xo = X . Since {x " Iy" E r  is rela-
tively compact and F is continuous we obtain x - Fx = y noting that (P-y")-y"r" is an 
approximation net  

4) The domain M of the measure is not specified. At the beginnig of each application of the 
lemma we have to control that all sets used as arguments for r are contained in M.
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Estimate (i) of the above Lemma 2 is a technical one. E.g., in case of an algebraically 
semi-additive measure of non-compactness it holds for approximation sequences. For 
the measure r we obtain next a concrete function Ti'. 

Corollary 1. Let X be a complete F-normed space with F-norm II and (P)flj,..j 
an approximation sequence in X. Let 0 0 Q c X be an open set and F - X a 
continuous map with bounded image. Furthermore, suppose the following: 

(i) For every bounded set M C X, UTI E JNPfl(M) is bounded (especially, rp is 
defined).

(ii) { Pn}nipq is uniformly equicontinuous on bounded sets. 

(iii) For all ri,m E IN, Xn C_ Xn+I, Pn I X. =I and  PmOPn = Pmin{m,n}. 

Then estimates (i) and (ii) of Lemma 2 hold for Y = {0} and 0 = I. 
Therefore, using Lemma 2, every continuous map with bounded image which is€

condensing with respect to r, is approximation-compact with respect to 0 and (Pn)nc,jv. 

Proof. We have to prove estimates (i) and (ii) of Lemma 2. Let (xfljkE,.,, with 
for k E LIV and

lirn(x flk — Pnk Fx fl ,) =0	 (11) 

as given in estimate (i) of Lemma 2 with y = 0. The set {Fx nk /c E IV  is bounded 
since F () is bounded. Linking (i) and (11) we obtain that {xflk k E IN} is bounded, 
too. Now rp({xfl k lk E IV}), rP ({Fxfl k lk E .LIV}), rP ({Pn k Fxn k lk E LV)) are defined. 
We have the equalities 

rP ({xfl k 1k E i) = urn sup (sup 11( 1 - Pfl)xfl k ii) 

= urn sup ( sup 11( 1 - Pfl)xfl k II n 

because of the retract condition (iii). Since the family {I - P}EjN is equicontinuous 
in zero and using (11) and (12) we have 

rP ({xfl k l k E W}) = lim sup sup 11( 1 - Pfl)(xfl k - (xfl k - PnkFxnk))II) 
fl	(nk >n 

= limsup 
(nA,>n

sup 11( 1 - Pn)PThkFXn 
fl  

= rP ({ Pflk Fx fl Ik E .1W)) 

and estimate (i) of Lemma 2 is shown. 

To prove estimate (ii) of Lemma 2 we can work with sequences (xk)kEJ/v instead 
of the subsequences used in Lemma 2 noting that 0 and r are monotonous. That
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r ({xkl k E ffi}) and r ({Pk x k I k E LTV}) are defined can be shown in the same way as 
before. Using assumption (iii) we obtain 

rp({PkxkIk E V}) = 1imsuP(suPII(I_Pn)(Pkrk)II) 

= iimsup SUP II Pk xk - PflPkrkII) 

= urn sup	IIPkxk - PflxII) 

followed by the estimate 

1 
2	(k>n 
—limsup sup lI Pk xk - PflrklI) 

<!limsup (k>nsup (II Pk x k - X kII + Irk - PflrkII)) n 

< —lim su 1	
p (

k>1
sup 11( 1 - Pk)xkII + rp({XkI k E - 2 fl (> 

< —lim su 1.	
p (kE EV 11( 1 - P:)rkII + r({xkI k E2 n (> 

=rp({rklk e W}). 

I.e., estimate (ii) of Lemma 2 is shown for = jII 

We refer to Subsection 4.4 for non-trivial examples of approximation sequences 
which hold properties (i) - (iii) of Corollary 1. 

