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Abstract. Transonic small disturbance theory in two dimensions leads to a nonlinear first-order 
system of mixed type. For such systems corresponding variational problems are formulated. 
These minimum problems are studied on closed sets of admissible functions satisfying certain 
boundedness constraints and entropy conditions. Existence theorems can be proved though 
the functionals need not be convex and the given sets are not compact. Furthermore, some 
properties of minimizers are derived. 

Keywords: Transonic flows, generalized solutions, variational problems, entropy conditions, 
weak lower semi-continuity 

AMS subject classification: Primary 76 H 05, secondary 49 J 99, 76 M 30 

1. Introduction 

A standard model in transonic gas dynamics is the irrotational steady flow of an inviscid 
gas past a profile in two dimensions. This flow can be described by the equations 

a	a - (pwi) + b— (pw) = div (p (1 w 1 2 ) w) = 0 (continuity equation) ax1
a	a	 (1.1) 

a-Wx1 2 - —
 5x2 

w 1 = rot w = 0 (conservation of vorticity) 

where w = ( W 1, w2 ) is the velocity field and p denotes the density related to w by the 
Bernoulli's law (cf., e.g., [ 8: Chapters I, IX and XII] for physical background). We 
assume that the flow is symmetric with respect to the x 1 -axis, and uniformly parallel 
at infinity with the velocity (w,0) and the Mach number M (cf. Figure 1). 
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(w,0)

Figure 1 

The equations (1.1) are studied in the upper half-plane Z2 ^: 0 . As usual (cf., e.g., 
[14, 15]) the upper part of the airfoil is defined by a (sufficiently smooth) shape function 
f and a thickness parameter 6 > 0: 

X 2 =61(x i )	for x 1 E	
i	i

 

with

i(_) =f(+) =0,	j^o,	sup	xi Xi E 
[_,+ } 

=1 

Let us consider the interval (6, M) close to (0, 1). According to the well known tran-
sonic expansion procedure (cf. [i: Chapter 3]) from (1.1) the two-dimensional small 
disturbance equations read as follows: 

o 
(Kz7vi- 

-W2 

) 

+ 

OX	

=:.	
(1.2) 

Ox i	0X2 

follow. Here K 6_ 2 1 3 (i - M,) is the transonic similarity parameter, y > 1 the 
adiabatic constant and z 2 = 6 h 1 3 x2 is a new coordinate. The unknowns ti'i and ti'2 are 
related to w j and w2 by the asymptotic expansion in fractional powers of 6: 

w 1 =w(i+62/3i'1)+ ...	and	W2 =w6tD2+ 

These new unknowns satisfy the boundary conditions 

(ti' i ,ti'2) -. (0,0)	as x 2 1 +i2- co	(uniform flow at infinity) 
H i	 (1.3) 

w2 (z i3 O) = 1(xi)	for x 1 E	 (tangent flow).
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Remark 1.1. Introducing the small disturbance potential 1 due to V the 
first relation of (1.2) gives the Karman-Guderley equation (cf. [1: p. 511 and [13, 14]). 
The following investigations do work in an analogous way for this equation (and related 
ones), too. 

In the sequel the parameters w, 6, y and K are assumed to be fixed. For simplicity 
of the mathematical discussion we carry out a further transformation of dependent and 
independent variables:

= K(y + 1)_1 - 
and	 (1.4) 

y = (-y + 1) /	 v = —(-y + 1)_h/22 

and from (1.2) the following basic transonic system for u = u(x,y) and v = v(x,y) 
follows:

uu1+v=div(u2,v)=0
(1.5) 

v - u = rot (u, v) = 0. 

This system changes the type. Namely, it is 

elliptic	 if	u > 0	(subsonic region) 
parabolic	if	u = 0	(sonic region)	 (1.6) 
hyperbolic	if	u <0	(supersonic region). 

