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Abstract. By the means of energy estimates we prove existence and non-negativity results for 
degenerate parabolic partial differential equations of fourth order in arbitrary space dimensions. 
In addition, we present an elasto-viscoplastic model of Norton-Hoff type with isotropic, non-
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1. Introduction 

In its first part this paper is concerned with existence and non-negativity results in 
arbitrary space dimensions for degenerate parabolic partial differential equations of 
fourth order of the following form: 

g +div(m()(VLê+VA(ü))) = f(,g)	in ci x (0, T) 

= --LU 0	on aci x (0,T)	(1.1) 
Ozi

=	 in ci 

We begin with a presentation of our general solution concept under comparatively strong 
requirements on the diffusion coefficient m = m(g) and the initial value . As appli-
cations we have in mind the Cahn-Hilliard equation and a model for the evolution of 
the dislocation density in the theory of plasticity. Afterwards, we shall investigate in 
which weaker sense we still can expect the existence of solutions of (1.1) if we do not 
impose the rather restrictive conditions mentioned above. By doing so, we generalize 
recent papers of F. Bernis and A. Friedman [3], and Yin Jingxue [16], which deal with 
similar problems in one space dimension, in the case of bounded diffusion coefficient in 
to arbitrary space dimensions, and in the case of unbounded diffusion coefficient in to 
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the dimension N = 2 which is the relevant one for applications. Unfortunately, we still 
cannot answer the question about continuity or uniqueness of a solution of (1.1). 

We devote the second part of this paper to a simple elasto-viscoplastic model with 
isotropic, non-local hardening. In our context, the attribute non-local refers to the fact 
that the growth of the hardening parameter does not depend directly on the plastic 
strain rate, but via a convolution operation on the dislocation density. We describe 
the evolution of the latter by a degenerate parabolic equation of type (1.1). Here, the 
gradient term has a destabilizing effect, and is therefore responsible for the expected 
pattern formation. 

Let us now specify our requirements and results. We make the following assumptions 
on the data:

Q C IR is open with boundary O1 of class C".	 (1.2) 

The diffusion coefficient rn E C I (R) fl H 1,00 (R) has the properties 

If f 0, we require in addition

(>0 ifs>0 
m(s)	=0 ifs =0	 .	(1.3) 

>0 ifs<0. 

lirnm(s) > 0.	 (1.4) 

Let the function f: IR" x lii x JR - JR be continuous, fulfilling the estimate 

	

If(x,t,0)15 CO + el)	 (1.5) 

with a constant C independent of (x, t). Furthermore, we demand the existence of a 
constant R1 > 0 with the property 

	

f( . ,.,e) > °	if eR i .	 ( 1.6) 

For a special constant R> 0 (we can choose R = R 1 ) let the function G0 : JR - 
be defined by

G(s) 
= --	

and	G(R) = Go (R) = 0.	 (1.7) 

For the initial value go e H*() we require 

	

j
Go(eo(x)) dx <cc.	 (1.8) 

Let the function A : JR -* JR be continuously differentiable and fulfilling the estimate 

	

C	for every s	E R.	 (1.9) 

In Section 2 we shall prove the following existence result.
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Theorem 1.1: Under the assumptions (1.2) - (1.9), there exists a pair (, J) with 
the following properties: 

e E W2' (I; H' (Q), L2 ()) fl L2 (I; H(cl)) fl L' (I; H'(cl)) 

J E 
ot = —divJ+f(.,.,)	in L2(I;(H'())'). 

Moreover, J fulfills the relation J = rn()(V	+ VA(g)) in the following weak sense: 

IIo	= iL '. m(ü)VA()ii - ff m(g)zdivi 11f, m'()Vp	(1.10) 

for all 77 E L2 (I; H'(l; IRN)) fl L2+N(1lT; RN) with ijv = 0 in Oci x [0, T]. 
Eventually, the initial value Loo is assumed pre-continuously, i.e., there exists a set 

E C I with ,u(I - E) 0 such that Lo( - , t) converges to Loo in H'(cZ), for t e E,t - 0. 

In contrast to non-degenerate parabolic differential equations of fourth order the 
solutions of which in general become negative even in the case of positive initial values, 
we expect for solutions of problem (1.1) under an appropriate choice of the initial values 
non-negativity (or even positivity) for (almost) all times. Here, the value of the growth 
exponent in the degeneracy is crucial. The larger n is, the stronger is the tendency 
towards positivity. We underline this in Section 3 by proving the following results. 

Theorem 1.2: Let n > 1 be the growth exponent of the diffusion coefficient m at 
zero. Under the same assumptions as in Theorem 1.1 we get the following statements: 

1) For each n> 1, Lo is non-negative almost everywhere on QT-

2)

 

If n > 2, then there does not exist any subset E C Q with positive measure such 
that

le	
= 0 

for any to E (0,T). 

3) If n = 2 or n > 2, then there exists a positive constant C depending only on the 
data and T which bounds for almost all t E [0, Tj the integral 

in 
log(g(x, t)) dx	or	

in 
(x, 

respectively. 

Moreover, depending on the dimension N we obtain the following positivity result. 

Theorem 1.3: Let N = 2 and n 4, or N = 3 and n 8. Under the assumptions 
of Theorem 1	,t) is positive on S2 for almost all t E [0,T]. 

Let us remark that by appropriately choosing the initial values we can restrict the 
range of our solution of (1.1) to an intervall [a, b], provided the diffusion coefficient in 
degenerates in a and b. This observation is crucial for the treatment of the Cahn-Hilliard
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equation (see, e.g., in [7] or [16]) which models phase separation in binary mixtures. In 
particular, we refer to the paper of C. M. Elliott and H. Garcke [7] which - as we learned 
after finishing the first part of our work - was developped parallelly in time and offers 
similar existence and non-negativity results. 

Assumption (1.8) conceals a sign condition on go which for large n makes it im-
possible to apply our concept to problems with initial values of compact support. In 
Section 4 we free ourselves from the boundedness conditions on the diffusion coefficient 
m and on the integral fo G0 ( 0 ) dx, and under appropriate assumptions on A and f we 
shall obtain existence and non-negativity results in a weakened sense. In particular, we 
will see that for sufficiently large n the support of p does not shrink. But on the other 
hand, we shall demonstrate that in general we cannot expect growth of the support in 
course of time. 

In Section 5 we combine the classical equations for the description of elasto-viscoplas-
tic material behaviour - as they are, e.g., expressed by the Norton-Hoff model with 
isotropic hardening - with a degenerate parabolic equation of similar type as (1.1). The 
latter is supposed to describe the evolution of the dislocation density and in particu-
lar to permit the modelling of the formation of patterns of cellular structure which is 
observed on the micro scale during plastic deformation. For more detailed information 
regarding modelling and mathematical results we refer the reader to Subsection 5.1. 

Notation. By SIT we denote the space-time cylinder ci x (0, T), I stands for the time 
interval (0, T), and j. denotes the Lebesgue measure. For subsets E C ci we define the 
set

Q,,(E,to) = (X, t) E QT xE E and t E (to —c,t0 +(7)}. 

As usual, f stands for mean-value integral, ii is the outer unit normal vector to ci, and 
W Ic P(ci) is the Sobolev space of k-times weakly differentiable functions in LP (ci), the 
weak derivatives of which are integrable to the power p. Furthermore, we make use of 
the following abbreviations: 

• Hm (ci) = Wm2(ci) 

• H.2 (Q) = {u E H 2 (Q): -u = 0 on aci} 
av 

• i(Q) = ju E H.2 (Q) : Jud. = o} 

• H j (1^)={riEH 2 (1l;JR 2'):?v=0 on aci} 

• V3 (cz)={7/EH3 (ci;1R2 ): divi7EH(ci) and 77zi=0 on aci} 

• W21 (I;V,H) = {u E L2 (I;V): u  E L2 (I; VI ) }, V C H C V' an evolution triple. 

• By the word tensor we always denote tensors of second order on .1R3 . We do not 
make any distinction between covariant and contravariant components, and identify 
the set of tensors with M3X3, the set of (3 x 3)-matrices. Equipped with the trace
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form, this set becomes an Euklidean vector space.	is the subspace of the SYM 
symmetric (3 x 3)-matrices. 

• For a tensor field a E H'(1R3 ; M3x3) we define the vector field diva by the formula 

(diva),	>	L!. 

• By (u, v) we denote fl, uv dx. Here, the arguments u and v are either scalar, vector 
or tensor functions. We do not require that both factors are elements of L2 (cl), but 
their product must be element of L'(cl). 

• (.,.) denotes the dual pairing on (H'())' x H'(cZ). 

• (.,	denotes the dual pairing on (H 2(Q))' x H.2 (Q). 

