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A Counterexample in Hardy Spaces
with an Application to Systems Theory

V. Katsnelson and G. Weiss

Abstract. We know from elementary calculus that if f is a differentiable function on (0, c0)
with f(oo0) = 0, then lim; 4o zf(z) = —limz—icoz?f'(z) in the following sense: if the
second limit exists, then so does the first and they are equal. The existence of the first limit
does not imply the existence of the second, in general. It was hoped that the existence of the
first limit, together with the assumption that f belongs to the Hardy class H?, does imply the
existence of the second limit. This would have simplified certain results in systems theory. We
show by counterexample that this is not the case. More precisely, for each ¢ > 1 (including
q = o) we construct a function f in the Hardy space H? on the right half-plane such that
lime—yo0zf(z) = 0 and limsup,_ ., 2°|f'(z)| = oo. A special Blaschke product plays a
crucial role in this construction.
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1. Background and formulation of the problem

Let f be a differentiable function on (0, 00) with lim; .+ f(z) = 0. Then by L’Hopital’s
rule

. o 2 ¢

Jim zf(z) =— lim z°f(z) (1.1)

holds, in the following sense: if the second limit exists (as a finite number), then also

the first limit exists and they are equal. The existence of the first limit does not imply
)

the existence of the second, as the simple example f(z) = #2£- shows.

The following question arose in systems theory: Suppose f belongs to the Hardy
space H? on the right half-plane. Then does the existence of the first limit in (1.1)
guarantee the existence of the second limit (and hence the equality (1.1))? More details
about the connection with systems theory will be given in Section 2.

The aim of this paper is to give a negative answer to the above question, which
seems to necessitate rather subtle techniques. In fact, we prove a slightly more general
result, by considering instead of H? the Hardy spaces HP, with 1 < p < co. It turns
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out that the answer is negative for all p > 1 and positive for p = 1 (for p = 1 both sides
of (1.1) are zero).

We denote by € the open right half-plane in €. Let us recall the basic facts about
the Hardy classes H? onC., where 1 < p < co. For more details the reader may consult,

for example, Duren [4]. First suppose p < co. By definition, f € H? if f is analytic on
G.g. and

0<z<0o0

+o0
sup / |f(z + ty)|Pdy < oo. (1.2)

If we define || f||? as the expression in (1.2), then H? becomes a Banach space. If f € H?,
then for almost every real y, the limit f(iy) := lim¢ o f(e + iy) exists and

+ o0
P = / |f(iy)Pdy.

Moreover, f is representable by means of the Cauchy integral

1 i 1
f6) = 3 [ Sty o aw. (1.9
Formula (1.3) admits differentiation with respect to s:
. -1 [t 1
fi(s) = g/_w f(lw)m dw. (1.4)

Now we turn to the case p = co. The space H* consists of all bounded analytic
functions on €4 and it is a Banach space with the sup norm. The boundary function
y — f(iy) can be defined almost everywhere, as in the case p < oo, and its essential
supremum equals || f||. Formula (1.3) does not make sense in general.

It is casy to derive the affirmative answer to the problem mentioned earlier, for the
case p = 1. Indeed, if f € H!, then from the integral representation (1.3) and from the

Lebesgue dominated convergence theorem (take into account that fj;o 1 f(zy)l dy < o0)
it follows that

+oo
Jim 2/) = [ Sy (1.5)

Analogously, from the integral representation (1.4) it follows that

+o00
zli'rilooz:zfl(z) = - / fiy) dy. (1.6)
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Thus for a function f € H' the limits in (1.5) and (1.6) exist and moreover they are
both zero, because

+oo
[ fyay =o.

Therefore, (1.1) is true for all f € H'.

If f € HP with p > 1, then the limit in (1.5) need not exist. If it exists, then it may

be non-zero, as the simple example f(s) = 37 shows. Now let us state our negative

result for p > 1 in precise terms. Our main result is the following

Theorem 1.1. For every p € (1,00) there ezists an analytic function f, defined on
C4 such that

(i) fp € H for all ¢ > p (including ¢ = o0)

(it) lim; 4oz fp(z) =0

(iii) fp(z) is real for real z

(iv) limsup,_. 2% f,(z) = 0o and liminf; 4o 22 f)(z) = —oc0.

We give a constructive proof of this theorem in Sections 3 - 6.

A result stating that the existence of the first limit in (1.1) together with some mild -
condition on f implies the existence of the second limit in (1.1) is Tauberian by its
nature. The mild assumption on f is called a Tauberian condition. Our counterexample
shows that the condition f € HP?, with p > 1, is not a Tauberian condition. We have
already seen that f € H! is a valid Tauberian condition. The following proposition
gives another example of a Tauberian condition: f should have an analytic extension
to an angular domain around the positive real axis and the first limit in (1.1) should be
valid in this angular domain. This is satisfied, for example, by any rational function for

which the first limit in (1.1) exists. We need a notation for angular domains in € : for
any ¢ € (0, 7),

W) = {re?|r € (0,00), s € (- w+¢)}

Proposition 1.2. Suppose f is an analytic function on an angular domain W(3).

If
sf(s) =L (1.7)

|~'f|—'oo sEW(dJ)
with L finite, then for any ¢ < ¢

T $2
M_w M e’ fi(s) = (1.8)

Proof. For any € > 0 and any s €IC denote C.(s) = {¢ €IC : | — s| = ¢|s|} (this
is a circle around s). We can find an € > 0 sufficiently small such that C.(s) C W(%)
for all s € W(¢). Then by the Cauchy formula

) = £(0)

27” Cets) (€= )2
Since f(¢) = %(1 + p(¢)) where limj¢|_o p(¢) = 0, substituting into (1.9) we can obtain
(1.8)1

dc. (1.9)
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The following proposition gives yet another valid Tauberian condition: f should
have an analytic extension to € and its real part should be positive (such functions
occur often in electrical circuit theory).

