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A Fully Discrete Galerkin Method
for Integral and Pseudodifferential Equations
on Closed Curves

O. Kelle and G. Vainikko

Abstract. We propose a cheep fully discrete version of the trigonometric Galerkin method
of optimal accuracy order for integral and pseudodifferential equations on closed curves. A
practical implementation of the method leads to a band system of linear algebraic equations.
The error analysis is based on a thorough study of related integral operators in Sobolev spaces
of periodic functions.
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1. Introduction

This paper is devoted to methods of solving integral and pseudodifferential equations
in Sobolev spaces of periodic functions. These equations arise using a potential type
representation of the solution of boundary value problems on a region Q@ C IR? with a
smooth Jordan curve I' = 90 as the boundary of .

Let us present some examples of boundary integral equations.

Example 1.1. The Symm’s integral equation

~37 [logl ~4ln)dT, = 9(z)  (z€T)

arises solving the Dirichlet problem for the Laplace equation in 2 (see, e.g., [7: p. 303)).
It is of interest also when a conformal map of Q onto the unit disc is constructed (see,
e.g., [8]). Introducing a smooth 1-periodic parametrization z : IR — T of T such that
|z'(t)} > 0 for all t € IR, the equation reduces to

/ log [2(t) — z(s)lu(s)ds = f(t) (¢ € [0,1])
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or

/lm(t—s)u(s)ds+/1a1(t,s)u(s)ds-=f(t) (teo,1]) (1.1)
where 0 0
u(t) = v(z(t))lz'(t)],  f(t) = —27mg(z(t)),  ko(t) = log|sinmt|
" O 4 s mod
ar(t,s) = |1Sln (t — )|
bg;h%0| for t = s (mod 1).

The kernel a; is smooth and 1-biperiodic, the Fourier ct;efﬁcients of ko are known:
#0(0) = —log2 and &o(m) = —}|m|™" (0# me Z).

In [7: p. 326] and [9] one can find also boundary integral equations of the Neumann
problem for the Laplace equation.

Example 1.2. In the case of the exterior Dirichlet boundary value problem for the
Helmholz equation one has a boundary integral equation of the type (see [11})

/ ko(t — s)u(s)ds+
01 . . , (teo,1]) (1.2)
/nl(t —s)ai(t,s)u(s)ds + /ag(t,s)u(s) ds = f(t)

where a; and a; are smooth 1-biperiodic functions, xo(t) = log|sinwt| and x;(t) =
(sinwt)?log |sinwt|. For the Fourier coefficients of ko and k; we have Ro(m) ~ |m|™!
as in Example 1.1 and &;(m) ~ |m|™® (cf. Example 1.4).

Example 1.3. The exterior Neumann boundary value problem for the Helmholz
equation can be reduced to an equation of the type (see [18])

lIIL(t)l/no(t—-s)u(s)ds-*-i“(t)
0 (telo,1]) (1.3)

1

+/K2(t — s)az(t,s)u(s)ds + /ag(t,s)u(s)ds = f(t)

0

where a; and a3 are smooth 1-biperiodic functions, ko(t) = 1/sin® 7t and ka(t) =
log | sin wt| whereby the first integral in (1.3) is understood in the sense of the Hadamard
finite part. For the Fourier coefficients of o and k2 we have £g(0) = 0, &o(m) =
—2|m| (0 # m € Z) and |k2(m)| ~ |m|™? (see Example 1.1).
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Example 1.4. Solving boundary value problems for biharmonic equations the
boundary integral equation

/r |z -yl log |z — ylu(y)dT, = g(z) (z €T) (1.4)

is of interest (see [4] and [7: p. 336]). It reduces to the integral equation
. :

/Ko(t — s)ao(t,s)u(s)ds + /al(t,s)u(s)ds = f(t) (telo,1])
0

0

with u(s) = v(z(s))|z'(s)|, f(t) = g(z(t)), 1-biperiodic smooth functions

|z(¢) — z(s)[?
ao(t,s) = m for t # s (mod 1)
;ﬂx'(t)lz for t = s (mod 1)
= 210g 1200 = 2(5)]
ai(t,s) = |z(t) — z(s)|" log Erpremar

and 1-periodic function
xo(t) = (sin 7t)? log | sin t|
with known Fourier coefficients:

3

1 1
ko(O) = —'2' 10g2 + - ko(l) = Ko(—l) = 10g2 - =

4
ko(m) = (4lm|(m* 1)) (m € 2, |m|> 2)-

Note that ao(t,t) # 0.

Example 1.5. In this example we identify JR? with C treating z = z; + iz, and
Yy = y1 + 1y, as complex numbers. Consider the singular integral equation

bz) [ »(v)
m Jry—=z

dy + / K(z,9)(y)dTy = g(z)  (z€T)

where T is a smooth Jordan curve in the complex plain, and b and K are given smooth
functions on I" and I' x T, respectively. A smooth 1-periodic parametrization z =
z) + 1z : IR — T of T satisfying z'(t) = z|(t) +iz5(t) # O for all t € IR yields the
equation

1 ' 1
//co(t — s)ao(t, s)u(s)ds + /a,(t,s)u(s)ds = f(¢) (1.5)
0 0 .

where xo(t) = l—_%m =1+ icot nt,

. b(z(t)) 1 — e2m(t=2)
aot,s) = 2mi z(s) — z(t)
b(z(t)) for t = s(mod 1)

z'(s) for t # s(mod 1)
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and
ai(t,s) = K(z(t),2(s))z'(s),  uls) =v(z(s)),  f(t) = g(z(t)).

The functions ao and a; are 1-biperiodic and smooth (note that z(s) 3 z(t) for s #
t (mod 1) since I' as a Jordan curve does not cut itself). Further, for the Fourier
coefficients of ko we have Ko(m) = 1 for m > 0 and ko(m) = —1 for m < 0. The
first integral in (1.5) is understood in the sense of the Cauchy main value. Note that
ap(t,t) #0fort € Rif b(z) #0for z € I.