• [u >6] = {x E Q : u(x) >6) and (u > ö]T = { (x,t) E QT : u(x,t) >6) 

. £(V, W) is the set of bounded linear operators from V to W. 

2. Proof of existence for the model problem 
Let us begin with an examination of the following auxiliary problems (P b ) (8 > 0) with 
non-degenerate non-linearity: 

(P 6 )	+ div(mo(o)(Vz 6 +VA(9 6 ))) =f( .,•,) in Qx(O,T) 

a 5	a 
—&	ALO 	 on aclx(o,T) 

M6(X) = m(x) + 6. 

We shall solve the problems (P 6 ) by use of the Faedo-Galerkin method. We observe that 
the eigenfunctions (41k)kEJIv of the Laplace operator with Neumann boundary values and 
meanvalue zero combined with the constant function o 1 form a total and free subset 
of Hl). Under assumption (1.2) they are in particular smooth, and in addition the 
normal derivatives of Lk vanish on ôl. Thus they are a suitable choice as ansatz 
functions for the Galerkin method. 

2.1 Application of the Faedo-Galerkin method to the auxiliary problems 
( P 6 ). Let SC be defined by S C = span{h,1,.. . , < t} and pk be the orthogonal 
projection on Sk in L2 (1l). By use of the Peano existence theorem we obtain - at least 
locally in time — the existence of functions wo,... , wk which solve the following explicit 
system of ordinary differential equations: 

=	(i)()	for all t E [0,T]	 (2.1) 

ek	 (2.2) 

— (mo(&)(V	+v)),v) =	 (2.3) 
dt
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for all  = 0,... ,k and t  (0, T). 
Global solvability for arbitrary, but fixed T can be proven by use of a priori esti-

mates. For this purpose we multiply the system above by p6 —	This yields 

	

1 	
+ IIVUkIIL2(c)) + 

	

= (mö(ü)VA(ü),V&) +	 _A()))	(2.4) 

+ 

We take advantage of the growth conditions on m (see (1.3)), f (see (1.5)) and A (see 
(1.9)), and obtain, by the use of the Young inequality, standard absorption techniques 
and the Gronwall lemma, the following a priori estimates depending on cS, but indepen-
dent of k:

uniformly lies in a bounded subset of L (I; H' (a)) 

m6(U)VL Uk uniformly lies in a bounded subset of L2 (QT;1W"). 

In order to prove compactness in time of our approximate solutions, we multiply 
equation (2.3) by Pcv for arbitrary v E H'(Q), and obtain for to E [0, T] the estimate 

((p)t, v) = (m()(Vzü + VA(ê)), VPkv) + (f( to,	pkv) 

C(IIVII L 2 (0) (to) + (mo(ü)Vz , vzt) '(t0) 

+ If( t0,	)IIL2) IPkvlIHI. 

Since gk is invariant under application of the Laplacian, the projectors pk are uniformly 
bounded in £(H' (cl),H'(ll)), and with the a priori estimates above we conclude that 
the following estimate is valid independently of k: 

	

(g	uniformly lies in a bounded subset of L2(I;(H'(ll))').	(2.6) 

Observing the relation 

((V4), 1) = - ((ê)t, div ) = - (() P k div i) 

which is true for all 77 E H.,,(fZ), we continue with the estimate: 

(Vg) t	uniformly lies in a bounded subset of L2 (I; (H.,(ll))').	(2.7) 

Let us remark that the last result is meaningless for the limit process k - co. But we 
shall need it in a subtle way when 6 tends to zero. 

For the sake of completeness, let us now recall the following parabolic compactness 
and imbedding results.
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Lemma 2.1 (Aubin - Lions; see [13: p. 57]): Let B0 ,B and B 1 be reflexive Banach 
spaces with compact imbedding B0 '-'- B and continuous imbedding B '- p B 1 . Then 
for 1 <p, q < oo the Banach space 

= {v: v E L"(I;Bo) and vg € L(I;B,)} 

is compactly imbedded into LP(I; B). 
Definition 2.2 (see [18: p. 416]): We call V C H C V an evolution triple if the 

following conditions are fulfilled: 
• V is a real, separable, reflexive Banach space 
• H is a real, separable Hilbert space 
• The imbedding V - H is continuous, and V is dense in H. 

Lemma 2.3 (see [18: p. 422]): Let V C H C V' be an evolution triple, 1 <p < oo 
and p' the dual exponent to p. Then the space 

W,(I;V,H) = {u: u € L(I;V) and Ug E LP' (; V') 

is continuously imbedded into C(I; H). 

Now we have gathered all the informations necessary to let k -* 00. By time 
integration of equation (2.3) we get for arbitrary v E L2 (I; H'(c)) the equality 

T	 T 
f((ö)pkV) - J (rn5 (ê)(VA(0) + Ve),VPkv)dt 
0	 0

T	 (2.8) 

= J(f(.,t,e),Pkv)dt. 

0 

From the a priori estimates (2.5) - (2.7) and the assumptions (1.3), (1.5), (1.9) we finally 
infer the following convergence results for a subsequence ()kEJ1v: 

--4	6
	pointwise almost everywhere and strongly in L2 (,QT) 

(et)t weakly in L2 (I; (H' (c'))') 
- weakly in L2(I;(H(STl))') 

Vp - VA weakly in L2(r;1R") 

A . , .,) strongly inL2(T) 
m6 ()(1 + A'(ê))v' -	m6( 6 )( 1 + A'( & 6 )) v strongly in L2(I1T)

if V k -, v strongly in L 2 (cZT) (for the last point we have made essential use of the 
boundedness of m, A' and the Vitali convergence theorem, see, e.g., in [1: p. 46]). 
Thus passing to the limit in equation (2.8) and using Lemma 2.2 we find a function 

60 
6 € W2' (I; H' (a), L2 (cl)) fl V (I; H3 ()) fl L2 (I; H.2 (Q)) fl C(I; H' (Q)) 
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with the properties 

- f (m 6 ( U 6 )(Vê +VA(e 6 )),Vv)dt = f(f(,t,6),v)dt	(2.9) 

for every v E L2(I;H'(cl)) and
(2.10) 

in ft 
2.2 A priori estimates independent of 5 > 0. For the limit process 5 - 0 we have 
to improve our a priori estimates decisively. Just modifying (2.5), (2.6) or (2.7) would 
not be sufficient because in this case we would not get any information concerning the 
L2 ( QT)-norm of Ag6 . A uniform estimate of the latter, however, is essential in order 
to identify a weak limit of (mo(ê6)V)6_0 in L2 (clT) with a limit of ()o...o in the 
sense of (1.10). 

Now we shall take advantage of a concept of F. Bernis and A. Friedman used in 
[3] for proving non-negativity of solutions of (1.1) in space dimension N = 1. Using 
peculiar primitives of the inverse of rn 6 as test functions the authors get rid of mâ in 
the elliptic part of the equation. In combination with a convexity argument, which in 
this context seems to be new, we shall apply this idea for proving a uniform bound on 
the L2 (I;H(1))-norm of g6. 

For fixed R > 0 let us consider the functions 
t	 t 

g 6 (i) = f	ds	and	G6(i) = fg6(s)ds. 
j ma(s) 
H	 H 

Remark 2.4: It is possible to choose R = R1 (cf. (1.6)). 

We have

ga(t){	

if t > R (>0 if tR 0 if i R	and	G5 (t) 1. =0 if i = R.	
(2.11) 

<0 if t < R 

The following estimates are obvious: 

1 
< — 5 It RI	and	G6 (t)	It - RI2. 
— 

Especially in the case t > R we can - using inequalities (1.4) and R > 0 - refine our 
estimate, and obtain with a constant C independent of S > 0 the estimate 

< C(i - R).	 (2.12) 

For the convex functions G5 we have the following growth depending on 0 < S <52: 

G 62 (t)< G61 (t)< Go (t)	for each t E R.	 (2.13)
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Let us proceed further by testing equation (2.9) with Lo6-	+ g6(e6 ) . Under the

premises

T 

J(e	6 )dt =	(II 96 II 2(cz) (T) - lIP IlL 2 (Q)( 0))	 (2.14) 

0 
T 

f(&1 L P)dt = (llvI12()0)- II VPIIL 2 (0 ) (T))	(2.15) 

0 
T 

J(p, g6(p6))di 
= J G 6 (p(x, T)) dx - f Gö ( Loo (x)) dx	(2.16) 

0.	 Il 

which we are going to justify later on we obtain 

1	62 
lIe lln l (n)(T) + f G6 (p6 (x, T)) dx 

n 
T	 T 

+ f (m 6 ( Q 6 )Vp6 , Vp6 ) di + f II L U11L 2 (n) di 
0	 0 

llP0Il 1 () + f G 6 ( Loo(x)) dx + J ((m6(p6) + 1)VA(p6),V06)dt 

+ f (mo(p6)Vp6,V(el - A(ü))) di + f	-	di 

+
 11 6	

f(..96)g6(p6)dxdi 
 >RIT 

= 11+12+13+14+15+16. 

