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Generalized Euler-Frobenius Polynomials

L. Berg

. L A
Abstract. An initial value problem for the two-dimensional difference equation @n41,041 =
@n41,0 + (1 —2)an, is solved by means of the generating function and their functional equation.
Special values of the solution are the well known Euler-Frobenius polynomials.
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Let k be an arbiitra.ry but fixed non-negative integer. We start from the two-dimensional
difference equation A

Ant1,o41 = Qi1 t+ (1 - z)anu (1)

for 0 < k < nand 0 < v < n with n,k,v € Z, a real parameter z, and the initial
conditions R .
ko = Qk1 = ... =Qki = 1 (2)

as well as

Qnt+1,0 = 2 Z Qny ’ (3)

v=0
for n > k. Obviously, the solutions of this initial value problem are uniquely determined
polynomials any = an,(2) of order n — k, in particular ,
Gkp1(z) = v+ (k+1 = 1)z @)
for v =0,...,k + 1. The general solution is given by

Theorem 1: For 0 < k < n and 0 < v < n, the difference equaixon (l) w:th the
snitial conditions (2) and (3) has the solution

anul2) = (1 =2 Y Z()( V) (m 2y ()

m=0 #n=0 oS

Note that the binomial coefficients (::;) vanish for k < p. For the proof of :this
theorem we need some preliminaries.

L. Berg: Universitat Rostock, FB Mathematik, D — 18051 Rostock

ISSN 0232-2064 / $ 2.50 (© Heldermann Verlag



648 L. Berg
Lemma 1: Forn > k+ 1, we have

ano(2) = zapn(2). : (6)

Proof: By summation, (1) implies
Gn+1,n41 = Gnt1,0 = (1 — 2) Zanv

v=0

for n > k, and by (3) we obtain

20nt1,nt1 — 2Qn41,0 = (1' - Z)an‘+1,o y
ie. (6)0
Next, we introduce the generating function of a,, by the formal power series
e o] n
F(z,9,2) =) D ani(2)y"z™ (7)
n=k v=0

From (1), we obtain

Z : za",(z)y"_l:z:"—l = z Zan,,(z)y” 1 4+ (1 - 2)F(z,y,2).

n=k+1 »=1 n=k+1 v=0
In view of (2), the left-hand side is equal to
k
— | F(z,y,2) — F(z,0,z) — vzt |,
- ( @02) = Flz,0.2) - 3 v
and the sum on the right-hand side equals to
1 oo : k
- (F(z,y,Z) - ) emn(2)y"z" - Zy"z") N
n=k+1 ' v=0
where (6) implies
=~ 1
Z ann(2)y"z" = . (F(zy,0,2) — y*z*).
n=k+1
Using the abbreviations F' = F(z,y,z) and F(z) = F(z,0, z), we obtain thé equation

k :
F—F(z)—Zy"z":y(F——( (zy) —y*z*) - Zy >+':cy(l—z)F,

v=1
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and finally, the functional equation

(l—y—:cy(l—z))F:F(z)—%F(zy)+yk+lxk (%—1). (8)

Theorem 2: Egquation (8) has the solution

F(z,y,z) =(1 - z)z* Z z™
m=0

X 9

x Z (1= (m+1zy(1 - z))—l‘—l (1 — mz(1 - z))u—k—lyp

for |zl <landz(l1-2)# %, zy(1-2)# L (ne V).

Proof: In order to solve (8), it is necessary to determine F(z). The easiest way
would be to put y = 0 in (8), however, then we get an identity. Hence, we introduce a
new variable u with u(1 — z) # L (n € IN), and choose

u

x=1_—u(1-_—z-)— and y=1—t‘l(1—z).