The integral equations (1.1) — (1.5) are of the form

3 / k)t — 8)ap(t, s)u(s) ds = f() (1.6)

where a, are 1-biperiodic smooth functions and

1
/n,(t — 8)e'™2™ds = kp(m)e'™2™ (me Z) 1.7)

0
with known Fourier coefficients <p,(m) (m € Z,p =0,...,q) of the order |&,(m)| ~
|m|=® (ap < a1 € a £ ... £ ay). Usually ap > 0 but in Example 1.3 ap = —1

and in Example 1.5 g = 0. Note that «, is continuous if a, > 1 and may have weak
singularity if 0 < a, < 1. For ap < 0, the corresponding integral in (1.6) should be
understood in the sense of distributions; a more familiar understanding follows from
(1.7) using the Fourier expansions of a, and u (see Sections 2 and 3 for more details).
Moreover, if &,(m) depends on m in a "smooth” way, namely, if &p(m) = |m|* or
Rp(m) = |m|*»sgn(m), it is possible to construct a representation

Kp(t — s)ap(t,s) = E bp,k(_t)"p,k(t = $)+ apns1(t,s)kpnsr(t —s) (n20) (1.8)
k=0

where |k, k(m)| ~ |m|*»=% (k = 0,...,n + 1), the coefficients b, x are smooth and
1-periodic, and a@p nt1 is smooth and 1-biperiodic. Unfortunately, this decomposition
is somewhat impractical due to the complexity of the construction and involving high
order derivatives of the parametrization function z = z(t) in Examples 1.2 - 1.5. We
shall solve (1.6) directly avoiding possible decopositions of the type (1.8). This also
allows to avoid the "smoothness” assumptions for &,(m).

The trigonometric Galerkin and collocation methods, and fully discretized versions
of those have been extensively examined for Symm’s integral equation and other integral
equation of type (1.1) with |&o(m)| ~ |m|™® (a € IR) and smooth a, (see, e.g., [2, 10,
13, 21, 23, 24]. More general problems have been treated in [1, 14 - 16, 18, 20, 22]. We
refer also to [3] where a fast algorithm is proposed for the generalized airfoil equation
with constant coefficients in a non-periodical case. In [11], the product integration was
incorporated into the collocation method to solve the integral equation (1.2). This idea
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was used also in [4] and [18] for equations (1.3) and (1.4) and in [25] for general integral
equations of type (1.6) with ag depending on both ¢ and s.

In this paper we exploit another idea. We start from the trigonometric Galerkin
method and obtain a full discretization using trigonometric interpolants of a, (p =
0,...,9). This idea seems to orginate from works of P. Henrici (see, e.g., [8]). The
order M of interpolants may be essentially smaller than the order N of the approximate
solution un, e.g. M ~ N? (0 < o < 1) is acceptable. This leads to a band systems
of linear algebraic equations which can be solved in O(N'+27) arithmetical operations.
The proposed method is of optimal convergence order in Sobolev norms. Beside (1.6)
we discuss the case with the "full” main part 4q (see (2.19)).

The paper is organized as follows. Section 2 contains the description of the method
and formulation of main results. In Section 3 we discuss a matrix form of the method.
After some preliminaries in Section 4, we examine the properties of integal operators
trying to minimize the smoothness assumptions on the coefficients a,. After that, in
Section 6, we are ready to present the proofs of the main results formulated in Section
2. Numerical examples are presented in Section 7.

2. Problem, methods, and formulation of the main results
Now we formulate more precisely the conditions posed on the problem

Au = f (2.1)

where f is a given 1-periodic function and u is a 1-periodic function which is looked for.
The operator has the form

q 1

A=A, (Apu)(t) = / Kp(t — s)ap(t, s)u(s) ds (2.2)

p=0 0

where the coefficients a, are assumed to be C*°-smooth and 1-biperiodic, and the Fourier
coeflicients

1

kp(m) = [ kp(t)e ™I = (y(), e ™) (m € Z)
0

are assumed to be known and to satisfy the inequalities

am™® < |Ro(m)| £ cam™® (Im] > mo)
|ko(m) — Ro(m — 1)| < cm™# (m e 2) (2.3)
{&p(m)| Sc_rg_"’_ﬂ (p=1,...,q, m€ 2)

with some a € IR, § > 0, my € IN, and positive constants c;, c; and c. Here

{|m| fm#0
m:=
1 ifm=0

(me Z).
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Since a may be also negative, problem (2.1) actually includes a variety of pseudodif-
ferential equations, and for smooth u, the integral in (2.2) actually means the duality
product between elements of appropriate Sobolev spaces H~* and H*:

(Apu)(t) = (kp(t = ), ap(t, s)u(s))-

An equivalent understanding was outlined in Section 1 on the basis of (1.7) (see also
Section 3).

The Sobolev space H* (p € IR) consists of 1-periodic functions (distributions)

mezZ

u(s) = Z a(m)e'™2", a(m) = /u(s)e_‘mz”’ds,

such that

1/2
lully = (Z m“m(m)v) < .

meZ

Similarly, the Sobolev space H*# (A, u € IR) consists of 1-biperiodic functions (distri-
butions)

' 11
v(t,s) = Z ‘l}(l, m)ciIZﬂ'!eim%rs’ ﬁ(l,m) — //v(t, s)e—imnte—im%rsdtds
0 0

IlmeZ

such that

t,meZ

1/2
lollam = ( ) 1“m“|f»<l,m)|2) < oo,

Proposition 2.1. Under conditions (2.3), for A € R,
Ao € L(H* H®)  and A, € LHHMHE) (1<p<m)
If ag(t,t) #0 for allt € R, then
q
A=Y A, € L(H) HM?)
p=0
18 a Fredholm operator of indez 0 whereby

N(A) :={ue H*: Au=0} CNH* =:C{°.

The proof of Proposition 2.1 is given in Section 6.
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Our further assumptions about problem (2.1) are as follows:

b(t) := ao(t,t) # 0 for al teR O (24)
=1

W(b) := iarg b(t) =0 (2.5)

veCy, Av=0 1mplies v =0. (2.6)

According to Proposition 2.1 assumptions (2.3), (2.4) and (2.6) guarantee the existence
of the bounded inverse A~! € L(H***, H*) for any A € R. Assumption (2.5) is needed
for the convergence of the Galerkin method.

For N € IN denote

Zn = kEZ:—£<k§E and Ty = uN=cheik2’":ck€C’ .
2 2 €7
N

In other words, Ty is the linear span of e*2™ (k € Zy). Denote by Py the corre-
sponding Fourier projection:

(Pru)(t) = 3 a(k)e™™  (ue HY).

kGZN .

Obviously, the projection Py is orthogonal in H* for all A € R. 1t is also clear that

N\ *
b-pva< (5) Il (<) (2.7)
First we approximate problem (2.1) by the Galerkin method

uny € Ty, PnyAupny = PN, (2.8)

Theorem 2.2. Assume (2.3) — (2.6) and f € H*** (u € R). Then there is a
No such that for N > Ng the Galerkin method (2.8) determines a unique polynomial
uy € Ty such that

N A—p .
v~ Seale-Pruli< e (5) el Osw) @9)
where u = A™! f € H¥ is the (unique) solution of problem (2.1), and the constant cy is
independent of N and u (or f).
The proof of Theorem 2.2 is presented in Section 6.