Here we have already made use of the non-positivity of the integral 

fit f(x,t, ' ^R]r 

By the means of (1.8) and (2.13) it is possible to estimate 11 and 12 by a constant 
C just depending on po. For the other terms we obtain - using the Young inequality, 
(2.12) and the assumptions (1.3) - (1.5) and (1.9) - the following inequalities with a
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constant C independent of S > 0: 
T 

13 C  liVe6 IIL2(c) di 
0
T	 T 

1! 
14 < - / 

- 2 (m
6 (ê)Vê V ,g6 ) di + C  11 V+01112

L2ffl) di 
o	 0 

T	 T 
• 1 •I 

15 + 16 < - I illlL 2 () di + cJ liP 112
L(n) dt. 

- o	 0 

Absorbing the terms containing VL&I6 and Lp6 on the left-hand side, taking into account 
the non-negativity of G5 and applying the Gronwall lemma, we finally arrive at the 
following a priori estimates independent of S > 0 '): 

e8 uniformly lies in a bounded subset of 
L°°(I; H'(l)) fl L2 (I; H.2 (Q )) 

m 6 ( p8 )VLQ8 uniformly lies in a bounded subset of L2()T)	
(2.17) 

in 
G 6 (96 (x,t)) dx is uniformly bounded for t E [0, T). 

In the same way as in (2.6) and (2.7) we proceed, respectively, with the following 
estimates:

p uniformly lies in a bounded subset of L2 (I; (H' (f'))') 

Vp uniformly lies in a bounded subset of L2 (I; (H' (0))'). 

Let us now present the following lemma as basis for our estimates above. 
Lemma 2.5: Let u e W(I;H'(S),L2()) and let GE C2 (JR;JR) be convex with 

linear growth of its derivative g. Then 

J (u t g(u)) di = J G(u(x, T2)) dx - J G(u(x, r,)) dx 

for arbitrary elements Ti, T2 E I. 

Proof: By the convexity of G we have the inequalities 

I (G(u(x,t)) —G(u(x,i— h)))dx > ath 	g(u(x,t — h))dx 

f ((ux, t)) - G(u(x, t - h))) dx <f	(u) g(u(x, i)) dx. 

i) From the regularity theory for elliptic boundary value problems and the boundary reg-
ularity of 0 we infer that on H(1l) the H 2 -seminorm is equivalent to the L 2 -norm of the 
Laplacian.
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Here O(u) and a, 
h (u) denote the forward and backward difference quotient of u with 

regard to time, respectively. Time integration of the first inequality from r1 + h to r2 + h 
and of the second inequality from r 1 to r2 yields 

/r2 +h	 r, +h	 \	r2 

(
f JG(u)dxdt — f I G(u)dxdt) ^	 Oh(u)g(u)dxdt 
12	 ri	 rl0 

I I G(u) dxdt — J I G(u) dxdt) <7Jah(u)g(u)dxdt. 

r2 —h 0	 r1—h 0	 r1 

Passing to the limit h - 0 in these inequalities, using the linear growth of g and the 
regularity of u we finally obtain the result I 

The premises (2.14) and (2.16) are simple consequences of Lemma 2.5. By minor 
modifications in its proof and by the fact that V Lo6 is element of C(I; L2 (fl; .lR'')) we 
arrive at (2.15). 

2.3 Limit process 6 —+ 0. From the first a priori estimates Of (2.17), the last one of 
(2.18) and the Aubin-Lions lemma we conclude that a subsequence (VQ6 ) 6 ...o converges 
pointwise almost everywhere and strongly in L2(fT; N) to a function V. Using 
standard imbedding results for anisotropic Sobolev spaces we can improve this result 
furthermore. For this purpose we recall the following imbedding result (see, e.g., in [6: 
P. 10]). 

Lemma 2.6: Let Q be of cia.,., C" and v E Lc0 (I; LP (cZ)) fl LP (I; W"P(Z)). Then 
L'(I;L(c)) and the estimate

T \1/r. 
VIIq , r;fl	(1 +	1p/N)	(II v II p ,00;OT + lIVvIIp;nr) 

is true. Here the constant only depends on N,p and the structure of 49Q. Moreover, 
r, p, q and N have to fulfill the relations

1  N 
rp2 pq 

q E [1 N \nI)I and r E [p, oo)	if 1 <p < N 

and r E	 if 1 <N p. 

Combining this lemma with our convergence results for Vê5 and the Vitali conver-
gence theorem we immediately obtain the following lemma.
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Lemma 2.7: There exists a subsequence	which for every p < (2N+4)/N 
converges strongly in LP (1T;JR") to Vg. 

Since there are simple counterexamples illustrating that the integrability of I/.uI2 
and m(u)IVzuI2 does not imply that of IV1.uI, we cannot expect - using only the 
estimates derived so far - the existence of spacial derivatives up to the order three for 
solutions of (1.1). Hence we proceed further in the following way. 

Let
J6 = m6(ü6 )(VA( 6 ) + VL6) 

be the flux associated to o 6 . From our a priori estimates (2.17) - (2.18) we derive the 

	

following convergence results for a subsequence ( )...o:

Lot-	weakly in L2 (I; (H' (ci))')Lo t

	

-	strongly in L2(czT) 

	

-	 strongly in LP (QT; RN) If p < (2N + 4)/N 
Lo t	V Lo t	weakly in 
J5	J	weakly in L2(11T;IRN) 

f 	) -i f 	) strongly in L2 (QT)- 

Writing equation ( 2.9) in the form 

S I(,V)dt_j(J6,vv)dt= I (f t, p6 ), v) dt 

we can pass to the limit for 5 - 0, and obtain in L' (I; (H'(cz))') 

Lo t = —divJ + f(, ., 

In order to relate J to Lo we note the identity 

I(J6 , q) dt = J (m6(U)VA(ê6),) di 

- J (m 6)6,div) di - J (ml	 17) di 

which is true for all vector functions i' E L2 (I;(H'(ci))') fl L(1l') fulfilling ipi = 0 on 
oil x [0,1'] and q > 2 + N. Using once more the a priori estimates (2.17) - (2.18) we 
infer the convergences

A06 ALO weakly in L2(I1T) 

ms()A'(p)i -	m(p)A'()7 strongly in L2(ilT) 

m'(ê)r, -	m'()11 strongly in L(il;1RN) 

mô(ü5 )div i -	m(Lo)divy7 strongly in L2(flT).
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Thus J fulfills the relation

J =	 (VALo VA(S)) 

in the sense of (1.10). 
For the proof of the pre-continuity of V( . ,t) in t = 0 we first observe that Vê(.,t) 

converges for t - 0 weakly in L' (,Q; IRN) to Vpo. On the other hand, testing equation 


	

(2.9) with	and passing to the limit S -* 0 yields the estimate 

	

lim sup	t)II2(fl)	II VêoII2 ( c ) + cJ II V OIIL 2 (n) dt +	t, ), z) di 

	

0	 0 

with a constant C independent of t. Since Vp 6 converges strongly in L2 (SIT; 1R'') to 
Vp, there exists a set E C I with the property 1z(I—E) = 0 such that Vp 6 ( . , I) converges 
fort E E and a sequence S - 0 strongly in L2 (fZ,RN ) to Vp( . ,t). Thus passing to the 
limit I -* 0 in the estimate above yields for I E E 

urn sup II Vp , 042(n) :5 IIVU0IIL2rn 

hence limj_.o II V U( . , t )IIL 2 (0) = IIVU0IIL2(cl) which proves Theorem 1.1. 

3. Proof of the non-negativity results 

Our proof of the Theorems 1.2 and 1.3 is based on the observation that the last a priori 
estimate of (2.17) conserves the non-negativity properties of the initial value for (almost) 
all times. For this reason let us have a closer look on G 0 in a positive neighbourhood 
of the origin. Consider

M(S)	Isl hh fo(s)	(n > 1) 

and
1 

f0 e C([0,00)) flC((—oo,0))	with fo 
>0 in [0,00)

1>0 in (—oo,0). 

We cite from [3]:

	

A0 + 0(t2 )	if 1 <n <2 

G0 (t)= —A i log i+O(1) if n=2	 (3.1) 

	

A2 t2 + R(t)	if n > 2. 

Here A0 , A 1 and A2 are positive constants, only depending on Jo and n, and 11(1) has 
the growth properties

	

0(i3)	if n> 3 

R(t)= O(— logt) if n=3 

0(1)	I if n <'' 3.
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Proof of Theorem 1.2: ad 1): Using the fact that with exception of a set of 
Lebesgue measure zero each point z E Q is a Lebesgue point of a function u E L'(l), 
it is sufficient to show that there does not exist any set E C S2 having for any t E [0, T] 
the property

IE
o(x, t) dx < 0. 

