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Initial-Mixed Boundary Value Problems 
for Parabolic Complex Equations of Second Order 


with Measurable Coefficients 
Guo Chun Wen 

Abstract. In [2], the authors introduced some results on initial-boundary value problems 
for divergence parabolic equations of second order with measurable coefficients. In [1], the 
authors considered the first boundary value problem for non-divergence parabolic equations of 
second order with discontinuous coefficients. In this paper, we consider initial-mixed boundary 
value problems for non-divergence parabolic complex equations of second order in a multiply 
connected domain. Firstly, we give a priori estimates of solutions of the above initial-boundary 
value problems by the method of symmetric extension, and then by using these estimates, 
the methods of auxiliary functions and parameter extension, we prove the solvability for the 
foregoing problems. Here the condition (1.3) is weaker than the corresponding one in [1] and 
[3], i.e. the constant 4/3 in [1] and [3] is replaced by 3/2 in (1.3). 
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AMS subject classification: 35 K 15, 35K 20 

1. Formulation of initial-mixed boundary value problems 
Let D be an (N + 1)-connected bounded domain in the z = (x + iy)-plane C with 
the boundary r =	r3 € C (0 < p < 1). Without loss of generality, we may 
consider that D is a circular domain in Izi < 1 with the boundary r =	r,, where 

= f 1 - zjl = .} (j = 1,... ,N), r0 = rN+I = { I z I 1} and z = 0 ED. Denote 
G = D x (0,T] with a constant T > 0, and ÔG = ôG 1 U ôG2 with ôG 1 the bottom 
{(z,0) : z € D} and 5G2 the lateral boundary {(z,i) : z € r,t € [0,1]} of the domain 
G.

We discuss the linear uniformly parabolic equation of second order 

au 1 +2bu+cu 55 + dux +eu5+fu+g=Hut	in G	(1.1) 

where the coefficients a, b, c, d, e, 1,9 are real-valued measurable functions of (z, t) € G 
and H is a real constant satisfying the condition 0 < H < 1. It is easy to see that the 
real equation (1.1) can be rewritten in the complex form 

Lu := Aou - Re(Qu + A, u .) - A2 u - Hu t = A3	in G	(1.2)€
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in which
Q = 2(—a + c - 2bi) 

A0 = 2(a+c), A 1 z=_2(d+ei), A 2 = —f, A3 = —g. 

Suppose that equation (1.2) satisfies the following 

Condition (C): The functions A, = A,(z,t) (j = 0,1,2,3) and Q = Q(z,i) are 
measurable in G and satisfy the conditions 

0<	A,,	 < , 
supG(A + IQI 2 ) < 

A 0	 inf G A2	2

(1.3) 
1/p 

	

AI <k0 (j = 1, 2), L(A3,) 
= NG IA

3 I Pdxddi)	<k0 (p >4) 

where 8, qo, k0 and p are non-negative constants. 

The so-called initial-mixed boundary value problem is formulated as follows. 

Problem (M): Find a solution u E C 1 '°() satisfying the initial condition 

u(z,0)=g(z)	on D	 (1.4) 

and the boundary condition a i (z,t)	+ a2 (z,t)u = a3 (z,t) on 8G2 , i.e. 

2Re (a i Au ) + a2 u=a3	on aG2	 (1.5) 

where ,i(z, t) is a unit vector at every point on 3G 2 (there is no harm in assuming 
that z.'(z,t) is parallel to the (t = 0)-plane), g, a, (j = 1,2,3) and A with A(z,t) = 
cos(v, x) - i cos(v, y) are known functions satisfying the conditions 

C[g,D] k0 

	

C '1 2 ta , aG21 - C°° [a,,ôG2 ] + C 0a12[ajz, 6G2]	ko (j	1,2,3) - 

	

C1 '0A
,OG21 = C°',° ,2EA,oG2I+C',2[A,ac2]	k a,a/2 a a 

with
IA(zi,ti) - A(z2,t2)I 

a,a/2L 

	

