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Solving Boundary Value Problems

with "Average" Data Sampled on an Arc 

Peter A. McCoy 

Abstract. Function-theoretic methods are employed with appropriate regularity conditions to 
solve boundary value problems of the type 

(V 2 + P(1 x 1 2 ))iz ( x ) = 0	(x 6 D; u(-o) = 1(xo), x0 E aD). 

The solutions are uniquely determined from the mean values of the boundary data 1(x) sam-
pled at equally spaced points of the circumference; or, along an arc on the circumference of 
the disk D. Equivalent problems are formulated and solved from the point of view of confor-
mal equivalence of domains and transmutation of differential operators. Solutions to inverse 
problems are reconstructed from the mean values of data taken along the boundary. 
Keywords: Elliptic boundary value problems, mean boundary values, sampling, transmuta-

tions, inverse problems, function-theoretic methods 
AMS subject classification: Primary 35J05, 35A22, 35A35, secondary 41A10, 35R30 

1. Introduction 
Solutions of elliptic boundary value problems are typically specified as integrals of the 
boundary data. However, in many applications circumstances make it essential to ex-
pand or recover the solution from discrete measurements taken over a set of data limited 
to part of the boundary. The purpose of this article is to develop some general function-
theoretic methods for handling these cases. 

Function theory is frequently employed in the study of partial differential equations 
because of its utility in reformulating a problem in terms of the theory of analytic 
functions about which much is known. The results frequently resemble the form of their 
antecedents in analytic function theory. P. A. McCoy [12] used R. P. Gilbert's integral 
operators [1, 8] to develop a method along the lines of Shannon's theorem in signal 
processing for recovering a solution u E C 2 (1) fl C(l) of the standard boundary value 
problem

(V2 + P(1 x 1 2 ) ) u (x ) = 0	(x 6 
u(x Q ) = f(xo)	(xo 6 ôl) 
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from sampled values of "band-limited" data f(xo) taken at predetermined points on 
the boundary. The domain Q C E2 is star-shaped with respect to the origin and has 
smooth boundary aQ € C2 . The coefficient P(1 x 1 2 ) is a real-valued, analytic function 
that is negative on the closure n of Q. Recently, P. A. McCoy [131 extended the sampling 
method to boundary value problems for higher order elliptic partial differential equations 
on bounded simply connected domains in Ely with smooth boundaries. The notions of 
transmutation of partial differential operators found in H. Begehr and R. P. Gilbert [1, 2] 
and equivalence of domains were introduced to develop equivalence classes of solutions. 
The boundary data was "band-limited" and the sampling points were preassigned by 
the theory and distributed over the boundary at fixed lattice points. 

A function theory exists for reconstructing solutions of generalized axially symmetric 
potentials from the mean values of data sampled on a point set distributed over the 
boundary of the domain (see P. A. McCoy [10, 11]). The boundary data need not 
be "band-limited", but must be sufficiently smooth. This paper incorporates aspects 
of both types of sampling methods to develop a general function-theoretic procedure 
for reconstructing solutions of equation (1) from smooth data sampled on an arc of 
the boundary of a plane domain. Equivalence classes of boundary value problems are 
addressed in the plane for domains that are conformally equivalent and for equivalence 
classes of differential operators. Inverse problems are solved from the point of view of 
reconstructing a solution from information contained in its mean boundary values taken 
from sampled values along the boundary. 

2. Background 

Important classes of elliptic boundary value problems are modelled by the equations (1) 
on domains Q c RN (N > 2), which are star-shaped with respect to the origin and 
have Lyapunov boundaries (see R. P. Gilbert [8], and M. Kracht and E. 0. Kreyszig [91). 
The present discussion is limited to domains that are star-shaped about the origin with 
C2 boundaries. These domains are referred to as "appropriate". R. P. Gilbert [8] based 
his solution of the boundary value problem on apair of integral transforms, the first of 
which maps harmonic functions h € C2 (Q) fl C(l) onto solutions u € C2() fl C() by 

u(x) = (I + G)h(x) h(x) +	- c 2 )h(xa 2 )da.	 (2) 

The kernel of the transform is the solution of the hyperbolic partial differential equation


2(1 - 0,2 )Gra - Gr + r(Gr,. + PC) = 0 

with Goursat data 

	

G(0, a) = 0,	G(r,0) = JTP(T2)dT,	P (1x 1 2 ) <0 (x €
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The inverse transform given by R. P. Gilbert [8: p. 25) is 

h(x) = (I + G)'u(x) = u(r,) + r' 12 /T1/2r(rT)u(r9)dr.	(3) 

The kernel is expressed as the series 

r(r, T) =	K'(r, r) 

with

7. 

r) = f K(r, s)K ) (s, r) ds	and	
K(r, r) = r C (r, 1 - 

i- 
7. 

