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An Attractor 
for a 3D Navier-Stokes Type Equation 

F. Gazzola 

Abstract. For a modified Navier-Stokes equation existence and uniqueness results are known 
in the evolution 3D case: the equation considered is fully nonlinear. We investigate the main 
properties of the dynamical system defined by the equation: we establish the existence of an 
attractor, estimate the number of determining modes and prove the global stability of the 
stationary solution for a "small" external force. 
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1. Setting the equation 

It is well-known that for the Cauchy- Dirichlet problem for the classical 3D Navier-Stokes 
equations there is a gap between the wider class of functions where existence is known 
and the smaller classes where uniqueness can be proved. It looks therefore natural to 
try to modify Navier-Stokes equations in a physically meaningful way in order to obtain 
existence and uniqueness results. To derive the classical equations a linear relationship 
between

T={r}	and 

the stress tensor and the deformation velocity tensor, is assumed (here and in the sequel 
u 1 represent the components of the velocity vector, while ô = - and ô =	namely 
the relationship	

azi

T= —pI+D	 (1) 

where p denotes the pressure of the fluid, I is the identity (3 x 3)-matrix and y is a 
positive constant representing the coefficient of kinematic viscosity. 

A first interesting modification of this relationship is due to Ladyzhenskaya [5) who 
supposed T to be a continuous function of the components of D satisfying some further 
conditions and losing its linear feature for large values of the gradient of the velocity. 
A global unique solvability of the Cauchy-Dirichlet problem is then proved. 

Since the Navier-Stokes equations are not of relativistic nature it looks natural to 
suppose that they break down for high velocities. For this reason, to our belief, it is 
physically more meaningful to modify relationship (1) for large values of the velocity 
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u rather than of its gradient. In a recent work, Prouse ( 9 1 remarks that for very high 
velocities and turbulent flow there is no experimental evidence that the linear relation-
ship (1) continues to hold; he assumes that it holds when the velocity of the fluid is 
"small" and that it changes in a physically significant way otherwise. More precisely, 
he assumes that the relationship between the stress tensor and the deformation velocity 
tensor is given by	

1 
Tij = Pij + (ai c j(tz) + ( 2) 

where : 1R' - JR3 is a function of u whose properties will be given below. Obviously, 
if p(u) = jiu, relationship (2) reduces to the classical linear law. If we introduce (2) 
into the general equations of conservation of momentum, the following modified Navier-
Stokes equations for incompressible fluids are obtained: 

t9t u - o(u) + (u V)u + VP - V(V . ço(u)) ' f
(3) 

V . u =0. 

To establish existence, uniqueness and regularity results for the solution of equations 
(3) (see Section 2) we assume that fl C JR3 is an open bounded set with boundary Oil 
of class C 1 " (a function is of class C" if its first derivatives are Lipschitz functions). 
We denote by LP the space of p-th power absolutely integrable functions, by W m" the 
Sobolev spaces of functions in L" with their first m generalized derivatives in L, by 
H tm = Wtm ,2 the Hilbertian Sobolev spaces, by H' the H'-closure of the space of 
smooth functions with compact support in il, and by -y,, the normal trace operator. We 
also need the functional spaces (see [11]) 

H={uEL 2 (cl): V•u=0 and 

V={uEH(il): V.u=0}

and the dual space V' of V. It is well-known that H and V are respectively the L2 -
closure and the H' -closure of the space of smooth solenoidal functions with compact 
support in ft Furthermore H, V and V' are Hubert spaces endowed with the scalar 
products

(u,v)H = (u,v)L2 
(u,v)V = ((_)1/2u,(_/)1/2v)L1 

(u,v)V' = (G' /2 u, GIl2v)L2 

where C : V' -* V is the Green operator relative to -. 
Even if the results we obtain could be extended to a more general class of functions 

we consider the case where is given by 

(u) =a(IuI)u 

since this appears to be a case of particular physical interest (see [91). 


On the function a we make two of the following assumptions: 
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(i) a E C'[0, w), a() 2 p > 0, o'() 2 0. 
(ii) If w < +00, then lim_, a() = +00. 
(ii') If w = +00 and M > 0 is an arbitrary fixed value, then cr() 2	when


2 M (a > 0, s 2 4). 
(Li") If w = +00 and M > 0 is an arbitrary fixed value, then J9'' 2 a() > 

when >M (/3>a>0, s>4). 