C°° 'A 5G 2 ] =	sup 
(z ,t, ),(z 2 , 2 )EaG 2 Li z i - z2 2 + 1 - t2 2]a 

and
ag 

	

cos(v,n)^! 71 on W 2	and	a1+a2g=a3 onFx{t=0} 

	

a,(z,t) >0 (j = 1,2)	and	a i (z,t) +a2 (z,t)	1	on ôG2 

in which a ( < < 1), k0 ,	(0 <ij < 1) are non-negative constants and n is the 
outward normal at every point (z, t) E ôG2. 

Remark that when a i (z,t) = 0 on ôG2 , then Problem (M) is the Dirichiet problem.
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Problem (0): When a i (z,t) j4 0 for every point (z,t) E 3G2 , then Problem (M) 
is the initial-regular oblique derivative problem, which will be called Problem (0). 

Now, we prove the uniqueness of solutions of Problem (M) for equation (1.2). 

Theorem 1.1: Suppose that the complex equation (1.2) satisfies Condition (C). 
Then the solution of Problem (M) for equation (1.2) is unique. 

Proof: Denote by u 1 and u2 two solutions of Problem (M) for equation (1.2). It is 
clear that the function u = u 1 - u 2 is a solution of the following homogeneous initial-
boundary value problem (Mo): 

Aou - Re [Qu + A 1 u] - A2u -Hut =0 in G 

u(z,0) = 0 on D	 (1.6)€

a i (z,t) 
49U
— + a2( z , t )u = 0 on 3G2. 
(9:1 

Making a transformation of the unknown function U(z, t) = u(z, t)e_Bt where B is a real 
constant such that HB + infA2 > 0, obviously, U is a solution of the initial-boundary 
value problem 

AoU i - Re(QU + A i U) - (HB + A2 )U = HU in G	(1.7) 

U(z,0)=0	on D	(1.8) 
3U 

a i (z,t)—
all +

a2( z , t )U = 0	on 3G2 .	(1.9) 

On the basis of the maximin principle of solutions for equation (1.7), if U	0 on 
then U takes its positive maximum or negative minimum on the lateral boundary 0G2. 
Suppose that U takes a positive maximum at a point po = (zo,to) E 0G2 . It can be 
derived that U(po) >0 and >0. Thus (a i (z,t) +a2(z,t)U)I_ >0. This at, P=P0
contradicts (1.9). Similarly, we can prove that U does not attain a negative minimum 
at a point po E 0G2 . This shows that U = 0 on G, i.e. u 1 = u 2 on GU 

2. A priori estimates of solutions of the initial-mixed problem 

First of all, we shall give a boundness estimate of solutions of Problem (M). 

Theorem 2.1: Let equation (1.2) satisfy Condition (C). Then any solution u of 
Problem (M) for equation (1.2) satisfies the estimate 

C[u,G] M	 (2.1) 

where M1 = M1 (5, qo, a, k0 , p, G) is a non-negative constant only dependent on 5, q, a, 
ko,p,G.
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Proof: We first find a solution 0 of equation (1.2) with the initial-boundary con-
dition t, = 0 on ÔG. On the basis of the results in [1), [2: Chapter 31 and [3], we can 
obtain for 0 the estimates 

C l2 [ TI, G] M2	and	Ikb IIw: 1 (G) M2	 (2.2) 

in which /3 (0 < /3	a) and M2 = M2 (5,q0 ,a,ko,p,G) are non-negative constants. 