Our next section gives some examples of approximation nets that differ from the 
natural net. They all are sequences. The consequence is that the condition x - Fr = y 
of assumption (A) is redundant, since convergent sequences are relative compact. The 
bad effect of differing from the natural net is that one has to prove property (4) before 
using the generalized degree. 

4. Examples of approximation sequences 

4.1 General linear approximation sequences. In the foregoing section a lot of 
assumptions have been made concerning approximation nets and approximation se-
quences. If these approximations are linear the Banach-Steinhaus theorem is very use-
ful.

In case of a linear approximation sequence (P)nE12v in a complete F-normed space 
X the orbits {PxI In E .1V} are bounded for every x E X. Therefore, we have by the 
Banach-Steinhaus theorem
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Corollary 2. Let X be a complete F-normed space and (P)€r i a linear approx-
irnation sequence in X. Then { Pfl } flEJN is an equicontinuous family. 

If X is locally bounded, the F-norm is given by a p-norm 1• I.e., there exists 
a 0 < p < 1 such that II Ax II = A I P II x II (A E IR, x e X) holds in addition to the 
properties of the F-norm. In this case a continuous linear operator T : X - X has a 
norm

IT = sup {ITxII/P IIxII' = 11 E li1. 

Corollary 3. Let X be a complete p-normed space with p-norm 11 . and (P)j 
a linear approximation sequence in X. Then sup, II PnII <• 

Now, choosing rb as measure of non-compactness, we have an estimate for the weight 
function i/' in Lemma 2. 

Ccorollary 4. Suppose a complete p-normed space X with p-norm and a 
linear approximation sequence (Pn )n jpj in X. Let C := sup, II P II and 0 0 ci C X be 
open. Then every continuous map F: ci - X which is C"-condensing with respect to 
r, is approximation-compact. 

Proof. Again, we prove the estimates (i) and (ii) of Lemma 2 with t,b = t	C"t€
and V = X. 

Estimate (i) follows from the algebraical subadditivity of rb noting that convergent 
sequences are relatively compact. 

Concerning estimate (ii) we can work with sequences instead of arbitrary subse-
quences (see the proof of Corollary 1). Therefore, choose (xn)ncsv c X with r&({xIn E 

= 10 e t0,00). For 5 > 0 we have a finite subset M6 ç { x l n E iN) such that 
II x n - m II t9 + S (n E IN) for suitable chosen Mn E M6 . Let B(0, a) denote the 
ball around zero of radius a with respect to the metric which is induced by the p-norm. 
The estimate

r6 ({PnxnlnElT\T }) <rb((Pnxn—PnmnInElTsJ) 

= rb( {P(x - m ) I n E IV) 

fb( U n P(B(0,i9 +5))) 

SUP II P IV' (t9+5) 

= C9 + 5) 

concludes the proof by S - 0 U 

4.2 The sequence spaces IP for 0 < p< 1. Let x = (X)EJN JR and 0 <p < 1. 
We define

IxIIp = : ii: i x i .	 (13)



484	T. Okon 

This defines a p-norm on the sequence space 

IP =	c R I IIxII <}. 
The induced metric defines a complete space which is not locally convex - see Landsberg 
[9]. However, 1' is admissible and we obtain an approximation sequence as follows: 

For every i E W let e	(Sjn)nEjJV. The set {e.}jpj is a Schauder base for jP Let 
X (xfl)fl E w E l. The mappings 

Pm(x)=>xiej	(mEPV) 

are continuous linear projections of norm 1 with finite-dimensional image. Therefore, 
they are uniformly equicontinuous on 1'. Using this and (13) we have that (P")nEBV is 
an approximation sequence in li'. 

Let 0 54 ci c l' be open. In case of the space IP the constant C of Corollary 4 is 
equal to 1. Therefore, every continuous map F: ci - X which condenses with respect 
to Tb is approximation-compact with respect to ()E• 

Concerning the measure of non-compactness r a short look at the proof of Corollary 
1 and (13) shows that the corollary holds for maps which condense with respect to 
instead of the i -condensing ones. 