To consider a boundary value problem for system (1.5) in a finite domain of the (x, y)-
plane we choose a rectangle ci = [—a, a] x [0, b] with sufficiently large a > 0 and b > 0. 
Appropriate boundary conditons for (u,v) due to (1.3) on 89 = r 1 u I' (F 1 - the 
vertical part and F 2 - the horizontal one) are 

	

(u,v)t=0	on F1 

	

(u2 ,v) . n=g	on 172 

with

{

( y + 1) h /2 f(x) for x E [-i, +1 , y 0 

0	 otherwise 

t - the unit tangent on 
n - the unit normal on

(1.7) 

(cf. Figure 2).
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n

Figure 2 

In this paper we study a more general boundary value problem then (1.5), (1.7): 

Let Q be a bounded domain in the (x,y)-plane with piecewise smooth boundary 
an r1 u 172 U I', where 17 1 and 172 are open subsets of an , and ju 1 (fo) = 0, It N- 
the N-dimensional Lebesgue measure. We consider the first order system 

A U ). + v = 0
(1.8) 

V, - U !l = 0 

in Q with the following boundary conditions: 

(u,v)t=0	on
(1.9) 

(p(u),v).n=g	on I'. 

We assume that g and p are given (sufficiently smooth) functions on ['2 and li?, respec-
tively, and

p'(u)	c i u	for u>0	
(1.10) 

	

0>p'(u)>c2 u	for u<0 

with positive constants c1 and C2. The inequalities (1.10) imply the change of type of 
system (1.8) as established in (1.6). Moreover,.we suppose the growth condition 

	

ip(u)I < C3(1 + u 1 2 )	for all u E iR	 (1.11) 

with some positive constant C3 

Remark 1.2. Our system (1.8) corresponds to the well known p-system (cf., e.g., 
[19: p. 258]) extensively discussed for the hyperbolic case in [16: Chapter 17.A]. The 
basic transonic system (1.5) is a special case with p(u) = u2. 

In transonic flows we have to take into account that there exist subsonic regions 
as well as supersonic ones in Q and that shocks with jumps in (u, v) occur. From the 
mathematical point of view these facts causes many difficulties in the existence proofs 
for system (1.8) and, of course, for the full system (1.1). These questions are still open
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also in the case of generalized solutions. Steps in this direction were done by Feistauer, 
Morawetz, Neas, Pogu and the author (cf. [2 - 7, 9, 10, 12 - 15]). 

Since discontinuous solutions of system (1.8) are allowed the theory of nonlinear hy-
perbolic systems (cf., e.g., [161) says that solutions "without physical sense" (rarefraction 
shocks) can occur. To select the "physically right" ones the solutions of system (1.8) 
must additionally satisfy an entropy condition. In this paper we confine ourselves to the 
condition

—u	M(x,y)	 (1.12) 

in the distributional sense with a given non-negative function M E L'l) (r > 1). In 
the original variables due to (1.4) this condition reads as 

<M (x i ,( . + 1)I122). ax, - 
It is admissible (for M const) in the sense of Warnecke (cf. [19: Lemma 5.3]) and 
implies that the flow velocity in the distinguished direction x 1 is decreasing through a 
shock (cf. [1: p. 55 1 and [19: Subsection 3.2]). 

We deal with the boundary value problem (1.8), (1.9) in a weak form and with 
the corresponding variational problem. In Section 2 we study this minimum problem 
on a closed convex set which is given by L°°-bounds and the entropy condition (1.12). 
Here the functional considered need not be convex as it is in the subsonic case. But, 
using some compensated compactness arguments the weak lower semi-continuity of this 
functional can be proved. In Section 3 we minimize the same functional over a modified 
set where the constraints for admissible functions are weakened. Instead of the entropy 
condition (1.12) we use its local version in the sense of [7]. Furthermore, the estab-
lished estimates for that functional enables us in Section 4 to discuss some properties 
of minimizers. We obtain results on uniqueness and on relations to the boundary value 
problem (1.8), (1.9). 

Throughout the paper only the case of two dimensions is considered to make clear 
the underlying ideas. Generalizations to higher dimensions are evident (cf. Remark 
4.6./u)). 

