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Abstract. By means of weighted norms existence and uniqueness theorems are proved for some 
classes of nonlinear convolution equations in Lebesgue spaces L and spaces C of continuous 
functions. The applicability of the theorems is shown by examples. 
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1. Introduction 

In the theory of inverse problems for identifying memory kernels in viscoelasticity and 
heat transfer a class of nonlinear convolution equations occurs. Recently for these 
equations global existence theorems are proved using weighted norms (see [1, 6, 8]) . In 
particular Bukhgeim [1] derives general theorems for corresponding nonlinear Volterra 
equations with a convolution majorant by means of Schauder fixed point theorem and 
the contraction principle in Lebesgue spaces L and spaces C of continuous functions. 

In the present paper such existence theorem is given for some general classes of 
nonlinear convolution equations in spaces L and C applying the contraction principle 
in a modified way. This extends the existence lemma used in [8]. Further some exam-
ples are mentioned showing the applicability of the theorem, among them equations of 
auto-convolution type, nonlinear stress-strain relations in viscoelasticity and nonlinear 
Volterra integro- differential equations. 

2. Preparations 

Let X be a normalized, commutative, separable Banach algebra with norm	and 
L(0, T; X) (1 p :5 oo) the spaces of X-valued functions with the norms 

1/p 

HUG  IIu(t)IIPdt) (1 < p < co) and IIUIIoo 
(o

= sup ess IIu(t)II, 
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respectively. For 0 < T < oo in these spaces we introduce the equivalent weighted 
norms

IIuIIp, = 11 e
,Vt U IIp	(. ^? 0) 

which satisfy the relations

ItL IIp,a	lull,,	
aT e	li u lIp,a .	 (1) 

The convolution operator 

(u * v)(i) 
= / u(t - s) v(s) ds 

in these spaces is commutative and invariant with respect to multiplication by e_at. 
From the Young inequality in the weighted norms Il u * v,,,, :5 ll u Ili,lI v ll,,, and the 
estimates

1	1 
II U III,a	111Ilq IIUIIp,a	and	ll u lli,a	 ( 

p 
+ — = 1) 

\	q 

following from Holder's inequality, we have the estimations 

lkL * v llp , , <T111 1jullp, 1 1v ilp, (2) 

and
1	I/q	 1	1/q 

IIt . vp,a	()	lk'lI llVlIp,a	()	h u ll,, llvllp	 (3)
qu qo,

where p> 1. Further we define the set of functions	V 

M is non-decreasing with respect 
M = {M e	

to each component of its argument 

3. Main result 

Our main result is an existence and uniqueness statement for second kind operator 
equations of the form

u+Gou+Giu*G2u=g	 (4) 

where G (i = 0, 1,2) are operators in the spaces L,,(0, T; X) and C(0, T; X) satisfying 
Lipschitz conditions in the weighted norms. More precisely, there holds the following
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Theorem. Let G R E (Lp(0,T;X) .. Lp (0,T;X)) (i = 0,1,2), where 0< T < -: 
and p> 1, satisfy Lipschitz conditions of the form 

	

II Gu -Gjvll,, < M1(JI u II,, II v IIp,411 u - vfl p, ,	(a > Co > 0)	(5)€

for i = 1,2 and 

II Go u - Go v IIp,	.X(a)Mo(IIuII0, II v IIp,411 u - v II	(a > Co > 0)	(6) 

where M2 E M (i = 0, 1,2) and \ is a non-increasing continuous function with .X(a) -* 
0 as a - 00. 

Then equation (4) has a unique solution u e L(0,T;X) for any g E Lp(0,T;X). 
The same statement holds for the space C(0,T;X). 

Proof. 1. At first we consider the auxiliary equation 

f+Gof=g,	 (7) 

i.e. the special case of equation (4) without convolution term. By contraction principle 
we show the existence of a solution to equation (7) in the ball B , (g) {f: 
p}, where p = 2 1I Go g II and a > CO is chosen as a solution of the equation 

	

A(a) M0 (p + II g II, p + IIlI) =	 ( 8) 

with some e E (0, ).Due to the assumptions on ..\ a solution a of equation (8) exists for 
any sufficiently small positive E. Further by (6) and (8) for the operator A0 f = g - G0f 
in B 4O (g) we have the estimates 

Aol1 - Aof2II,, = Il Gofi - Gof2IIp,a 
< .X(a)II fo (Ill+ IIp,a, 1112 II,) Ilfi - fz II p, 
< .X(a)Mo(p + II g II,, p + IIII4IIf - f211p,ti 