Proposition 1.3. Suppose f is an analytic function on €y such that Re f(s) > 0
and f is not identically zero. If forz >0
liminf|xf(a:)| < 00, (1.10)

then, for any 0 < 9,9 < %, (1.7) and (1.8) hold, with 0 < L < co.

Proof. If g is an analytic function from the open unit disk D to €, then there is
a unique finite positive Borel measure p on [0,27) such that

2n
4 .
g(z) = / :iu — i du(a) + ¢ Im ¢(0).
0

Indeed,'this follows from the Herglotz representation of positive harmonic functions on
the disk, see Duren [4: p. 3] or Rudin [5: p. 262]. If f is analytic from € to itself, then

S

f(s) = g(ﬁ;:), where g is as above. Doing a little computation, we get the integral

representation (valid for all s €C5)

+0oo
1 w 2 )
= - — d .
f(s) = cs+ / (s—iw 1+w2>(1+w )do(w) + id, (1.11)
where ¢ 2 0, d € IR (in fact ¢ = p({0}) and d = Im ¢(0)) and ¢ is a finite positive Borel
measure on IR (see also Achieser and Glasmann [1: Section 69]

Until here we did not use (1.10). From (1.11) we see that Re(f(s) — cs) is the
Poisson integral of (1 + w?)do(w). Now (1.10) implies that ¢ = 0 and

+ o0
/(1+w2)da(w) =L < oo. . (1.12)

From here we see that lim; 1 f(z) exists and again by (1.10) this limit must be zero.
Thus we obtain the simple representation (valid for all s €C)

“+ o0

19 = [ 2 doe)

Now (1.7) and (1.8) follow from this representation, together with (1.12)#l

Here is an alternative short proof for Proposition 1.3: By the theorem of Carathéo-
dory, Julia and Wolff (see Burckel [2: pp. 203 - 206)), f satisfies (1.7) for any ¥ € (0, 7).
Now we can apply Proposition 1.2.

Our results are related to the following Tauberian thecorem proved in Weiss [9].
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Theorem 1.4. Let W be a Banach space and 1 < p < oo. Suppose that v €
LP([0,00), W) is such that

¢
1

sup - / [lv(e)||P do < oo. (1.13)

>0t

Let ¥ denote the Laplace transform of v. Then, with A positive,
) ¢
ll_rgz/v(a)da = Al-l_.nc':o AB(A), (1.14)
0

i.e., if one of the limits exists, so does the other and they are equal.

We mention that if the limit on the left is known to exist, then, by a well known
Abelian theorem, (1.14) is true regardless if (1.13) holds. The interesting case is when
only the limit on the right is known to exist. In [9] the following question was raised: Is
- it possible to omit the condition (1.13) from Theorem 1.4? For p € (1,2) this question
was answered in the negative in the same paper, via a family (indexed by p) of scalar
counterexamples. The most important case, p = 2, as well as p € (2, 00), was left open
in [9]. These cases can now be settled, also in the negative, using the main result of
this paper. For p = 1, Theorem 1.4 is not true, see Remark 5.9 in [9). For p = oo
the condition (1.13) becomes meaningless but (1.14) holds anyway, see again Remark
5.9 in [9]. For other Tauberian theorems about the Laplace transformation we refer to
Doetsch [3].

Proposition 1.5. For any p € [2,00) there ezists a function v, € LP[0,00) such
that the limit on the right-hand side of (1.14) ezists, but the limit on the left-hand side
does not ezist.

Proof. Let ¢ € (1,2] be such that ;7 + % = 1. Let v, be the inverse Laplace
transform of f; from Theorem 1.1. We have v, € LP?[0,00) by the Hausdorff-Young
theorem (see, e.g., [5: p. 277]). It is clear (by the definition of v,) that the limit on
the right of (1.14) is zero. If the limit on the left would exist, then by a simple Abelian
theorem (see, for example, Proposition 5.4 in [9]) sf,(s) would have an angular limit as
in (1.7), for any ¥ € (0, §). By Proposition 1.2 it would follow that :rzf;(z) has a limit

for z — +o00, which is a contradiction (according to Theorem 1.1) i

2. The connection with systems theory

We reproduce three definitions from Weiss [8] and [9]. Later in this section we shall
explain the role of these concepts in infinite dimensional systems theory.

Let T be a strongly continuous semigroup of operators on the Hilbert space X and
let A (with domain D(A)) denote its generator. We define the Hilbert space X, as D(A)
with the norm || - ||, = |[(Bf — A) - ||, where 8 € p(A) is fixed. This norm is equivalent
to the graph norm.
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Definition 2.1. Suppose Y is a Hilbert space. Then C € £(X,,Y) is called an
admissible observation operator for T if for some (hence for any) 7 > 0 the estimate

/ IC Tezol?dt < M, |lzolf?
0

holds, with M, >0 independent of zo € D(A).

We mention that in many cases of interest C is a non-closable operator, when
regarded as a densely defined operator on X.