2. Variational formulation 
To formulate a generalized problem to problem (1.8), (1.9) we introduce the space 

= {, k) E L3 () x L2() 
rot (h, k) = 0 (in distr. sense) 

(h, k) . t = 0 in H'/2(f1) }.	
(2.1) 

This is a closed linear subspace of L3 (Q) x L2 (1l) C L2 (1,1R2 ), and H'2 (r 1 ) is the 
dual space of

H'12 (I') = {'' E H"2(5) supp o c r 1 }.	 (2.2) 

Due to the inclusions h, k, rot (h, k) E L2 (Q) the functional ((h, k) . t, ')r' can be defined 
for all € H"2 (r') , r' being an open subset of O , in the usual way (cf., e.g., [18: 
pp. 9 - 13]).
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Note that Vq E V for a smooth function 0 which vanishes in a neighbourhood of 
r 1 . For such function 0 and smooth functions u and v the second boundary condition 
in (1.9) is equivalent to 

f(p*(-)^(-) - v(r))dr =Jgcds 

= _ (J(x(a)Y(a))	2 +	V. tds i  
with (x, y) = (x(r), y(T)) (r E (a, 9)) being a representation of r2 , and G a function 
on r2 choosen in natural way. The functional ((h, k) t, G) 2 is defined for (h, k) E V, 
and hence, there exists a unique element (uo, vo) E V such that 

((h, k) . t , G)r = fin(h, k) . (uo,vo)dxdy	 (2.3) 

So, we are led to the following definition. 

Definition 2.1. An element (u, v) E V is called generalized solution of the boundary 
value problem (1.8), (1.9) if 

ff(((u),v) - (uo,vo)) . (h, k) dxdy= 0	for all (h, k) E V.	(2.4) 

It is easy to see that (2.4) is the Euler-Lagrange equation for the variational problem 

J(u, v)	ff (P(u) + v2 - (uuo + VV,,)) dxdy	mm	(2.5) (u,v)EV 

with P(u) = fp(a)dc being the primitive of p. But we seek a solution (u, v) of 
problem (2.5) which, in addition, is bounded and satisfies the entropy condition (1.12) 
in the form

fin
uç dzdy < fin M dxdy	 (2.6) 

for all
4 E (C°°(1)) = {0 E C00 (cl) suppq5 cc Q and > o}. 

Therefore we study this minimum problem over the set 

IhI,IkIm aeon 
= (m,M) = Ihk E V	

(h, k) satisfying (2.6) j 
This is a non-empty, closed, convex subset of V bounded in	1R2)
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Remark 2.2. i) In the case of the basic transonic system (1.5) the a priori the L°°-
bound on (h, k) in (2.7) means an additional constraint for admissible small disturbances 
of the velocity field. Such a constraint may be caused by the range of validity of the 
physical model and of the transonic expansion procedure. From the mathematical point 
of view we are able to weaken this constraint (cf. Section 3). 

ii) This variational approach is well known for the elliptic case, i.e. for pure subsonic 
flow problems. Defining 

CeII ={(h,k)e V IhI,kI<m and h>0 a.e. on cl} 

the minimum problem
J(u,v) -- mm 

(u,v)EAjj 

posses a unique solution because the functional J is strictly convex, continuous and 
bounded on )Ce11 (cf., e.g., [20: Theorems 38.A and 38.CJ). Here no entropy condition is 
needed. To extend this approach to transonic flow problems this condition is necessary 
to compensate the failure of convexity of J. 

To prove that the functional J is weakly lower semi-continuous on IC we estimate 
the difference of two values of J from below. Throughout the paper we use 11 ll q as 
abbreviation"for the L(1l)Noim, 1 q 

Lemma 2.3. For arbitrary elements (h, k), (u, v) E V we have 

J(h, k) — J(u, v) 

> Di (u, v; h - u, k - v) + Ilk - v II	 (2.8) 

+ [1	+ 2u) + (c
2
 —ci) (h + 2u_)) (h - u)2 dxdy 

with	= max{0,-y} and -y = min{0,7} for 7 E JR. 
Proof. Due to the definition of the functional J in (2.5) we have 

J(h,k) - J(u,v) = ff((P(h) - P(u)) + (k2 - v2)
(2.9) 

- (h T u)uo - (k - v)v0) dxdy. 