Now we have by Theorem 8 the following 

Theorem 10. Let 0 ulC lbe an open and shrinkable neighbourhood of zero. 
Suppose a continuous map F: ci - ci with bounded image which condenses with respect 
to Tb or ri,. Then F has a fixed point. 

Proof. First we notice that the generalized degree is defined. For example this 
follows from the boundedness of the image of F linked with the linearity of the ap-
proximation sequence ( Pn )njjv. It is now easy to see that most of the assumptions of 
Theorem 8 hold. For example, iF is approximation-compact, since tF condenses for 
every I e (0, 1) with respect to Tb or T, respectively U 

Now we give an application of the above theorem by constructing a map F: 1" - l 
which condenses with respect to Tb. 

Example 3. Let (Wk)kEUV be a family of equzcontinuous maps Wk : JR - R. More-
over, suppose the existence of a constant M E 1R such that 

sup Ik°kIIoo <M. 
kEIN 

Finally, let a = ( aI)1E,r, b = (b,),jN E P and A E R. 

The problem to solve is an infinite-dimensional system of nonlinear equations 

a2'(xk) + Ax 1 + b	(i E	).	 (14)
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We will get a solution of system (14) in 17' by making assumptions on a = (aI)Eliv, b = 
( bi)iEZV and A to use Theorem 10 with a suitable condensing map F we define as follows. 

Let F1 , F2 Bp(0,r) - 17' be defined by 
00 

(F1 (z)) =	aj2_1k_,k(xk)	
(i E V) k=1 

(F2 (z)) 1 = Az11 + b1 

for every x = (Xj)jE1N E B7' (0, r). The estimate 

F2 (z) - F2(y )lip	A7' li z - y lI7+	(z, y E B7' (0, r)) 

shows that F2 is defined, continuous, and APcondensing with respect to rj,. 
Concerning F1 we first supplement the approximation sequence (Pfl ) flE J,v by setting 

P,. = 0 for n = 0. Let z = (xk)kEJN E jP and n E No. The case n = 0 in the calculation 

(I - P) F1 (x)ll = >2 l(Fi (x))l7+ 

00 Ioo	 P 

i=n+1 k=1 
=	 Pk 

(x	
(15) 

00 

>2 l a I+(3 - 2'')7'MP 
i=n+1	- 

provides the estimate

II F1(x )llp :^ 37' j jajj pMP	(z E Bp(0,r))	 (16) 

and, therefore, F1 is defined. The equicontinuity of the family (Sk)kEff.7 linked with the 
equation

IF1 (x) - Fi(y)II = >2 >2 aj2_Ik_I (cok(xk) - cok(yk)) 
1=1 k=1 

which can be continued by an estimate like (15) provides the continuity of F1 . To show 
the compactness of F1 we refer to the measure of non-compactness r 7+ and (15). In fact, 
we have

rp(Fi (B(0, r))) = urn sup(
zEBp(o,r) 

sup	11( 1 - P)Fi(z)ll ) = 0. 
n 	 J 

The map F = F1 + F2 is continuous and condenses with respect to the measure of 
non-compactness rb for J AI < 1, since rb is algebraically semi-additive. The ball B7' (0, r) 
is a bounded and shrinkable neighbourhood of zero and, finally, we have requirements 
on M, A, r,a = (ai)iE,v and b = (bj )1j,v in form of an estimate which links them and 
provides that the image of F is contained B(0, r). Exactly, let x E B(0, r). Then 

IF2 (x)ll :5 JAI P ll x ll + llbll7+
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linked with the estimate (16) provides 

F(x)ll	
3P ll a iI M + l X l P lI x il + libll 

If we assume
( J A I" - 1) r + 3"il a ilpM" + li b Ii	0	 (17) 

which is the announced connection of the parameters the desired estimate for the image 
of F follows. Therefore, (17) and lXl < 1 provide a solution of the fixed-point equation 
F(x) = x in B(0, r) which is equivalent to a solution x of the system (14) in 1' with 
JJxIIp < r. 