Then 1 — y — zy(1 — 2) = 0, and (8) turns into

F@)=0“zwk+1-ua—ﬂF(1—u8—ﬂ). ao

By iteration, we find the series

(o]

F(u)=(1-z)ut z

me=0 (1 —mu(l - z)) k1

zm

(11)

which converges for |z| < 1. Since

u _ —zu"oo z™(1 —u(1 - 2))
F(l—u(l—z))‘(l ) "§(1_(m+1)u(1_z))*+”

we see that (11) is indeed a solution of (10).
Now, the right-hand side of (8) can be written as

1 z)z" (i m i Zm-lykt Hl)

m—o (1 —mz(1 - z))k+1 - me1 (1 —mzy(l - 2))

)k+1 k+1

B _, Ik oo (1 - (m + 1)2:y(1 —_ z) - (y - mzy(l - z)) m
=(1 ) mz::o ((1 —mz(1 —z))(l—(m-{-l)zy(l _z))k-f-l

and after division by 1 — y — zy(1 — z), we easily-find (9) 8
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Corollary: For k =0, (9) simplifies to
o0

F(z,y,2) =(1— Z)mz=:0 (1 —-mz(l - z))(l - (m+ l)z:y(l - Z)) '

m

(12)

Proof of Theorem 1: By means of binomial series and

()= () e e (T (),

we obtain from (9) the formal power series

Choosing n =i+ 3 + k and v = p + ¢, we find by comparison with (7) that equation (5)
holds

In particular, for v = 0 we have
N ’ ' . n e o]
— n—k+1 n—k_m
ano(2) =(1-2) (k) mz=0m z™. » (13)

For n > k, these functions can be expressed by the Euler-Frobenius polynomials

n—1

E.(z) = (1 - 2z)"*! Z mt™ T = 2_: Z (n+1) (-1)(m+1—-v)"2"™

m=0 v=0

of degree n — 1 for n > 1 (cf. Chui [2] and Schoenberg [3]), namely

ano(z) = (:) 2En_i(2).

The polynomial character of (13) implies that the functions (5) are also polynomials,
which we call generalized Euler- Frobemus polynomials.
By means of the notation D = z - d , the polynomials E, have the representation

Eu(z) = ~(1- 2" D"(1-2)7,

which can be generalized in the following way.
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Lemma 2: The polynomials (5) have the representation .
_ n—k+1 " n-—v v . ) n—k—j -1
any(2) = (1 - 2) Z( . )(n_k_j)D’(1+D) i1-2)"t (14)

j=o N 7

Proof: If we use the equations

n-k-j . oo
(1+ D))" %7 = Z (n k - ) D and DHFi(1-2)' = z m'tizm
m=0

4 P
=0
and the substitution ¢ = k + v + j — n, we obtain
n—k—j . .
— k- :

5 (e

1=0 t
and (14) turns into (5) 8

Application: In [1] , there appear (in different notations) the (v +1) % (v+1))-
matrices ’

1 ... ... 1
z 1 ...

Y=|. . 7 |, (15)
; ooz 1

the direct sums Y,*(z) = I,-, & Y, (z) with

(I, OT
I“@Y,,—(O Yy))

where I, is the py-dimensional unit matrix with dummy Iy, and the products

Pa(z) =Y{"(2) - Y7(2) (16)
with n > 1. For clearness, we denote the functions (5) ﬁlore precisely by ak (2). Then
for the ((n + 1) x (n + 1))-dimensional matrices Pn(z), we obtain

Lemma 3: The entries of P,(z) are the polynomials a',:]-_i(z) (3,7 = 0,...,n),
where i is the row indez and j the column indez.

Proof: The matrices (16) satisfy the recursion

Pn+l(z) = (Il @ Pn(z))yn+l(z)~

n—t
nj

Denoting the entries of P,(z) by a

this equation implies a::i}‘j =1lforj=0,...,n+
1, 1.e. (2), and

j-1

n
ntlmi _ N n=(i-1) n—(i=1)
Qnii,; = Zanl + zz Qne
=0 =3
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fori =1,...,n+ 1. For j = 0, the last equation equals to (3). For j =0,...,n, we

subtract it from
n+1 T n+l 1 n+l -1
Qninj41 = Z Gne  *2 Z n
t=j+1

and obtain

a"t1- -t _ _ntl—i ntl—i
Ant1,541 = By, +(1—z)a >

P = %) = (11)

or already Py(z) = (1), the lemma is proved by induction il

i.e. (1). In view of

Further examples are

1 1 1
Py(z) = 2z z+1 2 R
224z 2z z+1
1 1 1 1
3z 2z +1 z+2 3

P3(z) = 322 + 3z 22452 5z+1 3z+3

22442242 422422 22244z 2244241
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