To get an estimate from below for the integrand of the right-hand side we study its first 
term

P(h) - P(u) = p(u)(h - u) + (1(1— O)p'(u + O(h - u)) do) (h - u)2.	(2.10) 

Decomposing p' the assumption (1.10) gives 

P'(-Y) = (I(.))+ + (p+(-y)) ^! Cj7 + C27 

= C17 + (c2 - cj)7 

^ C17 +(C2 - ci)-y
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for y E R. Setting -y= u + O(h - u) = Oh + (1 - O)u and using the concavity of the 
function y i-+ 'y we obtain 

J
( i —9)p'(u+O(h—u))dO 

^ c 1 J(1 - 0) (Oh + (1 - 9)u) dO 

+ (C2 - c i ) J ( i - 0)(0h + (1— O)u) dO 
0 

=-(h+2u)+ (c
2 -6
	

(h+2u). 

Finally, from (2.9) and (2.10) inequality (2.8) follows if we rewrite k2 _V2 = 2v(k - v) + 
(k—v) 2 I 

Remark 2.4. Inequality (2.8) is a generalization of the corresponding one in the 
convex case of the functional J (i.e. h, u > 0). In this case the term with c2 disappears. 

With the help of simple methods from compensated compactness theory we obtain 
a compactness property of the set K defined by (2.7) which is crucial in the existence 
proof below. 

Lemma 2.5. Let {(u,v)} C K be a sequence weakly converging in L2(,1R2). 
Then the sequence {u} converges strongly in L(TZ) for each q E [1, 00). 

Proof. a) For 0 E C000(1l) we define the functionals 

F(c6) = fjo (MO - uq) dxdy 

and get the estimate 

II M IIrIIIIr + II U nhI3IIzII3/2 <C (liMlir + m112()h13) IIIIW+.P(n) 

with 3: +	= 1 and a constant C C(r,p). Here we have used the inequality 

II U II <- M
	 (2.11) 

due to the definition (2.7) of the set AC and the Sobolev imbedding (cf. [17: p. 213]) 

' W'() •.. L()	for pE o,2] with P0 =max{2 
2r* 3 

<2. 

Hence, the sequence {F) is bounded in W1' = (W(cl))* ( +-L = 1). Moreover, 
the entropy condition (2.6) gives F() ^! 0 for all 0 E (C'°(1l))+, and Murat's result
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[11: p. 319] yields the compactness of the sequence {F} in W—I,q for each q < p'. 
If we choose p < 2 or, equivalently, p > 2 we obtain that {F}, and consequently, 
{u}	{div(u,O)} is compact in W1'2. 

b) Recalling the definition (2.1) of the space V we have rot (u ,' , v,,) = 0 for all 
The Div-Curl lemma of Tartar (cf. [17: p. 28]) implies the weak convergence 

(u,0) . (u,v) = u	(u,0). (u,v) = u2	(in the distributional sense) 

if u	u and v - v in L2 (cl), as n -	. From this and (2.11) the assertion follows I 


Theorem 2.6. Let the functional J and the set AC be given by (2.5) and (2.7), 
respectively. Then: 

a) The functional J is weakly lower semi-continuous on AC. 

b) The variational problem

J(u,v) -i mm	 (2.12)

(u,v)EK 

has a solution. 

c) Each minimizing sequence from AC for J possesses a subsequence converging to a 
solution of problem (2.12) in V fl L(1l , 1R2 ) for each q E [1, oo). 

Corollary 2.7. Any solution (u, v) E AC of problem (2.12) satisfies the correspond-
ing variational inequality 

DJ(u,v;h—u,k—v) 

= Jj((p(u) —uo)(h—u)+(v—vo)(k _v)) dxdy	(2.13) 

for all (h,k),(u,v) E AC. 

Proof a) Let {(u,v)} C AC be a sequence weakly converging in L 2 (1l,1R2 ), i.e. 
Un - u and v, - v in L2 (l) as n - co. Since the set AC is convex and closed in V the 
inclusion (u, v) E AC is true. Inequality (2.8) with (h, k) = (u, v) yields 

J(u,v) - J(u,v) ^ DJ(u,v;u - u,v - v) + IVn - v II - Cun - u II	. (2.14) 

where the estimates I u I, 1U1 < m a.e. on Q are used and c = ji(c i + (C2 - 

To pass to the limit n - _ in (2.14) we only have to consider the last term of the 
right-hand side. This term is negative, but due to Lemma 2.5 it tends to 0 such that 
limirif_J(u,v) - J(u,v) >0. 