Secondly, we find a solution 4' of the homogeneous equation 

	

,Cu = Aou - Re(Qu +Aiu)—A 2 u —Hue 0	in G 

with the initial-boundary condition 'F = 1 on ÔG. Similarly, it can be proved that 'F 
satisfies the estimates 

C'°12['I',t] !^ M3, II4'IIW'(G) M3, 0 < M4 'I' 1 (2.3) 

where M, = M1 (,qo,a,ko,p,G) ^! 0 (j = 3, 4). According to the method in [3] and 
[4: Chapter 3/Theorem 3.3), we see that the function U =Y is a solution of the 
initial-boundary value problem

A0 U 2 - Re[QU + AU.] - HU = 0 in G (2.4) 

U(z,0)	
'(Z' 0) - ,b(z,0) 

= Uo(z) on D 
- 

au	 öln'F	a3—a1—a27,b 
a 1 - + a4 U = a5 , a4 = a2 + a 1	, a5 =	 on 

c9zi	 'F  

where A = A 1 - 2Ao (In 'F) + 2Q(ln'F) in G and a4 > 0 on ôG2 . By means of the 
maximin principle of solutions of equation (2.4), we know that U attains its maximum 
and minimum at points p = (z,t) and p. = (z., t.) in 0G2 , respectively. It can be 
derived 

	

C[U,] max {U(za ,t*), IU(zs ,t41} max max IUo(z)I, maxaG 2 lasI	(2.5)!
mlnac2 a4 J 

Combining (2.2), (2.3) and (2.5), the estimate (2.1) is derived I 

Next, we shall prove 

Theorem 2.2: Let equation (1.2) satisfy condition (C). Then any solution u of 
Problem (M) for equation (1.2) satisfies the estimates 

C'°,2 [u,G] M5	and	lUll W 2 +(G) 5 M5	 (2.6) 

where
= G fl { n(.- t')EaG; ( l z - z 1 2 + It - tI ^! 

e is a small positive number, G = (z, t) E 0G2 : a i (z,t) = 0}, 0G is the boundary 
of G, 6 (0< 8 <a) and M5 = M5 (i5,q0 ,a,ko,p,G) are non-negative constants.
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Proof: According to the method in [3), we can obtain that any solution u of Prob-
lem (M) for equaton (1.2) satisfies the estimates 

C ' 12 [U , Gm] :5 M6	and	IIUIIW2.1(G) :5 M6	(2.7) 

in which Gm = {(z,t) e 0 : dist(z,r) ^! 1 1 for a positive integer m, 0 (0 < fi a) 
and M6 = M6 (S,qo,a,ko,p,e,m,G) are non-negative constants. In the following, we 
shall give the estimates of the solution near the lateral ôG 2 of C. We arbitrarily choose 
an inner point p* =(z*,t*)ofG* and denote G2 = (z, t) E G	I z_z 1 2 +l t_t 1 < 

where e (<e) is an appropriately small positive number such that G2 flÔG2 C G\0G. 
There is no harm in assuming that II = 1, otherwise through a linear fractional 
transformation this requirement can be realized. Now we find a solution u 1 of equation 
(1.2) satisfying the boundary condition u 1 =	on G2 . Thus the function U = u - 
satisfies the equation and boundary condition 

LU := AoU - Re[QU +A 1 U]— A2 U— HU = A in G 
U(z,0) = 0 on 152 

where A = A3 —Lu 1 . In this case, the solution U can be continuously extended along 
G2 from C into G (the symmetric domain of G). In fact, it is sufficient to introduce the 
function U by

	

U(z,t) = f 
U(z,t)	if(z,i) E Cu C2 

I —U(1/, t) if (z, t) E G. 

Due to U = 0 on C2 , it is clear that Re(izU) = 0, i.e. zU = iUz for (z, t) EG2 , and 
when z= l/(EG+G2 , then U = —U(-1/z2 ), hence zU =EU for (z,t)EG2 . This 
shows that U and Uj are continuous in C U C U C2 . Noting that 

= —I z I U	and	U = —4 U(( -2 j-3 U	((z, t) E CU C2) 

it is seen that U is a solution of the equation 

A0 Uz i - Re(QU:: + A1 U) - A2 u - Hu = A	in G	(2.8) 

where

(Ao(z,t)	 -	IA1(z,t) 

I Ao( 1 / 2 , t )1 z 1 4	 I —A 1 (1/,t)z2 + 2Q(1/i,t)z3 
-	IQ(z,t)	IA,(z,t) 

Q=	 A=	(j=23). 