4.3 The Hardy spaces HP for 0 <p < 1 and the Nevanlinna class Nt Let 
JD = {z EC I Izi < 11 be the open unit disc in the complex plane and H(1D) be the set of 
all functions which are analytic on ii). Let 0 r < 1 and define Tr: H(D) - H(10) 
by

	

Tr(f)(z) = f(rz)	(1 E H(D), z E 1D) 

with the agreement 1D = C. Furthermore, for I E H(ID), we define in the case 
O<p< 1

Ill lip = sup 1 I I(Trf) (C ' 6 ) 1pdO 	 (18) 
O(r<1 2ir -,r 

and

Ill lb = sup - f log,  (Tn) (e'° )l dO.	 (19) 
O<r(1 -,r 

for p = 0. 
We obtain the Hardy spaces H" and the Nevanlinna class N by 

H" = {f E H(ID)l Ill lip <oo}	and	N = If E H(ID)l I lf lb <oo}, 

respectively. 
For every f E N the non-tangential limits limr_i_(Trf)(&°) exist a.e. and we have 

an identification with a measurable function on M which will be denoted by f, too 
(see Duren [3]). In case of f E H" the identification provides 

	

If lip =	J bf(e101PdO. 
-,r 

For general I E N this property characterises a subclass N+ of N: 

N	{f EN bulb = — 1log+ If (e°)I dO }
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and we have the inclusions Hq C HP ç N+ . c N for 0< p < q < 1. 
The norms 11 . ", are p-norms for the spaces H (0 < p < 1). These complete 

spaces are not locally convex (see Landsberg [9]). The space N can be provided with 
an F-norm

ill IN =	f log (1+ lf(&°)l) dO	(f E N). 

The obtained metric space is not locally bounded and only the subclass N+ is complete 
with respect to this metric (see Yanagihara [19]). 

To show the admissibility of HP and N+ by defining approximation sequences we use 
the proof of the admissibility which has been given by Krauthausen [8]. The operators 
T, 1H, and TTIN+ are Lipschitz continuous with Lipschitz constant 1 (see Rudin [14] 
and Yanagihara [19]). It is easy to see that for given e > 0 and compact K c HP or 
K c N+ we have an r E [0,1) such that 

Tn - fli p <	or	liTrf — fuN!

holds for every f E K, respectively. 

In a second step we approximate g E Tr(K) ç H(1D) on olD by using Taylor 
polynomials: Let r E [0, 1) and I E H ( 1 ID) be fixed. Let M1 (S) denote the maximum 
of i fl on O(61D) for 5 E [0,). For f E H and I E N we have (see Priwalow [11]) the 
estimates

1/p 
Mj(ö)	

- . )	
and Mj(6) < 2fHo/(1_o)	(0 < S < 1),	(20) 

respectively. Varying f in K we provide 

CK,,. := sup MT, f( 1 ) < cc,	 (21) 
fE K 

noting that ii lb	Ii IN For every n E No let 

P(f)(z) :=	ak(f)zk	(I z i < 1) 

denote the n-th Taylor polynomial of f E H(ID). For short, let r' :=	+ 1) and 
(r + 1) (r E (0,1]). By the Cauchy formula and (21) we have 

M(J_p)rf(1)	laI(Tf) 
kn+1 

> Mj(l)rk	(f E K)	 (22) 
k'n+I 

^ C,r" E r'. 

k=n+1
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Choosing n = n(K,r) such that the last term can be estimated by min{ "', ed/2 - 1) 
the terms 11( 1 - Pn)Trf arid 11( 1 - Pn)TrfiiN can be estimated by independent 
of f E K. Linked with our first f-argument the admissibility of H" and N follows 
directly from the triangle inequality. 

