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A Counterexample in Hardy Spaces 
with an Application to Systems Theory 

V. Katsnelson and G. Weiss 

Abstract. We know from elementary calculus that if  is a differentiable function on (0,00) 
with f(x) = 0, then lim....+xf(x) = - lim_+ x 2 f'(x) in the following sense: if the 
second limit exists, then so does the first and they are equal. The existence of the first limit 
does not imply the existence of the second, in general. It was hoped that the existence of the 
first limit, together with the assumption that I belongs to the Hardy class H 2 , does imply the 
existence of the second limit. This would have simplified certain results in systems theory. We 
show by counterexample that this is not the case. More precisely, for each q > 1 (including 
q = co) we construct a function f in the Hardy space H q on the right half-plane such that 

	

xf(x) = 0 and Jim sup_	x2 If'(x )I = oo. A special Blaschke product plays a 
crucial role in this construction. 
Keywords: Hardy classes, Blaschke products, Tauberian theorems, infinite dimensional sys-

tems, observation operators 
AMS subject classification: 30 D 55, 30 D 50, 93 C 25 

1. Background and formulation of the problem 

Let f be a differentiable function on (0, ) with	f(x) = 0. Then by L'Hopital's 
rule

urn xf(x) = - urn x2 f'(x)	 (1.1) 

	

x—. +oo	 X-.+OO 

holds, in the following sense: if the second limit exists (as a finite number), then also 
the first limit exists and they are equal. The existence of the first limit does not imply 
the existence of the second, as the simple example f(x) = 9^ shows. 

The following question arose in systems theory: Suppose f belongs to the Hardy 
space H2 on the right half-plane. Then does the existence of the first limit in (1.1) 
guarantee the existence of the second limit (and hence the equality (1.1))? More details 
about the connection with systems theory will be given in Section 2. 

The aim of this paper is to give a negative answer to the above question, which 
seems to necessitate rather subtle techniques. In fact, we prove a slightly more general 
result, by considering instead of H2 the Hardy spaces H, with 1 < p < 00. It turns 
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out that the answer is negative for all p > 1 and positive for p = 1 (for p = 1 both sides 
of (1.1) are zero). 

We denote by	the open right half-plane in C. Let us recall the basic facts about 
the Hardy classes H' on C+ , where 1 p	. For more details the reader may consult, 
for example, Duren [4]. First suppose p < 00. By definition, f E H P if f is analytic on 

and
-4. 

	

sup J lf(x+iy)ldy<oo.	 (1.2) 
0<1<

_

- 

If we define llf II P as the expression in (1.2), then H P becomes a Banach space. If  E H, 
then for almost every real y, the limit f(iy)	lim j o f(e + iy) exists and 

Ill li p = J 
Moreover, f is representable by means of the Cauchy integral 

f(s) =	L1(iw)iwsdui.	
(1.3) 

Formula (1.3) admits differentiation with respect to s: 

1 

	

=	-	f(iw)	 dw	 (1.4) 
7r	 (zw—s)2 

Now we turn to the case p = oc. The space H consists of all bounded analytic 
functions on C and it is a Banach space with the sup norm. The boundary function 
y -* f(zy) can be defined almost everywhere, as in the case p < oc, and its essential 
supremum equals Ilf ii . Formula (1.3) does not make sense in general. 

It is easy to derive the affirmative answer to the problem mentioned earlier, for the 
case p = 1. Indeed, if f E H', then from the integral representation (1.3) and from the 
Lebesgue dominated convergence theorem (take into account that f f( iy )I dy <oc) 
it follows that

+00 

	

lim xf(x) = / f(iy)dy.	 (1.5) 
X +00 J

 -CO 

Analogously, from the integral representation (1.4) it follows that 

lirnx2 f' ( r ) —ff(zy)dy.	 (1.6)
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Thus for a function f E H' the limits in (1.5) and (1.6) exist and moreover they are 
both zero, because

If(iy)dy = 0. 

Therefore, (1.1) is true for all f E H'. 
If  E HP with p > 1, then the limit in (1.5) need not exist. If it exists, then it may 

be non-zero, as the simple example f(s) fr shows. Now let us state our negative 
result for p > 1 in precise terms. Our main result is the following 

Theorem 1.1. For every p E (1, co) there exists an analytic function f,, defined on 
C+ such that 

(i) fp E H I for all q p (including q = co) 

(ii) lim....+ 00 xf(x) = 0 
(iii) f(x) is real for real x 
(iv) limsup_ 00 x 2 f,(x) = oo and liminf_+x 2 f,(x) = -. 

We give a constructive proof of this theorem in Sections 3 - 6. 
A result stating that the existence of the first limit in (1.1) together with some mild 

condition on f implies the existence of the second limit in (1.1) is Tauberian by its 
nature. The mild assumption on f is called a Tauberian condition. Our counterexample 
shows that the condition f E Hi', with p > 1, is not a Tauberian condition. We have 
already seen that f E H' is a valid Tauberiar, condition. The following proposition 
gives another example of a Tauberian condition: f should have an analytic extension 
to an angular domain around the positive real axis and the first limit in (1.1) should be 
valid in this angular domain. This is satisfied, for example, by any rational function for 
which the first limit in (1.1) exists. We need a notation for angular domains in?: for 
any	 E(0,.),

W() = {rer E (0,), 0 e (-+)}. 