As already noticed, if o() p when 0 :^ K, relation (2) becomes the classical 
linear relationship for J ul <K. The choice of replacing the linear relationship with (2) 
looks reasonable if 

o (u)= a(i u I)u =(p +U(iui))u with a(e)wO when	K	(4)!

and, with the above assumptions on a, (4) can hold. 

The main result we prove in this paper states the following. 

The dynamical system defined by equations (3) possesses a (weak) attractor A and it 
is possible to estimate the number of determining modes for the corresponding semigroup 
{ S}>o of operators. Furthermore, if the external force f is "small", then the unique 
stationary solution u of equations (3) is stable and A	{u}. 

The existence of a strong attractor is obtained by Ladyzhenskaya [7] for the equa-
tions considered in [5). The strongest results about attractors for Navier-Stokes equa-
tions are obtained in the classical 2D case where the semigroup jS t jj>o has the inclusion 
properties S t E C(H,H) and St E L°°(V,V) (see [10: p. 106 - 1071 and [1: p. 82)). 
In our 3D case we have weaker results and this is due to the full non-linearity of our 
equation. Indeed the principal part A(u) is not monotone since we have no informa-
tion about the sign of (L(çô(u)—ça(v)),u - v) and we cannot infer that St  C(H,H). 
On the other hand we cannot prove the inclusion S t E L°°(V, V) since we have no 
information about the sign of (Lp(u), Au). For this reason, to obtain estimates, we 
must choose as test function Gu and this leads to a loss of regularity. The classical 2D 
equations and the modified equations of [5) have a linear and monotone principal part. 

In Section 2 we set the Cauchy-Dirichlet problem for equations (3), we recall some 
known results about existence and uniqueness of a solution and we prove some further 
regularity properties. In Section 3 we prove some estimates useful in the sequel. In 
Sections 4 and 5 we establish the properties of the semigroup operators, we prove the 
existence of an attractor for the dynamical system defined by equations (3) and we 
estimate the number of determining modes of the semigroup operators S t (t 2 0). 
Finally, in Section 6 we suppose the external force f to be constant and "small". We 
prove that the (unique) stationary solution of equations (3) is stable and that the 
attractor coincides with it. Further properties of stationary solutions of equations (3) 
are also given.
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2. Existence, uniqueness and regularity results 
We consider the following Cauchy-Dirichiet problem for equations (3) in ci x (0, T): 

u(x,t) = 0	if (X, t) E Oil x (0,T)	
5 

u(x,0)=tzo(x)	if	xci. 

We now state two results about existence and uniqueness of a weak solution (in an 
appropriate sense) of problem (3), (5). The proofs can be found in [9]. 

Theorem 2.1: Let W be as in (4) and uo as in (5). Assume that f E L+(0, T; L') fl 
H' (0, T; V'), uo E V fl L and that the function a satisfies the assumptions (i), (ii) or 
(i), (ii'). Then there exists a unique vector 

u E L2 (0,T;V)fl L'(0,T;L') fl H'(0, T; H) 

such that
.p(u) E L2(0,T;(H2)') 

and

II ((a 
t u + (u - V)u — f) - h — ^p (u) - Ah) dQdt =0 

for all h E L2 (0, T; H2 fl V). 

Theorem 2.2: Let V be as in (4) and u 0 as in (5). Assume that f E L2 (0, T; V'), 
u 0 E H and that the function a satisfies the assumptions (i), (ii"). Then there exists a 
unique vector 

E L2 (0,T; V) fl L'(0,T; L') fl W 1,111 (0,T; (W2'')') fl L'(0, T; H) 

such that

	

(49tu—Lcp(u)+(u.V)u—f,h)=0	 (6) 
for all h E L2 (0, T; V) fl L(0, T; H) fl L+(0, T; W2'1). 

In the sequel we also assume 

f E L'(1Jt, V')	and	Ill IIL 00 (IR+,V) =	<+oo	. (7) 

in order to prove our results, even if this assumption is not necessary to prove Theorem 
2.2. Note that assumption (7) implies the inclusion I E L?0(1Ft', V'). 