<elif' —f2IIp, 

so that A0 is a contraction. Moreover, 

lI Aof - g IIp,t, = IIGofII,0 

:5 lI Gof - GogII p,a + IIGogII, 
.X(a)Mo(p + II g Ilp,a, II g lIp,a) Ill - g lI, + IGogIIp, 

so that A0 maps B 4O (g) into itself. 
2. Next we are going to show that a unique solution of equation (4) exists in the 

ball Bp,a(f) = {u : Ilu - 1 Il,,,a :5 p} with some p and a, also using the contraction 
principle. In view of equation (7) the operator Au = g - Gou - G 1 u * G2 u writes 

f - Au = G,u * G2 u + Gou - Gof 

= (G i u - G 1 f) * (G2 u - G2 f) + G 1 f * (G2 u - G2f)€

+(G i u—G,f)*G2 f+G i f*G2 f+Gou —G0f.
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Making use of the inequalities (2) and (3), we obtain 

Ill - AUpa
/1 +(-
ii +(-

qor 

ii +(-

u - Gifllp,0ll G2 u — G2f11,,, )11q 
JJ Gjf JJ p JJ G2U - C2f 

)11q JJ
G2fJ Ip JJGju - 

) 
kllGfllllGfll + ll Go u - Gofll,. 

Further, by the assumptions (5) and (6) we have 

If - Aull,	T'kM1 (llfllp, + Il u - flip ' ,, , llfll,) 
X M2(11fll, + I I U - fllp,, Ill ll,)ll u — flI, 

1	1/q 
+ (—	(IIG,f Il p M2(IIfII, + Il u -	If lI)!\qa I 

+ II G2fII M1 (Ilfll, + I IU - fllp,, Ill llp4) Mu - fll, 

1	1/q 
+ (-)	lIG1fllIlG2fll q or 

+ )(c)Mo(IIfII, + I lu - fllp,, llfll,4lItt - fIlp,a. 

Now we choose p1 > 0 and a,(p) > ao such that there hold the estimations 

(IlfIi + p , If lIp) M'2 (II! ll + p , Ill ll)	a	(a E (0, 1)) 

and

1	1/q 

()	(a1 v M2(IIfIl + p, Ill II) + II G2flI M (Ill II +P, IIfII))P 
qa 

+H
 1/q 

II G1fII II G2fII + A()Mo(IIfII + p, Ill II)	(1— a)p 
/ 1 
qcI 

provided p 5 p' and a > o (p). On account of the inclusions M1 E M (i = 0, 1,2) it 
then follows that

Ill - Au II, !^ p	 (9) 

if u E B 4O (f),p	P1 and a > a 1 (p). I.e., A maps the ball B , ,(f) into itself. 

For the difference of the operator A we write 

Au2 - Au 1 = G 1 u 1 * G2 u 1 +Gou i — G 1 u2 + G2 u 2 — G0u2 

= (G i u i — G, U2) * (G2 u 1 — G2 f) + (G i u i — G 1 u 2 ) * G2f 

+ (G 1 u 2 - G 1 f) *(G2 u 1 — G2u2) 

+ G 1 f * (G2 u 1 — G2 u 2 ) + G0 u 1 — G0u2.
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Estimating as above, for u 1 ,u2 E B ,(f) we obtain 

ll Au i - Au2

(Ill Iip	+ P, Ill llp, + p) 

> ( I 1 \ I/q
'w'2 (ill IlP,7 + p, If Ilp,,7)T''p + (

S-)	
llG2fll) 

qu 

+ M2 (Ill iIp, + P, Ill llpc, + p) 

< (Mi (Ill Ilp,
/ 1 

+ p, fp4TI1p 
+ (- )

i/q 
lIGifll) 

qor 

+ (a)Mo (Ill	+ p , Ill IIp, + P) } lu' - u2 lIp,	(a _> CO).

This time we choose P2 > 0 and a2 > co such that
1	i/q 

M1 (llfli + ., , i, + ,) (M2 (ill I + p,	+ (-)	llG2fllp) 
qc 

i + M2(lIfil + P, Ill I + p) (Mi (llfll + P, If ll)Tp + k 
i 
- )

I/q
 ia1iii) 

+(a) M0 Of lip + P, ill lip + p)	< 1 
provided P P2 and a a2 . Then it follows that 

lI Au i - Au2I1, 5 /2 Il U i - U2I1p,a	(u1,u2 E B 4O (f))	 (10) 
if p < P2 and a a2. 

The estimations (9) and (10) show that the operator A is a contraction in B".1(f) 
with p p3 = min{ p i , p2 } and a a3 (p).= max{a i (p),a2 }. Hence equation (4) has* a 
unique solution in every ball B ,(f) (p p, and a >_ a3(p)). 