Proposition 1.2. Suppose f is an analytic function on an angular domain W(). 
If

	

lim	sf(s) = L	 (1.7)
II — °°, 3EW(/)) 

with L finite, then for any

lim	s2f'(s) 	 (1.8) I ., I —cc , .sEW() 

Proof. For any C >0 and any .s EC denote Ce(s) = {( EC: - si = e I s I} (this 
is a circle around s). We can find an e > 0 sufficiently small such that Ce(S) C W(0) 
for all s e W(). Then by the Cauchy formula

f( 

	

1	1	()	d(.	 (1.9) f' (s) =	
JC(s) (( -S)' 

 

Since f(() = ( 1 + p(()) where lim 1(1_ p(() = 0, substituting into (1.9) we can obtain 
(1.8)1
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The following proposition gives yet another valid Tauberian condition: f should 
have an analytic extension to C and its real part should be positive (such functions 
occur often in electrical circuit theory). 

Proposition 1.3. Suppose I is an analytic function on	such that Ref(s) > 0
and f is not identically zero. If for x > 0 

liminfjxf( x )I < oo,	 (1.10) 
X—+00 

then, for any 0 <	< , (1.7) and (1.8) hold, with 0< L < 00. 

Proof. If g is an analytic function from the open unit disk D to C, then there is 
a unique finite positive Borel measure z on [0, 27r) such that 

2ir 
f &0 + z 

g(z) = J e" - di (c) + j Im g(0).z 
0 

Indeed, this follows from the Herglotz representation of positive harmonic functions on 
the disk, see Duren [4: p. 31 or Rudin [5: p. 262]. If  is analytic from C+ to itself, then 
f(s) = g(-), where g is as above. Doing a little computation, we get the integral 
representation (valid for all s EC) 

+00 

f(s) = cs+ 1( 1 .- 12)(1+w2)da(w)+id,	(1.11) 

where c 2 0, d E li? (in fact c = ,a({0}) and d = Img(0)) and a is a finite positive Borel 
measure on ii? (see also Achieser and Glasmann [1: Section 691 

Until here we did not use (1.10). From (1.11) we see that Re(f(s) - cs) is the 
Poisson integral of (1 + 2) da(w). Now (1.10) implies that c = 0 and 

f
(1+w 2 ) do, (w)	L < 00.	 (1.12) 

From here we see that lim...+ 00 f(x) exists and again by (1.10) this limit must be zero. 
Thus we obtain the simple representation (valid for all .s E C+) 

+00 

f(s)	
1+w2 I - =

	
do, (w). 

Now (1.7) and (1.8) follow from this representation, together with (1.12) I 

Here is an alternative short proof for Proposition 1.3: By the theorem of Carathéo-
dory, Julia and Wolff (see Burckel 12: pp. 203-206]), f satisfies (1.7) for any ,b E (0, ). 
Now we can apply Proposition 1.2. 

Our results are related to the following Tauberian theorem proved in Weiss (9].
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Theorem 1.4. Let W be a Banach space and 1 < p < 00. Suppose that v E 
L([O, oo), W) is such that

slip ^ / II v()II d <00.	 (1.13) 

Let denote the Laplace transform of v. Then, with ..\ positive, 

1,(,) urn 
-
i

dci = urn ))(A),	 (1.14) i-0 t	 A.-.00 
0 

i.e., if one of the limits exists, so does the other and they are equal. 

We mention that if the limit on the left is known to exist, then, by a well known 
Abelian theorem, (1.14) is true regardless if (1.13) holds. The interesting case is when 
only the limit on the right is known to exist. In [9] the following question was raised: Is 
it possible to omit the condition (1.13) from Theorem 1.4? For p E (1,2) this question 
was answered in the negative in the same paper, via a family (indexed by p) of scalar 
counterexamples. The most important case, p = 2, as well as p E (2, 00), was left open 
in [9 ] . These cases can now be settled, also in the negative, using the main result of 
this paper. For p = 1, Theorem 1.4 is not true, see Remark 5.9 in [9). For p = 00 
the condition (1.13) becomes meaningless but (1.14) holds anyway, see again Remark 
5.9 in [9]. For other Tauberian theorems about the Laplace transformation we refer to 
Doetsch [3]. 

Proposition 1.5. For any p E [2,00) there exists a function v, E LP I O , 00 ) such 
that the limit on the right-hand side of (1.14) exists, but the limit on the left-hand side 
does not exist. 

Proof. Let q E (1,2] be such that + 1 = 1. Let v, be the inverse Laplace 
transform of fg from Theorem 1.1. We have v, E LP [O, 00) by the Hausdorff-Young 
theorem (see, e.g., [5: p. 277)). It is clear (by the definition of v) that the limit on 
the right of (1.14) is zero. If the limit on the left would exist, then by a simple Abelian 
theorem (see, for example, Proposition 5.4 in [9]) sfq (s) would have an angular limit as 
in (1.7), for any 0 e (0, ). By Proposition 1.2 it would follow that x2 f,(x) has a limit 
for x —* +00, which is a contradiction (according to Theorem 1.1)1 

2. The connection with systems theory 

We reproduce three definitions from Weiss [8] and [9]. Later in this section we shall 
explain the role of these concepts in infinite dimensional systems theory. 

