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Abstract. In physical oceanography, thermocline theories are to explain the phenomenon of 
strong, vertical density gradient in a relatively shallow layer of water where transition occurs 
from the ocean's surface temperature to the colder abyss. We derive a nonlinear system of 
partial differential equations governing the motion of thermocline layer. Function spaces are 
set up to study properties of the solutions. By a local version of Banach's fixed point theorem, 
the existence and smoothness of solutions are established. 
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1. Introduction 

In this paper we continue our study of the thermocline problem in [1]. Thermocline 
theories are to explain the phenomenon of strong, vertical density gradient in a relatively 
shallow layer of water where transition occurs from the ocean's surface temperature to 
the colder abyss. The ocean can be modelled as a thin spherical layer of fluid rotating 
with angular velocity Q. Gravity g acts normal to the spherical surface. The ocean's 
motion is driven in part by seasonally changing wind stress. A basic assumption is that 
the ocean's direct response to wind stress is limited to the upper layer known as Ekman 
layer. The vertical velocity at bottom of Ekman layer can be calculated from observed 
data. Thus, on top of the thermocline region, vertical velocity is specified as a function 
of space and time. 

The governing equations are derived by conservation principles of mass, momentum, 
and energy. This problem has been studied from various point of view. Salmon [8] 
considers a model with unequal diffusion coefficients in vertical and horizontal directions. 
He concentrates on finding steady-state similarity solutions subject to various boundary 
conditions. He also numerically investigates physical properties of the solutions. The 
existence of classical and weak steady-state solutions with other boundary conditions has 
been proved by Chen [1] and Kordzadze [3, 4] independently via different approaches. 
When the system is simplified by considering vertical diffusion only or no diffusion at 
all, it is called the ideal therrnocline problem. Many similarity solutions have been found 
since 1960. A complete set of all similarity solutions is presented by Lie group method 
in Salmon and Hollerbach [9]. A survey is given by Huang [2]. 
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This paper is organized as follows. Sketches of formulation of the problem with 
initial boundary conditions are contained in Section 2. Section 3 gives definitions of 
function spaces and states a fixed point theorem. The existence theorem is then proved 
in Section 4. 

2. Formulation of the problem 

Let p be the density, p the pressure, and g the acceleration due to gravity of the Earth. 
We assume that the state equation takes a simple form 

P = PO (1 - e(T - T0 ))	 (1) 

where T is the temperature, po the mean density of sea water at mean temperature 
T0 , and e the thermal expansion coefficient. Conservation of momentum in the vertical 
direction z is accurately assumed to be hydrostatic, 

op
= —gp.	 (2)
az 

Let u, v and w be the eastward, northward and vertical velocity, respectively. Since 
ocean's vertical scale of motion is much small compared to its horizontal scale, with the 
Coriolis force (rotation of the Earth) taken into account, conservation of 'momentum 
implies the so-called geo3irophic balance 

2clpou sinG = (3) - R 09 

	

2lpov sin  =	
1	op (4) R cos GO 

where W measures longitude, 9 the latitude, ci is the angular velocity of the Earth's 
rotating, and R is the average radius of the Earth: Conservation of mass implies 

Ow	1 0	_____1 49U 
.;-+ Rcos9O9(t0S9)+	=0.	 (5)
RcosGO, 

Considering thermal diffusion and using the state equation (1), conservation of energy 
gives

Op vOp	u Op pt +w—+--+	- 
Oz —R 5-+ Rcos9O	

. 6 (02p 2 Op	1	0 /. 	ap)
	1	02p = l•	+	+ R

2 cosO	 + R2 cos2 0 O 2) 
where t is the time and r. is a positive constant. For detail derivations see Pedlosky 
[6: Chapter 6] and [7]. In regions away from the equator and the pole in northern 
hemisphere, equations (2) - (6) may be simplified by introducing change of independent 
variables

= Rço,	e91' = sin 0,	E = z,	t= t.
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In southern hemisphere, we set i = R, /R = - sin 0, i = z and i = t. For dependent 
variables, we let 

15= P — Po, ii=p+gpoz, u=5:u, v=(sin 9 cos O)v, ti3 = (sin 29)w. 

After dropping all over bars, equations (2) - (6) turn to be 

Op - —gp	 (7) 

1 Op 
u=——	 (8) 

21Po ay 
1 Op 

v=--	 (9)

2ç^ 0 Ox 

	

Ow l f Ov	\ lOu
(10)' 

1+e2 Yt R Op	2 i9	_2Y/R( Of)	OP	Op\ 
W +v — +u — I (11)


	

—Pt + iLip - 
Re 2 / 1  ay +
	= e	

Oz	Oy	Ox) 

where L is the partial differential operator 

	

1	02	(1 - e2Y/ ') 02	02 
_____ 

1 - e2 Y/ !  5x2 +	e2Y/R	+ 

Suppose that p is twice differentiable. By virtue of (8) and (9) equation (10)' takes a 
simpler form