For the stationary case we can omit the assumption s > 4 and consider the more 
general case where s > 1; this means that the classical equation can be seen as a 
particular case of our modified equation. It is proved in [3] that the classical existence 
and uniqueness results for stationary solutions can be extended to our, equation (see 
also Section 6). 

We say that u E P1 if u is the solution of problem (3), (5) relative to the problem 
of Theorem 2.i (i = 1, 2). We now state some regularity results of such solutions. 
The classical result u E L813 (0,T;L) (see (11: p.291]) holds in our case since u e 
L-' + '(0, T; L3+). 

From u E H' (0, T; H) we infer the following
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Proposition 2.1: If u E F1 , then ôu E L2 (0,T;H) and u E C(O,T;H). 
Proof: It follows from the embedding H'(O,T;H) C C(0,T;H)I 

Proposition 2.2: If u E Pi or u E F2 , then 
2(.-fI)
	

(
0,	

(.+1)	\ 
U E L.^1+h(1_.)	 T; L.++"5_)) 

2(.+1)	\	 2 
fl L± (O,T;L+1+_.) fl L	(0,T;LT) 

for all h,k,rE [0,1] 

Proof: Since the inclusion V C L6 the result follows by interpolation between the 
spaces L'(0, T; L'), L"(0,T;L2 ) and L(0,T;Ls+I)I 

Proposition 2.3: If u E P1 or u E F2 , then 

(uV)uE TTV  

for all h E [0, 11. 
Proof: The inclusion u E L2 (0, T; V) implies the inclusion Vu E L 2 (0, T; L2 ), but 

u E L°°(0, T; H), so (u . V)u E L2 (0, T; L'). Further, the inclusion u E L2 (0, T; V) 
implies the inclusion u E L2 (0,T;L6 ) thus (u V)u E L'(0,T;L3/2). The result now 
follows by interpolation between L 2 (0,T;L') and L'(0,T;L3/2)I 

Proposition 2.4: If u E P1 , then 

io(u) E L2 (0, T; L1) 

If  e L'(0,T;L3/2 ), then

cp(u) E L1(0,T;L) 

for all h E [0, 11. 
Proof: Proposition 2.1 yields the inclusion aU E L 2 (0, T; H), thus the inclusion 

ôu E L 2 (0,T;L 1 )flL'(0,T;L312 ) is true. The results now follow from Proposition 2.3 
and the equality	(u) = 3t u + (u . V)u - f  

Proposition 2.5: If u E F2 , then 

E C (0,T1(W2'1)')	and	p(u) E L+ (0,T;(W2'')'). 

Proof: The first inclusion is a consequence of the embedding 

	

W 1, ".(0,T; (W 2 ')') c 	(0,T1(W2'1)'). 

Further, we have the implication 

E W"' (0,T; (W2'')')	.	e L' + 'h (0,T;(W2'')'). 

From Proposition 2.3 we infer the inclusion 

(u V)u E L' 11 (o, T; (TvV25)1) 

and the second inclusion then follows from (6)1
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3. Some estimates 

We first state the following technical lemma. 
Lemma 3.1: For all elements u E L 5 , v E L5 , w E H and number v > 0 the 

estimates
2	128 

	

V)u,Gw)	II W IIH + _ jU5 IIwII,, 

	

4	v4
2	128 

	

V)u, Gw) + ((v . V)w, Gw)	II w IIH + --(I I u II5 +
11V111

)IIwII,, 

	

2	V4

are true. 

Proof: The first estimate is Lemma 1 in [9]. Indeed with easy calculations one can 
see that the constant c 1 = c i (zi) found there is given by c1 = 128 . The second estimate 
follows by applying twice the first one  

In what follows we make use of the Poincaré inequality 
)II u II, , < A i u	<	for all u E V	 (8) 

where A 1 > 0 is the first eigenvalue of -A in Q. 
The evolution of a dynamical system is described by a family of operators {S}> 

that enjoy the semigroup properties: if u 0 is the initial data (representing the state of 
the system at time t = 0), u(t) = Suo represents the state of the system at time i. See 
[1: Chapter 2] or [10: Chapter 1] for the basic definitions about dynamical systems. 

In order to prove the existence of an attractor for the dynamical system defined by 
(3), (5) we seek the main properties of the semigroup operators S t acting from H into 
H relative to problem P2 . We consider this case since it requires the weaker assumption 
u 0 e H. 