The Galerkin method performs only a semidiscretization of the problem (2.1). Now
we construct a fully discretized version of the method. Let us denote by @nu the
interpolation projection of u € H* (u > 3) to Ty on the uniform grid:

@)= 3 ac®™,  (@wvu)(F)=u(F) (r=01,.,N-1)

k€Zn N .
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The approximation properties of @y are similar to those of Py (cf. (2.7)) but on a
more restricted scale of Sobolev norms (1, 22]:

1
= Quuly € ex o ull, (0520 > 3): (2.10)

Introduce also the intérpolation projection @, m for functions of two variables:

(QN,M”)(t)S) = Z Z Ckleik?ﬂ'tei&ns € TN ®TM

k€EZN IEZNM
n m n m n=0,1,...,N -1
@var) (5 37) = (737) (m Z0,1,..., M~ 1) :
The coefficients @, in (2.2) may be approximated simply by Qam,map € Ty ® Tar but,

without a loss of the approximation order, we may drop a part of the Fourier coefficients
- of @m,map putting

apm(ts)= Y. (Qummap)(k,De*P™e ™ (p=0,...,9). (2.11)
kI+1<M/2

Due to the C*°-smoothness of the coeflicients ap,, we obtain a suitable approximation
ap M already in dimensions M which may be much smaller than N. We put

M~N° (0<o<1) (2.12)

. where M ~ N? means that ¢; < MN77 < ¢; as N — oo with some positive constants
¢ and c2. Introduce the operators (cf. (2.2)) '

9 1
Apm = Z Ap M, (Ap mu)(t) = /o kp(t — s)ap,m(t, s)u(s)ds. (2.13)
p=0

Instead of Py f we shall use some approximation fy € 7Tn assuming that fn is com-
putable. We are ready to introduce a modified Galerkin method which is fully discrete:

uy € Ty, PnApmun = fn (2.14)

(see Section 3 about the implementation of the method).

Theorem 2.3. Assume (2.3)—(2.6) and f € H**® (u € IR). Let the operator Ay
be defined by (2.11) — (2.13). Then there is an No such that for N > Ng the modified
Galerkin method (2.14) determines a unique polynomial uy € Ty, and

lun —ulja < c,\(llu — Pnu|la+ Ifv — Pnfliate + CA,rN_'||U||A) (A<p) (219)

where r > 0 is arbitrary, v = A!f € H* is the solution of problem (2.1) and the
constants cy and cy r are tndependent of N and u.
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The proof of Theorem 2.3 is given in Section 6.

We complete Theorem 2.3 specifying the error estimate (2.15) for some choices of
fn € Tn.

1. Case: fy = Qnf and p+ a > §. Using (2.7) and (2.10) we obtain from (2.15)
lun —ull S cxwuN* Hlully (—a <A< p). (2.16)
This is the most standard way to approximate f.

2. Case fy = f(0) +(£)*QnfP (k€ IN) and p + & > 1, where fO(t) = f(t)
and
1

C_j1 = /f(_j“)(s)ds

0

. (G=1,...,k)
100 = [(F006) = oy}
0
This time (2.15) yields the estimate
lumw —ullx S cxwN* " #llully  (ma—k<A<p) (2.17)

which differs from (2.16) by a more wide scale of Sobolev norms towards negative A.
Optimal estimates of type (2.17) for strongly negative \ are of interest when the solution
of a boundary value problem at a point z € Q is determined from the solution of the
boundary integral equation on I = 2. Unfortunately, the approximation fx proposed
here is practical only in the case where the values of f(~*) on the grid {($:7=
0,...,N — 1} are available, e.g. if the integrations to find f(~*) can be performed
analytically.

3. Case with known Fourier coefficients of f, and u € IR arbitrary. Then one may
put fy = Pnf, and (2.15) yields

luw = ulls < ex N Hlhufl, (=00 < A < 4). (2.18)

Remark 2.4. For simplicity, we have assumed C*°-smoothness of the coefficients
ap (p=0,...,9). Actually, the arguments of Sections 3 - 6 allow us to point out a finite
smoothnessof a, (p=0,1,...,q) under which the estimates (2.16) - (2.18) remain true
for a fixed A, or for all A from a finite interval. For instance, in the case u +a > % and
fn = QN f, estimate (2.16) remains true for all A € [—a, p]ifa, € H* 22 (p=0,...,q),
with .
k+a

M =v+ and A2 = max(|al,v) +

bto
o
where v > 1 is arbitrary and o € (0, 1] is the parameter from condition (2.12).

Remark 2.5. All results can be extended to the case where the operator Ay has a
structure
1

(Aou)(t) = / (40t = $)ar(t,5) + 5t — s)a—(t,))u(s) ds (2.19)

0
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with smooth 1-biperiodic coefficients ay satisfying the conditions (cf. (2.4) and (2.5))

b](t) = a+(t,t) + a_(t,t) :,é 0
(te R) (2.20)
ba(t) := ap(t,t) —a_(t,t) £ 0

and (see (2.5))
W(b) =W(b) =0 (2.21)

and with 1-periodic functions (distributions) x4+ such that for their Fourier coefficients
we have

Ry(m)=|m|™™ and &k_(m) = |m| “sign(m) (0#me 2). (2.22)
Assumptions (2.3) now reduces to
lkp(m) S cm™F  (p=1,...,¢; m€ 2) (2.23)

where 8 > 0. Of course, we have to assume again (2.6).

Remark 2.6. Every classical elliptic pseudodifferential operator A of negative in-
teger order r on a closed smooth Jordan curve (see, e.g., [1]) can be represented in the
form A = Ao + B where Ay is defined by (2.19), (2.20), (2.22) with a = |r|,and B is a
smoothing operator, i.e.

(Bu)(t) = /b(t,s)u(s) ds

with a smooth 1-biperiodic function b. Unfortunately, for a given problem (2.1) and
(2.2), an explicit construction of the functions ay and b for the representation A =
Ag + B is rather complicated and impractical. We preferred to solve problem (2.1) and
(2.2) directly.