Definition 2.2. With the above notation, the L-eztension of C is the operator
defined by

1 T
Crzo = lin})C;/T,zo do, (2.1)
0

for all zq in the domain
D(CL) = {zo € X : the limit in (2.1) exists}.
We define on D(C.) the norm

1 T
lzollbcyy = llzollx + sup || C= / T, zodo
re(0,1) T .

Y
Definition 2.3. With the notation of Definition 2.1, the A-eztenstion of C is the

operator defined by
Crzo = Alirf CAXAM - A) 'z (2.2)

(A is real), for all z¢ in the domain
D(Cy) = {1:0 € X’ the limit in (2.2) exists}.
Take Ag € IR such that [Ag,00) C p(A). We define on D(C}) the norm

lzollpecay = llzollx + sup [[CAMAL — A) ' zo|ly.
A> Ao

It is not difficult to show (see [8 - 10]) that with their new norms, D(Cr) and D(Cy) are
Banach spaces, and C;, and Cj are bounded operators from their respective domains
to Y. It can also be shown that

X, C D(Cx) C D(Cx) C X,

with continuous embeddings. Moreover, C, is an extension of C, which is an extension
of C. 1t is clear from the definition of admissibility that the operator ¥, : D(A) —
L%(]0,7],Y) defined by

(¥,z0)(t) = CTyxo for all t€[0,7]
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has a continuous extension to X, which we denote by the same symbol. It is not difficult
to show (using the concept of Lebesgue point of a function) that the operator Y, can
be represented as follows:

(¥rz0)(t) = Cp Tezo (2.3)

for every zo € X and for almost every ¢ € [0, 7]. We introduce the operator o, : X —
L%, ([0,00),Y) by formula (2.3), which makes sense for almost every t € [0,00). Then
the Laplace transform of $oozg is C(sI — A) ™! z.

Proposition 2.4. For any zo € D(CL) we have
Crzo = JJim CA (M — A) %x,.

Proof. Consider the function v(t) = e™“!W¥,z9, which for w large enough is in
L?*([0,00),Y). Its Laplace transform is o(s) = C((s + w)I - A)—l:z:g. The fact that
zo € D(CL) means that the limit on the left of (1.14) exists, and equals Cyzo. By the
Abelian theorem mentioned at the end of Section 1, s#(s) has the same angular limit
at +o00. Now by Proposition 1.2 we have

Jlm CA* (A +w)I - A)%zo = Crzo

which is equivalent to the identity to be proved il
Problem 2.5. Can the inclusion D(C) C D(Cy) be strict?

This problem was raised in [9]. Using the results from Section 1, we shall give an
affirmative answer to it in Example 2.7. Here is another, related problem raised in (10]
(with a prize) which is still open:

Problem 2.6. Is D(A) dense in the Banach space D(Cj)?
It is worth mentioning here that any z, € D(C\) for which the identity

Cazo = lim CA*(A] — A)" %z,
A 400

holds (in particular, any zo € D(CL)) can be approximated by elements of D(A) as
follows: zo = limx—4.00 A(M — A)™'z0, the convergence being in the norm of D(Cj).
A related fact, proved in (10}, is that D(A) is dense in D(Cy).

Example 2.7. We take X = L?[0,00) and T is the left shift semigroup on X,
e, (Tex)(€) = z(€ +t). The generator of this semigroup is A = :_E’ with domain
D(A) = H'[0,00). We take Y =IC and define C : D(4) — Y by Cz = z(0).
Then it is easy to see that the operator Vo, is given by (¥ooz)(t) = z(t), whence
(C(sI — A)~'z)(s) = #(s). Now it is clear that D(CL) consists of those v € L?[0, 00)
for which the limit on the left of (1.14) exists, while D(C} ) consists of those v for which
the limit on the right of (1.14) exists. By Proposition 1.5, the inclusion D(CL) C D(Cy)
is strict.

Now we recall very briefly some facts about regular linear systems, so that the
reader can get an idea from where the problems discussed earlier arose. An abstract
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linear system is a linear time-invariant system such that, on any finite time interval,
the operator from the initial state and the input function to the final state and the
output function is bounded. The input, state and output spaces are Hilbert spaces and
the input and output functions are of class L2 . For the detailed definition we refer
to Salamon [6], or to Weiss [9]. The input to output operator of any abstract linear
system can be described by a transfer function, which is an analytic operator-valued
function defined on some right half-plane in €. The transfer function of any abstract
linear system is well posed, meaning that it is bounded on some right half-plane (not
necessarily the same where it is defined). We do not distinguish between two transfer
functions defined on two different right half-planes, if one function is a restriction of the
other (thus, we are in fact dealing with equivalence classes of analytic functions).

Let ¥ be an abstract linear system, with input space U, state space X and output
space Y. Let T be the semigroup of &, i.e., the strongly continuous semigroup on X
which describes the evolution of the state of ¥ if the input function is zero. Let A
denote the generator of T. The Hilbert space X_; is defined as the completion of X
with respect to the norm ||z||-y = |[(8I — A)~z||, where 8 € p(A) is fixed. The space
X, was introduced earlier. We have

X1 C X C X,

and the semigroup T can be extended to a semigroup on X_;. These two semigroups
are isomorphic and we shall denote them by the same symbol. The generator of T on
X_, is an extension of A to X, also denoted A.

The state of ¥ at any moment 7 > 0 can be expressed by the formula

r

z(r) = T,z(0) + /T,_,Bu(a) do.
0

Here u € L} ([0,00),U) is the input function and B € L(U, X_,) is the control operator
of . We have z(7) € X and z(7) depends continuously on 7, on z(0) and on u. The
transfer function from the input to the state is (s — A)~!B.

If « = 0 and z(0) € X,, then the output function of £ on {0, c0) is

y(t) = CT.z(0).