3. It remains to prove uniqueness in the whole space LP (0, T; X). For this aim let 
u be an arbitrary solution of equation (4) in L(0, T; X). From equations (4) and (7) 
we obtain

u - f = Gof - Gou - G 1 u * G2u. 

Estimating by means of (6) and (3), we deduce the inequality 

lu - I ii	A(a) M0 (ill lip, ii u Ii) ii u - fiip, + (--) kiiQ ull p iiG2uIi 
qor 

which due to the convergence A(a) — 0 as a —* co implies that il u — 1 lIla + 0 as 
a —* oo. This means, every solution u E L(0, T; X) of equation (4) belongs to some 
ball B , (f) with p P3 and sufficiently large a a3 (p), in which uniqueness of the 
solution has already been shown I 

Remark. The solution of equation (4) depends (locally Lipschitz-) continuously in 
the norm	on the data g: 

il u , — u211P	M(T, ii G i u i lip, il G2 u2ii, Il u i lip, Ii u 211p) h g ' - 9211P 

where M is a (continuous) function non-decreasing in its arguments.
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4. Additional statements 

There are four, corollaries to the Theorem. Since the convolution C 1 * G2 satisfies a 
Lipschitz condition of form (5) if G and G 2 do it, we have at first the following 

Corollary 1. The statements of the Theorem generally hold for equations 

u+Gou+(G,iu*G,2u*... *G+ i u) = g	 (11) 

where
Ga,, e (L(O, T; X) —* L(O, T; X)) 

(i = 1,..., n; j	1,..., i + 1; n E iN) fulfill the Lipschitz condition (5) and 

Go E (Lp (O,T;X) — L,,(O,T;X)) 

fulfills the Lipschitz condition (6). 

Immediately from the proof of the Theorem there follows also 

Corollary 2. For k i E L([O,T] x [O,T);X) or k i E C(tO,T] x [O,T];X) (i = 
1, ...,n) with II k II( t , $) K = const the statements of the Theorem hold true for equa-
tions

u + GO  + E f k(i, s) G ,1 u(t — s) G ,2 u(s) ds = g	 (12)
=IO 

where G0 and G ,, (i = 1, ..n; j = 1,2) are as in Corollary 1. 

In comparison with Theorem 2.2 of Bukhgeim [1] we state the following 

Corollary 3. Let G0 € (Lp (O,T;X) —+ L,,(O,T;X)) (p > 1) fulfill the Lipschitz 
condition

IGou — Go v II,	'I'(lI u IIp,Il v lIp,, o )II u —	( > aO > 0)	(13)

where the function 'I'(r, p, o) is non-decreasing in r, p and non-increasing in a with 

lim'F(r,r,a) < 1	 (14) 

for some r = r0 > 0. Then equation

u + G0 u =9 

(see (7)) has a solution u E L(0, T; X) for any function g E L(0, T; X) which satisfies 
the condition

II h II,0	g — go — Gogo 11 p , — 0	as	— oo	 (15) 

with some function go E L(0,T;X), provided r0 > II goIIp- In case p < oo condition 
(15) is fulfilled for any g, go E L(O, T; X), in particular for go = 0. In the case p =
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condition (15) is fulfilled for go = g iflimj_.o lGogI(t) = 0. If condition (14) is fulfilled 
for any r	1 g0 lip, then the solution u is unique in L(0, T; X). 

Proof. The existence of a solution follows from the estimations 

II Ao u i - A0 U2IIp,a 5 +I+(go	+ p, il gollp + p,o)lIu i	u21I€

hI Ao u - gohl,, 5 tF(llgo p + p, llgoll p ,a)p + llhhI, 

for the operator Aou = g - Gou in the ball Bp,a (go), where p and a are chosen such 
that

(Il go ll + p, hl goll + p, a) <1	and	1 1hIl p,	(1—	(ll go II + p, Ilgohl, a))p. 

The uniqueness of the solution u can be obtained from the estimation 

lu -goll,0	'I'(ll u hi,, Ilgollp,,a)hIu -goll, + hi'Ilp,t7 

as in the proof of the Theorem using (14)1 
The proof of the Theorem also shows the validity of the following 

Corollary 4. The statements of the Theorem hold true for equation €

	

u+Gou+F(G i u*G2 u)=g	 (16) 

where G (i = 1, 2,.3) are as in the Theorem and F E (L(0,T;X) - Lp(0,T;X)) 
satisfies the assumptions F0 = 0 and 

hl Fvi - Fv211p,a !^ M (Il v iIlp,, II V2 hlp,a) II Vj - V211p,g	 (17) 

with ME M. 