The transform pair
{I+G,(I+G)'} 

establishes a one-to-one map between solutions u E C2 (Q) fl C() of equations (1) and 
harmonic associates h E C2(ci)flC(). Here, and throughout, we use the same notation 
U(X) = u(x, y) = u(z) for the functions. The interpretation is clear in context. 

S. Bergman [3) developed the integral transform

—\ U(z) = B2(f(z)) = f E(r2,t)f fz(1 t2) 
2	) 

dp(t)	 (4) 
0 

with d1z(t) = dt/V1 -- t2 (and its inverse) linking solutions u(z) with analytic functions 
f(z) on appropriate domains ci in the plane. On these domains, the kernels of the 
Bergman and the Gilbert operators are connected by 

j2 f(l E(r,t) = 1 + - 	 1 - s)112G(r,st2)ds 
0 

(see H. Begehr and R. P. Gilbert [1: p. 296]). 

For the time being, let us consider functions that are defined on the unit disk 
D : Izi < 1. Let {u, h} be a pair of real-valued functions in C2 (D) fl C(D) that are 
associated via equations (2) - ( 3). Expand the associate of u(x) in the series 

h(-, y) =	7ah(x,y)	 (5)
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of real-valued circular harmonic polynomials 

h(x, y) = (x 2 + y2)fl/2 cos /	
+ y2) 

and where the constant is -y = r() r(n+) 
F(n+1) Anticipating the sampling procedures, we 

seek the harmonic associate h of a solution u = (I + G)h whose limit at the boundary 
point (F,Oo) is

(I + G)h(r,Oo)	f(&°°)	as r - F 
for each 0 < 9 <2ir. 

The construction requires an intermediate transformation to normalize equation (5) 
in reference to the analytic function 

	

F(z) = 1: a,z"	(z E D)	 (6) 

and establish the connection between h = h(x, y) and the harmonic function f(x, y) = 
Re F(z). The function F = F(z) is subject to special requirements. Let the restriction 
F(&°) of F(z) to ÔD be a smooth function. This condition is designated by F E B(aD) 
and means that the Fourier coefficients an of F(e'°) satisfy an '-' 0(1/&) (E > 0) 
asymptotically. Consequently, the restriction is in the set F E C(ÔD) fl B(oD). The 
function is analytic since its Fourier coefficients satisfy an = a(f) = 0 (n e —JAr), 
and, we write F E A(M). 

Integral operators relevant to the solution of mean boundary value problem are 
constructed by modifying existing operators. The first step in the process is to relate 
equations (5) - (6). Let h(z, 0), z = x + zy, be the analytic continuation of h(x, y) to 
the disk D. This continuation is valid since limsup.., = 1. Modifying the 
transform found in H. Begehr and R. P. Gilbert [1: p. 284] and noting that F(z) = 
f(z, 0) yields the transform pair

+1 

F(z) = B i [h(z,0)] = —. Jh(z(1 _t2),o) dt - 
-1 

	

+1	 (7)€

h(z,0) = B2[f(z)] = J F(z(1 - t 2 )) dp(t) 
-I 

for z E D. The contours connecting {-1, +1} do not generally pass through the origin. 
The normalizations of {B 1 , B2 ) differ by a factor of 2 or in the arguments of the 
associates from those usually taken. Moreover, if h(z, 0) E C(P) so is F(z) E C(i) and 
conversely. The transforms are 

f(x,y) = B1[h]
Bi fh(z,0)] + B 1 [h(z, 0)] 

:= 2 (8) 
h(z,0) = B[f]

B2 [f(z,0)] + B2[f(z,0)] 
:=
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where we identify 1(z) = f(z, 0). The transform pair assigning the proper correspon-
dence to the boundary values between associated functions in C 2 (D) fl C(D) is 

u(x) = (I + G)Bf(z)	and	f(z) = B'(I + G)'u(x).	(9) 

Each integral operator represents an analytic function in D. This fact follows from 
the singularities theorem established in D. L. Colton and R. P. Gilbert E41 It is easy 
to verify that on account of uniform convergence, limits interchange and the boundary 
values correspond as required. 