Theorem 3.1: The semigroup operators Si satisfy the inclusion S i E L(H, H) 
for all t > 0. 

Proof: Let us multiply equation (3) by u(i) in H: 

ju(t)II + (V(u),Vu) = (f,u). 

Now, use Lemma 2 in [9] to get 

II u ( t )IIi + 2 II u ( t )II,	,II u ( t )II	+	IIf(t)II, dt 
that is, by (8),

IIu(t)II	+ jAi II u ( t )II	IIf(t)II,,. dt 
By the Gronwall lemma we have (c = 

IIu(t)II	IluoIIie_t + 	e_ct)	 (9) 
A1 2 

where I is given by (7). Finally, we obtain the estimate
2 \ 

II u IIL(fl1+;H)	Pu = max (iiuoIIi; -)
	

(10) 

which gives the result I
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Next, we estimate the L5 (0, T; L' )-norm  of the velocity u. 

Proposition 3.1: Let a be as in assumption (ii"), let u be the unique solution of 
problem (3), (5), let Pu be as in (10), and let 8 > (!.&.) 	Then 

QA I 

i2 

	

f	 I 
IIu(t)IIdt < (

	

128p\ - 

	

- a - A6 )	
(IIu(ti)IIi +

	+	
(t2 - t1)) 

tt 

for all t 1 , t2 ^! 0. 
Proof: From (4.51) in [9] and Lemma 3.1 we infer that, for all 8 > 0, 

	

92	 t2 

a J II u ( t )II dt II u ( t i )II	+ •;: J Ilf(t)IIv+ I!u(t)IIHdt 

	

i t	 it 

i2
45  

+ J	II u ( t )IIj + 
128 

-.:;-: II u ( t )IIs II u ( t )IIi) dt 
il

i2 

128Pu 1 

	

lIu(ti)II,+ +
	+	

(t2 - t1) + )54 J IIu(t)IIdt, 
it 

hence, the result U 

The next result states that the L2 (0, T; V)-norm of the solution u of problem (3), 
(5) has a growth of at most order when T --+ +00. 

Proposition 3.2: Let u be the unique solution of problem (3),(5). Then 

i2 

J IIu(t)II+dt 
it 

for all t 1 ,t2 > 0. 

Proof: From (4.49) in [91 we infer

u(ti)II + —(t 2 - t1) 

12	 12 

f II u ( t )II + dt	IIu(ti)IIi + J I(f( t ), u(t))I dt. 
it	 it 

Hence,

IIu(t)IIdt < Il u ( t i)lI	+	JIIf(t)IIidt 

which, with (7), gives the result I
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Finally, we can state that the (unique) solution of problem (3), (5) given by Theorem 
2.2 exists for almost every t E lie. 

Proposition 3.3: For all uo E H the unique solution it of problem (3),(5) satisfies 
the inclusion

E 10	 10 

Proof: It follows from Theorem 3.1 and the Propositions 3.1 and 3.2 I 

4. Existence of an attractor 
In this section we prove the existence of an attractor for our dynamical system. We 
first deal with absorbing sets. From (9) we immediately infer 

urn sup 1111(t)I1H	
II,

= °	 ( 11) 
'U 

Note that Pu = p2 if 1111011H	p. From (11) we get 

Proposition 4.1: For all r > p the balls BH( r) = {u E H : iiuiiH < r} are 
H-absorbing and positively invariant for the semigroup {S t }j> 0 acting from H into H. 

We denote by H,,, the space H endowed with its weak topology and by Hv' the 
space H endowed with the strong topology of V'. 

Theorem 4.1: The operators S t satisfy the inclusion S t E C(Hv', Hi, ' ) for all 
t >0. 

Proof: Let u and v he the solutions of equations (3) corresponding to the initial 
data u 0 E H and v0 E H, respectively. We write (6) for u and v, subtract the latter 
from the former, set w(t) u(t) - v(t) and choose h = Gw. This leads to 

(w',Gw) + (ço(u) - (v),w)H = ( (w V)u,Gw) - ((v . V)w,Gw. 