I Q(1/E,t)z	(-1)'A,(l/i,t) 

for (z, t) € C and (z, t) € C, respectively. It is not difficult to see that equation (2.8) 
satisfies conditions similar to Condition (C). Therefore similarly to (2.7), we can derive 
estimates of U and u in the neighbourhood 

C2 = {(z,i) E G U 62 : dist ((z,t),ôC2 \ 62) ^ e'}
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Of 152, namely

	

C' 12 [u, 2 1 !^ M7	and lUll W2.1() <M7	 (2.9) 

where M7 = M7(6,q0,a,ko1p,E)c*,G). 

Secondly, if there exists a surface 

= {(z,t) E 5G2 : a i (z,i) >0, ii = n 
I 

D OG2, 

then we can find a harmonic function a = c(z, t) of z in G such that a satisfies the bound-
ary condition	= 22 on G3 . Thus the function V defined by V(z,i) = u(z,t)e(zt) 

an	al 

satisfies the boundary condition	= e°, i.e. 

au 
a1—+a2u=a3	on G3 .	(2.10)


On 

Noting that
U, = e	aV],	ut = e°(Vj - atV) 
u = e°(V - 2aV - (a - a)V) 

= e(V: 1 - Re(aV) + I 0,12V) 

it is easy to see that the function V satisfies the equation 

AoVz—Re(QVzz+B i Vz)B2 V—HVt =B3	in G	(2.11) 

where the coefficients satisfy conditions similar to those in Condition (C). Now, we find 

a harmonic function V0 = Vo(z,t) of z in C satisfying the boundary condition (2.10). 
Moreover, the function V defined by 

I' V(z,t) - Vo(z,t)	for (z, t) E G U G3 

= I V(1/, t) - V0 (1/E, t) for (z, i) E G 

satisfies the equation

inGUG3UG 

where the coefficients satisfy conditions similar to Condition (C). Hence by using the 
method as stated in [1], [3) or [4: Chapter 3/Theorem 4.8), it can be derived that u 
satisfies the estimates 

	

C I 0	— 

,:, /2[u, G3]	M8	and lUll w 2 , 1 ( 0) ^ M8	 (2.12) 

where
63 = {(z,t) ECU C3 : dist((z,t),0G 2 \ G3 ) 2 

and M8=M8(6,qo,a,ko1p,E,e*,G).
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Finally, we discuss the surface 

G4	I(,, t). E ôG2 : a i (z,t) >0, ii	n}. 

By using a similar method as before, we can transform the boundary condition (1.5) into 
a homogeneous boundary condition = 0 on G4 where the function V = V*(z,t) 
satisfies the equation 

A0 V - Re (QV + B, V*) - B2 V - HVt* = B3	in G. 

Without loss of generality, we may assume that G lies in the lower half-plane Im < 0 
and (0, i) E C4 , because through a conformal mapping this requirement can be realized. 
Setting b 1 = cos(zi,x) and b2 = cos(v,y), and making a transformation 

= (1 + b + ib2 )( + (-1 + b 1 + ib2)( ((= + iii)	(2.13) 

it is obvious that (2.13) is a homeomorphism ( = ((z, t) in a neighbourhood of ( = 0, 
which maps the surface G4 in the (-plane onto a surface 114 on the imaginary axis in 
the z-plane. Denote by z = z((, t) the inverse function of ( = ((z, i). Thus the function 
V((, t) = V(z((,t),t) satisfies the equation and boundary condition 

Ao V— Re(QV+BiV)—B2V—HVt = B3 in ((G) 

av	
in H4=((G4). 

Furthermore, by applying the method used for deriving the estimate (2.12), we can 
obtain the estimates of V, V and u, i.e. 