Let T be a strongly continuous semigroup of operators on the Hilbert space X and 
let A (with domain D(A)) denote its generator. We define the Hilbert space X 1 as D(A) 
with the norm Iii = [(flu - A) . [, where fl E p(A) is fixed. This norm is equivalent 
to the graph norm.
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Definition 2.1. Suppose Y is a Hubert space. Then C E £(X 1 , Y) is called an 
admissible observation operator for T if for some (hence for any) r > 0 the estimate 

fr
IICT,xo 112 dt <MIIxo[I2 

holds, with Mr > 0 independent of x 0 E D(A). 

We mention that in many cases of interest C is a non-closable operator, when 
regarded as a densely defined operator on X. 

Definition 2.2. With the above notation, the L-extension of C is the operator 
defined by

CLxO = iimC i JL xo da	 (2.1) 

for all x 0 in the domain 

D(CL) = { x0 E X the limit in (2.1) exists}. 

We define on D(C) the norm 

II XOIID(C,.) = li xolix + SUP CJTaxOd
 rE(0,I)	T

0	 y 

Definition 2.3. With the notation of Definition 2.1, the A-extension of C is the 
operator defined by

CAxO = lim CA(AI - A)'xo	 (2.2) 
A—+oo 

(A is real), for all x 0 in the domain 

D(CA ) = { 0 E X the limit in (2.2) exists}. 

Take A0 e JR such that [A0, ) C p(A). We define on D(CA ) the norm 

X OIID(CA) = li xolix + sup IICA(AI—A)—'xolly. 

It is not difficult to show (see [8 - 10]) that with their new norms, D(CL ) and D(CA ) are 
Banach spaces, and CL and CA are bounded operators from their respective domains 
to Y. It can also be shown that 

Xl C D(CA) c D(CA) c X, 

with continuous embeddings. Moreover, CA is an extension of CL, which is an extension 
of C. It is clear from the definition of admissibility that the operator 'P 7. D(A) 
L2 ([0, r], Y) defined by

('.P7.xo)(t) = CTxo	for all t E [0,r]
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has a continuous extension to X, which we denote by the same symbol. It is not difficult 
to show (using the concept of Lebesgue point of a function) that the operator or can 
be represented as follows:

('Px0)(t) = CLTjXO	 (2.3) 
for every x 0 E X and for almost every I E [0, T I . We introduce the operator : X —* 
L ( [0 , c ), Y ) by formula (2.3), which makes sense for almost every I E I0,cx,). Then 10
the Laplace transform of bx0 is C(sI — A) - ' xo. 

Proposition 2.4. For any x0 E D(CL) we have 

CL X O = lim CA 2 (J'J —A)2 X0. 
A—.+oo 

Proof. Consider the function v(t) = e 1tPxo, which for w large enough is in 
L2([0,00),Y). Its Laplace transform is i(s) = C((s + L.' )I - A)xo. The fact that 
xo E D(CL) means that the limit on the left of (1.14) exists, and equals Ctxo . By the 
Abelian theorem mentioned at the end of Section 1, se(s) has the same angular limit 
at +00. Now by Proposition 1.2 we have 

lim C.\2 ((A + w)I — A)-2 X0
= CLXO 

A—+oo 

which is equivalent to the identity to be proved I 
Problem 2.5. Can the inclusion D(CL) C D(CA) be strict? 

This problem was raised in [9). Using the results from Section 1, we shall give an 
affirmative answer to it in Example 2.7. Here is another, related problem raised in [10] 
(with a prize) which is still open: 

Problem 2.6. Is D(A) dense in the Banach space D(CA)? 

It is worth mentioning here that any x 0 E D(CA ) for which the identity 

CA xO = lim CA 2 (AI — A)2xo 
A —+ 

holds (in particular, any x 0 E D(CL)) can be approximated by elements of D(A) as 
follows: x 0 = lim A_+00 .\ ( .XI - A)'xo, the convergence being in the norm of D(CA). 
A related fact, proved in [10], is that D(A) is dense in D(CL). 

Example 2.7. We take X = L2 [0,00) and T is the left shift semigroup on X, 
i.e., (Tx)() = x(e + I). The generator of this semigroup is A =	, with domain dC 

D(A) = H'[O,00). We take Y =IC and define C : D(A) —i Y by Cx = x(0). 
Then it is easy to see that the operator 'I' is given by (,o x)(I) = x(t), whence 
(C(sI - A)'x)(s) = i(s). Now it is clear that D(CL) consists of those v E L 2 (0, 00) 
for which the limit on the left of (1.14) exists, while D(CA ) consists of those v for which 
the limit on the right of (1.14) exists. By Proposition 1.5, the inclusion D(CL) C D(CA) 
is strict. 