Next use [9: Lemma 3] and Lemma 3.1 (with v = ) to get 

d
- 11w(t)11'V , + ,.iii w ( t ) " 2 < .K(t)iiw(t)i, v2 , IIH - 

where
K(t) = 

256
- ( 11 u ( t )i18 + ii v ( t)ii) e L' (0, T) 
'U4 

by Theorem 2.2. We obtain

ll w ( t )II,' <K(t)ilw(t)II,,. dt 

Let h(t) = 1 f, K(r) dr. Then the Gronwall lemma yields 

il w ( t )iiv' = iIiu o - Sv liv'	ejiuo - voilv' 

which gives Suo -* Sjv0 in Hv' for u 0 - v0 in Hv' I
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This result says that if we have a sequence of problems with initial data u E 
H (n E W) and u -4 uo E H in Hv', then u"(t) - u(t) in Hv' for all t ? 0 where 
u" and u are the solutions of equations (3) corresponding to u and u0 , respectively; 
u"(t),u(t) E H by Theorem 2.2. This result will be useful to prove the main property 
of the semigroup {S}>o which is stated in Theorem 4.2 below. 

Taking a finer topology for the initial data we obtain 

Corollary 4.1: The semigroup operators S 1 satisfy the inclusions St E C(H,Hv') 
and S1 e C(H,Hv) for alit? 0. 

We can now prove 

Theorem 4.2: The semigroup operators S t satisfy the inclusion S 1 E C(HW , H) 
for all t ? 0. 

Proof: Let u',u 0 E H and suppose u' - uo in H. By Corollary 4.1 we have the 
convergence Stun - S1 u 0 in Hv' (St uo E H) and by Theorem 3.1 the sequence {Stu'} 
is bounded in H. Thus, the sequence {Sju'} has a H,,,-convergent subsequence (which 
is the entire sequence) and its H.-limit coincides obviously with S1 u 0 I 

Corollary 4.2: The semigroup operators S satisfy the inclusion S t e C(H,HW) 
for all t ? 0. 

Finally, we can prove the existence of an attractor for the dynamical system defined 
by problem (3), (5). 

Theorem 4.3: The dynamical system defined by problem (3), (5) has a (H, H)-
attractor. 

Proof: By Theorem 4.2 we have the inclusion St E C(HW ,HW ). Proposition 4.1 
provides the absorbing set B0 = BH(r ) (r ? p). We have compactness of B0 in the 
topology of H. By using [1: Theorem 2.1/p.121 and Lemma 2.1/p.126] we infer that 
the dynamical system defined by problem (3), (5) has a (H, H)-attractorI 

We denote by A the attractor given by Theorem 4.3 

5. The number of determining modes 

In this section we follow a classical procedure (see, for example, [6]) to study the "finite 
dimension" of the semigroup { S} >o . We call number of determining modes the smallest 
integer representing the dimension of {S i } t >o in a sense that will be clear in the sequel. 
The main problem we meet is that we cannot prove with standard methods (see [10: p. 
167]) the backward uniqueness property (i.e. the injectivity of S) for our semigroup. 
Indeed we should prove that, for all t 1 and t 2 with t2 > t1, 

J ((u(t)) - (v(t)), u(t) - v(t)) H dt < +oo 
II u ( t ) - 1, 

and unfortunately we cannot prove such a result.
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Since the operator G :L 2 - L 2 is compact and self-adjoint, by the Hubert-Schmidt 
theorem we can consider an orthonormal basis {g,} in H, V and V 1 constituted by the 
eigenfunctions of the operator -A and the corresponding eigenvalues JA j): 

—Lg=Ag	(O<1<A2 ... Aj—oo). 

With the scalar products defined in Section 2 we have 

I 
( gj, gk)H =	(gj,gk)v = V 7).(gj,gk)v = 8jk 

and if

v	>jgj E H'() (s E 1R)	then	II v II . = 

Denote by P, the (orthogonal) projection from H onto the subspace 

H,, = span {gi,...,gn}. 

Obviously, if I E KerP,, (i.e. the first n components of f in {g,} vanish: f = 
+i 

igi) we have 

If
+00a2	1 

II =	
-- <	 = —IIfII1	(12) 

i=fl	- 

which generalizes (8). 
The next result states that if u(t) and v(t) have the same components on a suitable 

finite-dimensional subspace HN of H, then they have the same H,,-behaviour as t - 
+00.