3. Sampling boundary data 

The focus of this study is on problems with smooth boundary data  E A(ôD)flB(ôD). 
These boundary functions are sampled on an arc [0 1 , 821 of M. This arc is equivalent 
to the interval [t , t 2 ]. Either set is referred to as an "arc". We follow C. H. Ching and 
C. K. Chui [5: p. 175] and define the standard set of interpolating angles at the points 

27rk(t2 - t1) 
8k,n =	 + 27rt 1	(1	k n, n E n 

located on the arc [01, 021 . The function f(&°) is interpolated at the reference angles 
to obtain sets {f(e11k )}=j (n E IV) of sampled boundary values. It is convenient to 
introduce the auxiliary sums

M 

Un,m = 7n,vn(f; t i, t2) = - >f( e'°)	(1 <m <n, n e IV). 
k=1 

The arithmetic means of the function f(&°) taken at the standard set of interpolating 
angles on the arc [t 1 , t 2 ] are 

s(f) = s(f;t i ,t 2 ) = an,(f)ti,t2) 
f(et2ult1 ) + f(e2i2) 

s(f;t i ,t 2 ) =

	

	 +c,_i(f;ti,t2) 2n 

for n e iN. Sampling over the circumference of the unit circle at the standard interpo-
lating angles yields the usual arithmetic means 

n 
s(f) = i	f(e)	(n E IV) 

with
2, 

s(f) = lim .s(f) = -ff(e18)d8 n — co	 27r
0
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The Riemann coefficients are defined as 

ro(f) = ro(f; t i , t 2 ) = s(f;ti,i2) 

r(f) = r(f;i i ,t 2 ) = s(f) —s(f)	(n E IN). 

The idea is to-imitate the Fourier series expansion of the function f(&°) by replacing 
the Fourier coefficients {a} 0 and basis i n1l oo  with a series whose coefficients 
are the Riemann coefficients {r} 0 . The appropriate basis for such a Riemann series 
expansion is the set of polynomials {pn} (see C. H. Ching and C. K. Chui [6: p. 
326)). The polynomials are defined as 

PO (Z) 	and	pn(z)=L()z (nEW) 
S 

3/fl 

where y = p(s) is the Möbius function (see C. H. Ching and C. K. Chiii [7: p. 269]). 
According to C. H. Ching and C. K. Chui [6: p. 3251, given a function I E A(M) fl 
B(M) with Riemann coefficients {r(f; t 1 , t 2 )} 0 , the operator R : ' 1 -p R(f) 
sending a function onto its Riemann series expansion is defined as 

f(z) = R(f(z)) = Er(f)p(z).	 (10)

nrO 

This expansion is the unique analytic continuation of the function f(etO) to the disk D. 
The series is continuous on the closure of this disk and its restriction to ÔD is precisely 
the function f(&°). 

The expansion of a function f E A(M) fl C2 (OD) in terms of its mean values taken 
on an arc [0, 8] is a more detailed construction requiring the shifted means 

tn (f;0,8) = f(e2"6)+ 7n,n_1(02k-_1,2n_1[0,8])	(0	k <n, ii E .&V) 
2n 

of the function f(e°). Let 

p_(et27rt ) = Rep(e'2 ')	(n e 

Following C. K. Ching and C. H. Chui [5: p. 1821, we define the series 

=	{s(f;o,o) - s(f;0,6)}pn(et16)) 
n=1 

+	{
2n 
- 1 t0,8) - s(f;0,8) }p_1(et t/6_1)) + 

SCO  

n1 

This series converges uniformly to an auxiliary function a(f(t)). The analytic function 
that we seek is constructed from the auxiliary function with the aid of D. J. Patil's
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generalized Cauchy integral formula [14: p. 617 ff.). The function 1(z) under discussion 
is determined as the uniform limit 

f(z) = K(f) = urn KA(a(f), z )	 (11) 
A 00 

of the sequence of functions f,\ (z) K.\(f) defined by the operators KA f -i K,\(f) 
given by

5 

KA(f( t ), z ) =	
kA(z)kA(e	'cT(f(t))dt 1 - ze_227rt 

0

	

	

+	

( A>O) 
1—log(1+) 

6 
e"z 

ir	
} 

kA(z) = exp	 I e 9 - 
zdO

With this machinery in place, we proceed to the applications. 