3. Matrix form of the method and computational cost

Using the Fourier representations of u = u(s) and ap, = ap(t,s) it is easy to find the
Fourier representation of Au where the operator A is defined by (2.2):

. q
(Au)() =D DD ap(k — m,m — j)p(m)a(i)er?™.
k€EZ JEZ p=0meZ ’
Foi' uy € Ty we have

(PvAun)®)= D7 > > Y aplk—m,m— j)ay(m)in(s)e™*™.

k€Zn jEZN p=0mEZ
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Thus the (pure) Galerkin method (2.8) is equivalent to the system of linear equations
D akjin() = f(k) (k€ Zn) (3.1)
JEZN

where

gkj = z Z ap(k — m,m — j)kp(m) (k,7 € Zn).

p=0meZ

Similarly, the modified Galerkin methods (2.14) is equivalent to the system of linear
equations

Y. atanG) = fu(k) (ke 2n) (3.2)
JEZN
where, for k,j € Zy,
gty =
;=o 2om: |m—k|+|m—j|s%(QM,MaP)(k —m,m — j)Ry(m) for |k —j| < %
0 for |k —j| > ¥.
(3.3)

We obtained a band system of a band width M + 1. By the standard Gauss elimination
method, with pivoting along columns under the main diagonal, system (3.2) can be
solved in O(M?N) arithmetical operations, or taking into account (2 12), 0(N1+2°)

arithmetical operations. Using the fast Fourier transformation, (QNf) or (QNf( k))
and (QM map) can be found in O(N log N) and O(M?log M) = O(N?° log N) arith-
metical operations, respectively. Making use of the convolution structure of (3.3) along a
fixed diagonal k —j = const, we can use the fast Fourier transformation also to compute
the sums over m for k and j on the diagonal. This costs O(N log N) arithmetical op-
erations for one diagonal and O(MN log N) = O(N'*9log N) arithmetical operations
for the whole matrix of system (3.2).

Let us summarize.

Proposition 3.1. Under the relation M ~ N° (0 < o < 1) the computational
cost of the fully discretized Galerkin method (2.14) is as follows:

(i) O(N'*%log N)) aritmetical operations for the construction of system (3.2) using
the fast Fourier transformation.

(ii) O(N'*29) arithmetical operations for the solution of system (3.2) by the Gauss
elimination.

As we saw in Section 2, in the case of sufficiently smooth coefficients a, (p =
0,1,...,q9) the parameter o does not influence on the optimal ‘convergence rate of the
method (2.14) but this result is only asymptotical as N — oo. For moderate N one
has to compromise between the accuracy (great o) and a cheap implementation of the
method (small o).
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4. Product of biperiodic functions

It is relatively easy to show (see, e.g., [25]) that, for A € R and v > 1,

laulls < cxullallmaxqaimlluls (o€ B9, ue ).

Here we prove a two-dimensional counterpart of (4.1).

(4.1)

Lemma 4.1. Forany \,u € R, v > %, u € HM* gnd a € Hmax(Mwv)max(julv) - ¢he

inequality
llaufla,u < exuvliallmax(al,vy,max(iul,) 1.

holds where the constant cy ,,, $s independent of a end u.

Proof. Denoting a;m = a(l,m) and u, ¢ = 4(p, q) we have

(au)(t,s) = Z Z Qj—pk—qlp,q eij21rteik21rs

J.k€Z \pg€Z

and

2y 1/2

3 Y
laullae <€ 37 1 Y Pk aj-pkgl lupql

1k€Z \pg€Z

(i) The case A > % and p > % Using the inequalities

MG =p*+pY)  and  E* <2%((k-g)* +¢*)

(4.2)

(4.3)

(4.4)
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we obtain from (4.3)

laullau <224 ¢ S 1 D" (5= p)*(k = 0)*laj-pkql lupql
J,k€EZ \pq€Z

+ ) Pk = @)*laj_pk—ql lupl
P.9€EZ

+ Z (7 ‘P)'\Q“laj—p,k—ql lup,q|
P9EZ

2y 1/2

A
+ Z P g"laj—pk—qlltpql
P.9€EZ

4
= 2A+“|| z bnvnllo,0

n=1

4
< 2A+# Z ”bnvnII0,0
n=1

where the functions b, and v, are defined by their Fourier coefficients

i’l(j, k) = 1A£“|aj,k| 91(p,q) = |up,ql

i’?(j» k) = k*|aj,kl - d2(p,q) = 2'\|up,q|
ba(j, k) = j*lajal 93(p,q) = ¢"|up,l
ba(4, k) = lajul 94(p,9) = p*¢*|up,q)-

Let us estimate the norms ||bpvnljo,0. Clearly,

1/2

161 v1 |00

1 1
//[bl(t,s)lzlvl(t,s)lzdtds
0 0

A

—"bIHO,OS’“PI”I(t’s)IS”a“/\,u > Tupal < vavullalinullulia,
.
! P9€Z

where
1/2

o 1/2
Yo = E p~% = (l +2 Zp‘z”) <oo for v> % (4.5)
p=1

p€EZ
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A similar argument yields also |[bywaflo,0 < vavullal|s,ullellx,.. Further,

1 1/2
levaloo = ( [ [ Ioatt, ) untt )Pt
_ 00
1 1z , 1/2
< /sup]bg(t,s)|2ds /sup lva(t, s)|2dt
t s
0 0

Since

sup|by(t, )| = sup |} (Z Ez(j,k)e"’"“) el
t

JEZ \kez
2\ 1/2

<D BG R < [ 052D b, ke

jez lkez i€z lkez
we have
1 1 )
/sup|b2(t,s)|2d5 <+ Zin/ E b2(G, K)e*?™| ds
0 t Jj€Z 0 k€eZ
=B 3 Gk =2l
J€Z kez

In a similar way, or simply using a symmetry argument, we find

1
/ sup va(t, s)2dt < 72 Jul. .
3
0

This results to [|b2vzllo,0 < Yavullalla,ulinlls,- Exploiting the symmetry between by, v,
and b3,v3 we immediately obtain also ||b3vsljo,0 < Yavullallr,ullulir,u- Summing up we
obtain (4.2) in the case A > § and g > 3 Jlaul|x,u < 224+ 2y v, llalla ullulla .-

(ii) The case A < — and p > 1. Rewrite (4.3) as
2 2

2y 1/2

q A
||au||,\,,‘ < Z l‘z’\ Z kﬂlaj—p,k—qlglAIE lup,ql
1k€EZ p.9€Z .