 
Let us argue by contradiction. Suppose there exist E C Q and to E (0, T) such that 

= - <0. 

The inclusion p E C(I; L2 (Z)) implies the existence of a > 0 fulfilling 

#Q ,( E
ê(x,t)dxdt < —e' <0. 

i0) 

Let S C QO (E, to) be defined as the set of all (x, t) e QC (E, to) which fulfill (x, t) < —e+. 
Obviously, hz(S) > 0. 

Since the functions Lob converge for 6 - 0 strongly in L2 (QT) to e, we can - perhaps 
after the selection of a subsequence - apply the Egorov theorem, and get for arbitrary 

	

> 0 a subset S.., C S with1z(S - S.,) <7 and the property that	converges 
uniformly on S.., to Lo. This yields for sufficiently small ö > 0 

196(x,t) < —e" <0	for all (x, t) E S..,, 6' <€

On the other hand, we obtain by (2.11) 

II G5 ( 6' ) ^ AS G'(6') 
Q,(E,t 0 )	 _I


-C" 

	

= Jj	f g6 (s)dsdxdt > (S..,) f go'(s)ds. 

Using the monotone convergence theorem we conclude that the last term converges for 
6'—'Oto

L(S) J go(s)ds = +00. 

This contradicts the third a priori estimate of (2.17). 

ad 2): Suppose there exist nevertheless a subset E C Il and a point to E [0, T] 
having the properties described in Theorem 1.2. Then for each e > 0 we could find 
o(e) > 0 such that

Jq (x,t)dzdt < 
Q,()(E,iO)	 - 2
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Statement 1) of Theorem 1.2 implies that the measure of the set [ 2 e] fl Qa(e)(E, to) 
is bounded by a(e)p(E). For this reason the set S = [ < E]flQg()(E,to) at least has 
measure a(e)j(E). Applying the Egorov theorem once more we make ourselves sure 
of the existence of a subset S C S with measure o(e)p(E) such that a subsequence 
(es ' )o' -.0 is uniformly convergent on S to ü For sufficiently small t5. we have on S 
that 0 < ' <e for all 5' <St. Hence

C, 

	

JJ G6, ( '06' (x, t)) dxdt 2 a(e)jz(E) f g6 , (s) ds.	(3.2) 

R 

The right-hand side of this inequality converges for 5' -, 0 to 

C

	 I —loge'

e12_t	if n>2 
a(e) l2(E)fgo(s)ds 2 oe)p(E)

	if n =2..  
R 

Taking into account that in inequality (3.2) we have integrated over Q,( , ) (E, to) and 
that the last a priori estimate of (2.17) is valid for all times t E [0, T), we obtain a 
contradiction in the limit e, e' -+ 0. 

ad 3): First, we observe that on the set [,0 > 0]T the convergence ê6 (x,t) - 0(x, t) 
implies the convergence G 6 ((x,t)) - Go((x,i)) for S -' 0. From statement 2) of 
Theorem 1.2 we infer that this convergence takes place for almost all (x, t) E ciT. Since 
we deduce from the last estimate of (2.17) 

f JG6(e)dxdt <C 
r—efl 

we can apply the Fatou lemma, and end up with 

J I Go ( Lo) dxdt < C. 

r—e l 

Combined with (3.1) this yields the theorem I 
Remark 3.1: Since C0 does not generate any singularity in the case n < 2, the 

integrability of Go(Q) is obvious. 

Proof of Theorem 1.3: Exemplarily, we prove the first result: As the function 
ê(,t) is element of H(Q), the Sobolev imbedding theorem implies . its Lipschitz con-
tinuity. If e(• t) vanished at a point x 0 E ci, we could conclude with statement 3) of 
Theorem 1.2 that 

oo> f (x, j)2_fl dx 2 c 1 fi x - xoi2dx 2 C2
0

 r3dr. 

For ii > 4 this is a contradiction I
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4. Perspectives and limitations of the presented solution 
concept 

The boundedness conditions on the integral 
f1-1 Go (go) dx, on the diffusion coefficient rn 

and on its derivative m' were essential ingredients of the existence and non-negativity 
results presented above. Unfortunately, these requirements make it impossible to use our 
concept as soon as the diffusion coefficient m has polynomial growth or as soon as n > 2 
(cf. (3.1)) and the initial value go has compact support. But for some applications like, 
e.g., the spreading of a viscous droplet on a plain surface (cf., e.g., 1 31 and the references 
therein), one should be able to handle these difficulties. 

In this section we derive existence and non-negativity results in a weakened sense. 
For the sake of simplicity, we confine ourselves to the following problem: 
(P') êt + div(m(e)Vz & ) = 0 in Q x (0, T) 

on ôI2x(0,T) 

in Il. 

4.1 Initial values with compact support. In this subsection, for n 2 2 we free 
ourselves from the boundedness requirements on the integral f G0 () dx. For merely 
technical reasons we require in addition to condition (1.3) that 

M(s) = 0 if s <0.	 (4.1) 

Let us remark that it is also possible to handle the more general equation considered in 
Theorem 1, provided the regularity of the inhomogeneity f(.,.,.) permits integration by 
parts in the last term of equation (2.4). In that case - already by testing with g6 - 
— we obtain a priori estimates independent of 6 for the W(I;H 1 (1l),L2 (Q))norm of 
60 

6 and for the L2 (I1T )-norm of J6 , respectively. 
Having applied the procedure of Subsection 2.1 for proving the existence of weak 

solutions Lob of non-degenerate auxiliary problems (as in (2.9) and (2.10)) we pass to the 
limit 6 - 0 and get a pair 

(ê, J)E W(I;H 1 (c),L2 (cz)) nL00(I;Hl(fz)) x 

with the property
Lot = —divJ in 

Globally, we cannot expect a relation between J and Lo in the sense of (1.10) since 
it is not possible to control the L2 (QT)-norm of Neither do we obtain a global 
non-negativity result. But the following statement of merely local character may be 
derived.	 . 

Theorem 4.1: Assume conditions (1.2), (1.3) and (4.1) are fulfilled. Let '06 be a 
weak solution of the auxiliary problem (P) associated to problem (P'). Let o E C000(Q) 

be non-negative having the property 

feo Go (go	 dx < oo.
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Then for each subset S CC to > 01 there exists a constant C(S) which is independent 
of t and S such that 

if 6 (x, 1)1 2 dxdt <C(S)	and	J G6 ( 6 (x, t)) dx <C(S) 

for all t E [0, T] and 5 > 0. 

Remark 4.2: The results of the Theorems 1.2 and 1.3 apply to the interior of [o > 
0], i.e., in this region the non-negativity and positivity properties of go are conserved 
for almost all times I. In particular, the support of g does not shrink in course of time. 
Unfortunately, the second estimate stated in Theorem 4.1 does not suffice to identify J 
even only locally with m(g)VAg in the sense of (1.10). 

Proof of Theorem 4.1: In the weak formulation of problem (P) analogous to 
(2.9) we choose v(x, t) = (x)g6 ( 6 (x, I)) as test function. Here the function 6 E C000(cZ) 
is non-negative, and its support is compactly contained in lea > 0]. Using the smooth-
ness and time independency of we can apply Lemma 2.5 and obtain 

/ 
6 G (g6 (T))dx + I (Ag',	di 

= J CGo(o)dx + I (h 6 (g') V Ag', Ve) di - f ( 6 VC,vê6) di 

(here h5 is defined by h 5 (s) = rn 6 (s)g6 (s)). Integration by parts yields 

J
eG5 ( Q 6 (T)) dx + j (Ag',6Ag')  di 

= J CG 6 (o)dx - f ( p6 V6,Vü6 ) dt	 (4.2) 

+ j(h6 (,o')Ag6 Vg',  ye) di + j(h6(e6)Ao', 	) di. 

For the derivative of h 6 we calculate 

h(s) =rnh(s)J 7126(T) + 1. 

As m'(s) and fm(r) 1 dr. grow in a positive neighbourhood of the origin like s" 
and s', respectively, the following estimate is valid with a constant C independent of 
6> 0:

h(s)I
r=0 ifs<0 

I	 - 
1<C ifs>0.
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Inserting this result into (4.2) yields 

I
G5 (ê6 (T)) dx + /( U6	U6) 

60x + ff o'l(I L Ui vei IV & l + I' 	1U 6 1 kI) dxdt. 