b) This assertion and Corollary 2.7 are standard results following from the properties 
of the functional J and the set AC (cf., e.g., [20: Proposition 38.12/(d)]).
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c) Let {(u,v)} C AC and J(u,v) - a = minic 	Selecting a suitable subse-




quence we can assume u - u and v -k v in L2 (fZ). Furthermore, from Lemma 2.5 we 
get u,, - u in L(l), and hence,	 - 

a - J(u,v)> 
1

lim SUP II v - vII > 0 n-.3 

when we pass to the limit n -4 co in (2.14). Note that J(u,v) ^: a to derive J(u,v) = a 
and v,, -' v in L(l) for q = 2. For q > 2 the assertion follows from the boundness of 
the sequence {v} in L°°(l)I 

The variational inequality (2.13) can be considered as a further generalization of 
the weak problem (2.4). It is immediately to see that a solution (u, v) e AC of inequality 
(2.13) which lies in the interior of AC satisfies relation (2.4). But the needed estimates 
for (u, v) to lay in the interior of AC cannot be derived a priori. The question arises if 
it is possible to enlarge the class AC of admissible functions for the variational problem 
(2.12). To this purpose we analyze carefully the proof of Theorem 2.6 to weaken the 
constraints established in the definition (2.7) of the class AC 

3. Local entropy condition 

In this section we make use of the concept of local entropy conditions introduced in [7] 
but in a more natural way. 

Definition 3.1. Let (u,v) E V . In accordance with the assumption (1.6) of the 
change of type of system (1.8) we define the subsets 

= {(x,y) E Q 1 u>0} 
°(u,v) = {(x,y) E Q1 u = O}	 (3.1) 

cr(u,v) = {(x,y) E Q1 u < 01 

denoting the subsonic, sonic, and supersonic region of (u, v), respectively. 
Definition 3.2. We say that the element (u, v) E V satisfies the local entropy 

condition if

fin ucbdxdy 
= 11fl- uçbdxdy :5 fin Mcbdxdy	 (3.2) 

for all 0 E (C00°(cu))+, where u = mm {0,u},	= Q(u,v) and M E L(1l) (r -> 1)

is a given non-negative function. 

Remark 3.3. Contrary to the global entropy condition (2.6) condition (3.2) means 
—u <M in the distributional sense not on the whole of cu but only on the supersonic 
(or hyperbolic) region	. 

Now, instead of (2.12) we study the variational problem 

J(u,v) -	mm	 (3.3)



A Variational Approach to Boundary Value Problems	585 

with

ACioc = )Cioc(s,m,M)	{(h,k) e V 11 h 113 < m, (h, k) satisfying (3.2)}	(3.4) 

for given constants s > 3, m 2 0 and the function M from (3.2). Here we have addi-
tionally weakened the L'-constraints in the definition (2.7) of the class K. Hence, all 
elements (u, v) € V with u 0 a.e. on Q (i.e. for which system (1.8) is not of hyperbolic 
type) are a priori admissible for problem (3.3). 

It is easy to see that IC I.c is again a non-empty closed subset of V. But, due to the 
non-linearity of the local entropy condition (3.2) the set Kioc is not convex. Applying 
the same compensated compactness arguments as for the set IC we get the following 
compactness property. 

Lemma 3.4. Let {(u, v)} c ftioc be a sequence weakly converging in V to (U, V). 
Then we have 

(i) the strong convergence u; — u in L(1l) for each q € [1,$) 
(ii) the weak convergence u - u+ in L3(Q) 

(iii) the strong convergence u,, —* u in L(cZo—), 1° = fZ°(u,v) U 1Z(u,v) for 
each q € [1, 3), as n —* 00. 