Using the inéqua.lity pM < 2RI((5 = py +l'"\|) and the second one of inequalities (4.4)



A Fully Discrete Galerkin Method 607

we obtain
2y 1/2

A
laulia,, < 23+ ¢S > PNk = 0)*1aj_pk—ql lupql
1,k€Z \p9€Z '

2y 1/2

+ 2P He Z Z EX2“|aj—P,k-q| |p,ql

1k€Z \p9€Z
2y 1/2
+2M 8 S0 5 Y P =Mk = 9)laj-p kgl lup,l
i k€Z P.9EZ
2y 1/2
+2MH 8 ST 522N PG = DM lasop kgl Tupgl
»nkez P.9€EZ
= 2PH4 (|lbavallo.o + [1bavaloe + 51 + S2)
where b;, vq, by, vs are the same as in case (1), with similar estimates
lb2v2llo0 < Mapvallellapullullae  and  [lbsvsllo,o < viapvullalliagullelia.
and
2y 1/2

S = Z ,i“ Z(k - Z(] _P)l'\||aj—p,k—q|£'\|“p,q|

J,k€Z q€Z PEZ

2y 1/2

Sz

Z 1-2/\ ZQ_“ Z(J.—_P)N|dj—P,k—q|I_”\|up,q|

1k€Z 9€Z  p€Z

The sum over p in S; and S; we estimate by the Cauchy inequality:

- A
Z(J___f)l Ila’i-ﬁ,k—ql ’ E'\lup,ql

p€EZ
1/2 1/2
. A A
< Z(J - )’ ||aj—p.k—q|2 Zl_’z lup,ql? = dk—qw,
pEZ . p€EZ
where

1/2 1/2

di = Z£2l'\||ap,k|2 and Wq = 222A|u9q|2

P€Z pEZ
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are independent of j. Now we can sum up over j:

2y 172
S1 <y Z Z(k — ¢)*dk—quy, = Yallgrwillo
k€Z \q€Z .
. 2 1/2
Sr <] Do | 2 g degws = alllgzw2llo
kez \qez

where the functions g1, wy and gz, we are determined by their Fourier coefficients
qi(k) = k'de, wi(g) =wq and  ga(k) =di, wa(g) = q*w,.

Clearly,

kez 9€Z
1/2

1/2
llgrwillo < llg1llo St:plwl(t)l < (Z kz“di) > lwgl

<llaliapwve [ Do w2 | = vullallayullulls,.
q€EZ

llgzwallo < suplga(t)lllwallo < > dellullau < vallallagullella,
kezZ

therefore S1,S2 < )z 1vullalljap,ullullr,s. Summing up we obtain inequality (4.2) for the
case A <~ and p > i [lauflx,u < 2MHEF2ally) llula .

ili) The case A > 1 and ¢ < —1. It is symmetrical to the case (i), and a
. 2 H 2

symmetry argument yields immediately ||laul|x,, < 2**1e142|a||x yllul|a 4

(iv) The case A < —1 and u < —1. It can be treated by a duality argument.
Take an element v € H=*~* such that ||v||_x,—, = 1 and ||au||s . = (au,v). Then, due
to the estimate proved in the case (i),

llaulla,u = (au,v) = (u,av) < [lulaullavli-x -4
< ||u||,\,“2_’\_"+27._,\7_,,”a"_,\'_“”v”_,\,_,‘
— 2lAl+|al+2

Yianullaliagpu il a,u-

The summary of the cases (i) - (iv) sounds as follows:

< olAl+lul+2

1 1
llauis,u YaNullallanullelia,  for A > 5 and |u| > 7 (4.6)
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(v) The case |A| < ; and |u| > 1. Take a v > 1. According to (4.6),

”au”l'.ll < 2u+|”|+27v7|p|”a”u,|u|”u""m
”au’”—".u < 2u+lul+27ﬂ7lu|”a”u,|u|”u”",#‘

Using the interpolation theorem for an operator in scales of Hilbert spaces (see {12, 27])
we obtain herefrom

laullaw < 22y llall jullullae - (-v <A< w). (4.7)
We obtained inequality (4.2) in the case |A| < 1 and || > 1.
(vi) The case |A| > } and || < 1. It is symmetrical to the case (v) yielding (4.2):

< 2|)\|+U+2

||au||,\,,‘ 7|A|'7v“anlz\l,unu”%w (4~8)

(vii) The case |A| < ; and || < . Take again a v > ;. According to (4.7)
laulla, < 22¢ 92 lallyllull,.
llaullx,-» < 22("“)73”a”lf.vnu”«\.—u-

The interpolation theorem yields inequality (4.2):

laulla, < 222 alluullullae (—v < u < v). (4.9)

Now inequality (4.2) is established in all possible cases il

Inequalities (4.6) - (4.9) give some information about the constant c , . in inequal-
ity (4.2) in different cases. These values can be somewhat reduced. ‘

Corollary 4.2. For any A, u € IR the inequality

Na(t, s)u(s)lau < exuvllalimax(iat,e),max(iulo 2l (4.10)

holds with any v > %

Proof. This follows immediately from inequality (4.2) considering u = u(s) as
a biperiodic function (distribution) which is constant with respect to t. Note that
lu(s)lir,u = llullu for any A € RS



610 O. Kelle and G. Vainikko
5. Bounded integral operators in Sobolev spaces

Consider an integal operator

(Au)(t) = /n(t — s)a(t, s)u(s)ds (5.1)

where the coeflicient a is smooth and 1-biperiodic, and the function (or distribution) &
is 1-periodic and its Fourier coefficients satisfy the inequality

|&(m)| <m™  (me Z) (5.2)

with an a € IR. In the case of a constant coefficient a(t,s) = 1 we have -

(Au)(t) = /rc(t —s)u(s)ds = Z R(m)i(m)em2m,

meZ

and due to (5.2) A is a bounded operator from any H* to H*** (a € RR). Moreover,
if x satisfies also the inverse inequality |#(m)| > com™® (m € Z) with a ¢p > 0, then
A is an isomorphism between H* and H**® (X € R). Our purpose is to show that
the operator A remains bounded from H* to H**® also in the presense of a smooth
1-biperiodic coefficient a. We deduce this result from Corollary 4.2 and the following
lemma.

Lemma 5.1. Assume inequality (5.2). Then, for any A € R,

ety allvllatan, FA+a >
1

/n(t —sy(tys)ds|| < d 2ty fluflua, fO<Atas<l  (53)

0 At o .
2P*+ely lolljasalsvn A+ <O

where v > % s arbitrary, v, is defined by (4.5), and v is any 1-biperiodic function

(distribution) of a finite Sobolev norm indicated on the right hand of the inequality.
To prove (5.3) we first formulate an elementary inequality.