Now we choose - following the concept in [3] - = (" for some .s > 4 and a test function 
(E C000 (l). Since p6 is uniformly bounded in Loo (I; H'(l)), we get the result I 

Remark 4.3: It is not possible to conclude from this result, which by minor mod-
ifications can also be applied to equations of the form 

Ut + div(rn( U)( A2 VU + V9)) = o 

with positive ) and boundary conditions as in problem (P'), that the support increases 
in course of time. In one space dimension this can already be illustrated by the following 
example of a steady state solution with compact support: 

Let 11 be the interval [- , + fl and M be a positive constant. Consider the 
function

ifxE(—,+) 
LOW	I.. 0	 otherwise. 

Obviously, e is element of H2 (1l)flC°°(—nC(\ {- , +]) and fulfills the 
equation above in the sense of Theorem 1.1, respectively in the sense of Theorem 3.1 in 
[3]. 

4.2 Diffusion coefficients with polynomial growth. In this subsection we present 
existence and non-negativity results for problem (P') under the assumption 

M ( S ) = II	for an a> 1.	 (4.3) 

Since we are mainly interested in modelling the spreading of a viscous droplet, we confine 
ourselves to the case N = 2. By modification of the proof of Theorem 1.1 we obtain the 
following statement. 

Theorem 4.4: Under the assumptions (1.2), (1.8) and (4.3) there exists a pair 
(e J) with the properties 

U € W2' (I; H(Q), L2 (1l)) fl Loo (1; H'(cl)) 

J € L2(1Z.r;1R2) 

and
T	 T 

J(,v)ç di = j (J, Vv) dt	 (4.4) 

0	 0
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for all v € L2 (I; H.2 (Q)) fl L— (I; H'(cz)). Moreover, J fulfills the relation €

J = 

in the following weak sense: 

fin T 
J77dzdt = — Ila T 

m(ê)êdiv,7dzdt — A T 
m'(ü)Vêi. ii dxdt	(4.5) 

for all 77 € L 2 (I; Wl2+ e (fZ; in2 )) n L°° (fir; in2 ) with 71v = 0 on 

Sketch of the proof: As in Section 2, we obtain approximate solutions p6 of 
problem (P) by application of the Faedo-Galerkin method. By testing with we 
immediately derive the following estimates independent of S and k: 

m112 (ê)V/. ü	uniformly lies in a bounded subset of L2 (fiT; R2) 

uniformly lies in abounded subset of L(I; H'(fl)). 

For proving time compactness of (p)kEJ1v it is necessary to take into account the growth 
of the diffusion coefficient m. We make use of the uniform boundedness of the projections 
pk in £(H(Q),H(fl)), and obtain for arbitrary v € H.2 (Q) the estimate 

((ê8) pk)	
< CIIm"2(e)VzeI	I 

II m" 2 ( Q )ML 2 + . (ft) lIvHH(1). Ito —	 L2(ci)Ij 

The estimates (4.6) and the Sobolev imbedding theorem (N=2!) then imply 

( p6 ) t uniformly lies in a bounded subset of L2(I;(Hffl))') 

(V&4)	uniformly lies in a bounded subset of L2(I;(V3(fl))'). 

Passing to the limit k —+ oo we find a function 

€ W2' (I; H.2 (Q), L2 (fl)) fl L°°(I; H'(fl)) fl L 2 (I; H3(Q)) 

which solves problem (P) in the following sense: 

dt = J(mo( O6 )Vü6 , Vv) dt	 (4.8) 

for all v € L2 (I;H(1l)) flLc0(I;HI(Q)). 
From the estimates (4.6) we easily conclude that for a subsequence S —* 0 the flux 

J6 = m 6()Vg6 weakly converges in i2—' (QT; in2 ) to J. Combined with the first 
inclusion of (4.7) this yields (4.4). For the proof of (4.5) we observe that g() is an 
admissible test function in (4.8), and we obtain as in the first and third statement of 
(2.17)

e6 uniformly lies in a bounded subset of L2(fl) 

fn G6 (p6 )dx is uniformly bounded for t E [0, T].	
(4.9)
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respectively. Using the last statement of (4.7), the first one of (4.9) and Lemma 2.7 
it is clear that for a subsequence the gradient V Lo6 converges pointwise almost 
everywhere and strongly in L(QT; 1R2 ) to Vg for arbitrary q <4. Thus passing to the 
limit in (4.8) we find a function 

g E W2' (I; H(), L 2 ()) n L' (1; H'()) 

which solves problem (P') in the following sense: 

I ( O t v) H 2( fl ) dt - J(m(ü)ü, &) dt - J (m'(ü)Vê, gVv) dt 

for all v E L2 (I; W2 ' 2 (Q)) fl Loo (I; W 1 ' 0 (1)) with (Vv)u = 0 on 0Q. This proves 
Theorem 4.41 

A direct consequence of the last statement of (4.9) is the following 

Corollary 4.5: Under the assumptions of Theorem 4.4 the non-negativity results 
of the Theorems 1.2 and 1.3 apply to weak solutions of problem (F'). 

5. A simplified Norton-Hoff model with isotropic, 
non-local hardening 

5.1 Modelling and statement of the results. In recent years material scientists 
and engineers became more and more occupied with modelling and explaining the for-
mation of cellular patterns in metals during plastic deformation. A decisive influence 
on phenomena like this is exerted by dislocations, i.e., perturbances in the lattice struc-
ture which are generated to a smaller extent during crystal growth, but mainly during 
plastic deformation. Usually, one distinguishes between dislocations of edge-type and 
of screw-type (cf. the monography of Hirth and Lothe [8]). The curve in the crystal 
along which the lattice structure is disturbed is called the dislocation line. The Burgers 
vector b describes in which direction and how far atoms have to be moved in order to 
reorganize the lattice to the original configuration. In the case of dislocations of edge 
type, it is orientated perpendicularly, in the case of dislocations of screw type parallelly 
to the dislocation line. For energetical reasons dislocations often organize to more stable 
configurations, so called dislocation dipols. Especially for the phenomenon mentioned 
above dipolar loops (i.e., dipols made of dislocations with a circular dislocation line) of 
edge type dislocations are of great importance since experiments indicate that in the cell 
walls their concentration is incomparatively higher than in the cell interior. Observing 
that especially high concentrations of dipolar loops hinder plastic glide and therefore 
contribute to the hardening of the material, it is natural to relate the loop density to the 
parameter of isotropic hardening used in classical models of phenomenological plasticity. 

A simple model describing the pattern formation mentioned above has been pro-
posed by J. KratochvIl and M. Saxlová [10].
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For these authors the dislocation population consists - in an idealized way - of glide 
dislocations of screw type and dipolar loops of edge type. As the size of the latter is 
negligible in comparison to the diameter of the cells, they may be considered as point 
objects and be described by an internal parameter e which stands for their density. In 
contrast, the glide dislocations enter the model only implicitely via the plastic strain 
rate.

The authors propose - confining themselves at first to one glide system - the one-
dimensional evolution equation

+00 

+D -  J M(x —x')ê(x')dx' = AoIiI. 
-00 

Here M E C000 (R) is non-negative and symmetric, D and A0 are positive constants and 
c denotes the plastic strain rate. 

In a successive paper J. KratochvIl and M. Saxlová present a method to generalize 
this model to the case of more than one active glide system 1 11 1 . Assuming an isotropic 
interaction between the different glide systems they obtain 

	

+ D E div' grad3	 + ce M, ) d = AO I ep (5.1) 

Here b' denotes the Burgers vector of the 31h glide system. Unfortunately, this formula-
tion still withstands a successful mathematical analysis. Since is supposed to play the 
role of a density, we have to require its non-negativity. But even in the case of positive 
initial values solutions of equation (5.1) in general do not remain non-negative in course 
of time. Since the introduction of a diffusion coefficient with degeneracy in zero which 
seems to guarantee - as numerical experiments in [12] indicate - the non-negativity of e 
poses severe problems for the mathematical analysis, we free ourselves from the convo-
lution formulation in equation (5.1). Instead of postulating finitely many glide systems 
we assume infinitely many of them being uniformly distributed over the unit sphere. 
Hence we substitute the summation over the different glide systems by an integration 
over the unit sphere. This yields after Taylor expansion of e up to order two and after 
neglecting the terms of higher order 

'+ div (D(H0 Vê+ Hi VA,,)) = Ao li p I. 

Here H0 and H1 depend in the following manner on M: 

H0 =
	

M(.) d,	and	H1 = 7rJM(x)x2dx. 

In order to guarantee the non-negativity of p we choose a diffusion coefficient m(p) which 
depends on p and obeys the conditions (1.3) and (1.4), and obtain finally as evolution
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equation for the density of dipolar loops an equation of type (1.1) with right-hand side 
f(, , e) =	(we have chosen A0 1). 