Theorem 5.1: For all u 0 , v0 E H there exists an integer N = N (Il uollH, II volIH) > 
0 such that the implication 

PN(St uo) = PN (St VO ) for all t > 0 =	(H) lim (Sjuo - Svo) = 0 
i—.+oo 

is true. 
Proof: To simplify notations we denote by c 2 the constants arising in the estimates 

that follow and we quote their exact value in the appendix. Let w(t) = u(t) - v(t) so 
that PN(w (t )) = 0 where N will be fixed later. Reasoning like in the proof of Theorem 
4.1 yields

IIw(t)II+ + 1zw(0I1 <— c (II u ( t )II + IM0110 IIw(t)II,, 
dt 

and, bearing in mind (12), 

IIw(t)II,, ^ (- PN+i + c (II u ( t)II + IIv(t)II) ) II w (i )II, ,.	(13) 
dt
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Next, divide by li w( t )ll,, and integrate between 0 and t (t > 0): 

Ilw(t)li.,, log	2	PN+it + cif (II u (r)il + lI v ( r )il) dr li wo liv,
0 

and by Proposition 3.1 we have (for 5 large enough) 

log llw(t)l,	-N+it + c2 (iI uoIl , + il voll	+ c3 t) <c4 +, (c5 - pN+1)t.


By the Métivier estimate (see [21 and [8]) we know that there exists a .\ > 0 such that 

	

.2/3	 (14) 
and therefore, we can take N large enough to ensure that pA N+ - c5 = K > 0: 

N - A (II uoilH, II VOIIH, ci, 4)_1512 + A'	 (15) 
with A, A' > 0. With such a choice the Gronwall lemma yields 

ll w ( t )ll, , < 
and letting t - +oo we get (Hv')lim t_+w(t) = 0. Finally, by Theorem 3. 1, w(t) is 
bounded in H and the result follows I 

We call complete orbit (or simply orbit) through u 0 e H the set of points (when it 
exists)

r(u0) =U (Siuo). 
tep 

Sufficient conditions on the external force f can be found to ensure the existence of a 
complete orbit (see [4]). 

Without the backward uniqueness property we cannot prove that the semigroup 
{ S,}j>o can be extended on the attractor A to a continuous group {S t }j E ,n but [1: 
Proposition 1.3/p. 159] provides the existence of orbits lying entirely on A. We can 
therefore study the behaviour of the group { Sj} tEIR on these orbits. The next result 
states that this group is in some sense finite-dimensional: for a suitable N the projection 
of an orbit onto HN determines the orbit itself; the force f must be defined for all t E R. 

Theorem 5.2: Let f E L(JR,V') and IIfIlLoo(n1,v) = D. Then there exists an 
integer N > 0 such that, for all u 0 , v0 E A, the implication 

PN (SU O ) = * PN (S i vo) for all t E JR =' S,uo = Svo for all t E JR 
is true, with { SL}tEJJl being the group acting on r(u 0 ),r(vo) C A. 

Proof: Reasoning as in the proof of Theorem 5.1 and integrating on [t 1 , t 2 ] c JR 
we infer

llw(ti log	,. \ 2	c4 + (c5 - /2AN+l)(t2 - t1) 
Wt2) v' 

and therefore

1 l w ( t2)11, , c6 exp ((c5 - fN+1 )(t 2 - t1)) ii w ( ti ( 16) 

Recall that r(uo),r(vo) C A, that is, by (8) and (11), ll w ( t )llv' for all t e JR. 
Choose N big enough so that zAN+ 1 - c5 > 0 and let t -* —cc in (16). The result 
then follows I
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The smallest integer N for which the implication of Theorem 5.2 holds is called 
number of determining modes of the group for the orbits lying entirely on the 
attractor A. Using (14) we can estimate N as in (15). 

6. Stability of the stationary solution 

In this section we suppose that the external force f is constant (f (t) f E V', ill 11 v, = 
4)) and we seek the stability properties of the solutions of the problem 

E V fl L' : (- Aco(u) + (u . V)u - f, h) = 0 for all h E H2 fl V.	(17)


Let 9 = 9(e) be the constant of the embedding V C L 5 , i.e. 

	

u lis <9 ii u ilv	for all u E V 

and let -y = .X115/92/. Then the following existence and uniqueness result holds. 

Theorem 6.1: If It <	then there exists a unique solution of problem (17). 