Lemma 5.2. For any vy > 0 and v, > 0 with vy + v > % and any k,l € Z,

1/2
(Z (m = B (m = z)-“=> < Toton (5.4)

mezZ

Proof. In the cases vy = 0 or v, = 0 inequality (5.4) is trivial (cf. (4.5)). Let
vy > 0 and vz > 0. The Hélder inequality with p; = 1%1 and p; = ZL;—"Z (obviously,
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1 1 _ :
P + Pz 1) ylelds

Z (m _ k)—?vl (m — I)—2u3

meZ

vi/(vi+v2) vz/(v1+vs)
< ( z (m _ k)—2(01+V2)> <Z (m _ I)—2(U1+u2)>
mezZ mezZ
meZ

Thus the lemms is shown

Proof of Lemma 5.1. We have
1
/n(t — s)u(t,s)ds = Z (Z R(m)o(k — m’m)> gik2mt
0 k€Z \meZ

and due to (5.2)

1

/n(t - s)u(t,s)ds

Y Ata

: 2y 1/2
5 {Zé"*””(zm""lﬁ(k—m,mn) } (5.5)

kezZ meZzZ
2y 1/2
= z (Z @H’"m_“h}(k - m,m)l) .
k€eZ \meZ

In the case A + o > 0 we may use the inequality

&/\-{»a S 2a\+a((k _ m)A+o + mz\-#-o).

1/2
Noticing that for (ckm )k mez the expression {Zkez (ZmGZ |Ckm|)2} has the norm
properties we obtain

1

/n(t — sYo(t, s)ds

0 Ata
2y 1/2
< oA ta {Z (Z (k _ m)z\-f-am—al{}(k - m,rn)l) } . (56)
k€EZ \meZ

k€eZ \meZ

2y 1/2
4 2 e {Z <Z m* ok —m,m)[) } .
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(i) The case A + a > 1. Rewrite (5.6) as follows:

1

/n(t — s)(t,s)ds

0 . Ao

2y 1/2
< oo {Z (Z m~ )k — m)em ek - m,m)l) } :

k€Z \meZ

2y 1/2
+2**°{Z<Z(k—_m>-<*+°>~(k_—_m)*+°m*|z>(k—m,m)l> } :

keZ \meZ

Estimating the sums over m by the Cauchy inequality we obtain (5.3).

(ii) The case 0 < A + a < ;. This time we rewrite (5.6) in the form

1

/;c(t — s)v(t,s)ds

0 Aa
2y 1/2
= {Z (Z m“**‘*)(k—m)**"-"-(k—m)"m*w(k—m,m)') }
k€Z \meZ

2y 1/2
4 9Me {Z (Z (k=m)"" - (k= m)*m*i(k — m,m)|> }

k€eZ \meZ

where v > % Estimating the sums over m again by the Cauchy inequality and taking
into account Lemma 5.2 (with vy = A+ @ and v; = v — (A + a)) we obtain (5.3).

(iii) The case A + a < 0. Using Peetre’s inequality
e < orelmite(p — m)tel - (k,m e 2)

we continue (5.5) as follows:

1

/ k(t — s)v(t,>s) ds

0 Ata
2y 1/2
< 21X+0| {Z <Z (k — m)”‘“"m)‘h}(k _ m’m)|> } )
k€Z \meZ

The Cauchy inequality yields again (5.3) i
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Proposition 5.3. Assume that a = a(t,s) is C*®-smooth and. 1-biperiodic, and
k = K(t) satisfies (5.2). Then the integral operator A defined by (5.1) is bounded from
H* to H* for any A € R. With any v > %, the following estimates of the norm of A
hold: '

(i) If a >0, then for all A € R
I Allxa+a := I Allc(ar, ma+ey < er,oll@lmax((r+al,v),max(irle)- (5.7)

(ii) If a < 0, then (5.7) holds for A <0 and for A > —a, whereas for 0 < A < —a

”A"/\,)H-a < Cxa,v min (”a"|x+a|+v,max(x,v)1 ”allmax(|¢\+0|,v),,\+u) . (58)

Proof. Take any u € H* and denote v(t,s) = a(t,s)u(s). According to Lemma 5.1
and Corollary 4.2 we have

. 1
lalla+a,max(al,e) ifA4+a> 3

lluallxs

N

”Au”f\’f'ﬂ < Crow ”a“y,max“,\',y) f0<A+a<
“a'”|z\+a|+u,max(|z\|,u) if A+ Qf <0
i.e. the operator 4 is bounded from H?* to H*e whereby, for any A € R,

"a”max(«\+a;u),max(|,\|ly) fA4+a>0

lAlxa+e < €raw { ) (5.9)
llall|x+al+v,max(jAlv) fA+ac<0.

The Banach dual (or "transposed”) operator A’ € L(H~(***) H~?) to the operator
A € L(H* H**?) is defined by

(A'u)(t) = /n(s —t)a(s,t)u(s)ds = //c'(t — s)a'(t, s)u(s)ds

where «'(t) = x(—t) and a'(t,s) = a(s,t). Since &'(m) = —&(—m), the dual operator
A' also satisfies the conditions of the proposition, and (5.9) is true for it:

lla' llmax(=A,»),max(ir+aly) if —A >0
IA o rmama S cra § i mexel)
! ' ' .
lla |||A|+u.max(|,\+a|,.,) if =2 <0.

Since the norms of an operator and its dual are equal we obtain

“a”mux(|z\+a|,u),mu(|,\|'y) if A <0

Al ar+a < Eraw ‘
' ‘ lallmax(ia+al,e) A4y if A>0.

Together with (5.9) this covers the assertions of the proposition il
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Fora <0and 0 < )\ < —a, inequality (5.7) may fail. For instance, for A = Apn
with &(m) = |m| (a=-1,m € Z)
1 fork+1=0, 1<I<N

an(k,l) =
(k1) {0 for other k,l € Z

and for ep(t) = 1 we have

N
Anep = <Z an(—m, m)|m|> e = <Z m) eo ~ N%eg

mezZ m=1
l[Aneollrta ~ N? (A€ R).

For A = 1, inequality (5.7) fails since max(|A + a|,v) = v = max(|A|,v) and

N 1/2
1 3
vy = k4u ~ N(4u+l)/2 N2 - bl
Nlanlle, (E > << 5 <v<j

k=1

Of course, we are interested to obtain estimates of the type ||A|x x+a < cllalia,,x,

with possibly.small A; and A;. In this sense, estimates (5.7) and (5.8) are the best we
know for moderate |A|. For great |A|, the result can be improved if we allow a sum of
two different Sobolev norms in the right-hand side. In the following estimates only one
of the indices A\; and A; increases linearly in |A| as |A| = oo.