Here C € L£(X,,Y) is the observation operator of £. It is an admissible observation
operator for T, as defined earlier.
Let G denote the transfer function of . It is called regular if the limit

Dv = ’\_lleG()\)v (2.4)

exists for every v € U (Aisreal). Then D € L(U,Y) is called the feedthrough operator of
G. If G is regular, then I is called a regular linear system, abreviated. The regularity
condition (2.4) can be formulated in many different ways, of which we mention the
following: T is regular if and only if the product C(sI — A)~! B makes sense for some
(hence for any) s € p(A), i.e.,

Ran(sI — A)™'B C D(CL).
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The proof of this fact is based on Theorem 1.4. In the above criterion, C; may be

replaced with Cy. Another equivalent condition to regularity is that any step response
of T has a Cesaro limit at ¢t = 0.

If ¥ is regular, then
G(s) = Ci(sI - A)'B+ D _ (25)

for any s € C with Res sufficiently large. Moreover, in the time domain, £ is completely
described by the equations

z(t) = Az(t) + Bu(t) (2.6)q
y(t) = Crz(t) + Du(t) (2.6)s

which hold for almost every t > 0 (in particular, z(t) € D(C}) for a.e. t > 0). z()
is the unique strong solution (in X_,) of equation (2.6),, for any given z(0) € X and
u € L{, ([0,00),U). The output function belongs to L2 _([0,0),Y). -

The operators A, B, C and D appearing in (2.6) are called the generating operators
of L, or its generators for short.

Now we turn to feedback, following [10]. Let U and Y be Hilbert spaces, suppose
G is-an L(U,Y)-valued well posed transfer function and let K € L(Y,U). K is an
admissible feedback operator for G if I — KG is invertible on some right half-plane
and its inverse is a well posed transfer function (equivalently, if I — GK has the same
property). Then the function G¥ defined by

GK(s) = G(s)(I - KG(s)) ™ (2.7)

is called the ‘closed loop transfer function corresponding to G and K.

Now suppose G is regular and let D be its feedthrough operator. If K is an admis-
sible feedback operator for G, then G¥ (given by (2 7)) is regular if and only if I - DK
is invertible (equwaJently, if and only if I — KD is invertible). If G¥ is regular, then
its feedthrough operator is

= (- DK)“D = D(I - KD)™. (2.8)

Under certain additional assumptions (e.g., if at least one.of the spaces U and Y is
ﬁmte-d:mensxonal), the invertibility of I — DK follows from the admissibility of K.

Figure 1. The closed loop system T

Let ¥ be an abstract linear system with transfer function G. If K is an admissible
feedback operator for G, then there exists a unique closed loop system X corresponding
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to £ and K, represented in Figure 1. £¥ is an abstract linear system and its transfer
function is G¥ from (2.7). For the precise definition of £X we refer to [10].

Now suppose I is a regular linear system with generators 4, B, C and D, and K
and TK are as before. If I — DK is invertible, then (as mentioned earlier) X is regular
and we can compute its generators via formulas which are similar to those for finite-
dimensional systems. Let AX, BX CK DK be the generators of £K. As we already
know, DX is given by (2.8). The formula for AX is

A¥z = (A+ BK(I - DK)™'C) =z (2.9)
defined for all z in the domain
D(A®) = {z € D(CL)Big| (A + BK(I - DK)™'C.)z € X} . (2.10)
The operators CX and BX are given by

CKz=(I-DK)'Crz  forall z e D(AK) (2.11)
B¥ = B(I - KD)™'. (2.12)

It is clear that in (2.9) - (2.11) C}, can be replaced by its extension Cy. To understand
(2.12) better, it should be pointed out that BX € L(u, X X)), where XK is the analogue
of X, for ¥ but in fact both B and BX are in L(U,W), where W is a Banach space
such that W € X_; N XX,. More precisely, W = (BI — A)W,, where W; is the closure
of D(A) in the Banach space D(C,). If Problem 2.6 would have an affirmative solution,
then we would have W) = D(C,) and the representation of BX would simplify. It is
interesting to mention that both W), and W are invariant under feedback, ie., if we
compute them for the closed loop system £X, we get the same spaces. For more details
see Section 7 of [10).
The A-extensions Cy and C¥X are related by

D(CK) = D(Cy) and CK = (I-DK)™'Cy. (2.13)

Unfortunately, we do not know of any such simple relationship between the L-extensions
of C and CX. It is formula (2.13) which makes the use of C; sometimes more convenient
compared to Cp.

Both A and AX can be extended to bounded operators from W, to W and formula
(2.9) remains valid for AX on W;, with the minor adjustment that C, has to be replaced
by its extension Cj.
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3. The idea of the proof: a special Blaschke product

The proof of Theorem 1.1 (the construction of the counterexample) is rather involved
and so we devide it into three sections, this being the first of them. Here we give an
outline of the proof.

The core of the proof of is a special Blaschke product By on €4, which depends on
the parameter p appearing in Theorem 1.1. We shall construct B, by specifying the

sequence {ax} of its zeros, which are all positive: 0 < a; < az < a3 < .... Then for any
selCy
ag — s
By(s) = [ =——.
1<k<0o0 ak +s

We shall specify the sequence {ax} in Section 4. Now we only list the properties of
{ax} and of B, which we need and we show how, if those properties are satisfied, the
functions f, of Theorem 1.1 can be constructed from B,. We denote

%
w = l (1 - l) .
T p
The sequence {ax} should have the following properties:
(A1) The “rough asymptotics” of (ax) is
ar = eV¥“(1+0(1)) (k- oo).

(A2) {ax} satisfies the “separation property”

Qk41 — Ak 1
= 140(1
. 2w\/,;( o(1))

(k — oo).