Proof: Existence of a solution of problem (17) is proved in [3) with the usual 
Galerkin method independently from 4). If 4) < -y 2 , by Lemma 3.1 with ii = p, we 
have condition (3.22) in [3] which ensures uniqueness of such solution I 

A similar result holds for the classical Navier-Stokes equations (see [11: Theorem 
1.3/p. 167]. 

For the solution u of problem (17) we have the following estimates (see 131): 

ii u iiv :5,	11UI1H	 11u115 <	4).	(18) 

Note that (u . V)u E L3/2 c V' and therefore problem (17) can be formulated in a 
stronger way, i.e. for all h E V. 

From Theorems 5.1 and 5.2 we infer in the next corollaries that the solutions of 
problem (17) are in some sense finite-dimensional. 

Corollary 6.1: For any function v0 E H there exists a number N = N (ii voiiH) E 
V such that if u is a solution of problem (17), then the implication 

	

PN (Sjvo) = PNU for all t > 0	=	(H) urn (St y0 ) = u 
t—+oc, 

is true. 

Corollary 6.2: There exists a number N > 0 such that the following implications 
are true. 

1) For all voE A such that ['(vo) c A and for any solution u of problem (17), 

PN(Stvo) PNU for all t E JR	:	Svo U.
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2) For any pair of solutions U 1, U2 of problem (17), 

PN U 1 = PNU 2	 U1 U2. 

A fixed, stationary or equilibrium point is a point u E H such that Su = u for all t. 
Stationary points u obviously lie on the attractor A. We say that u is an asymptotically 
stable equilibrium if there exists a neighborhood U of u (in H) such that the implication 

v0 EU	(H)lirn(Stvo)=u 

is true. The following result states that if c1 is "small", then the unique solution of 
problem (17) is asymptotically stable. 

Lemma 6.1: There exists a 'P e (0,yz 2 ) such that if 41 < 'F, II voIIn :^ 2p (p as 
in (11)) and u is the unique solution of problem (17), them 

( II) urn Svo = U. 

Proof: As for Theorem 5.1 we quote the constants c 1 in the appendix. The constant 
'P will be determined later. For the moment assume only that '4 < Then the 
uniqueness of u is a consequence of Theorem 6.1. Let w(t) = v(t) - u and choose 
h = Gw. Proceding as in Theorem 5.1 we have 

dt 
II w ( t )II, , + ,2 II w ( t )II	5 c l (II u II + II v ( t )II) IIw(t)II,,. 

Next, use (8) and (18) to get

C7 + Cl II V(t) II, 

then integrate on [0, t] and use Proposition 3.1 with 6 =	to obtain 
IIw(i)II, log	<cst+c9. 
IIWOI FVI

 
 

Therefore  
11 2 Wj v' -. 'Cio W( ve 

and if is small enough, say iD < 'P < 2, then c8 < 0, and letting t -' +oo in 
inequality (19) we have (Hv') limj....+c,,, v(t) = u. The result then follows by the H 
boundednessof v(t) I 

Our final result states that in fact, if < 'F, then the basin of attraction of the 
stationary solution u is the entire space H. This means that u is globally stable and 
Au{u}. 

Theorem 6.2: Assume that < 'F and let u be the unique solution of problem 
(17). Then, for all v0 E H,

(H) lirn S,v0 = U. 

Proof: From (11) we infer that there exists a 1>0 such that II v (t )IIH :5 2p for all 
t > 1. Now, consider w0 = v(i) and let w(t) be the unique solution of equations (3) 
with initial data w0 in (5). Therefore 

•	 (H) lim w(t) = (H) lim v(t). 
+00 t—.+oo 

Then, by Lemma 6. 1, (H) limt....w(t) = u and the result follows I
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7. Appendix: exact values of constants 
Exact values of the constants arising in the proof of Theorem 5.1: 

R—max(p,p0) with Pu and Pv given by (10) 

and
256	 c1 I	128R '	 f75 

c1=--,	
,	c3=6R+4V_ 

C4	C2

 

(11U0112,, + I voII,,) ,	c = c2 c3	cp 4 ,	c6 = eC4.€

Exact values of the constants arising in the proof of Lemma 6.1: 

	

P ci =ci (!\ 5 _,zAi,	c8=c7+c12 "v" ,,_.Z 2 

—_ +) 

4c1p2 
C9 =	,	do =	 = 4p2• 
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