The non-local character of the hardening process is taken into account in the fol-
lowing way. Let us define by 

h(p)(x, t) = ho(x) + 
j'R3 

1cr( - )e( t) dy	 (5.2) 

with
-	

t o

p(x,.) if XEc1

 otherwise 
the hardening parameter h(g) associated to p. The function h0 E W"°°(Q) is non-
negative, M E Cr(1R3) is radially symmetric and non-negative, and we have the equal-
ity fR3 M(x)dx = 1. In particular, for arbitrary 1 p oo the estimates 

	

IIh(p)IILP(n)	c(i + IIPIILP(n)	 (5.3) 

	

II Vh( p)IIL P (o)	II VM IIi (Q) IIOIILP(0) + IIVhoIILP() 

are true. Let us now combine the evolution equations derived above with the continuum 
mechanical equations describing plastic behaviour with hardening as they were treated, 
e.g., in [9]. For technical reasons we confine ourselves to an elasto-viscoplastic model of 
Norton-Hoff type which we are going to present now. 

Under the influence of time dependent volume forces f and surface forces F , an 
elasto-plastic body, which occupies at time t = 0 the reference configuration Q C 1R3 , is 
deformed. The Cauchy stress tensor o r , the hardening parameter h(p), and the displace-
ment u describe the evolution of the body. Assuming small deformations and a qua-
sistatic evolution, we identify the actual configuration with the reference configuration 
and neglect in the equation of motion such terms in u which contain time derivatives of 
order two. This permits to formulate the following relation between forces and stresses: 

divcr+f=0 in 
av=F on r1cacl. 

Let us proceed further with the constitutive law which prescribes the interdependencies 
between stress tensor and hardening parameter on the one hand and strain tensor on 
the other hand. As long as the von Mises condition is fulfilled, which requires that the 
norm of the deviatoric of the stress tensor in each point (x, t) E dr is bounded by the 
value of the hardening parameter h(p(x, t)), we assume the validity of Hooke 's law, i.e., 
a linear dependency between the stress and strain rate. Otherwise, in addition to the 
elastic part of the strain rate there appears a plastic part which mathematically we shall 
obtain by penalizing the von Mises-condition. To get more into detail let the von Mises 
cone K C M I x Rbe defined by 

K = {(r,h): ITD(T,h)I	h}.
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Here
= r - 

1 
tr(r)Id 

denotes the deviatoric of r where Id is the identity on 1R3 . For fixed a > 0, d(r, h) 
stands for

d(r,h) = a'dist((r,h),K). 

Using a result of E. H. Zarantonello [17] we observe that &(r, h) is differentiable with 
differential

(r'\\	f7ten(r,h)\ 7(r,h)= 2a2	
h ) 

—HK 
h )) =: 79k1(T,h)) 

Here HK denotes the orthogonal projection onto K in M	x R. Elementary geomet-
rical considerations yield

{ _ 2 (IT D I - h)1-r-
D 

i'ten(,h) = 2a_2r13 
0 

a - 2 (h - ITDi) 

YskaJ( T , h) = 2&2h 
0

if IT DI > hi 
if ir'i<-hAh<0 
otherwise 
if I T DI > I hI 
if r'3i<—hAh<0 
otherwise, 

respectively. Hence, there exists a constant C(a) such that 

hyten(r, h)I + I7skal(T, h)]	C (a)( I T ' I + h l) .	 (5.4) 

By r(r,h)	f&(r,h)dx we define a real-valued functional on L2 (l;M, x 
According to the estimate above it is finite everywhere, convex, continuous, and Gateaux 
differentiable. With 'y we again denote its derivative. From the theory of monotone 
operators we infer that y is a monotone, hemi-continuous operator on L2 (S;	x JR). 

In the sequel we shall be concerned with the following 

Problem: Find a triple (a,p,u) € Sad(f, F) x H 2 (Z;JR) x Cd(U) which solves 
in an appropriate weak sense the following system: 

A& + 7ten(i, h(ê)) e(u)	 in Q x (0, T) 

+div (m(Q)(HVU+VL)) = — 75k1(,h()) in Tl x (0,T) 

=	
(55) 

--Le = 0	 on aQ x (0,T) 
 

(o(., 0), (., 0), u( . , 0)) = ( a o, LOO, uo). 

Here, we have used the following abbreviations:
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• Cd(UO) = {u E H'(ci, .1R3 ) : u = Uo on I'} is the set of the kinetically admissible 
displacement fields. C od is equivalent to Cad(0). 

• Sad(fO, FO) = I a  E L 2 (ci;M): divo+fo = Oinci and aji = F0 onri} is the 
set of the statically admissible stress tensor fields.	stands for Sad (0, 0). 

• aQ= F0 U F,, and the surface measure of F 0 does not vanish. 

• e(u) = 1 (Vu + Vu ) is the linearized strain tensor. 

• A - ' is the symmetric, positive definite Lamé-Navier operator of linearized elasticity. 
En detail, (Ao)gj =-j	- 2P(2 + 3A) tr ( cr)ij for all a E MSY with Lamé constants 

• H is a positive constant. 

Remark 5.1: In the sense of the usual decomposition of the strain tensor in a 
plastic and an elastic part the latter of which is - according to the equations of linearized 
elasticity - given by Aci we can interprete yten (a, h(9)) in problem (5.5) as plastic strain 
rate. Our results of the previous sections indicate that o will be non-negative. Hence 
we have

-7skal(ci,h(9)) = Iten(ci,1i(p))l. 

For this reason problem (5.5) is equivalent to 

+div(m(9)(HV9+V)) = 

Assuming a homogeneous, non-negative initial distribution oo we expect the following 
course of the deformation process: At first -y,, = 0, and o remains constant. From a 
time to on locally in ci there occurs plastic deformation which initiates the evolution of P. 
On account of the positivity of H the gradient term in problem (5.5) has a. destabilizing 
effect, and a linear stability analysis - neglecting the degeneracy m - indicates that 
small deviations of 9 will grow exponentially in course of time. 

Unfortunately, this framework does not allow to confine the evolution of to such 
regions in QT where plastic deformation takes place. For this reason it seems to be 
impossible to simulate cyclic loading using this model. Nevertheless, it is worthwile 
to mention that we do not expect an immediate spreading all over ci because of the 
degeneracy of m and the smoothing properties of h. In this context we refer to the 
results of F. Bernis, L. A. Peletier and S. M. Williams concerning source type solutions 
of degenerate parabolic equations of fourth order (see [4]). 

Finally, let us mention that our choice of the boundary conditions for 0 was moti-
vated by the assumption that the flux of the dipolar loops vanishes at the surface of the 
body. 

In order to relate surface forces on the boundary OQ to the stress tensor a we direct 
the reader's attention to the following result of R. Temam for domains with boundary 
of class Ci.
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Lemma 5.2: If r E L2 (cl;M) and divr e L2 (fZ;1R3 ), we can define the trace 
of i-v onôl as element of H' /2 (5c), and obtain the following estimate with a constant 
C depending only on

II7*vIIHII2(auI) !^ C(r	+ II divr IIL 2()) .	 (5.6) 

Moreover, the following generalized Green formula is valid for all v E H'(fz,1R3 ) and 
T E L2 (;M) with divT E L2(Sl;li3) 

7e(v) dx =fr(v (9 v)dr -
	

(5.7) 

Here the first term on the right-hand side denotes the dual pairing between the spaces 
H 1/2 (al) and H` /2 (all). 

For the data we require the following regularity properties: 

U,U,U E L(I;H1 (ll ) 1R3 )), u = o on r 1 x [o, T) 
uo,u 1 E H'(ll;1R3), U  = U(0), U  = U(0) on 

CO E L2 (ll;M,), af E K a.e. on	 (5.8)

f,f E L(I;L2 (ll;1R3 )) and F,F E L0(I;L2(ri;1R3)) 

0 EH'(ll) and 
fn 

Go (,yo (x)) dx < oo. 

Finally, we assume the validity of the following condition ascertaining that the set of 
admissible tensor fields contains elements with sufficient regularity. 

Safe-Load Condition: There exists a tensor field Xten with the property that, for 
each t E [0, T], 

Xten, Xten E LOO (QT M3 x3' 
sym/	and	Xten(, t) E Sad (f (t), F(t)).	(5.9) 

We prove the following existence result for problem (5.5). 

Theorem 5.3: Under the assumptions (1.2) - (1.4), (5.2), (5.3), (5.8) and (5,9) 
there exists a quadruple (cr, u, o, J) which solves system (5.5) in the following sense: 

	

A(a(t) - ao) + J 7ten(a(s), h(ü(s ))) ds = e(u(t)) - e(uo) V t E [0, T]	(5.10) 

I(J, V77)dt = _J(ska1(ah(P))) dt V 77 € 

E Sad(f(t),F(t)) V  E [0,T].
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For o the non-negativity results of Theorems 1.2 and 1.3 apply, and J fulfills the relation 
J = m()(HV + V/. ê) in the sense of (1.10). 