Proposition 5.4. Assume the conditions of Proposition 5.3. Then ther following
estimates for the norm of A hold:

(i) For A\ +a> §, withany ; <v < A+a,

”A”z\,k-‘ra < Cz\,a,u<||a||A+a.max(|u—a|,u) + ”a”v,n.lax(b\l,u))' (510)

(ii) For A < —3, with any 3 <v < |},

"A”,\,v)‘+a. < Cz\,a,u(”a"ma.x(|u—c;|,u),|z\| + ||a”max(|,\+a|,u),u) . (511)
Proof. Let A+ a > 1 with 3 <v < A+ a. From (5.6) we obtain

1
/ K(t — s)v(t,s)ds < 2%, (Ivllataw—a + llvlla)-

0 Ata
Note that v —a < A. Now estimate (5.10) follows with the help of inequality (4.10).

Estimate (5.11) can be proved by the dual argument already used in the proof of Propo-
sition 5.3 1
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Proposition 5.5. Assume that a = a(t,s) is C*-smooth, 1-biperiodic, and van-
ishes on the diagonal: a(t,t) = 0 for allt € R. Let k = &(t) satisfy (cf. (5.2))

|&(m) = &(m - 1)| S em™™"  (m€ Z)

where v > 0. Then the integral operator A defined by (5.1) is bounded from any H* to
HA+Q+'Y (/\ € B)’

Proof. We represent A in the form

(Au)(t) = /nl(t - s)ay(t,s)ds

where
a(t, s)

Kl(t) — K(i)(l _ ci2rrt) and Gl(t,s) = —1 — oizn(i=s) .

Note that a; is also 1-biperiodic and C'*-smooth. Further, we have
k1(m) = &(m) — k(m - 1) and jK1(m)] < ecm™*77 (me 2).
Now the assertion follows from Proposition 5.3

Estimates (5.10) and (5.11) allow to weaken the smoothness assumptionson a, (p =
0,...,q) formulated in Remark 2.4 and based on inequality (5.7). Unfortunately, the
formulation becomes more sophisticated.

Estimates (5.10) and (5.11) are rather useful also in the analysis of the numerical
stability of the methods discribed in Section 2 and other approximate methods for
problem (2.1). This analysis will be presented in another paper.

6. Proof of Theorems 2.2 and 2.3

Denote by P, and P_ the projections
(Pyu)(t) = ) i(k)e™ ™ and  (P_u)(t) =) d(k)e**.
k>0 k<0

Lemma 6.1. Let b, and by be C™-smooth 1-periodic functions such that b,(t) #0
and by(t) # 0 for allt € R and (see (2.5))

W(b) = W(b;)=0.
Then there 1s an Ny such that for all N > No, vy € Tn, and A € IR the inequality
”vN”a\ < CA||PN(b1P+ + bzP_)vN”A

holds with a constant c) independent of N and vy .

Proof. This stability result is well known in the case A = 0; a proof can be found
in the books [5, 6, 17, 19]. A similar result holds in the case of Holder spaces (see, e.g.,
(16, 17]). The proof of [16] can be repeated in our case of Sobolev spaces H* without
changes. We omit the details il
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Putting b = b2 = b, remembering the definition (2.5) of W(b) and taking into
account that Py + P_ = I (the identity operator) we obtain
Corollary 6.2. Let b be a C™-smooth 1-periodic function such that b(t) # 0 for

allt € IR and W(b) = 0. Then there is an Ny such that for all N > Ny, vy € Ty, and
A € R the inequality :

llonllx < eal|Pn(bon)|,
holds with a constant cy independent of N and vy.

Proof of Proposition 2.1. The first assertion of Proposition 2.1 follows immedi-
ately from Proposition 5.3. Let us assume (2.4) and prove that A is a Fredholm operator
of index 0. Represent it in the form

A=B+K (6.1)

where
(Bu)(t) = b(t) / Kot — s)u(s)ds with b(t) = ao(t,t)

and

(Ku)(t) = /Ko(t —s)(a(t,s) — a(t,t))u(s)ds + z / Kp(t — 8)ap(t, s)u(s)ds.

Propositions 5.3 and 5.5 confirm us that, due to (2.3), K € L(H*, H o8 for all
A € R. Since the immbeding H* <« H? is compact for A < g, the operator K €
. L(H*, H* ) is compact. According to (2.3) some of the Fourier coefficients &o(m) (|m|
< my) may vanish but we do not lose in generality assuming that &o(m) # 0 for all
m € Z (in the opposite case we redefine k¢ that causes a slight change in the structure

of the operator K). In other words, we may assume that the first one of inequalities
(2.3) holds for all m € Z. Thus, we have

B =b(t)A with  (Au)(t) = / Ko(t — s)u(s)ds. (6.2)

The operator A is an isomorphism between H* and H**?. Since b(t) # 0 for all ¢t # 0,
the operator B itself is also an isomorphism between H* and H**® and A= B+ K €
L(H*,H**) is a Fredholm operator of index 0 for all A € RR.

If Au = 0, then u + B7'Ku = 0 and u = (-1)*(B7'K)"u. (n € IN). Since
B7'K € L(H* H**#) for all A € IR, we obtain u € NyH*. This proves the last
assertion of Proposition 2.1 concerning N (A) 11

In the case of the operator A defined by (2.19) - (2.22) we put

(Bu)(t) = a4 (2,t) / K4(t — s)u(s)ds + a—(t,t) / k_(t — s)u(s)ds
0 0

= (bl (t)P+ + bg(t)P_)A_°u
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where the functions b, and b, are defined by (2.20) and

(A—au)(t) — Zk““ﬁ(k)e‘kz”'

k€EZ

is an isometry between H* and H*** (X € RR). Under conditions (2.20) and (2.21),
the operator b; Py + b, P_ € L(H*, H*) is known to be an isomorphism for all A € R:
in the case A = 0 we refer again, e.g., to [5, 6, 17]; the case A # 0 can be easily reduced
to the case A = 0 (see, e.g., [26]). Consequently, B € L(H*, H**°) is an isomorphism
for all A € IR, and Proposition 2.1 holds true also in the case (2.19) - (2.23) @

Proof of Theorem 2.2. We represent equation (2.1) in the form (see .(6.1) and
(6.2)) bAu + Ku = f. The Galerkin method (2.8), in these notations, reads as follows:

uy € Ty, PnbAuny + PNKuy = Py f.