5. Examples 

We illustrate the applicability of the Theorem and Corollaries 1 - 4 by a few examples. 

Example 1. At first we consider the nonlinear integral equation of generalized 
convolution type 

	

u(t) + / k i (t, s) u(s) ds + / k2 (t, s) F1 (u(t - s)) F2 (u(s)) ds = g(t)	(18) 

in the spaces L(0, T) (p > 1) and C[0,T]. In the literature, as a rule (see [5]), the 
special case of equation (18) without factor F1 is treated. From Corollary 2 with n = 2 
we obtain existence and uniqueness of a solution u in L(0, T) or C[0, T] for any function 
g in L(0, T) or C[0, T], respectively, if 

k1 E L([0,T] x [0,T])	or	ki E C([0, T) x [0,T])	(i = 1,2)	(19)
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and F1 satisfy the Lipschitz conditions 

IF(u) - F2(v)I < N I u — v I	(u,v E 1R)	 (20)

with constants Ni (i = 1, 2). 

In the special cases k 1	0, k2 ±1 and F1 u = u (z = 1,2) equation (18) reduces
to second kind autoconvolution equations which are dealt with by Bukhgeim [1]. 

Example 2. In the theory of viscoclasticity one may propose nonlinear stress-strain 
relations of the form 

a(t) = Ee(t) +Jk i (t - s)c(s)ds

(21) 

+Jko(s)kz(t - s)Fi (e(t —s))F2(e(s))ds 

where a is the stress, e the strain, and E > 0 a constant. The determination of E by 
given or then is a special case of equation (18) with kernels depending on one variable 
only. Under corresponding assumptions (19) and (20) we have a bi-unique relationship 
between a,c in L(0, T) (p> 1) and C[0, T] in any finite interval [0,T] (also a relation 
of form (21) with a and e changed may be given as first relation). 

Another model equation with this - also from the physical viewpoint - important 
property is described by the relation 

a = EE+ rrio*e+ m i* m2* rn3*e*e*c	 (22) 

with functions M i in L(0, T) or C[0, T] (i = 0, 1, 2,3). The unique solvability of relation 
(22) for c in these spaces follows from Corollary 1. See [2, 3] for general constitutive 
relations in nonlinear viscoelasticity. 

Example 3. In the theory of inverse problems for identifying memory kernels in 
linear viscoelasticity and heat conduction (infinite) coupled systems of bilinear Volterra 
integral equations of the form 

rn(i) + A
/

 A(t - s)rn(s) ds = g(i)	 (23) 

occur where

A(t) =E Ak(t)	 (24) 

and Ak = Ak[m] is the solution of the equation 

Ak(t) 
/ 

flk(t - s) Ak(s) ds = fk()	 (25)
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with kernel 

n k( t ) = Jlk (t - r)m(T)dT = / lk( r)m(t - r)dr	(k = 1,...,n)	(26) 

(see, in particular, [8] and also [7, 9]). For It E L 1 (O,T) one has II ntII000	NtIImII0,00
for some constants Nk, and 

IIAk[m]V,,,	eTIln&IIco.r II.kIIoo,a 

Ak (MI ] - Ak[rn2]II,.0 < TCT	 IlAk[M2]llw,a II	- 

where rz are related torn, (i = 1, 2). Hence the Theorem with C0 = 0, G, (m) = A[m] 
and G2(M) = in yields the unique solvability of equation (23) for in in L(0, T) or 
C[0,Tj for any g, ft in L,(0,T) or C[0,T], respectively. 

In equation (25) the right-hand side may depend also on m, namely 1k = ft(m,t), 
where fk(O, t) in L,(0, T) or C[0, T], respectively, and ft fulfills a Lipschitz condition 
with respect to in. 

Example 4. The convolution equation of first kind 

	

/ y(t - s) x(s) ds = g(t)	 (27) 

where g E C'[O, T] with g(0) = 0 and y is solution of the problem 

- A(t)y = f(x)(t)
(28) 

y(0)=c0 

with A E L(0, T), can be reduced to the second kind equation 

	

cx(t) + / I  (f(x)(s) + A(s)y(s))x(t - s)ds = (t)	 (29) 

by differention. In equation (29) there is 

y(t)= c 
exp ( / 

A(s) 
ds) + / 

exp (I A(r) dr) f(x)(s) ds. 