To define an approximation sequence we have to link n and r. For short, let r 
(1 - 1) (n E 1W). Let (mn)nE )N denote a monotonous increasing sequence of natural 
numbers we specify further on. In case of the Hardy spaces we have 

(2n

22\k€

	

sup M(J_p)T,j(1)	sup (4nIfII,)"' i 	- i) JEK	 16K	 k=m,,+1 

referring to (20) (22). Now choose Mn E 1W such that 
00	

f2n-2\'	1 

	

(4n)1P	
(.2n_1) < - n k=m+1 

Then, defining P = Pm n o Tr (n E 1W), the sequence of mappings (P, )nEW defines a 
linear approximation sequence. 

Finally, we obtain an analogous result for the Nevanlinna class N+. Starting with 
a sequence (in)flElN instead of (m0 ) 6 jiv we have the estimate 

00 

	

M(J_p,)T.f(l)	sup e''	
(2n - i) 16K	k=l+1 

Choose (ln)nEjN such that
00 

( 2n

272_1'k 

1 - 2) <;:	
(72 E 1W). 

The mappings
P,	Pin 0 T,.	 (23) 

define a linear approximation sequence in N+ and every H" since for every p E (0, 1) 
we have an n E 1W with n" 2 (4n)h/P for all 72 2 n. 

We look for fixed-point theorems for 0-condensing maps as we have done in case of 
the sequence spaces 1". Our first available lemma which links approximation-compact 
maps with condensing maps, Corollary 1, does not work, since it's retract assumptions 
do not hold. 

Concerning the measure Tb we have to use Corollary 4. In case of the Hardy spaces 
it turns out a statement concerning C"-condensing maps with a constant C > 0 which 
we do not know. In case of the Nevanlinna class N+ we obtain no result. 

To "solve" this problem we introduce F-norms in H" and N+ which harmonize with 
the approximations: 

	

fii' = sup	 and	IVIN = sup iiPfilN 

	

nEIN	 nEJN
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for f E H" and f E N, respectively. The reader will convince himself that	1i is a 
p-norm and	is an F-norm. To show that	and 11 .	induces the same notion 
of convergence as	Il p and	1k' does, respectively, we calculate, for example, 

ii 1+,fII, = sup IIP,1fII p = sup IIPImPtnTrmTrnfIIp 
mEIN	 mEV 

=	sup	II Plk Tr,,rnfIIp ^ SUP Il Plt Trk flip ^ iiiii;, 
kEIN kmin(m,) 

noting that the first estimate holds, since P, is subharmonic. We obtain the estimates 
Il P ii < 1 (n E JJV). Since P,(f) = f for constant f we have ii P li = 1 (n e N) with 
respect to	, in case of the Hardy spaces. In case of the Nevanlinna class we have 

1 as a Lipschitz constant for the approximations P,*, using the same argumentation as 
above. 

The space H" is complete with respect to the new F-norm and using Corollary 4 
we have that for 0 c H" every continuous map F —. H" which condenses 
with respect to r is approximation-compact, at which r denotes the ball measure of 
non-compactness with respect to the new F-norm. The same statement holds -for the 
Nevanlinna class N+ noting that the constant C" of Corollary. 4 is used as a Lipschitz 
constant only. 

Theorem 11. Let S2 c H" or 0 be an open shrinkable neighbour-
hood of zero. Suppose a continuous map F : Q — l which has bounded image and 
condenses with respect to r. Then F has a fixed point. 

Proof. In case of the Hardy spaces the proof of Theorem 10 can be adopted. Con-
cerning the Nevanlinna class we first notice that we can use the generalized degree since 
P,*, is linear for n e N and the image of F is bounded. Again, it is easy to see that most 
of the assumptions of Theorem 8 hold. We only show that iF condenses with respect 
to r for every t E (0, 1). 