Proof. a) Substituting u, by u; in part a) of the proof of Lemma 2.5 we get by 
the same arguments that {u;} = {div(u,0)} is compact in W"2 . Note that 

Un <rn	(s >3)	 (3.5)

due to the definition (3.4) of the set K210c 

b) Let f u n, 19 fu n I be a subsequence with u, -h a in L 3 (l) as	— cc. Since 
rot(u & ,v')	0 the Div-Curl lemma yields (u,0)	 (a,0) . (u, v) or, 

equivalently,

u:,u, = (u,)2 — au	in the distributional sense.	(3.6) 

c) To show that a = u a.e. on Q we use the convexity of the functions 7 -y 2 and 
'—i --y. The weak lower semi-continuity of the corresponding functionals implies the 

inequalities

a2 <au	 (3.7) 
—u <—a	 (3.8) 

a.e. on ft Let C Q such that u > a on Q'. Then a < 0 and a2 > au 2 au on 
which contradicts (3.7). Hence,Y2(W) = 0 and together with (3.8) we obtain a = 
a.e. on ci. 

d) From (3.6) and the result above it follows that u; -k u and (u)2 — 
as n —* cc. Because of (3.5) interpolation gives statement (i). Furthermore, we get 
u =— — u — u — u = u+ in L3 (ci), i.e. statement (ii). 

e) Recalling the definition of the set ci° and (3.1) we have 

—+ u = u	and	IuI = u -k u+ = 0	in L3(ci°), 

i.e. u — 0 in L'(ci°). Interpolation and u,, = u + u; yields statement (iii)i
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As an immediate consequence of Lemma 3.4 we get that every bounded subset 
Of ACioc is weakly compact in V. That means that each bounded sequence from Kioc 
possesses a subsequence weakly converging in V with limit point in CI.. This result 
enables us to derive an existence theorem for the variational problem (3.3). 

Theorem 3.5. The assertions a) - c) of Theorem 2.6 are valid if *C is substituted 
by ACioc defined by (3.4), and L(1 , 1R2 ) is substituted by L(1) x L 2 (1) with q € [1,$). 

Proof. al) To prove the weak lower semi-continuity of the functional J on 
we consider a sequence {(u, v)} C Ki,, weakly converging in V to (u, v). We have the 
inclusion (u, v) € AC10 . Inequality (2.8) with (h, k) = (u, v) gives 

J(u,v) — Au , V) 

	

^ DJ(u,v;u — u,v — v) + 2 JIVn — V11  (3.9)


+ fj(u + 2u)(u n — u)2 dxdy + I() + I(°) 

where 

I(fl') = eff (u + 2u)(u — u) 2 dxdy	for ç' ç ç , ç+ Q(u, v) 

1	
(3.10)


c=(Cl+(c2—Cl) +
 ). 

a2) To pass to the limit n - oo in (3.9) only the last two terms of the right-hand 
side of (3.9) are of interest. Due to Lemma 3.4/(i) we have u + 2u —' 3u = 0 
in L3 (1). Since (u — u) 2 is bounded in L3/2() = (L 3(Q))* the integral I(l) 
converges to 0. To get I(120-) = 0 we apply Lemma 3.4/(iii) and obtain 
(u -u)2 —i 0 in L(o-) for q € [, ). Using the definition (3.4) we see that u +2u 
are bounded in L 3() with s > 3, uniformly in n, and the desired convergence follows. 

bi) In the existence proof for the solution of the variational problem (3.3) we 
have to take into account that Cioc is an unbounded set of V. But, it is easy to get 
the coerciveness of the functional J on )loc. Namely, (2.8) with (h, k) € Kioc and 
(u,v) = (0,0) implies 

J(h, k) - J(0,0) >	 ((P(0) - uo)h — vok)(h - u) 2 dxdy 

++ ffj h+ h2 dxdy + cJj hh2 dxdy 

where the constant c is from (3.10). Using the definition of J in (2.5), Young's inequality 
and the representation h+ = IhI + h we derive 

J(h, k) 	(11P0 — UoII/2 + Il vo ui)

	

2	
+ Il/C112) 

+ II k II +	IIhII +(	+ c) f[(h)3 dxdy 
J Jfl
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for all >0. Suitable choice of e and the L 3 (l)-constraint for h due to (3.4) yields 

J(h, k) ^! C (II h IIII h II3 - 1) + II k II) - C5 

with positive constants c4 and c5. 

b2) The coerciveness of the functional J proved above enables us to apply the well 
known "trick" for minimum problem on unbounded sets (cf., e.g., [20: pp.154 - 155]). 
Hence,

infJ= inf J	where 13R={(h,k)EV 11h113,Hk112!^R X10	 Io8R 

with a certain constant R> 0. Since the set )C I.c fl B, is weakly compact in V by virtue 
of Lemma 3.4 and the functional J is weakly lower semi-continuous on this set due to 
statement a) we have got again the standard situation. The existence of a solution for 
problem (3.3) follows immediately. 