4. The boundary value problem 
Expansion theorems are constructed on the disk and extended to conformally equivalent 
domains. Certain regularity requirements on the boundary values are essential. 

We say that u E C(D) (e > 0) whenever for its restriction to the boundary 
f = u 3 we have f e AC (D) := A(M) fl B(M). Application of the Riemann 
operator to a function in this class yields the unique analytic function R(f) whose 
restriction to the boundary of the disk is the function "f". Operating on the Riemann 
series expansion R(f(z)) with the ascending operator equation (9) generates the unique 
Riemann series expansion of the solution as required. 

Theorem 1: Let u E C 2 (D) fl C E () (e > 0) be the solution of the standard 
boundary value problem with boundary values f(x). Let {s(f)} be the mean values 
formed from sampled boundary values taken at the standard interpolating angles, and 
let

ro(f) = s(f)	and	r(f) = s(f) - s (f) (rz E .L7'i) 
be the Rzemann coefficients. Then the solution u(z) is uniquely represented by the 
generalized Riemann series 

u(z)=>rn(f)Pn(z)	(zE)	 (12) 

where P(z) = (I + G)Bpn (z).	 S 

We remark that for functions u E (C2 (D)flC())fl(A(ôD)flB(c3D)) (e > 0) there 
is a Riemann sampling operator R : u -+ R(u) that maps u(z) onto its generalized 
Riemann series. The operator is constructed as	 S 

S	 f=Rf=RB1(I+G)'u	 S 

and, since u = (I + G)Bf, 

u = ((I + G)B)R(B' (I + G) — ') u. 

To summarize the argument, consider the following
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Corollary 1.1: The operator mapping of a solution u E C 2 (D) fl C() (e > 0) 
with boundary data f E C(OD)flBe(OD) onto its generalized Riemann series expansion 
is given by R = ((I + G)B)R((I + G)B) 1. 

The next problem is to recover a solution from boundary data sampled on an arc 
of the boundary. The basic procedures are the same. We consider a function f E 
C2 (D) fl A(ÔD) and use Patil's kernel function to construct the approximation f,\(z) 
of 1(z) in terms of the kernel KA(f(t), z) generated from the boundary data. The 
corresponding approximations of the solutions are u,\(z) = ((I + G)B) KA(f(t), z) for 
A > 0. Recalling that the integral transforms and series are uniformly convergent, we 
pass to the limit A - co. The end result follows. 

Theorem 2: Let u E C2 () fl A(ÔD) be a solution of the standard boundary 
value problem with boundary values I E C2 (8D) fl A(M). Let {s(f;0,.5)}..1 and 
{t(f;0,5)}..1 be the means and shifted means of the boundary values sampled at the 
standard interpolating angles on the are [0,27rSj (0 < 5 < 1). Then the solution is 
represented by

U(z)	lim ((I + G)B)KA(f(t), z)	 (13)€
A—. 

uniformly for z E D. The operator mapping u(z) onto its sampling expansion is precisely 

K= lim ((I+G)B)KA((I+G)B)' 
A—.00 

The question now arises of extending the construction to problems defined confor-
mally equivalent domains. Consider an appropriate domain Q located in the w-plane. 
Let the conformal map M : D C C l C VW be designated by w = p(z) and let 
the inverse map be M' : z = ça'(w). We are considering domains ci for which the 
maps W and extend to the boundaries as C2 diffeomorphisms. The boundary value 
problem conformally equivalent to the standard boundary value problem is expressed 
in the w-plane

	

Lwv(w)	(Vt, + Pw(1 w 1 2 ) ) v (w ) = 0	(w E	
(14) 

v(wo) = g(wo)	(w0 E 

The subscripts "w" are introduced to distinguish the domains in problem (14) and 
problem (1). The Laplacian's are connected by V 2 =ço'(z)I2V,. The correspond- 
ing factor is absorbed into the function However, it is apparent in the following 
construction that the partial differential operators need not be connected by such a 
transformation. Just the fact that the associate has conformal invariance is sufficient 
and no such "conformal" requirement is in place for the operators. 