Let BN' (m, i9) denote the ball of radius 0 > 0 around m with respect to the metric 
induced by 11 .	. Choose E N and t E (0, 1). The calculation 

I E tBN ' (m,19)	, IE {tx li x — mii <t9} 

I E j y j ff — 
mD <} 

€ 
jyj ii - tm	<} 

I EBpj'(tm,i9) 

is all we need I 

Again, as an application of the fixed-point theorem we analyze an operator'concern-
ing his fixed points. 

Example 4. Suppose p = is fixed. As in Example 3 the operator F is a linear 
contraction FA perturbed by a nonlinear compact operator F,. Choosing ,\ E [0, 1) every 
continuous linear operator F : H"2 —. H' !2 with norm A condenses with respect to
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The definition of the compact perturbation is more complicated: Define S : H(D) -+ 
H(JD) by

SW(Z) = x ( t) dt	(x E H(), z E ). 

Referring to Duren [3] we have 5(H/2) c H'. Therefore, we can define an operator 
5: H"2 -* H' which, looking at the closed-graph theorem, turns out to be continuous. 

The reader may put the question whether S is a compact linear operator or not. 
Assuming familiarity with harmonic functions one can show that the family {fr}o<r<i, 
f(z) =
	is bounded in H' 12 and that the family {Sfr )o<r< i has no convergent


subsequence in H'. Therefore, S cannnot be compact. 

Now we use a composition operator to make F1, compact: Choose a function E 
H(1D) with p(JD) c D. It induces a composition operator C, by C(x) = x o (x E 
H(JD)). This is a linear operator and, using Littlewoods subordination theorem (see 
Duren [3]), in connection with the Harnack inequality (see Rudin 1141), we have its 
continuity on H'. For (0) = 0 we obtain the estimate II C II 5 1. 

Compact composition operators have been analyzed by Shapiro and Taylor [16]. 
For example, C. is nuclear and, therefore, compact, if the image of p is contained in a 
polygon which himself is contained in JD (see [16: Theorems 5.1 and 6.1]).' 

To reach the space H"2 we square the images of Cv,. This also guaranties the 
non-linarity of the resulting operator. We consider the operator 

T: H'—H"2 

It is clear that T is defined. Let G 9 : H' - H' 12 (g E H') be defined by G9 (f) = 
91 (1 E H'). Using the Holder inequality we have the equicontinuity of the family 
{ Gg}9EA for bounded A ç H'. Now the continuity of T turns out by the triangle 
inequality. 

We have arrived at the situation 

H"2 - s H' - c, H' 'T H"2, 

and, if B(r) denotes the ball of radius r > 0 around zero in H112, 

=ToC1,oS+y	(yEH"2) 

defines a continuous nonlinear compact operator : B(r) - H' !2 . Since r is 
algebraically semi-additive we have that F = FA + F, , y condenses for JAI < 1. To use 
Theorem 11 we have to find requirements which provide F(B(r)) 9 B(r). 

Recognizing the definition of F, we have that S(B(r)) is included in the ball of 
radius JJSJIr 2 around zero in H'. Assuming (0) = Owe see that F,0 (B(r)) c B(Sr2 + 
IlYlI,/2) . Therefore, supposing that 

(ii" + r u Sh - i) + hIYhI1/2 < 0
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we get a solution of the equation x - Fr = y in H"2 where lI z 111/2 r holds. 

4.4 The spaces LP[0,1] for p € (0,1) and the space S[0,1]. Let S[0,1] be the 
space of all measurable functions 1: [0, 11 - R. Then

Ifi 
11111 = 11	di	(1 S[0, 11)	 (24) 

+111 
0 

defines a F-norm and 5(0, 11 is a complete F-normed space which is not locally bounded 
(see Jarchow [51). The notion of convergence induced by (24) is convergence in measure, 
i.e.

lirnlIfII=0	.	limj{zE[0,1]If(z)I>6}	0 V8>0	(25) 

for (ffl)Eliv c S[0, 1], at which u denotes the Lebesgue measure on [0, 11. 