C,2[u,G4] :5 Mg	andItLIIW2.1(G)	M9	 (2.14) 

where
= {(z,t) ECU C4 : dist((z,t),ôG2 \ G.) ^! e} 

and M9 = M9 (5, qo, cx , ko, p,E, e* , G). Combining (2.7), (2.9), (2.12) and (2.14), the 
estimates in (2.6) are derived I
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3. The solvability of the initial-mixed boundary value problem 

In this section, we use the estimates of solutions in Theorem 2.2 and the compactness 
principle of solutions to prove the solvability of Problem (M) for equation (1.2). 

Theorem 3.1: If equation (1.2) satisfies Condition (C), then Problem (M) for 
equation (1.2) has a solution u = u(z,t). 

Proof: We are free to choose a positive integer m and to consider Problem (Mm) 
for equation (1.2) with the initial and boundary conditions 

u(z,0)=g(z)+gm(z,O) on D 
1 3u 

(a, + -- a-v + a2 u = a3	 on ôG2 
m) 

where gm = gm (Z ' I) is an appropriate solution of the oblique derivative problem for the 
homogeneous equation (1.6) with the boundary condition 

lOg 
\\	m)	+ a2 g,,, = - 

such that gm satisfies estimates similarto (2.6) and g - 0 as rn - oo. According to 
the following Theorem 3.2, we know that gm exists and Problem (Mm) has a solution 
Urn (m = 1,2,...) which satisfies the estimates (2.6). Hence from the sequence {Um} we 

can select a subsequence {um & }, which uniformly converges to a solution u0 = u 0 (z, t) 
of equation (1.2) in any closed subset G C \OG, and u 0 satisfies the initial condition 
(1.4) and boundary condition 

	

a1 
9ii
— +a2 uo = a3	on 0G2 \0G. 

It remains to prove that u 0 is continuous on and satisfies the boundary condition 
(1.5). We select an arbitrary point p* = (z*, t*) E 0G (it can be replaced by any 
surface S C G), and denote by Gs the point set {I z - z '1 2 + It - i I < 6 1 fl 0G2 
where /3 is a sufficiently small positive number. We construct a real continuous function 
f = f(z,t) as follows:

Mio+1 for (z,t)EOG2\G12 
f(z,t) 

=	>0	for (z, t) e G14' 

77:^f( z , t ) <Mio+ 1 for (z,t)EG/2\Gfl/4 

where M10 is an undetermined positive number. The function f satisfies the estimate 

	

M11	1 
Ce[f,OG2]	( < -

 <2 	i) 

where e is a sufficintly small positive constant and M11 = M11 (M10 ,s3G2 ). Let irn be a 
solution of the homogeneous equation (1.6) satisfying the boundary condition Urn f
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on 0G2 . It is not difficult to see that Urn satisfies the estimate C"°[Urn(z,i),(] < 
M12 /', where M12 = Mi2 (t5,qo,cr,ko,G). Now, we extend a2 from G to 0G2, 
such that we have a new function a* E C 012 (0G2 ), a(z,t) > 0 and a* = a2 on 
G fl12 . Moreover, a solution u of equation (1.2) can be found satisfying the boundary 
condition u = a3 /a on 0G2 . Setting U ±Urn — Urn + u, it is easily seen that U± 
are solutions of the equation fu = 0. In the following, we verity that 

U+(z,t) > 0	and	U_(z,t)	0	((Z' t) E C). 

In fact, obviously U+(z, t) ^: M10 + 1 - M10 > 0 on 0G2 \ G 12 where 

M10 = M + max L3'Z,t) >0	with M= max lurn(z,t)I 

	

0G 2 a(z,t)	 G 

with a constant M being similar to M1 in (2.1). If U takes a negative minimum in 
, then there exists a point p' = (z',t') E G 12 such that U+(z',t')	min-U+(z,t).€

However we have 
(	 \ 0U 

	

a i (z,t) + —1 ) 	a2(z,t)u+(z,t) M ) Oil 

=+— —+a2(z,t)Urn(z,t)+ a i (z,t)+— ) _!!. 
(	m)Ov 

	

ai(z,t)	
1 OUrn	

(	

1" 0t
av 

________	"U,14 

	