The Blaschke product B, should have the following properties:
(UE) (Upper Estimate) There exists a C' > 0 such that for all z € (0, 00)

By(z)l < C(1+2)~017/P),
(LE) (Lower Estimate) For any € € (0, ;) we define a neighbourhood N(e) of the set

{ax| k € IN} by
Ne) = |J Nea)

1<k <00

where
N(e,ak) = (ak - e(ak - ak_l), ar + e(ak+1 - ak)).

We require that for some (fixed) € € (0, 1) there should exist a c(¢) > 0 such that

|Bp(z)] > e(e)(1 +2)" 1P forall z € (0,00)\N(e).
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We explain how a Blaschke product B, satisfying the above requirements enables
us to construct f, for Theorem 1.1. We define f, onC, by

! 1 1
(s+1)1/p (In(s + 2)]/7 (Inln(s + 3)]2/» By(s) (3.1)

fp(sj =

(bra.nches of the multivalued functions are chosen is such a way that fp takes real values
on (0,00)). Since |Bp(iy)| =1 for real y, we see that fp € H® and

lfpGy)lP = (1+0(1))  (y— +o0).

lyl1n |y|(In1n fy[)2

This shows that f, € H?. Since for any ¢ > p we have H? ﬂ H> C H?, we have shown
that fp satisfies (i) of Theorem 1.1.

From (3.1) and (UE) we see that for all z > 0

1 1 1

5@ S O] G ops i 977

which implies (ii) of Theorem 1.1. Condition (iii) is clearly satisfied.
It remains to show that (iv) of Theorem 1.1 holds. For this, we need a lower estimate
of | f| in certain points. Since fy(ax) = fp(ak+1) =0,

max If,',(x)lz#' max |fp($)|

z€[ag,anq1] Qg3 — Ak z€[ax,ae4+

In particular, denoting by bg a point in [ax,ar+1) where the maximum of |fp| (in that
interval) is attained, we have

| fp(br)| >

fp (ak +2ak+1) ‘ | (3'2)

From properties (A1) and (A2) we derive that

Qk+1 —

1L _ l““"“ (L+0(1) (k= o). (3.3)

Qk41 — Gk

In order to estimate | f, (mﬂ from below, we use the fact that 22*24+1 i certainly
not in N(g), so that by property (LE)

: —(1-1/p)
ar + ak4 ax + Qg4 1
BP( 2 ) ‘ z ) [ 2 ] g C(e) [ax41 + 1] -1/p°

Hence by (3.1)

f (ak+ak+1 > oe)- 1 ) 1 . 1
P 2 - Qk+1 + 1 [ln(ak.H + 2)]1/}) [ln ln(’ak+‘1 + 3)]2/” ’
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Substituting this and (3.3) into (3.2), we obtain that for large k

1 (Inag)-tr
a? (Inlnag)?/P -

|£5(86)] 2 ci(e)

where ¢, (e) does not depend on k. From here, for large k,

(Inag)*—1/p
(Inlnag)2/»

Bl £ (be)l 2 ci(e)

Since the sign of f, changes at each zero, (iv) of Theorem 1.1 holds as well.

Numerical tests. For reasons which will be explained in Section 4, our choice of
Ak 15
exp(VE/w)
ar = 2w° / In AdA

exp(Vk—1/w)
(which can be computed easily). Using MATLAB, we have computed approiimately
the Blaschke product By(z) by multiplying the first 500 factors. From here, we have
computed zf;(z) for z € (10'*,10'®) and we have plotted the results in Figure 2. On

the horizontal axis we have log, z, which is better suited for visualization than z. The

zeros ax with'61 < k < 87 are v151ble in the graph. We can see that xfg(:c) converges
slowly to zero. -

xfy(x)
o
0.08}

0.061

0.021

, | b=
15 1515 | 1%.9 17 S 8

-0.02

-0.04

-0.06

-0.081

.0

Figure 2: The function z fo(z) for z between 10'° and 10'8

To test the lower estimate (LE), we have computed lBg(mk)h/l +my for 1 <k <
100, where my = 2(a;c + ax+1). The results are plotted in Figure 3, where we see that
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| B2(m)|v/T + my is slowly increasing, in particular, it must be bounded from below (in
Figure 3, the discrete set of values has been interpolated to form a continuous curve).

|Bz(”"x)l'"40 ™y

2

k

1.55 L : " ‘ L s " s " L
0 10 20 30 40 50 60 70 80 80 100

Figure 3: The function |Bz(mi)|v/T + my for k between 1 and 100

Acknowledgment. We are indebted to Hao Zhong, who studies at Ben-Gurion
University, for writing the programs needed to create Figures 2 and 3.

4. The comparison potential and atomization

In this section we shall define the sequence {ax} which determines B, and we shall
verify that it satisfies the conditions (A1) and (A2) from Section 3.

The requirements on the Blaschke product B, listed in Section 3 are such that the
argument of B, is not important for us, only its absolute value. Thus we may look at
the subharmonic function defined on €5 by

aip — S
ar + s

oo
In[By(s)] = Y In
k=1

and try to define {ax} in such a way that for all z > 0 (by property (UE))
1
In|By(z)| £ — (1 - ;) In(l1+z)+InC (4.1)
and for all z € (0,00) \ N(e) (by property (LE))

In|B,(z)| > - (1 - }1-’) In(1 + 2) + Inc(e). (4.2)
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The Riesz measure of the subharmonic function In|B,| is discrete and concentrated on
the set {ax|k € IN}. We shall define a continuous measure whose potential satisfies
the desired estimates on (0,00). Then we shall construct the sequence {ax} by an
“atomization procedure” of this continuous measure.