Choose p E (0, 1). If we define LP [0, 11 = If € S[0, i ll If I P is integrable}, then the 
p-norm

I lI = / If Idi	(1 e LP [0, 1]) 

induces a stronger notion of convergence as (25). The space LP [0, 11 is not locally convex 
but it is locally bounded and complete (see Jarchow [5]). For 0 <p ( q < 1 we have 
the inclusions L[0, 1] c LP [0, 1] c 5[0, 1]. 

Riedrich (see [12, 13)) has shown the admissibility of L[0, 1] (0 < p < 1) and 
5[0,1]: 

For n E IV and k E {1,...,n} let	denote the intervall	and Xk,n it's

characteristic function. For n E iN we define weights 

Pk,(f) = (T2f IP dt)	(k E 11,.. . , n)) 
k 

for 	f  LP [0,1] and

-1 
1 

sk,(f) = J j-_jdt (I j--y dt)
	(k E {i,...,n}) 

for 0 ( f E S[0, 11. The approximations are given by 

P(f) = 1: Pk,n(f)Xk,n	and	S(f) = E Sk,n(f)Xk,n, 

for non-negative 1, respectively. For general f in LP [0, 11 and S[0, 11 we define 

P (f) = P(f+) - P(f-)	and	S(f) = S(f+) - S(f_), -
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respectively, at which f = max{f,0} and f = max{—f,0}. 
For n E iN let X, denote the finite-dimensional subspace span{xi,.)Xn,nj of 

L9 [0, 1] or S[0, 1). Riedrich [12] shows that the operators P,, : L"[O, 1] - X,, define an 
approximation sequence of equicontinuous retracts on X. In [13] an analogous result 
is given for the operators S, : S[0, 11 —* X,,. 

Now we show that ( Pn)Ev satisfies the requirements of Corollary 1: 
Estimate (3) in Section 2 of [12] yields for all 0 < p < 1 and o r > 0 the existence of 

a A = A(p,a) such that 

it— SI P <Alt'--s'i+alt"+sPi	for all t,s>0	 (26)


and Riedrichs shows that 

	

iV'(f) - P(g)ii p :5 2Af - g i,, + 2a(iif lip + lI g ii)	for all 1, g E L'[0, 1]	(27) 

at which A also depends on p and a only. Using (27) we have that for every bounded set 
M c LP [0, 1) the set UflELTVPfl(M) is bounded and {Pn}jjy is uniformly equicontinuous 
on M. Therefore, suppositions (i) und (ii) of Corollary 1 hold. 

Concerning supposition (iii) of Corollary 1 we have to use {2"I n E IV) to index the 
approximation sequence. Since	= I we have Pm 0 Pn = Pmin{mn} (m ? n). In 
case of m < n we have fork E {1,.. . ,m}, rn = 2" and ri = 2"	the calculation 

Pk,m ((Pf)±) = Pk,m(Pnf±)

2 -k	 PI/p	p	

i/p 

= (Tn 
f 

	

(j=2--	
dt	Xin) dtl

,ns (k i)I \ 
I/p P 

= 
('nf
	>

	(,
ffdt) xdt')

km j=2'(k-1)+1 	"!" 
1/p 

= (m [ fdtl) 
\	 m 

= pic,m(f±) 

for the weights and, again, Pm 0 P Pmin{mn}. 

Since the suppositions of Corollary 1 hold we have that every continuous map with 
bounded image which is i-condensing with respect to r, is approximation-compact with 
respect to 0 and (Pfl)flJjJ. 

An analoguous result holds for ( Sn)nEJN using a little bit more argumentation since 
there is no estimate like (27). For the detailed proof of suppositions (i) - (iii) of Corollary 
1 we refer to [10] since it is only technical. 

We have arrived at the obligatory fixed-point theorems.
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Theorem 12. Let 0 54 ci C LP (0, 1) or 0 5(0, 1) be a shrinkable neighbour-
hood of zero, and let F SI - 51 be a contrnuou.s map with bounded image which is 
i-condensing with respect to r p . In case of the space S(0, 11 the maps tF have assumed 
to be i-condensing for t e (0, 1). Then F has a fixed point. 