c) Let {(u, v)} C )C I.c be a minimizing sequence for the variational problem (3.3). 
Selecting a suitable subsequence we can assume that 

J(u, v) —i a = min J,	u - u in L3 (1l),	v,	v in L2(Q). 
Ki0 

Passing to the limit n - : in (3.9) we obtain 

a - J(u,v) 2 lim sup (ii - V112 + A CI U+(Un- u)2dxdy) 20.	(3.11) 

Note that u(u - u)2 > 0 a.e. on Q and u+ = 0 a.e. on	The last terms of 
the right-hand side of (3.9) again converges to 0 (cf. step a2)). Since J(u,v)	a, the

estimate (3.11) yields J(u,v) = a as v, —i v in L2(), and 

lim	u(u, - u)2 dxdy = 0, 
n—ca fin + 

i.e. convergence of u,, to u in a weighted Lebesgue space. To prove convergence in 
L(1l+) we apply Lemma 3.6 below and get ti - u in L2(). Interpolation and 
Lemma 3.4/(iii) gives the rest of the assertion  

For the completeness of the proof above we have to prove the following simple 
lemma. 

Lemma 3.6. Let w ç 1R",pN(w) < oo,fn E L'(w) and f E L'(w), with r > 1 
and 1 + - = 1. Suppose that f 0 a.e. on w ,IIfnhIL() :5 R for all n E IN, and 

jlffnl dx —40.	 (3.12) 

Then f, - 0 in L'(w) as n —4 00.
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Proof, a) Defining Wm = {x e	I f(x)I ^!} for in E iN we have a monotone

increasing sequence of subsets of w: 

W1 9W2  ... C U Wm =W \ WO with N(WO)=0 

and hence

ThLN(W \wm) = 0.	 (3.13) 

b) We split up w = (W \ Wm) UWm and consider the integrals over either of the two 
disjunct subsets:

1/r 

J
dx M N (W \ Wm)h/r ( f In Irdx)	RN(- \ wm)" 

J
IfI dx mJ IfIlfI dx < mfIffnIdx. 

For fixed in assumption (3.12) yields 

limsupf IfI dx <RUN(W \wm)" 

Finally, relation (3.13) implies the desired convergence of the sequence {f} I 
4. Some properties of minimizers 

We consider a solution (u, v) E ACioc of the minimum problem (3.3). In general it does 
not satisfy the corresponding variational inequality because the set )1oc is not convex. 
But, we can show that (u, v) is a solution of a certain quasi-variational inequality (cf. 
[20: p. 10]) where the convex set depends on (u, v). This set is defined by restrictions 
on the subsonic, sonic, and supersonic regions of the admissible functions. 

Definition 4.1. Let (u, v) e )C10 . Using the definitions of the subsets cl+ and Q0
 for the corresponding subsets depending on (u, v) we put 

h^0 a.e.on Q+) 
Kioc[u , v] = {(hk) E 1oc 

h < 0 a.e. onS20—
(4.1) 

It is immediately seen that (u, v) E Ki0[u, v] and that Ci0[u, v] is a closed subset 
of V. Furthermore, we have the following
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Theorem 4.2. Let the functional J and the sets K1 t0 ,K i0 [u,v] be given by (2.5), 
(3.4) and (4.1), respectively. Then: 

a) The set K ioc[u , v] is a convex subset of K10. 

b) Let the element (u, v) e ACioc be a minimizer to problem (3.3). Then it satisfies 
the quasi-variational inequality (cf. (2.13)) 

	

DJ(u, v; h - u, k - v) ^! 0	for all (h, k) E K[u, v].	 (4.2) 