The solution of problem (14) is developed by transforming the associate k(w) = (1+ 
G);' v(w) E C 2 (1l)flC(i) of the solution v(w) onto a harmonic function h(z) on the disk 
D in the z-plane, sampling the boundary values, and then reversing the process. The 
harmonic function h(z) = k(cp(z)) is determined by the map M: ko. This map and its 
inverse put the harmonic functions k(w) = h(ço 1 (w)) and the boundary value problems 
into a one-to-one correspondence. The appropriate form of the associate is produced
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by f(x,y) = B — '(k o tp)(z) and sampled as a Riemann expansion R: I - R(f) by 
1(z) = RB'(k o cp)(z). The expansion is 

R(f)(z)
=	

r (B — ' (k O)))pn(Z). 

We note that properties of the Riemann series are invariant under conformal mappings 
(see C. H. Ching and C. K. Chui [5: p. 178]). The map is reserved to determine the 
Riemann series expansion of the "original" associate in the w-plane. This function is 
k(w) = R(f)(co (w)). The final step in the construction applies the operator (I + G) 
to generate the Riemann series expansion v(w) = (I + G)k(w) of the solutions of 
equations (14). The Riemann sampling operator may be developed under these criteria 
along previous lines of argument. The summary follows. 

Theorem 3: Let v E C 2 (i) fl A(ô1) be the solution of the equivalent boundary 
value problem under the conformal map w = (z): D - Q. Let the map, extend to the 
boundary as a C 2 -diffeomorphism. And, let k(w) be the harmonic function associated 
with v(z) by the operator (I + G). Then the generalized Riemann series expansion of 
the solution is 

v(w) =	r(B'(k o ))P(w)	where P(w) = (I + G)p('(w)).	(15) 

The operator mapping v(w) onto its generalized Riemann series expansion is 

((I+ G)M'B)R((I+ G)M'B)' 

5. Transmutations 

The method of transmutations is a powerful tool for generating solutions of equivalence 
classes of boundary value problems. We apply some of the results on transmuations 
found in H. Begehr and R. P. Gilbert ([1: pp. 229 - 259] and [2: pp. 99 - 100]) 
in conjunction with the methods from the previous section to solve boundary value 
problems equivalent to problem (1). Briefly, let P(DZ ) and Q(D) be partial differential 
operators acting on suitable spaces X and Y, respectively. The operators need not be 
of the same order. An operator E (which is usually an integral operator) is said to 
transmute P(D) into Q(D), if it is an isomorphism from X onto Y and satisfies 
the commutation relation >P(D) = Q(D)E. The operator E is referred to as a 
transmutation. 

In this study, we identify the operator in equations (1) as P(D) = V 2 + P(I+12). 
Two equivalent boundary value problems are under consideration, 'namely 

Problem (A) P(D)u(z) = 0 (x E D), u(xo) = f(xo) (x0 E ÔD) 

Problem (B) Q(D)v(y) = 0 (y E D), v(yo) g (yo) (yo E ÔD).
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These problems are equivalent if both the partial differential operarors and the boundary 
values correspond one to the other under the transmutation E. 

In order to construct a transmutation that maintains the proper correspondence, 
R. P. Gilbert develops an expansion formula (refer to H. Begehr and R. P. Gilbert [1: 
pp. 249ff]) that connects the Green functions rp and rQ for problems (A) and (B), 
respectively. By working with Gilbert's expansion, we find that the relationship can be 
written as

rQ AQrP	where A Q = (P(D))'(Q(D)). 

This relationship transmutes the Green function from problem (A) into that for problem 
(B). It has the property that when the solution u E C2 (D) fl C(D) (e > 0), then the 
transmutation is V E C2 (D)flC e (T) . The operator rp APrQ with Ap = A' inverts 
the transmutation and maintains the regularity conditions between the solutions. Thus, 
the problems (A) and (B) and their solutions are put into a one-to-one correspondence. 
Here, the notation (P(D)) designates the integral operator solving problem (A) 
as in equations (9). Analogous notation holds in the second case. Working with the 
relationships between the Green functions, it is easy to transmute the Riemanñ series 
R(u) solving problem (A) from the Riemann solution R(v) solving problem (B), and 
conversely. 

Theorem 4: Let u(x) and v(y) be functions in C2 (D) fl C() (e > 0) that solve 
the boundary value problems (A) and (B), respectively, and let the operator E transmute 
problem (A) into problem (B). Then the Riernann series expansion of the solutions are 
related by Rv(y) = A Q RX U(X) and the transmutation of the Riemann series of problem 
(B) from the Riemann series of problem (A) is 

V(Y) ((AQ)—'R(AQ))v(y) 

where Ap (Q(D))'>2(P(D)) 

This problem gives an application of the basic construction procedure in the context 
of transmutations. The expansion problem for the arc is similar. 