Now we recall very briefly some facts about regular linear systems, so that the 
reader can get an idea from where the problems discussed earlier arose. An abstract
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linear system is a linear time-invariant system such that, on any finite time interval, 
the operator from the initial state and the input function to the final state and the 
output function is bounded. The input, state and output spaces are Hubert spaces and 
the input and output functions are of class For the detailed definition we refer 
to Salamon [6], or to Weiss [9]. The input to output operator of any abstract linear 
system can be described by a transfer function, which is an analytic operator-valued 
function defined on some right half-plane in C. The transfer function of any abstract 
linear system is well posed, meaning that it is bounded on some right half-plane (not 
necessarily the same where it is defined). We do not distinguish between two transfer 
functions defined on two different right half-planes, if one function is a restriction of the 
other (thus, we are in fact dealing with equivalence classes of analytic functions). 

Let E be an abstract linear system, with input space U, state space X and output 
space V. Let T be the semigroup of E, i.e., the strongly continuous semigroup on X 
which describes the evolution of the state of E if the input function is zero. Let A 
denote the generator of T. The Hubert space X_ 1 is defined as the completion of X 
with respect to the norm II x II_i = II()3I - A ) ' x II, where fl E p(A) is fixed. The space 
X 1 was introduced earlier. We have

X, c X C X_i 

and the semigroup T can be extended to a semigroup on X_ 1 . These two semigroups 
are isomorphic and we shall denote them by the same symbol. The generator of T on 
X_ 1 is an extension of A to X, also denoted A. 

The state of E at any moment r > 0 can be expressed by the formula 

x(r) = Trx(0) + ITT_u 

Here u E L([0,00),U) is the input function and BE £(U,X_ 1 ) is the control operator 
of E. We have x(T) E X and x(r) depends continuously on r, on x(0) and on tz. The 
transfer function from the input to the state is (sI - A)-'B. 

If u = 0 and x(0) E X 1 , then the output function of E on [0, ) is 

y(t) = CTx(0). 

Here C E £(X1 , Y) is the observation operator of E. It is an admissible observation 
operator for T, as defined earlier. 

Let G denote the transfer function of E. It is called regular if the limit 

Dv = lim G(A)v	 (2.4) 

exists for every v E U (.\ is real). Then D E £(U, Y) is called the feedthrough operator of 
G. If G is regular, then E is called a regular linear system, abreviated. The regularity 
condition (2.4) can be formulated in many different ways, of which we mention the 
following: E is regular if and only if the product CL(s I — A) - 'B makes sense for some 
(hence for any) .s E p(A), i.e.,

Ran (sI-A) 1 B C D(CL).
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The proof of this fact is based on Theorem 1.4. In the above criterion, C. may be 
replaced with CA . Another equivalent condition to regularity is that any step response 
of E has, a Cesàro limit at t = 0. 

If E is regular, then

G(s) = CL(sI - A) — 'B + D	 (2.5) 

for any .s E C with Re s sufficiently large. Moreover, in the time domain, E is completely 
described by the equations

(t) = Ax(t) + Bu(t)	 (2.6) 
Y( t )	CL x(i) + D u(t)	 (2.6)b 

which hold for almost every t > 0 (in particular, x(t) E D(CL) for a.e. t > 0). x(.) 
is the unique strong solution (in X_ 1 ) of equation (2.6)a, for any given x(0) E X and 
u E L([0, oo), U). The output function belongs to L', QO, oo), Y). 

The operators A, B, C and D appearing in (2.6) are called the generating operators 
of >, or its generators for short. 

Now we turn to feedback, following [10]. Let U and Y be Hubert spaces, suppose 
G is an 12(U, Y)-valued, well posed transfer function and let K E £(Y, U). K is an 
admissible feedback operator for G if I — KG is invertible on some right half-plane 
and its inverse is a well posed transfer function (equivalently, if I - GK has the same 
property). Then the function G' defined by 

G K(s) = G(s)(I - KG(s))'	 (2.7) 

is called the closed loop transfer function corresponding to G and K. 
Now suppose G is regular and let D be its feedthrough operator. If K is an admis-

sible feedback operator for G, then GK (given by (2.7)) is regular if and only if I — DK 
is invertible (equivalently, if and only if I — KD is invertible). If G" is regular, then 
its feedthrough operator is 

D'< = (I—DK)'D = D(I—KD)'.	 (2.8) 

Under certain additional assumptions (e.g., if at least one .of the spaces U and Y is 
finite-dimensional), the invertibility of I - DK follows from the admissibility of K. 

Figure 1. The closed loop system E'< 

Let E be an abstract linear system with transfer function G. If K is an admissible 
feedback operator for G, then there exists a unique closed loop ojstem E K corresponding
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to E and K, represented in Figure 1.	is an abstract linear system and its transfer
function is GK from (2.7). For the precise definition of E" we refer to [10]. 