Furthermore, Ly and J have the same regularity properties as in Theorem 1.1, or E 
W21 (I;L2 (fZ)) and u E L2(I;H'(Z)). 

Remark 5.4: Since the admissible set K does not have a sufficiently smooth bound-
ary, it is not straight forward to relate & and e(i) in the sense of problem (5.5). Further-
more, to the best of our knowledge, there are no results offering more than p-integrability 
of the deviatoric of a if has p-growth in aD. Indeed, by the use of duality methods 
J. Frehse and A. Bensoussan show in [2] L c" (I; Hl'.,: (Q)) -regularity of the stress tensor 
for a Norton-Hoff model without hardening parameter. Unfortunately, in our case this 
result is not sufficient. For these reasons we only permit linear growth of -y and confine 
ourselves to the results of Theorem 5.3. 

As in the case of Section 2, the uniqueness of the solution remains an open problem. 

5.2 Proof of the existence result. Our proof combines our techniques of Section 
2 with the methods R. Temam used in his paper [15] for the pure Norton-Hoff model 
without hardening. Let us begin with the following weak formulation for the inclusion 
property a(-, t) E Sad(f(t),F(t)): 

(i( . , t), e(w)) = J f(x, t)w(x) dx +J F(x, t)w(x) dI' =: L(t, w) 
ap 

for all w E Cd. 
By the means of the Faedo-Galerkin method we prove the existence of solutions 

(a6x, NX, U6A) 

for the following doubly regularized problem (P 6 ,.) with 6, A > 0. 

(P5,\) A6,6A + yten(o 6A, h(oA)) = e(üs)) 

- J (m6(U6A)(HV6A + 

= _Y(Yka1(aoA,h(üsA)),1))dt for all Y7 € L2(I;H1(Q)). 

A(€(üsA),e(w)) + (aÔA,e( w)) = L(t,w) for all w € Cd. 

Moreover, we require that (au )	, u) fulfill the initial and boundary conditions of

problem (5.5) and that u € C'(U). 

Let	and	be total and free subsets of L2 (l;	and C d , re-




spectively, and tj , S' and pk as in Section 2. Further, Tk denotes span {ri , ..., Tk} and
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PTk is the orthogonal projection in L' (Q; MIX 3) onto Tic. In a similar way we define 
Wk and Pw. With the help of the Peano existence theorem we find functions 

ak (., t)	(t)()	ek(, t) 
=	

(i)()	vk( • , t) = 

solving locally in time the system of ordinary differential equations 

(Ak,rj ) + (7ten(ak, h(9k)) , Ti) = (e(vk + U),rj) dt
for j=1,...,k 

- (m6(Ok)(HVQk + VL9k),Vj) = —(Vsk&l(ak,h(Qk)),j)	(5.11) 
for j=O,...,k 

A(e(vk + U),e(w)) + (ak,e(w)) = L(t,w,) 

for j=l,...,k 
to the initial values 

Uk(, 0) = PTkao(), êk(, 0) = pC9()	Vk(., 0) = P& (u 1 ( . ) - 
For simplicity, we have omitted the indices A and 6. 

In order to obtain the a priori-estimates necessary for the proof of global solvability 
of (5.11) on [0,T] and the limit process k - oo we test the equations of system (5.11) 
with tlk, &k - Aok and vk, respectively. Summing up we arrive at 

+ (9k, 9k) + (V9k,VUk)} 

+ (m6(0k) Vz 9k, VL 9k) + AIIe(vk)II2(rl) 

= L(t,vk) + (e(U),ok) - 

+ (9k(k,h(9k)),,ek_9k) 

- (71en ( (7k, h(9k)), (7k) + (m8(Qk)HV9k , V9k) 

+ (m6(9k)V 9k, (1 - H)Vêk) 

=I+II+ III +IV+V+VI+VII. 
As in [15] it is possible to estimate 1,11 and III by 2(Aok,ak) + c(1 + A + ) with a 
constant c depending only on T and the data. Using the first relation of (5.3) and (5.4) 
we may handle IV, V, VI and VII as in Section 2, and applying the Gronwall lemma 
we finally end up with the following estimates depending only on 6 and A: 

9k uniformly lies in a bounded subset of L(I; H'(Q)) 

m6(Ok) VLgk uniformly lies in a bounded subset of L2 (cZT; 1R3) 
k uniformly lies in a bounded subset of L2 (lT; M) 

-y(ak, h(êk)) uniformly lies in a bounded subset of L2 (QT; M,, x In) 
Uk = vk + U uniformly lies in a bounded subset of L2(I;H'(1l;li3)).
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For the last result we have made use of the Korn inequality (see, e.g., in 15: p. 2911). 

Proceeding in a similar way as in Section 2, the following additional estimates may 
easily be derived: 

Ok uniformly lies in a bounded subset of L2 (I; (H'(Il))')€

6'k uniformly lies in abounded subset of V (QT;M)gym €

(VUk) j uniformly lies in a bounded subset of L2(I;(H(Q))'). 

Thus we obtain - after time integration of system (5.5) and passing to the limit k -,oo 
- a quadruple (a,* , uö, 06A ) with the inclusion properties 

E W'(I;L2 ()) x L2 (I;H 1 (Z;1R3 )) x	 x B?)gym 

öA E W (I; H' (2), L 2 (l)) fl V (I ) H3 ()) fl V (I; H()) fl C(I; H' (1)) 

and the equalities

f (A6,6,\, T)dt + f (E t,.., T)dt = 1 (E(ü6A)T)di	(5.14) 

f (á6,\, TI) dt - J (m 5A)(HV 6A + V 5A), V ) di = - f (Egka], 7)dt	(5.1) 

A f	e(,)) dt + J (a5A,E(w))dt = f L(t, w) dt	(5.16) 

for all
T E L2 (QT ;M,),	7 E L2(I;H'(l)),	w  Cd 

respectively. Moreover, the initial values are assumed by (cö.,) Ü ÔÀ, Qo). 

Identification of E and -y (o,6 ,\, h(eoA)) by the monotonicity of y. Let Jk and 
J6 ,\ be defined by 

Jk = m6()k)(HVQk + V1êk)	and	J5,, = m5(6.,) (HV A + V/.060. 

We notice that Jk converges weakly in L2 (QT; 1R3 ) to J6 ,\ as k -+ oo; at the same 
time (5.3) imply that h(Uk') tends strongly in L2 (1; H'()) to h(06A) for a subsequence 
k' - oo. Testing the first and second equation of system (5.11) with c and h(Uk), 
respectively, and subsequently integrating in time from 0 to T yields 

T 

J (7khk 
/ 

k ))) di 
0

T	 T	 (5.17) 

= -(Aak,ak) +J(E(k)ak)dt + J(Ok, h(Qk)) - (Jk, 
0
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Similarly, by multiplying equations (5.14) and (5.15) by p6), and h(Uö),), respectively, 
we obtain 

J (, ( 0'" )) di 
96A 

0
T	 T 

=
 T _(Aa6),,a6),)-l-J(c(uo),),ao),)dt+f (ôoA,h(oA)) - (JöA,vh(OöA))dt. 

(5.18) 
The monotonicity of 7 implies that 

T
_a V'I 

(h(LOk) 
Xk :=(7(akh(k)) — 7	ak	di	 (5.19) (a,),	

— )) 0 

is non-negative for each k E iN and arbitrary pairs (&, ) E L2 (flT; M J x JR). Inserting 
(5.17) into equation (5.19) and passing to the limes superior yields 

T 

limsupXk 
k—.cx	- 2	10

0 

- f(J6 ,\, Vh(Q6A ))di + f(e(u 5A ) ao),) dt	 (5.20) 

- J (r-, ()) 
dt - J (7(&,), (:)) di. 

Here we have used the fact that, for fixed I E [0,T], ak(,t) converges weakly in L2(fZ) 
to a6A(•, I). Furthermore, we have concluded from the identity 

j(E( i1 k), 0'k) dt = J {(e(U),ak) + L(t,vk ) - A(e(U),E(vk)) - (e(vk),E(vk))}dt 

and the weak convergence of vk in L2 (I; H' (Q)) that 

ak)di 

Combining (5.17) and (5.19) we arrive at 

T

(h( 06,0  - )) 
dt > 0. 

0
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Now applying standard methods for monotone, hemicontinuous operators we suèceed 
in identifying E and 7(o6), h(QoA)). 

Estimates independent of A. Since := - Xten is not contained in Sa°d, the 
method used in [15: Section 4.11 is not correct, and we have to modify the arguments in 
order to obtain estimates which are independent of A. For this purpose we begin with 
multiplying equation (5.13) by T6A. Using (5.9), (5.15) and the Green formula (5.7) we 
obtain

T 

(Ar6A , r6
I T 
 +J(7ten(A(6A))6A) 

= (Ar5 , T5A ) 0 - J ( A ten , T6A) dt + J(e ( U ) T6A)dt 

+ A J(5A) e(U))dt - AJ lk(6A)II2()dt 

=I+II+III+Iv+ V. 