Proof. a) To prove the convexity of the set Ki0[u, v] let (h 1 , k 1 ), (h 2 , k2 ) E K[u, v], 
A e [0,1] and (h, k) = A(h 1 ,k 1 ) + (1 .- A)(h2 ,k2 ). Recalling Definition 4.1 we get 

h > 0	h = 0 = 
and	

Ah + (1 -. A)h	a.e. 
h<0	 h=h=Ah1 +(1-A)h	a.e. on 

Hence, h has the same Ls(Q)bound m as h and h2 . Moreover, since h and h 
satisfy condition (3.2), the same is valid for h, and consequently, (h, k) E ACi0[u,v]. 

b) For all elements (h, k) E ACI0cIU, v) we have J(u, v) J(h, k). Together with part 
a) this implies inequality (4.2)1 

Theorem 4.3. Suppose that the element (u, v) E Kioc is a minimizer to problem 
(3.3) with

/3 := essinfu > 0 

where l is a subdomain of Q. Then (u, v) is a solution of problem (1.8) in the distribu-
tional sense on 

Proof. For 0 E C() extended by 0 outside of ci we obtain 

(he , k) := (u, v) + e(, cb,,) E C ioc	for all e E JR, El sufficiently small. 

To see this we observe that (he , k) E V and 

he = U	 h- u	 a.e. on 1 \ 'l 
-	 and 

h > f3_ l E +lzllL, (j >0	 h- =0=u	a.e. on 

for H < 3/lIxllL ( 0 ) . Hence, h = u a.e. on Q, from which the inclusion (h,k) E 
)C I.c follows. Moreover, we have J(h, k) ^! J(u, v) for all such e, and consequently, 
DJ(u,v;,q) = 0 for all 4 E C0 (f2). Using the definitions of V in (2. 1), of DJ in 
(2.13), and of (uo,vo) in (2.3) we get the assertion I 

Remark 4.4. The result in the last theorem is one advantage of the concept of 
local entropy conditions used above. It says that on each subdomain of Q in which a 
minimizer to problem (3.3) is uniformly subsonic (i.e. uniformly positive) it is a weak 
solution to our original problem (1.8). In the case that it is uniformly subsonic'in the 
whole of Q, in addition, a uniqueness result can be derived.
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Theorem 4.5. Let the element (u, v) € Kioc be a minimizer to problem (3.3) with 
/3= essinfu >0.	 (4.3)


Then:

a) (u,v) is a generalized solution of the boundary value problem (1.8),(1.9) (cf. 
Definition 2.1). 

b) Moreover, there is no other solution (u,) € AC 1 of the minimum problem (3.3) 
with

essinfü> —2/3	 .	 (4.4)
Qci+(c2_ci)+ 
Proof, a) Analogously to the proof of Theorem 4.3 we get (u, v) + e(h, k) € ACioc 

for all e € .1R, jej sufficiently small, and all (h, k) € V. Hence, DJ(u,v;h,k) = 0, or 
equivalently (2.4) follows. 

b) Let (u, i) E IC I .c be another minimizer to problem (3.3) satisfying condition (4.4). 
The estimate (2.8) yields 

0 = J(ü,) - J(u,v) 

> DJ(u,v;ü —u,i3 —v)+ 11 ,D _ 
vII 

+Jf (c i (ü+2u)+(c2 —c i )(ü +2tC))(ii —u)2dxdy. 

Using (2.4) and (4.3),(4.4) we obtain that the right-hand side of this inequality is positive 
if (u,) 54 (u, v) I 

Remark 4.6. i) The last proof shows that the uniqueness result (Theorem 4.5./b)) 
is also valid if the set K joc is substituted by AC. Note that in this case the variational 
inequality (2.13) holds. 

ii) We want to point out that the same methods presented in this paper work in 
higher dimensions if we start with the system 

ax,—p(ul)+>—uj=div(p(ul),u2,..., UN) =0
i=2 axi 

rot u=0,	i.e. .-.--U3=-P--U 	for all i,j=1,...,N 
5x,	9x 

for the unknown u = (u i ,. . ., uv) E RN. This system is studied in a bounded domain 
C RN with piecewise smooth boundary where appropriate boundary conditions are 

laid on u. Here, p is again a given smooth function on JR satisfying the assumptions 
(1.10) and (1.11). For example, such boundary value problems with p(u i ) = occur if 
the transonic expansion procedure from Section 1 is applied to three-dimensional wings 
(cf. [1: Subsection 3.1.1]). We omit the details. 
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