6. The inverse problem 

Previous sections have dealt with the representation of certain classes of solutions in 
terms of expansions determined from the arithmetic means of specified boundary data. 
In this section, we consider the inverse problem which is to reconstruct a solution with 
suitable properties given a sequence of arithmetic means; rather, than to compute the 
means from specified boundary data and then expand the function. 

There are two distinct differences that must be accounted for. The first difference 
is that the Riemann coefficients decrease to zero slower than the Fourier coefficients. 
This property forces a stronger regularity condition on the solution at the boundary. 
The second difference is that the arithmetic means annihilate the "odd" component of 
the boundary data. This is compensated for by imposing a second boundary condition 
involving the tangential derivative along the circumference.
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Let us recall that the operators in equations (9) were constructed to retain the 
regularity conditions of the associates are boundaries. We further observe that the 
kernels in the operators (I + G)B and B' (I + G)' are independent of arg z. Thus, 
by differentiating at the boundary 8D in the direction 9 at the point (1,9) yields 

Ou(1, 9) = ((I + G)B)8ef(1, 9) 

ôef(1,9) = ((I+G)B)158u(1,9). 

	

Following C. H. Ching and C. K. Chui [6: pp. 330ff], let {an}2. and {[3,,}	be real

sequences, an - a and /3, -, /3, such that 

an_a=O(_)	and	On—,8=0( 1 ).- 

Then the series
00	 00 

- a) u(r, 9) +	/3nvn(r, 9) + a 

converges uniformly to a unique harmonic function w E C2 () for which 

/ (1, 27rk\\	
(WO

/ 2irk\\s (\W 	
-)) 

= a	and	3m 	
-)) 

= /3.


Here,

-(r,9) = Repn(z)	and	v(r,O) = Imp(z)	(n E .1IY0). 

Expand the boundary function into its even and odd components as 

= f(e°) + f(e°) + f(e'°) - f(e°) 
2	 2 

written as f,(&°) and f0 (e'°). Recalling that the arithmetic means of s m (f0 ) = 0 (n E 
IN). Similarly, if the odd part Jo E C2 (ôD) (e > 0), then Sn(fe) = 0 (n E EN). We 
introduce a second operator to account for the appearance of the harmonic polynomials 

v(r,9) = Imp,(z)	where p,(z) = >2 -2z (n E IV). 
k/n 

The operator and its inverse are 

fo(x,y)=B '[v]	
Bi [v(z,0)) - B,[v(z,0)] 

=
2i 	 (16)€

v(x,y) = B.(f0]
B,[v(z,0)] - B 1 [v(z, 0)] =

2i 
The reconstruction of the even component of the boundary data is handled with the 
operator in equations (8). At this point, the reasoning proceeds along the lines of 
Theorem 1 and C. H. Ching and C. K. Chui [6: pp. 331ff] to establish the solution of 
the following inverse problem.



634	Peter A. McCoy 

Theorem 5: Let { a fl }	and {f3}2.. be sequences of real numbers converging to 
c and /3, respectively, with the rates 

an_a=O(_)	and	/3n_/3=:O(__)	(e>O). 

Then there exists a unique solution u E C 2'() (e' > 0) to the equation 

(V2 + P(1 x 1 2 )) u(z) = 0	(z E D) 

with arithmetic means 

sn ( (1,	
)) = c
	and	sn (ôeu (i -)) = On	(nEW). 

The solution is represented by the uniformly convergent generalized Riemann series 

U(z) =	(cn - a)Pn(z) +	/3n P (Z) + cPo(z)	(z E 

where P(z) = (I + G)Bp(z) and P(z) = (I + G)B*p(z) for n E 11V0). 

7. Remarks 

The procedures introduced here extend toaxially symmetric problems in EN by renor- 
malizing the transform pair equations (7) - (8) as in R. P. Gilbert [8: pp. 27ff] to account 
for the dimension. The G-functions in the kernel of R. P. Gilbert's operators are inde-
pendent of the dimension. The only required modification of the transform equations 
(9) is to insert a power (depending on the dimension) of the integrating variable. The 
current theory is not extended to non-axially symmetric problems. The reason is that 
the integral transforms necessary to handle the existing mean value theory for analytic 
functions of several complex variables are not presently known. And, the transforms 
appear difficult to construct. 
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