Now suppose E is a regular linear system with generators A, B, C and D, and K 
and EK are as before. If I - DK is invertible, then (as mentioned earlier) FK is regular 
and we can compute its generators via formulas which are similar to those for finite-
dimensional systems. Let A K , B h , C K , D K be the generators of E K . As we already 
know, DK is given by (2.8). The formula for AK is 

AKx	(A+BK(I—DK)' CL) X	 (2.9) 

defined for all x in the domain 

D(A K ) = {x E D(CL )Big (A + BK(I - DK)'CL )x E X}.	(2.10) 

The operators CK and BK are given by 

C Kx = (I - DK) - 'CLX	for all x E D(A K )	 ( 2.11) 

	

B K = B(I - KD).	 (2.12) 

It is clear that in (2.9) - (2.11) CL can be replaced by its extension CA . To understand 
(2.12) better, it should be pointed out that BK E £(u, X 1 ), where X! 1 is the analogue 
of X_ 1 for K, but in fact both B and BK are in £(U, W), where W is a Banach space 
such that W C X_ 1 fl X! 1 . More precisely, W = ( 131 - A)W1 , where W1 is the closure 
of D(A) in the Banach space D(CA ). If Problem 2.6 would have an affirmative solution, 
then we would have W1 = D(CA ) and the representation of BK would simplify. It is 
interesting to mention that both W1 and W are invariant under feedback, i.e., if we 
compute them for the closed loop system EK, we get the same spaces. For more details 
see Section 7 of [10]. 

The A-extensions CA and CK 
A are related by 

	

D(C) = D(CA )	and	CJ = (I—DK)'CA .	( 2.13) 

Unfortunately, we do not know of any such simple relationship between the L-extensions 
of C and C". It is formula (2.13) which makes the use of CA sometimes more convenient 
compared to CL. 

Both A and AK can be extended to bounded operators from W1 to W and formula 
(2.9) remains valid for AK on W1 , with the minor adjustment that CL has to be replaced 
by its extension CA.



A Counterexample in Hardy Spaces	715 

3. The idea of the proof: a special Blaschke product 

The proof of Theorem 1.1 (the construction of the counterexample) is rather involved 
and so we devide it into three sections, this being the first of them. Here we give an 
outline of the proof. 

The core of the proof of is a special Blaschke product B,, on d, which depends on 
the parameter p appearing in Theorem 1.1. We shall construct B,, by specifying the 
sequence {ak} of its zeros, which are all positive: 0 < a 1 < a2 <a 3 < .... Then for any 
5 E C+

B(s)= [J a  
a1< k< 00  
k+s 

We shall specify the sequence {a k } in Section 4. Now we only list the properties of 
{ a,} and of B,, which we need and we show how, if those properties are satisfied, the 
functions 1,, of Theorem 1.1 can be constructed from B,,. We denote 

	

11	i\ w= —ii--

	

ir\	p 

The sequence {a k } should have the following properties: 

(Al) The "rough asymptotics" of (a k ) is 

ak = e"(1 + 0(1))	(k - oo). 

(A2) {ak} satisfies the "separation property" 

ak+1—ak	1 

=
(1 + o(1))	(k - oo). 

The Blaschke product B,, should have the following properties: 

(UE) (Upper Estimate) There exists a C > 0 such that for all x E (0, oo) 

IB,,(x)I < C(l + 

(LE) (Lower Estimate) For any e E (0, ) we define a neighbourhood N(e) of the set 
{ak I k € IV} by

N(e) = U N(e,ak) 
I <k<oo 

where
N(E,ak) = (ak — e(ak —ak_I), a +c(ak+1 —ak)). 

We require that for some (fixed) e E (0, ) there should exist a c(e) > 0 such that 

	

B,,(x)I ^: c(e)(1 + x)'"	for all x € (0,00) \ N(e).
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We explain how a Blaschke product B,, satisfying the above requirements enables 
us to construct 1, for Theorem 1.1. We define fp on C+ by 

fr(s)
= (s+1)' /P [ln(s+2)]h/P [lnln(s+3)J21P B,,(s)

	(3.1) 

(branches of the multivalued functions are chosen is such a way that f,, takes real values 
on (0, oo)). Since IBp(iy)I = 1 for real y, we see that 1, E H and 

If,,(iy)I" 
=	In I y I( inln IyI)2 

(1+o(1))	(y	±oo). 

This shows that f,, E H". Since for any q > p we have H" fl H C H, we have shown 
that 1, satisfies (i) of Theorem 1.1. 

From (3.1) and (UE) we see that for all x > 0 

f,, (x)	c 
ix	ii [ln(x + 2)] h /P [lnln(x+ 3)]2/P 

which implies (ii) of Theorem 1.1. Condition (iii) is clearly satisfied. 
It remains to show that (iv) of Theorem 1.1 holds. For this, we need a lower estimate 

of IfI in certain points. Since f,,(a k ) = fp(ak+I) = 0, 

max	1f,(x)I ^:	
2
	max	ifp(x)i. 

x E[a , a k+,J	 - ak zE[ak,ak+I] 

In particular, denoting by bk a point in [ak,ak+1) where the maximum of 1f1 (in that 
interval) is attained, we have

\I 
if( bk)i ^	

2	IfP (ak + 2 ak+l
ak+1 -aj	 )	

(3.2) 

From properties (Al) and (A2) we derive that 

1	2	
(1 + o(l))	(k	oo).	 (3.3)ak+I - a 

In order to estimate	 ( 
If	
k+°k.j-I )  