Notice that the isomorphism A € L(H*, H**°) has the property that ATy C Ty and
A~'Ty C Tn. Due to Corollary 6.2, for any v, € Ty

AvNlIa+a < AlIPNOAVNIA+a (N 2 No)

or ' v
lonlla < SlIPvBonllata, (N 2 No, A€ R). (6.3)

A standard argument (see, e.g., [28]) enables us to extend this stability inequality for
PyA=PnyB + PnK:

llonllx < eallPvAvnliaea - (N 2 Ny, v € Tn, A € R). (6.4)

Indeed, assume that (6.4) is violated: - there are vy € Tn such that |luy|[r. = 1 and
||PnBun + PNKun||a+a — 0 as N — oo along some subsequence. Due to the compact-
ness of the operator K € L(H*, H**%), we may assume that, along the subsequence,
PyKvy convergences in H**® to some limit w € H**®, and consequently PyBuy
converges in H**® to —w. Now it follows from the stability inequality (6.3) that the
corresponding subsequence of vy converges in H* to v = —B~'w € H* and |jv||x = 1.
The limiting in the relation |PyAvn|x+a — O yields Av = 0. Thus, M(A) # {0}
contradicting the condition (2.6) of the theorem and proving the stability inequality
(6.4). With the help of the interpolation theorem one can even prove that the minimal
constant cy in (6.4) is uniformly bounded in A on every (finite) interval [\, Az].

Thus, (2.8) determines for N > N; a unique uy € Tn, the Galerkin approximation
to u = A~! f. The stability inequality (6.4) yields

llunw — Pnullx < callPNA(un — Pru)llasa = eAllPN f — PN APNU|A+a
= cal|[PNAu — PN APnu|lata < eallAllxa+allu — Pyulla
and : .
llun — ulls < lluw = Prulls + [lu = Pyulls < (eall Al ato + 1) |Ju = Pyul|x.

Together with (2.7) this proves the.error estimate (2.9) il
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In the case of an operator Ay of the form (2.19). we use Lemma 6.1 instead of
Corollary 6.2. Note that A™®vy € Ty for vy € Tyn.

Proof of Theorem 2.3. For the operators A and Ay defined in (2.2) and (2.13),
respectively, we have according to Proposition 5.3

q
1 Ast = Alls s < xS llapr = apllsafs vmas(iaie» ( > 5)

p=0
(we used-here the coarser but more universal inequality (5.8); in the cases indicated in

Praoposition 5.3, the more sharp inequality (5.7) may be used) Now our task is to show
that, with any r > 0,

—r 1
I = @l < exur M Maplaenser (A>3) (6.5)

resulting to

"AM A"/\ Ada S CAa, rM Z ”ap”|z\+o|+u+r max(lz\| v)+r (’\ € R) (66)
p=0

We have (see (2.11))
apM—a= HMQM,MG —a= HM(QM,MG- - a) +(HMa - a)

where Il is the two-dimensional Fourier projection defined by

(IIma)(t,s) = Z a(k, ek2mtit2ms,

[kl+[1<M/2
It is clear that II,, is orthogonal in any space H*** and
M -r
lo=Turally < (35 =1) lalrinssr (> 0)
Similarly to (2.10) we have (see [26] for a detailed proof)
- 1 1
I = Qut s < oM alhrrpsr (320,420,345 L utr> 1),

This proves (6.5) and (6.6).

Due to (6.6), the stability property (6.4) extends to the modified Galerkin method
(2.14): there is an N; such that, for any N > N,, vy € Ty and A € R,

[lvnlla < eallPNAMYn|[r+a-
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Consequently, for N > N, (2.14) provides a unique approximation uy € Ty, and with
u=A"1f we have

lun — Pnul|a
< ex||PvAm(un — Pyu)|l,y .,
= eallfa = PnAw Pyl 4
< ea(|lfw = Prflypo + 1 PHAG = Prw)ll,, o + 1A = An) Prul, )

< (Il = Pwull, + 13 = Prfllyyu +errM ™" [lull,)
resulting to the error estimate (2.15). Note that since r > 0 is arbitrary and M ~
N° (0 <o <£1), we may replace M~" by N~ in the last estimate il

No changes in the argument are needed in the case of an operator Ag of the form
(2.19).

7. Numerical illustration

Let us illustrate the behaviour of the actual error uy — u of the method (2. 14) with
fn = Qn f for different M and N.

Example 7.1. We took the model problem

/Ko(t — s)ao(t, s)u(s) ds = f(t) (7.1)
with o = 2,
M= lgEs (med)
ao(t, s) = a(t)a(s), a(t) =3+ Z g—4|m| im2xt
0#meZ

We put u(t) = ¥ g mez ™ 2e'™?™ and computed with a high accuracy f = f(t) from
(7.1). After that we applied method (2.14) with fy = Qnf to recover uy € 7Tn.
Constructing the system (3.2) we used only grid values '

ao(le-],ng_l) (j11j2=0)~'~)M) and f(]N_l) (J=0)’N)

and did not use the Fourier coefficients of ao and f (which are available in this exam-
ple). The error |luy — ullo for some N and M is presented in Table 7.1. Note that
u € H* (p < %) and u ¢ H%?. The estimate (2.16) takes the form |luy — ullo <
cuN=#|lullx (# < 3). The experimental convergence order with M ~ N'/2, as seen
from Table 7.1, is approximately cN ~3/2.
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N=8 N=16 N=32

KRR
o

1.82-107! 1.79-10~! 1.80-107!
4.01-107%2 2.44-10"2 2.40-10"2
3.04-107%2 4.43-107% 7.92-107*
6 7.46-1074

N=64 N=128

2.40-1072

2.96-107* 2.67-

N=256

10~* 2.66-107*
1.30-10"% 2.28-107% 4.01-107®

Table 7.1: The error |[uny — ullp in Example 7.1

Example 7.2. This example is similar to Example 7.1 but this time we took more

slowly decaying Fourier coefficients of ag(t,s) = a(t)a(s), namely

a(t) =3+ Z g~ Imlgim2me,

The theoretical estimate |luy — ullo < ¢, N™#|lull, (¢ < 2) is the same as in Example
7.1 but now its numerical realization can be seen beginning from greater N and M. We
also present the errors ||uny — ul|—2. According to (2.16), the theoretical error estimate

is flun — ull—2 < c, N5 (u < 3).

N=16 N=32 N=64

0#meZ

M=4 185-10° 1.80-10° 1.80-10°

3.17-107! 3.17-10"! 3.17-
M=38 1.20-10° 1.20-
7.00-10~2 7.00-
M =16 1.26 -
7.03-
M =32
M =64

107!

10°
102

10°
10~2

N=128 N=256

1.20-10°
7.00-1072

2.70-107! 2.70-
4.13-10"% 4.13-

4.11-
1.61-

4.33-
3.47.

10-!
10~2

1078 4.11-
1075 1.61-

10-¢ 7.81-
10710 2.45.

Table 7.2: The errors ||uny — ullo and ||un. — u||—2 in Example 7.2

N=512

1073
103

1077
10710
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