With the help of the first relation of (5.8) and (5.9) we can estimate II and III in the 
following way:

II+III_< C+J(AroAroA)dt. 

In order to estimate IV independently of A, but still dependent of 8, we take advantage 
of the fact that (5.12) implies with a constant C1 independent of A the estimates 

C' 
IIE(U6A)IIL2fflT) 

It follows for the right-hand side in the equation above 

R.H.S.	(AroA,	 r roA)I 0 + C (1+J(Ar5A)dt). 

In order to handle the second term on the left-hand side we test (5.15) with p, - 
add this equation to the inequality above and obtain by standard absorption techniques 
the following a priori estimates independent of A, but still depending on 8: 

(o, UoA) uniformly lies in abounded subset of L(I; L2(Q; M1,3 ) x
SYM

 

m5 ( A )Vzp	uniformly lies in a bounded subset of L2 (fl i'; 1R3) 
(áA,VoA) uniformly lies in a bounded subset of L2(I;(H'(fZ))' x
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Now testing equation (5.14) with r E L2 (I;Sa°d ) we derive by the use of the Green 
formula

+ T(7ten(öA,h(ObA)),T)dt 

= f (U®v)r dt _J(ten,T)dt. 

Being equipped with the L 2 -scalar product, S.Od becomes a Hubert space, and we end 
up with the a priori estimates 

i-6 ,\ uniformly lies in a bounded subset of L2(I;(Sj)').	(5.21) 

Limit process A -+ 0. Proceeding as in [15] we obtain by time integration in the 
strong version of (5.14) a quadruple (c,606,u6,6) with the inclusions 

oo E L(I;L2(1)),	E E L2 (c1T ;M I 3 x iR),	us E L(I;H1(1Z)) 

and g6 as in Subsection 2.1, and the following properties: 

A(a(t) ao) + / en(S = e(uô)(t) - (uo) 

T	 T	 T 

1(,6 ,7)dt _J(mo(Qo)(HVe 6 +Vê6),V?))dt = _J(E,,7)dt	(5.22) 

0	 0	 0 

for all 77 E L2(I;H1(cZ)) 
(o-ö(i),e(w))	L(t,w) for all w E Cd. 

It is worth mentioning that the first and last relations of (5.22) imply the inclusion 
7-5 =C6 - Xten E L°°(I; Sd). With (5.21) we conclude the inclusion 

76  W2(I;Sad). 

In particular, we have for all r E L2 (I; Sd) 

f(Ai-, , r)dt + f(Fben r)dt = JJ ( U ® v)r dt - J (A^ten r)dt.	(5.23) 

Combining our methods with the techniques R. Temam used in [15] we easily identify 
° and 7(o6,h(p6)).
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Estimates independent of 6. We test (5.23) with r, the second relation of (5.22) with 
+go(p)— AL06 and add the equations. Using the absorption techniques of Subsection 

2.2 we end up with the following inequality containing a constant Co depending only 
on the initial values: 

{(ATö,Tô) + 1106112}I + H	 IGô(ü6(T))dx '(Ii) IT	J 
ci 

T	 T 

+ f (mo(ê6)vio, vi ö) dt + fIIoII2(I2)di 
0	 0 

T	 T	 (5.24) 
:5 Co (i + I (V Lo6 , V Lo6 )dt) _f.(7skal(ao, h(Qo))6 +ga(p5) - 

— (ten(aa, h(p.)),ra)dt - f (Ae,r6 )dt + If(& ® z') drdt. 

Using the first growth condition of (5.3), (5.4) and (5.9), the non-positivity of 7skal and 
the imbedding (5.6) we obtain in the case of the coupled problem the same estimates 
for e as in (2.17) and (2.18). Moreover, for rb we have independently of 5 > 0 that 

76 uniformly lies in a bounded subset of L' ( 1 ; Sad) 

*o uniformly lies in a bounded subset of L2 (I; (Sd)'). 

Remark 5.5: Unfortunately, the term 7 (ci 6 ,h(ô)) cannot be absorbed on the 
left-hand side of (5.24). Thus we do not obtain estimates which are independent of the 
growth constant of y. For this reason it seems to be impossible to apply conventional 
methods in order to prove existence results for a Prandl-Reuss model with a similar 
hardening parameter as considered in this paper. 

Limit process 6 —+ 0. Using the a priori estimates derived above and repeating the 
monotonicity arguments of the previous subsection we obtain - passing to the limit 
5 —i 0 - a quadruple (r, u, o, J) with the following properties: 

T	 T	 T 

f(Ô, )di - I ( J, V71)dt - 
I (

79 kal (- + Xten, h(p)), ii)di 
0	 0	 0 

for all 77 E L2 (I; H' (1)), J = m(ê)(HV ü + Vi.) in the sense of (1.10), r E C(I; Sad) 
and

TT	 T	 T 

J (A+, )dt + I(7ten(T + Xten, h(s)), )dt 
= J I(& v) drdt - J(A^,en,  

0	 0	 0I+	 0
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for all E L2(f; Sd). 
Now we choose a = r + Xten As both T6 and f 7ten (0 6, h(e)) ds converge weakly* 

in L°°(I; L2 (Q; M)) to rand f0 7ten(a, h(0)) ds, respectively, we conclude by the first sym 

relation of (5.22), Korn's inequality and the inclusion ut E Cad(UO) that u6 converges 
weakly* in L O (I; H*(); .1R3 )) to U. Passing to the limit in the first equation of (5.22) 
gives (5.10). Furthermore, from the last relaton of (2.17) we infer the non-negativity 
results conjectured for p. This proves Theorem 5.3. 

Acknowledgement. I would like to thank Prof. Dr. Jan Kratochvl for many fruitful 
discussions. 

References 

[1] Alt, H. W.: Lineare Ftinktionalanaiysis. Berlin: Springer-Verlag 1985. 
[2] Bensoussan, A. and J. Frehse: Asymptotic behaviour of the time dependent Norton-Hoff 

Law in plasticity theory and H' -regularity. Calcolo (to appear). 
[3] Bernis, F. and A. Friedman: Higher order nonlinear degenerate parabolic equations. J. 

Duff. Equ. 83 (1990), 179 - 206. 
[4) Bernis, F., Peletier, L. A. and S. M. Williams: Source type solutions of a fourth order 

nonlinear degenerate parabolic equation. Nonlin. Anal. 18 (1992), 217 - 234. 
[5] Ciarlet, P. G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. Ams-

terdam: North-Holland Publ. Comp. 1988. 
[6] DiBenedetto, E.: Degenerate Parabolic Equations. Berlin: Springer-Verlag 1993. 
[7] Elliott, C. M. and H. Garcke: On the Cahn-Hilliard equation with non-constant, degenerate 

mobility. SIAM J. Math. Analysis (submitted). 
[8] Hirth, J. and J. Lothe: Theory of Dislocations. 2" ed. Malabar, Fla.: Krieger PubI. 

Comp. 1992. 
[9) Johnson, C.: On plasticity with hardening. J. Math. Anal. AppI. 62 (1978), 325 - 336. 

(10) Kratochvfl, J. and M. Saxlová: Sweeping mechanism of dislocation pattern formation. 
Scripta Metallurgica et Materialia 26 (1992), 113 - 116. 

[11] Kratochvfl, J. and M. Saxlová: A model of formation of dipolar dislocation structures. 
Solid State Phenomena 23/24 (1992), 369 - 384. 

[12] Kratochvul, J. and M. Saxlová: Dislocation pattern formation and strain hardening in 
solids. Physica Scripta T49 (1993), 399 - 404. 

[13] Lions, J. L.: Quelques Méthodes de Resolution des Problimes aux Limites Non LinCaires. 
Paris: Dunod Gauthier- Villars1969. 

[14) Temam, R.: Mathematical Problems in Plasticity. Paris: Gaut hier-Villars 1985. 
[15] Temam, R.: A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity. 

Arch. Rat. Mech. Anal. 95 (1986), 137 - 181. 
[16] Yin Jingxue: On the existence of nonnegative continuous solutions of the Cahn-Hilliard 

equation. J. Duff. Equ. 97 (1992), 310 - 327. 
[17] Zarantonello, E. H.: Projections on convex sets in Hubert spaces and spectral theory. In: 

Contributions to Nonlinear Functional Analysis (ed.: E. H. Zarantonello). New York: 
Acad. Press 1971, pp. 237 - 424.



574	G. Grün 

[18] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Part II: Linear Monotone 
Operators. Berlin: Springer- Verlag 1990. 

Received 31.08.1994