I	2	from below, we use the fact that ak+ak+I is certainly 2 
not in N(e), so that by property (LE)

—(1 
(ak + ak+I)	 [ak +	—1/p) 

> e(c)
1 B,,	

2	- 
> c(s) 

L	2	[ak	+ 1]1-1/P 

Hence by (3.1) 

fp
 ( )

> c(c). 
-	a+i + 1 [ln(a k + 1 + 2)] u /P [lnln(k I + 3)]2/
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Substituting this and (3.3) into (3.2), we obtain that for large k 

1f( bk)I 2 CI(E) a (in in ak)2/P 

where c1 (E) does not depend on k. From here, for large k, 

b	
(lnak)i_u/P 

If( bk)I 2 c(c)	 -.-+ Co. 
(in in ak)2/P 

Since the sign of 1, changes at each zero, (iv) of Theorem 1.1 holds as well. 

Numerical tests. For reasons which will be explained in Section 4, our choice of 
ak is

exp( //(.J) 

ak = 2w2	J	ln.XdA 

exp( JT/) 

(which can be computed easily). Using MATLAB, we have computed approximately 
the Blaschke product B2 (x) by multiplying the first 500 factors. From here, we have 
computed xf2 (x) for x E (iO', 10 11 ) and we have plotted the results in Figure 2. On 
the horizontal axis we have 1092 z, which is better suited for visualization than x. The 
zeros a k with'Gl < k < 87 are visible in the graph. We can see that xf2 (x) converges 
slowly to zero.

Figure 2: The function 112(x) for x between 10 15 and 1018 

To test the lower estimate (LE), we have computed B2(mk)IV'l + Mk for 1 k
100, where ink = (ak + ak+i) . The results are plotted in Figure 3, where we see that
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1B2 (m k )k/l + Mk is slowly increasing, in particular, it must be bounded from below (in 
Figure 3, the discrete set of values has been interpolated to form a continuous curve). 

U	10	20	30	40	50	60	70	80	90	100 

Figure 3: The function 1 B2(mk)Iv'l + Mk for k between 1 and 100 
Acknowledgment. We are indebted to Hao Zhong, who studies at Ben-Gurion 

University, for writing the programs needed to create Figures 2 and 3. 

4. The comparison potential and atomization 
In this section we shall define the sequence {ak} which determines B,, and we shall 
verify that it satisfies the conditions (Al) and (A2) from Section 3. 

The requirements on the Blaschke product B,, listed in Section 3 are such that the 
argument of B,, is not important for us, only its absolute value. Thus we may look at 
the subharmonjc function defined on C by

l ak - 
S 

ln I Bp( s )I =	ln
k=1	 +s 

and try to define { ak } in such a way that for all x > 0 (by property (UE)) 

	

ln I Bp( x)I 5 _(l_)ln(l+x)+lnC	 (4.1) 

and for all x E (0, no) \ N(e) (by property (LE)) 

	

In IBp (x)I ^: - (1 - I) ln(l + x) + in c(e).	 (4.2)
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The Riesz measure of the subharmonic function in IBI is discrete and concentrated on 
the set {akl k E 1)V}. We shall define a continuous measure whose potential satisfies 
the desired estimates on (O,00). Then we shall construct the sequence {ak} by an 
"atomization procedure" of this continuous measure. 

Define for all A > 0
n(A) = w2 In  A	 (4.3) 

where 7r22 1 - , as in Section 3. We also define for all s EC+ 

+00
— 

V(s) 
=	

in A s i- dn(A).	 (4.4) 1 
Luckily, V can be calculated explicitly. (V is not subharmonic in C+, because n decreases 
on the interval (0, 1), but this is not important.) Integrating by parts in (4.4) we obtain 
that for x>0

+00 

V(x) = —P.V.  I (A x	+_X 

where P.V. is the so-called principle value of the integral. Substituting (4.3) into the 
last formula, we get

	

V(x) =	2 p•• f A2 
X 

X2 In  A dA. 

By the change of variables A - xA we obtain 

V(x) = —2w2P.V. I A2' 1 (In A+inx)2dA. 

We decompose (in A + in x) 2 into the usual sum of three terms and notice that two of 
them do not contribute to the integral (use the change of variable A - 1/A to check 
this):

+002	
and	P.V.JA211dA=0. 

Thus, for all x > 0,
InA V(x) = —(lnx)2 I A21 dA. 

This integral can be calculated explicitly: 

2	-'1 dA =	dA = Re P.V.(

	 +00

A2 	dA f A	 )
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(where arg A = ir for A < 0). The last integral can be computed by means of residues: 

+00	 - 
f mA	 In A	.lne P.V.	 dA = irzRes	 = irz 7r 2 
 A2 - 1	 A=-, A 2 - 1	2er	2 

Thus we have obtained

V(x) — 2 w2 inx = - (i -
	

mx.	 (4.5) 
Pi ) 

We shall obtain the sequence {ak } of zeros of B,, by means of an "atomization" of 
the measure dn generated by the function n from (4.3). This atomization is the most 
delicate part of our construction. We obtain the estimates (4.1) and (4.2) for in IB,,l by 
comparing the function In IB p Iwith the function V which has been calculated explicitly 
in (4.5). 