> M377 — max a1(zt)	— m131+P-e + (a, (z, t) + I) 

for all (z,t) E G 12 , where M13 = minG012 a2(z , t ) and M14 = M14 (M12 ,0G2 ). Due to 
a 1 :5 M15 /3'+P on G 12 with a positive constant M15 , we first choose fi small enough, 
and then select m large enough, such that 

M14 

	

i3M14 M15	 a1(z,t)!!I
	i mi OUfl1 

m 1 + $ '	 Ov 	 Ov€

are less than I M1377 for all (z,t) E G 12 . So 

\ 0u (ai + 
1 

-) 
--+a2iL. >0	on G12.
av 

This shows that U+ cannot take a negative minimum on G fl12 . On the basis of the 
maximin principle of solutions of equation Cu,, = 0, U+(z,t) = Urn(z,i) — Urn(z,t) + 
u,,(z,t) ^: 0, i.e. Urn - U,,	Urn in G can be obtained. By the same reasoning, we 
have U_(z,t) 0, i.e. Urn — U	Urn in Z7. From IU rn I ( r on G 14 it follows that 
lUrn —	<77 on G 14 . By the equicontinuity of the sequence {Urn} in U, 

Itirn(Z,t) - u,,(z,t)I :5 tm(Z,t)I < .277 

is seen for all (z, t) of a neighbourhood of (z*, i) in G. Denote by ü0 the limit function 
of (Urn — u,,} in G. It is clear that IUo(z, t)I 15 277. Noting that i is an arbitrary positive 
number, it is seen that U 0 at p = (z* , t*) is continuous, and Uo(z,t) = 0. Hence 
u 0 = U 0 + u at (z*, t) is also continuous, where u is a limit function of a subsequence 
of {u,,}. This completes the proof U
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Theorem 3.2: Under the Condition (C), Problem (0) for equation (1.2) has a 
solution u = u(z, t) satisfying the estimates 

C'° 12 [u,O] <M16	and	IIuIIw:.1(G)	M16	 (3.1) 

where 0 (0 < /3< c) and M16 = M16 (8,qo,cx,ko,p,G) are non-negative constants. 
Proof: The estimate (3.1) can be derived from Theorem 2.1. In the following, we 

shall prove the existence of solutions of Problem (0) for equation (1.2). The boundary 
condition of Problem (0) can be written in the form	+ a2 (z,t)u a3 (z,t), i.e. am 

3u	an 
cos(zi,n)— + cos(zi,$)— + a2 u = a3	on 3G2 

where s is the tangent vector at every point (z, t) E 9G2 . In order to use the method of 
parameter extension, we consider the initial and boundary conditions with the param-
eter r E [0,1]:

u(z,0)=g(z)+g(z,0)	on D 

cos(v, n)- + T cos(zi, s) 
an 

- + a2 u = a	 on
as 

where a is any function in the space C' 12 (G) and g, is an appropriate solution of the 
oblique derivative problem for equation (1.6) with the boundary condition 

agr	 agr	 ag 
cos(LJ,n)—+Tcos(v,$)---+a2gr=a-a3+(1-T)cos(v,$)---	on 

on	 Os	 us 
where g i (z,t) = 0 on G if a = a3 on aGe. By using the method as stated in [4: Chapter 
2/Proof of Theorem 3.3] and the result in [3], there exists a solution uo of Problem (0) 
with r = 0 for equation (1.2) and no E C' 12 (). By the method in [3] and [4: Chapter 
1/Proof of Theorem 2.5], we can prove that there exists a number E > 0 such that for 
r = e,2e,..., []E, 1 Problem (0) for equation (1.2) is solvable. In particular, when 
T = 1 and a = a3 , then Problem (0) for equation (1.2), i.e. Problem (M) for equation 
(1.2) has a solution u  
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