Owv	
10


Oz - R 
Let D E JR3 be a smooth bounded thermocline region which has top surface Q. 

z = za(x,y,t) and bottom surface Qt : z = zb(x,y,t). The boundary of D is denoted 
by OD. Outside the thermocline region D, values of density are specified by 

	

p=p(x,y)z,t)	on 0	 (12)


where Z7 = OD x [0,T], and initially 

	

p=pb( x , y , z )	on D.	 (13) 

On the top boundary surface Qa, the pressure field is given by 

Ax , y,za) = pa(X,y,t).	 (14) 

Meanwhile, wind stress can be calculated to specify the vertical velocity entering or 
leaving the base of Ekman layer. Thus 

w(x,y,za) = wa(x,y,t).	 (15)
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3. Function spaces and preliminaries 

We give definitions of all function spaces suitable for this work and state a local version 
of Banach's fixed point theorem without proof. 

If 0< a < land i = 0,1,2, then C() are the Banach spaces whose elements 
are continuous functions having in D continuous i-th derivatives which are Holder con-
tinuous with exponent a. Their norms are denoted by II Let E = D x (0,r) and 
E the closure of E. For i = 0, 1,2 and j = 0, 1 the Banach spaces C''J ° /2 (E) and 
their norms	IIi+,j+/2 are defined as follows. We say that p belongs to C'012 (E) i f 

IIPII,c/2 = sup p(s)P + II p IIa <00 
sEE 

where

( j=l

3
Ip(s) - p(s+)I = sup	 and	d(s,s') =	 (x -x)2 + It 

-s,s'EE

1/2 

da(s,sl)  

and s = (x,y,z,t) = (x i ,x2 ,x3 ,t). We say that p belongs to C 0 / 2 () i f 

3 
'lop" 

	

IlPlI1+cc/2 = IIPIIQ,a/2 +	 <00 
, Hôx L 

Similarly, p e C 1 " /2() if

3 

PII1+c,1+c12 = IIPIIc,c12 +	
+ 1 1 C,

<00.
 L j=1 ^I 

In the same fashion, p is an element of C2+c/2() if 

	

3	3	II 

	

1lPl12+aa/2 = IIPlI1+a/2 + i >i	OXjOXk

 Ila 

j=1 k=1 

Finally, we say that p E C 2 ' /2 (E) if 

	

11P112+a,1+a/2 = IPII2+a,a/2 +	< 00. 
'Op'1  

Same notations will be applied to the set which is the domain of definition of Q.. 
Lemma: Let (Yd) be a complete metric space with the metric d and B =+{ y E 

Y d(y,yo) < r}. Let F : B - Y be a contractive mapping with constant a < 1. If 
d(F(yo),yo) <(1 - a)r, then F has a fixed point. 

The proof of this lemma is trivial and omitted.
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4. The existence theorem 

Let D C li 3 be a smooth, open, bounded region in (x, y, z)-coordinate, which in terms 
of (ço,O,z) satisfies 0 < 9 < 9 O with some constants Ga and 9b• Hence D 
represents a region away from the equator and the pole in northern hemisphere. Let 
G = aD x (0, r), E = D x (0, r), and the domain of Qa. 

Theorem (Existence): Let p E C 2 ""2 (), Pb E C2+0(), Pa E C+c2(), 
Wa E C 1+/2 ( ) , and Za E C00 /2() . Define H = sup EQ ZoEQb Za - zol . Then 
there exist r > 0 and r' > 0 such that, if 

IIPaII2+c,1+ci/2 + IIPbII2+c + IIPoIII+o,o/2 + II WaIII+a,a/2 + I1--aIIac/2 < r 

and

B = 1p E C2 1+a/2(). IIPII2+c,I+/2 <r}, 

then solutions (p, p, u, v, w) of the problem (7)—(11) with boundary conditions (12)—(15) 
exist. Moreover, both p and p belong to 8 and (u,v,w) E (CI+1/2())3. 

Proof : We define a nonlinear mapping M : 8 - C 2 +01 + 0/2 (T) as follows. 
If p E 8, then p,u,v,w are defined by (7) with (14), (8), (9), and (10) with (15), 
respectively. We insert them into the right-hand side of (11). The image p = M(p) 
under the mapping M is the solution of	 -• 

1 + e2YIR 0p	2 0*	/ '9	Op	Op\ 
(W 

19Z	
(16) Pt + K/:* P * - 

' Re 2 V/ 0 +	=	\ 3:	Oy	Ox) 

with initial boundary conditions (12) and (13). In this fashion, the fixed point of the 
mapping M would be a solution of (7) - (11) with (12) - (15). Since p E C2'1'/2(), 
the functions u, v,w are in C 1 " /2 (E). Consequently, u,v,w, and first derivatives 
of p are in C,,,/2 (E). Thus, the right-hand side of (16) belongs to C' /2 (E). The 
unique solution p E C2a/2 (E) of equation (16) can be obtained by Theorem 5.2 
in Ladyzhenskaya, Solonnikov and Ural'ceva [5: p. 3201. Therefore, M maps 8 into 
C2""/2(E). 