Denote

Ak = exp{v'}	(ke No) .	 (4.6) 

In other words, A k is the solution of n(A) = k. Clearly 

Jdn(A) = 1,	 (4.7) 
Ak_I 

i.e., dn is a probability measure on [Ak_ I , Akj. From (4.4) it follows that 

V(x) =	V(x) + R(x)	 (4.8) 

where R is defined by

R(x) 
=

^ A 
+ x 

and
A  

Vk(x) f	A  =	in	dn(A).	 (4.9) 
Ak_I	

I A + x ^ 

Clearly
urn R(x) = 0.	 (4.10) 

Let a, be the gravity center of the probability measure dn on [Ak_I, Ak]: 

a 
= J Adn(A).	 (4.11) 

Ak_I
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Let us prove that {ak } satisfies the conditions (Al) and (A2). First we estimate the 
length of the interval [A_ ' , Ak). By (4.6) 

Ak - Akl = ex{-v'r} [i _exp{! (v'i- 
/) }].	

(4.12) 

Since /i- /i = --,5	

1

(1 + 0(1)) (k -	) and 1 - e_ = z(1 + o(z)) for zI --+ 0, 

	

Ak - Ak_I =	Ak(1+O(l))
2wv 

	

-	Ak 
Ak - Aki - 2w2lnA (1 +o(l)) 

From (4.11) it follows that

AkI < a, < A k .

or

(k - oo),	 (4.13) 

(k	).	 (4.14) 

(4.15) 

The "rough" asymptotics (Al) of the sequence {ak} follows from (4.15), (4.14) and (4.6). 
In order to obtain "the separation condition" (A2) we have to argue more accurately. 
From (4.3) and (4.11)

a = 2w2 J lnAdA. 
Ak_I 

This implies

2w 2 (In Ak_,)(Ak - A k_I) < ak < 2w 2 (lnAk)(Ak - A k_I) . ( 4.16) 

The above estimate determines a much shorter interval of possible values of ak than 
(4.15), asymptotically shorter by a factor of V'/w, as one can check by a simple com-
putation using (4.14). 

We want to get a more precise estimate for Ak - A k_I, using (4.12). Since 

	

/i_ /= —k"2 
[i1)1/2] = 

—k 1 ' 2 [i _ . (i -	+O(k_2))] 

we have
- VT = - 1_ k—' /2 + O(k 3 " 2 )	(k - 2 

Hence

exp li (/f
-) } 

=1 - i k_112+k_1 +O(k312) 

whence, by (4.6) and (4.12), we get that for k - 

Ak - A k_I = Ak 
1 

k 112 -	k' + O(k_3/2)].	(4. 17) 12w
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Since inAk = I k 1I2 (see (4.6)), for k -+ oo we have 

2w 2  (In Ak)(Ak — A k_I) = Ak 1 1 - Ik_1/2 + 0(k -1 )	 (4.18) (4.18) [4w 

On the other hand,

/	1 1/2 
lnAk_i = !(k -I 	= .-kh/2 (i - 

W 

or

'flAk_i = k' /2 I(i —
	

+ 0(k -2)
I
	(k —+

 2k)  
From here and from (4.17) it follows that for k — 

2L,,2 (In A k_i)( A k — A k_I) = Ak I
i — Ik_2 + 

4w 

From this, together with (4.16) and (4.18) we obtain the asymptotic equality 

-	 a = Ak (i —	k_1/2 + 0(k_ 1 ))	(k —	).	 (4.19) 

This implies

ak — a_ = (Ak — A k_i) (i — Ik_1/2) + Ak_iO(k') 

Finally, from this and (4.13) we obtain (A2). 

We remark that from (4.19) and (4.17) 

A k — 
ak+ O(k' /2 )	(k .. 

	

Ak — Ak_I	2 

In other words, ak lies asymptotically at the center of the interval [Ak_ i , Ak].
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5. The upper and lower estimates of the Blaschke product 
Let B be the Blaschke product constructed from the sequence { ak} of zeros defined in 
(4.11). We shall obtain the estimates (4.1) and (4.2) (equivalent to (UE) and (LE)) by 
comparing the function in IBI with the function V defined in (4.4). We represent these 
functions as series and then compare these term by term. 

We denote
ak - S 

bk( s ) =
aj + S 

Clearly,
CO 

ln I Bp( s )I =	ln I bk( s ) I .	 (5.1) 

In view of (4.7),

In Ibk(s)I 
= f in :

	
dn().	 (5.2) 

Ak_i 

From here, with (4.9), it follows that for all k E .I'V and all x > 0 

Vk(x)—lnlbk(x)l 
= J ln dn(A) -f ln dn(A).	(5.3) 

Ak_i	 Ak_i 

From (5.1) and (4.8) we obtain that for all x > 0 

In B(x)I - V(x) =	[In Ibk (x)I - Vt(x)] - R(x).	 (5.4) 

In view of (4.10) we only have to estimate the infinite sum in (5.4). 
Lemma. For any 6 > 0 there is a C(6) > 0 such that for any t E JR 

I1+tI^! 6 =	ln I 1 + t I- t +	< C(6)pt3. 