Define for all A >0
n(A) = w?ln? A (4.3)
where 12w? =1 — 1;, as in Section 3. We also define for all s €C

+

o0

A—s
A+s

V(s) = In dn(}). (4.4)

o

Luckily, V can be calculated explicitly. (V is not subharmonic inC4, because n decreases
on the interval (0, 1), but this is not important.) Integrating by parts in (4.4) we obtain

that forz > 0
+oo 1 ‘ ]
V(z) = —P.V./ (/\_z - ,\+z>n()\)dz\
0

where P.V. is the so-called principle value of the integral. Substituting (4.3) into the
last formula, we get

400
V(z) = —2w?P.V. / ST ln AdA.
0
By the change of variables A — A we obtain
+o00
V(z) = —2w2P.V. ,\2 (ln/\+lnx) dA.

0

We decompose (In A + Inz)? into the usual sum of three terms and notice that two of
them do not contribute to the integral (use the change of variable A — 1/\ to check
this):

+0012/\ +oo 1
n
/,\2_1‘»‘_0 and PV//\z_ld’\ 0
0 0
Thus, for all z > 0,
o0
In A

V(z) = —(lnx)4w2/ o1 dA.

This integral can be calculated explicitly:

7 Ina T n P A

n n n

ko= o n(ev [ 0)
0

—00 —o0
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(where arg A = 7 for A < 0). The last integral can be computed by means of residues:

T laa In A Ine™ g2
n n net™ " n
P.V. / 3 _ldz\ = mRes‘ NS v ) ot = -

—00

Thus we have obtained
V(z) = -r*w?lnz = - (1 - l) Inz. (4.5)
p

We shall obtain the sequence {ax} of zeros of B, by means of an “atomization” of
the measure dn generated by the function n from (4.3). This atomization is the most
delicate part of our construction. We obtain the estimates (4.1) and (4.2) for In |B,| by
comparing the function In |B,|.with the function V which has been calculated explicitly

in (4.5).
Denote ! :
Ak = exp{;x/l?} (k € INy). (4.6)
In other words, Ay is the solution of n(A) = k. Clearly
Ap :
/ dn(}) =1, (4.7)
A1

Le., dn is a probability measure on [Ax_1, As]. From (4.4) it follows that

V(z) = ZVk(a:) + R(z) (4.8)

k=1

R(z) = /lln‘i;

0

where R is defined by

z dn())

and
A

p -
Vi(z) = / lnl/\+z

Ak

dn()). (4.9)

Clearly .
lim R(z) = 0. (4.10)

r—+o00
Let ax be the gravity center of the probability measure dn on [Ag_1, Ak:
Ax
ag = / Adn()). (4.11)
Ak-1
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Let us prove that {a;} satisfies the conditions (A1) and (A2). First we estimate the
length of the interval [Ak_1, Ag]. By (4.6)

Ak = Moy = exp{‘%\/;} [l—exp{ (VE=T- V) }] (4.12)

Since vk — 1 — vk = ——(1 +0(1)) (k= o0)and 1 —e~* = z(1 + o(z)) for |z| — 0,
Ak = Akey = %;\/E M(l+0(1) (k- oo), (4.13)

or - A
F M= oo (1+0(1)) (k — o0). (4.14)

From (4.11) it follows that
Ak—1 < ak < Ag. (4.15)

The “rough” asymptotics (A1) of the sequence {ax} follows from (4.15), (4.14) and (4.6).
In order to obtain “the separation condition” (A2) we have to argue more accurately.
From (4.3) and (4.11)

ap = w? / In AdA.
Ak~

This implies
2(412(111 Ak=1)(Ak — Ako1) < ax < 2w2(1n/\k)(/\k — A1) (4.16)

The above estimate determines a much shorter interval of possible values of ax than
(4.15), asymptotically shorter by a factor of Vk/w, as one can check by a simple com-
putation using (4.14).

We want to get a more precise estimate for Ax — /\k_l, using (4.12). Since

T GO M B BT

we have

VETT-VE = —2 k724 0™ (k= co).

Hence

o (ATTB) | =1 L bk o

whence, by (4.6) and (4.12), we get that for ¥ — oo

_ o 1 —3/2
Ak = Ag—1 = A [2&) k 80? k= 4+ Ok )| . (4.17)
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Since In Ay = -:;kl/Q (see (4.6)), for k — oo we have
1
20%(In Ak )(Ak = Akm1) = Ax [1 - Ek_l/z + O(k")] . (4.18)
On the other hand,

1 1 1\'/?
InAe_q = —(k =12 = Zp1/2(1- =
k-1 w( ) wk ! k

or

InXe_p = %kl/z [(1 - %) + O(k-?)] (k — o0).

From here and from (4.17) it follows that for £k — oo
2?(1n A1)k — Aeot) = e [1 - ik“‘” + O(k“)] .
From this, together with (4.16) and (4.18) we obtain the asymptotic equality
ak = Ak (1 - ik‘l/z + O(k“)) (k = oo). (4.19)
This implies
Gk — aeey = Ok = Aey) (1 - ik‘l/z) + o1 O(E™).

Fiﬁa.lly, from this and (4.13) we obtain (A2).

We remark that from (4.19) and (4.17)

/\k—ak ;1

Ok 7R —-1/2 k .
N — 5 TOkT7) (k= o)

In other words, ax lies asymptotically at the center of the interval [Ax—y, Ax].
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5. The upper and lower estimates of the Blaschke product

Let B, be the Blaschke product constructed from the sequence {a;} of zeros defined in
(4.11). We shall obtain the estimates (4.1) and (4.2) (equivalent to (UE) and (LE)) by
comparing the function In|B,| with the function V defined in (4.4). We represent these
functions as series and then compare these term by term.