Proof. We can use the generalized degree since the image of F is bounded and the 
approximations map bounded sets into bounded sets. 

For every f E L[0,1] and t E (0,1) we have the equations P(tf) = tP(f) and 
il tf Il p = ItI P 11f Il p which provide that iF is ! -condensing. This completes the proof • 

Now we deal with the motivation of the notion of -condensing maps and the 
measure r. Riedrichs proof of (26) is indirect, but we have to look at two functions 

= (1 —u)' - o(1 + u)	and	(u) = 1 - u'	(0 <u < 1) 

with a parameter a > 0. We have to find a constant A > 0 such that 

coo(u)	AO(U)	(0	U	1). 

Now we take a close look at 

(i— 
a(u) :=	

u)P
 

up 1 - 

and see that 

is a possible value for A. 
2 

1.8 

1.6 
1.4 
1.2 
1. 

0.8 
0.6 
0.4 
0.2 

0

and	b(u) := —o 1 +
1 - 

H(a) = max (a(u) + ba(u)) O<u(I

(0< u < 1) 

P=0.1 - 
- 

p=0.3 - 
p=0.5 .. . - 
P=1.0 . . 

0	0.2	0.4	0.6	0.8
	

1 
Figure 1: H = H(a) for different p € (0, 1] 

Therefore, we can write (27) in the form 

ii 1 '(f) - Pn (g)Ii p :5 2H(ci)iif - ii + 2o-(iifll + ii g ii)	(o E (0, ij)	(28)
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at which f,g E L[0, 1J and rz E I\. 

Let 0 ci c L"[0, 1] be open and bounded. Define 
H(ci,t,a) = 2H(o)t + 4diam(ci)a	(t E [0,00), a E (0,1]).	(29)€

Using (28) we get for (x)E1N c i and r, the estimate 

rb({ PnxnI n E 1N })_<H (ci , rb({ x flnE1N}),a)	(ae(0,1]).

We can define

On(t) =r inf {H(ci,t,a)0 <a < i}	(0 <t < co)	 (30) 

since H(ci, i,) is continuous and bounded from below by 0. Therefore, we have 
r&({Px I k e 1N }) <tI)i-(rb({ x fl k I k E 1N }))	 (31) 

for every subsequence (xfl k )kE of (Xn)npv. The function On is a strictly monotonous 
increasing one and H(a) > 0 (0 < a < 1) provides that On(t) = 0 if and only if t = 0. 
Therefore, On 1 is a strictly monotonous increasing function, too, and, using Lemma 2, 
every continuous map F : —+ L[0, 1) which is On '-condensing with respect to Tb 15 

approximation-compact. 
Theorem 13. Let 0 5A ci cLP [0, 1] be an open and bounded shrinkable neighbour-

hood of zero. Suppose F ci - ci is continuous and ?I -condensing with respect to Tb, 
at which	is given by (30). Then F has a fixed point. 

	

Proof. We only note that the maps iF (t e (0, 1)) are	'-condensing with respect 
to TbU 

Remark. Since H has a singularity at zero, we have 
Of,( t)I	4adiam(ci)\ = inf 2H(a) +	 I -i +oo	for I - 0 +. I	O<cr(1\	 I	J 

Therefore, only using (27) to get an estimate as (31), we cannot make a statement 
concerning maps that are C-condensing with respect to Tb, at which C is a constant. 

16 

14 

12 

10 

8 

6
	 P=0.1 - 

p=O.2 - 
4	 p=0.3 — 

P=1.0 
0

0	1	2	3	4	5 

Figure 2: On = ç(t) for different p e (0, 11 and diam(1l) = 5
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• The definition (29) of H tells us that we get the same figure for any other diameter 
of-P.

Remark. Both figures have been produced by using the computer program Math-
ematica for approximation of discrete date and are only claimed to be illustrations. 
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