If the function f satisfies a Lipschitz condition, then also the operator y[x] in C[O, T] 
does it and by Corollary 2 we obtain existence and uniqueness of a solution x E C[0, T]. 
We point out that the more difficult autoconvolution equation of first kind is considered 
in [4].
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Example 5. As further example we consider an integro-differential equation of the 
form

ü(t) + f(u(t), t) + / k(t, s) F1 (u, ü)(t - s) F2 (u, u) (s) ds = g(t)	(30) 

with u(0) = c, where k E L([0, T] x [0,T1) or k E C([0,T] x [0,T]), 1(0,) E L(0,T) 
and f, F1 fulfill the Lipschitz conditions 

f(u i ,t) - f(u2,t) < Nu i - u2 1	(u1,u2 Eli?)	 (31) 

F;(u i, vi) —Fj(u2, v2) Nj(Iu i —u2I+I v i —v2I)	(ui,u2,vi,v2E1R) (32)

with constants N and Ni (i = 1, 2). Writing 

U ( t ) = c+Jv(s) ds	v = it	 (33) 

in (31), we obtain an equation for v. In this equation from (32) and (33) we have 

HAU W) - f(u2 , .'IIp, - < Nu 1 - u2 
+II  

II F(ui , v j ) - F1(u2, V2) 'pa - < N1 (u i - tL 2 IIp,a + Il v i -	IIp,a). 

From (33) by Young's inequality there follows
1' 

lu ' - u2,0 mm (T, - lvi - (71 

Therefore, the operators Cv = F1 (u,v) (i = 1,2) satisfy assumption (5) and the op- 
erator Co y = f(u,. ) fulfills assumption (6) with A(a) = . Corollary 2 yields existence 
and uniqueness of a solution v in L(0, T) (p > 1) or C[0, T], i.e. u in W(0,T) or 
C'[0, TI, to equation (31) for any g in L(0, T) or C[0, T), respectively. 

We remark that in Examples 4 and 5 the Lipschitz continuous function f of x or u 
may depend on x(h(t)) or u(h(t)), respectively, where it is assumed that h E C'[O,T] 
with h(t) > 5 > 0 in case p < no, h E C[0,T] in case p = no, and in both cases h 
satisfies 0	h(t)	tin [0, T]. 

Example 6. In analogous way as (30) integral equations of the form 

U(t) + f(J00 u(t), t) + J k(t, s) F, (u, Ja i u)(t - s) F2 (u, J 2 u)(s) ds = g(t)	(34) 

and integro-differential equations of the form 

it (t) + f(D00 u(i), u(t), Ja 0 u(t), t) 

+ 
/ 

k(t, s) F1 (u, D, u, u, J,u)(t - s) F2 (t, D fl2 u, u, J 2 u)(s) ds = g(t)	(35) 

U(0) = C
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with operators of fractional integration 

JOku(t) = r(k) 
f (t - s)'u(s)ds	(0 < a < 1; k = 0,1,2) 

and operators of fractional differentiation 

Dflk u(t) =	jl$ku)	(o < 19k <	k 0,1,2) 

can be handled (if c = 0 in (35) only 0 < /9, < 1 is required.) There holds the estimation 

1	 1 
1I1kUIIP,C	f()	IIl,7IIUIIp,Q 5 O Ck k IkIIp,o•	 (36) 

ak 

Further we have 

Du=	
1

u 
- j3) 

(0)t	+ Ji _	E L(0,T)	if ü E L(0, T) 
r(i

and if u i (0) = U2(0) = c, then

1 
II Dui - Dpk u 2IIp,	II Ji_(ü i - U2)I1p, !^ i_	II u i - U2IIp,o .	(37) 

Hence if k E L([0,TI x [0, TI) or k e C([0,T1 x [0, T]) and 1(0,.) E L(0, T) or 
1(0,0,0,.) € L,(O,T), respectively, and f,F1 ,F2 fulfill uniform Lipschitz conditions 
with respect to the dependent variables, then equations (34) and (35) have a unique 
solution u in L(0,T) (p > 1) or C[0,T] and u in W,(0,T) (p > 1) or C'[O,T], 
respectively, for any g in L(0, T) or C[0, T]. 

To an equation of form (35) the following integro- differential equation of first kind 
can be reduced by differentiation: 

J(u(s) + a 1 (i, s)Dfl, u(s) + az(t, s)u(s) + a3 (i, s)J, u(s))
(38) 

x (u(t - s) + b(t,$)J 3 u(t - s)) ds = f(t),	u(0) = c 54 0 

where a1 in L([0,T1 x [0,T1) or C([0,T] x [0,T]) (i = 1,2,3), band bt in L([0,T] x 
[0, TI) or C([0,T] x [0,T]), fin W(0, T) (p> 1) or C'[0, TI.
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