We denote
ag — s
bi(s) = t s
Clearly,
In|By(s) = > In|be(s)l- (5.1)
k=1
In view of (4.7),
Ax
In |ba(s)] = / In 2= dn ), (5.2)
Ar—

From here, with (4.9), it follows that for all k € IV and all z > 0

&\g '\h
A—=x Atz
Vi(z) — In [by(z)] = / In | 2= dn(A) - / In ’ak “Zldn(h).  (53)
z\g_l Ak—l
From (5.1) and (4.8) we obtain that for all z > 0
In|Bp(z)| — V(z) = Z [In|bk(z)| — Vi(z)] — R(z). (5.4)
k=1

In view of (4.10) we only have to estimate the infinite sum in (5.4).

Lemma. For any § > 0 there is a C(8) > 0 such that for anyt € R

2
l+¢t>6 = ln|1+t|—t+% < C8)t]P.

The proof of this lemma is left to the reader.

Let z € [1,00). Since {1,00) = U, cxcoolAk—1,Ax], there is an m € IN such that
z € [Am—1,Am]. We split the series in (5.4) into two sums as follows:

o] m+1
Yolnl@)-Vi(@)] = Y .+ S
k=1 kEN k=m-—1

Jkam|>1

We shall estimate these sums term by term, using formula (5.3). We have grouped
in the second sum the terms for which the variable A is close to z. To estimate the
integrand in (5.3) we use the Lemma, taking into account that
A- A- A A-
o aj +z - 14 Qg

=1+ and = .
ag — T ar — T ar + ar +z

(5.5)
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It is easy to see that

>26>0" for M€ [M1, M), 2 € [Am1,Am] and |k —m|>1

where § does not depend on k and m. It is‘als_o casy to see that

A
T2 >550 for Ae [ak=1,ax), T € [am—1,am] and all k,m > 1
ar + <
with some positive § not depending on k and m. By the Lemma, with t = _L;\:z and
t = :—ﬁ‘-‘;, and taking (4.7) into account, we obtain that for [k — m| > 1
Ak /\ Ag /\ (/\ )
—T Ak ag
dn()) — d AN+ =
/ln a—z| "V / M+ / (@ —oy2 ")
k-1 Akt .
A —axl?
1 max — = -
AE[Ae—1, 4] lak — .’E|3
and for all k,m € IN ' '
A \ Ax \ \ -
/m tz dn(A)—/ - /( 4 ()
ar +z ak + + z)?
k-1 Ax—1
A —ax)?

max ————
U aeleone Jak + 2P
where C) < oo is a constant not depending on A, k and z. Clearly

A —ak| € ag41 —ax.
AE[/\x 1,Ak] )

In view of (4.11), the integrals

Ak Ax

/:k_x n(\) and /Lﬂd_(g)

Ak Akt

vanish. (The points a; have been chosen in such a way that these integrals vanish.)
Thus, from the above inequalities it follows that for |k — m| > 1

J ol

k-1

A—12

ar — T

—In

lar + z

Atz )dn(_,\) : y

Ax

s%( 1 )/( _ak)an(/\’)+2C'1(a(k+—l'-J%)A—3.h

(ax —2)?  (as +2)2

k-1



we get that for [k — m| > 1.
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1 _ 2axz
) "~ (ak — z)%(ak +1)?

1
(ak +z)?

% ((ak —-z)?

A
/(’\ —ax)’dn(A) < (aksr — ax)?
Ar-a

Ax
A— A
/ (m iy S Y )dn(,\)
ay — T ar +
k-1
< 2aka:(ak2+1 —a;)? 120, lak+1 — axl?
(ax — z)%(ax + z)2 (ax — z)3
Invoking (A1), (A2) and (4.6), we get that for [k — m| > 1
/ (ln Az g ’\11 )dn(,\) ‘
ak — T ar+z
k-1 (5.6)
A3 1 A3
A +—. k
k3/2 |ap—z|3

1 .
S Cz (E ~. (ak — 1)2(/\1: + Z)2_

where C; < oo is a constant not depending on k and m. For z € [Am=1,Am] and
|k —m| > 1 the numbers |ax — z| and |Ax — Ap| are of the same order of magnitude. In
particular, : =
s 1 1
. <Oy
lak =2 = 7% Pk = A
where Cj is independent of k and m. From this and (5.6) (see also (5.3)) we derive the

inequality
S [Infeu(a)l - Vi(2)]
wE5 (5.7)
1 AR A 1 A}
< - kom —_ k
< Cq Z (k Ak = Aml2(Ak + Am)? + k3/2 lf\k—/\mls)

LEN .
le—m|>1

where Cy is independent of z and m. ‘

Let us show that the sum on the right-hand side of (5.7) is bounded above, with a
bound which is independent of m (and hence, independent of z). Using (4.6), it is not
difficult to check that

ﬁ. <{Cs ;—k fk>m+/m
|k_ mI Csmm_k 1fm—\/ﬁ<k<m+\/77
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where Cs < oo is independent of k¥ and m. From these estimates we derive that for

every m € IN
Z 1 A Am
2o B = Al £ An)?
lk-m|>1
IWOTAN 1A 132 m
< (2 —{ £ _m -k
| X k(Am)+ )OS D DI & m— k)
k<m—y/m k>m+ym "‘-~/IT_<:'T>";+\/R m
Analogously,
v L I
kEN k32 Ak = Am[®
lk—m|>1
A m3/? 1