Next, we need to verify that M is a contractive mapping. Let pi and p2 be two 
elements in 8, p = M(p i ) and p = M(p2 ). We shall show that 

2II2+o1+o/2 < y II pi - P2lI2+c,1+c/2	 (17) li pT - P  

for some constant 0 < y < 1. Let

	

(
W ap	 \f(p,p,u,v,w) = e_2! 	+vop +tz

Op
 I.


	

 3:	ay	Ox)
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If p i is given, then

Pi 
= J gp(x,y,z',t)dz' +pa(x,y,i) 

Z

1 Op 
Ui =

2?po ay 

I 
Vi 

= 2l 0 9x 

v(x,y,z',t) dz' 
+Wa(X,y,t) Wz=J	

R 
Z. 

and ft =	 for i = 1, 2. Since p —p satisfies 

	

(p.p;).(p.
	Dl  

	

1 + e 2 ' ô(p - p)	2e2Y1R a(p - p) 
R	

+#c R
	az	f1—f2 

with zero initial boundary conditions, from regularity results of Theorem 5.2 in [5: page 
320], we have

IIP - P2II2+c,1+c/2	- f2IIa,a/2	 (18) 

for some constant c. From now on and throughout the paper, we let c be a generic 
positive constant which varies from line to line unless otherwise specified. Among many 
terms in 11 - 12, we first examine

	

( a	ap2 
U1	- U2 - 

ax	ax


If II 11 0 denotes the sup norm in P, then we have 

II

	

 Ui 
am - 

U2 
0P2"	

<c( 

	

II _M	11U1 - u211,0i2 + 11 U 2 lb Il p i - P2Ila/2). (19) TX_	ax a/2 -	ax 

The following inequalities are established by definitions and straightforward computa-
tions:

	

[
^_
p1II

Il	llP111I+a,c12	llPilI2+,1+a/2	r	 (20) ax lb 

II z,	 Ii 
III

llu2lbo	g- 	
--(x,y,z ,t)dz' 

1 
+ IlPalIo	c(rH + r).	(21)

ay 2Qpo
lIz	110 

To estimate Il u i - U211a,a/2, we note that 

Il u i - u 2110 < H il p i - P2111+a,a/2 15 Hp1 - P2112+,1+a/2	(22)
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(u i - u 2 )(x, y, z, t) - (u, - u 2 )(x, y, E, t)v	iz - i Iim - P2112+a,l+0/2	(23) 

(u, - u 2 )(x, y 7 z,0 - (u 1 - u2)()y,z,t)	A, + A2	 (24) 

where

A1 = J-(pi —p2)(x,y,z',i)dz' 
ay

Iz(±,y,i) I 

A2 =

I	z(,g,t) 

f	-_(pi(x,y,z',t)	p2(±,y,z',0)dz'1. 

Iz(i,y,t) 
Hence, from (23) and (24), and similar estimates for 

(ui - u2)(x,y,z,t) - (u i - u2)(x,,z,t)I 

(u, - u2)(x,y,z,i) - (u, - 

we obtain 
(u i - 112)(S) - (u i -

C(H	+ il zoIi,2) li p ' - P21I2+a,1+c/2 (25) 
d(s,s+) 

for all s, s' E R Inequalities (22) and (25) imply that 

lu, - U211c,a/2	c(H + H'	+ ka11a,a/2) li p ' - P2112+a,1+o/2 . (26) 

Define fi	rH + rH'	+ rr	+ r.	Since ii zaii,2 < r	and iIPa1I1+a,/2 < r, we 
have, by inserting (20), (21), and (26) into the right-hand side of (19), 

II 
IIui 
II

a	

oP2I 
- u 2 — c/3p, - p2112+o,1+/2. (27) 

Ia,/2 
For the remaining terms in fi - 12 similar results hold. Thus 

II	ôp i	0p211 
li v, -- v2 — Il 
ii	3Y IIa,o/2

cfluip1 - P2Ii2+a,1+a/2 (28) 

II
l—  w,	

w2 ap2 I 
—--I 

OZ
< c (flH + 11 a111+aa/2) li p ' - p2112+,1+/2. (29) 

By virtue of (27) - (29) we obtain 

ii!' - f2iI,a/2 < c(/3 + /3H + r) li p ' - P2112+c,1+a/2 
Inequality (18) now becomes 

Ii pT - P21i2+a,1+a/2	c(13 + f3H + r) li p ' - P2112+o,1+c/2. 
From Theorem 5.2 in [5: p. 320], we have 

1I M (0) - 0 112+O1+/2 15 c (ll paii2+,1+i2 + iiPbiI2+a)	cr 

for some constant c which is independent of Pa and Pb	Choosing r and r' so that 
c(fl+BH+r)= -y <1	and	cr* <(1 --y)r. 

Thus (17) is true and the proof is complete by the Lemma in Section 31
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