1 A 1
<Gs k3/2 \3 + k3/2 + A3 k3/2 —_ kI3
k<m—y/m k>m+/m m—\/lv;-_<':f>n;+\/m

Using the expression (4.6) for A, it is not difficult to see that the sums on the right-
hand sides of the last two big inequalities are bounded by a constant not depending on
m. From here and from (5.7) it follows that (still assuming z € [Am-1,Am])

> [lnlb(e) - Vi(2)]| < Cs

|kEN
|k=mi>1

with Cg¢ independent of z and m.
Now by (5.4) and (4.10) we may write

m+1
In|By(z)| - V(z) = Y [In|be(z)| - Vi(z)]| < Cx

k=m-—1

where C7 < o0 is independent of = and m. Thus, estimating In |Bp(z)| — V(z) has been
reduced to estimating the sum of three terms. Since (see (5.5) and (A2)) for |k —m| < 1

Az ar — Qk—1 1
-1 < = 1 1
ar + } ar + 4w\/m( +o(1)) :

as m — oo, we have

. ) A4z
D D B s

lk—m]<1, 7 |

dn(A) =0.
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From here, taking into account (5.3), we derive that

m+1 Amt
In|By(z) - V(z) - [ Y Injz —ax| - / In|A —z|dn(A) | [ < Cs
k=m-—1 A2

where Cg < oo does not depend on z and m. We estimate the difference

’\m-f-l
> lnjz—a- / In|A — z|dn())
m—1<k<m+1 Am_2

by looking at the sum and at the integral separately. Although the integral here cannot
be calculated explicitly, it can be estimated easily. We use the expression (4.3) for n()):

/\m+| '\m+l

InA
/ln]:c—/\ldn(/\)=2w2 / lnlz—/\ll%-d/\
Am-2 Am-2 ) (:z:—»oo)
= %? / A ln|x—A|anA+o(l).
A A=z
A€ M2 m 4]
Because oA nA  Ina
NAm41 n N Am-2
—omtl T2 ¢ 2. Am
Am+1 — A T Am2 (2 € D=2, Am1])
and In|z — A| > 0,
nAmgy T '
g2 B Amt1 / Inlz — Al dA + o(1)
m+1
m-2
Amtt
< /lnlz—/\|dn(/\) (5.8)
Am-2
A T
< 220 / Infz — Al dA + o(1)
m-—2
Am-2

for z € [A;a=1, Am]. The last integral can be calculated:

Aﬂ'l-f-l
/ Injz — AldA = (Am41 — 2)In(Amg1 — 2) + (2 — Am—2)In(z = A\_2). (5.9)

/\m—z
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Here z € [Am—1,Am], and hence

1
5(’\"1 - ’\m—l) < ’\m+1 —z < 3(/\171 - /\m—l)

1
g(/\m - /\m—l) < ($ - /\m—2) < 3(’\m - ’\m—1)~

Thus,

|(/\m+l - 1:) ln(’\m+l - IE) - (’\m+l - :E) ln(/\m - /\m—l)l <3ln 3|’\m - ’\m—ll

‘(x —Am—2)In(z = Am—2) = (z = Am—z2)In(Am — A,,,_l)‘ < 3103|Am — Amel.

From here and from (5.9) it follows that for z € [Am—1, Am],

Am+1
/ Injz — A|dA =8| <61In3|Am — A1l

m-2

(5.10)

where 8, = (Am41—Am—2) (A —Am_1). From this and (5.8) we derive the inequalities

m I m
2w BAMHLs 102103 B Am+ 1 (Am = Am—1)
Am+1 Am+1
Amq,]
< / In|z — Aldn(})
Am-2
< %? o Am—2 6m +12w%1n3 0 Am—2 OAm = Amoi).
m-—2 /\m—Z
Since the values
m-— 1 ’\m
IDAm-2 ) dml)  and BAmELo )
Am—2 Amt1
are bounded as m — oo, we get
e s In A
2‘“2%%6"‘ +0(1) < f In|z — Aldn(}) < m?‘;—"';’ bm + O(1).
Xm-?

Using the expression (4.6) for Az, we obtain

In Ao ’ 1
2w =2 (A1 —/\m—2)=3+0(m> (m — oo).

/\m—2

(5.11)
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Thus, for m — oo we have the asymptotic estimates

22 BAm=2 5 g = Amor) + 0Q1)
m-—2

2&1”;—’"“ bm = 3In(Am — Am_1) + O(1).
m+1

From these and (5.11) it follows that

Amt
/ Inz — Aldn(A) = 31n |Am = Am_i]| < Co

m-2

where Cy is a constant not depending on z and m. Further, since
jz — ak] S 4(Am — A1) (k=m-1,m m+1)

we have
m+1

Z In|z - ax| € 3In(Am — A—1) + 31n4.

k=m-—1

On the other hand, if £ € [Am_1,Am] and |z — am| > €lam — am—1/|, then

1 1
|x_am+1| 2> Zl/\m_’\m—ll and |x_am—ll > Zl/\m_’\m—ll
and hence
m+1
Z In|z — ax] > 3In(Am — Am=1) — 3In4 — Ine.
k=m-—1

From (5.12), (5.13) and (5.10) we derive the estimates

m+1 Am 1

<C
> Infz—ax]~ / In|z — Al dn(A) {; _‘C°w_lne
k=m-—1 Aoz -

729

(5.12)

(5.13)

valid for |z — a| > €(am — am-1), where C)y < oo is a constant not depending on z, m

and . Comparing the last estimate with (5.12), we get the inequalities

S V(.’l:) + C]] if z S (0,00)

tnBy(z)] { 2 V(z) - Cin —lne if z € (0,00)\ N(e)).

These, together with (4.5) give the desired estimates (4.1) and (4.2).
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