The proof of this lemma is left to the reader. 
Let x e [1,). Since [1,00) = U1<k<,Ek-1,k1, there is an in E W such that 

E [Am_i,)im]. We split the series in (5.4) into two sums as follows: 
00	 m+1 

[lnIbk (x)I—Vk (x)] =	... + 
k=1	 kE JV	 km-1 

Ik-,I>i 

We shall estimate these sums term by term, using formula (5.3). We have grouped 
in the second sum the terms for which the variable A is close to x. To estimate the 
integrand in (5.3) we use the Lemma, taking into account that 

A — x	 A — at	 A + x	A — at =1+	 and	 =1+	.	(5.5) 
a — x	a—x	 ak+x	ak+x
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It is easy to see that

> 0	for A e [Ak_1,Ak], x  [Am_i,Am] and 1k—mI >1 

where 5 does not depend on k and rn. It is also easy to see that 

A+X 
> 6 > 0	for A E [ak_1, ak], x  [a,,,-,, a,,,] and all k,rn>1

ak+xI - 

with some positive S not depending on k and m. By the Lemma, with t =	and 
t =	and taking (4.7) into account, we obtain that for 1k - ml > 1 

A 	 Ak	 A  
I P	A—x1	 A_akd(A)+1 J (A—at)2 I / 1n	Idn(A)— dn( A) 

Iak — xI	 f a-x	2	(ak-x)2 
k-I	 Aki	 Ak_i 

C 1 max IA - at I3 
<

AE[Ak_I,Ak) at - xI3 

and for all k,m E W 

Ak	 Ak	 Ak 

I ml l	
dn(A) 

A+x If A_akd(A)	1	(A—at)2 
I 

ak+ x I	-	ak+x	2 J (ak+x)2( 
k-i	 Ak_i	 Ak_I 

IA - at I3 <C 1 max	
+xI3 AEIAk_i,Ak) Ia*  

where C1 <00 is a constant not depending on A, k and x. Clearly 

max IA — akl < a	—at. 
AE[Ak_iAk] 

In view of (4.11), the integrals 

fA — at	 and	I 
J a—x	 J a+x 

Ak_I	 Ak_i 

vanish. (The points a, have been chosen in such a way that these integrals vanish.) 
Thus, from the above inequalities it follows that for 1k - ml > 1 

A  

f (
In 

A—x	A-4-x\ —ln	 dn(A) 
lak — x	axJ 

k-i

Ak 
if	1	•1	\ 

- 2 (ak - x)2	(at + X)2) f (A - ak)2dn ( A ) +	
, (a+ - ak) 3 

(ak - x)3 
k-i
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Since.
if	1	1	\	2a-- 

2 (ak - x) 2 - (ak +X)2) = (ak — x)2 (ak +x)2 
and

Ak 

	

f(A - ak)2 dn(A) < (a	- ak)2 

Ak_I 

we get that for 1k - ml > 1, 

Ak	 I 
In I f I 

A_x	
In	

IIA+x) 
I - 

	

\ Vk—I	Iak+x 
k-I	 I 

2akx(ak+I —ak) 2	Iak+1	akI3 
+2C1 

(ak — x) 2 (ak+x)
2 
	 (ak—x) 

Invoking (Al), (A2) and (4.6), we get that for 1k - ml > 1 
Ak

A  A+x\ 

j 
In	In	jdn(A) 

J \ a—x ak+xJ 
k-I .6 

/1	A3x 1	A3 
< 

C2 _ (a - x)2(Ak + x)2 + 	G k3/ Iak — xI 
where C2 < __ is a constant not depending on k and m. For x E [Am_i,Am] and 
1k - ml> 1 the numbers j ak - x and jAk - An  are of the same order of magnitude. In 
particular,	 S 

	

1	
^C3	

1 
Iak - x l	Ak - AmI 

where C3 is independent of k and rn. From this and (5.6) (see also (5.3)) we derive the 
inequality

[lnlb(x)j - Vk(x)] 
At  W 

Ik-mI>I	
(5.7) 

(1	A3A	 1	A3 
kEJfV 

-	L	Ak— A mI 2 ( Ak + Am)2 + k 3 /2 j Ak - AmP3 

where C4 is independent of x and in. 
Let us show that the sum on the right-hand side of (5.7) is bounded above, with a 

bound which is independent of in (and hence, independent of x). Using (4.6), it is not 
difficult to check that

	

{ C5 —	ifk<m— / 
1	< C5 --	ifk>m+,/i 

IAkmAmI - 
C5-pj
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where C5 < 00 is independent of k and rn. From these estimates we derive that for 
every rn E W 

1 .	A,Am 

k j Ak - AmI 2 ( A k + A.. )2
k  iv

1k- m l> I

) 3 +

	

lAm 

k>m+ 

Analogously,

rn\ 

k A (rn - k)2) 
1k-mi> I 

372 IAkAmI3 
kEJV

1k- ml> I

+ 
1 

k 3 /2 A
1	 A3 M3/2  

m-<k<m+ A k 3 /2 rn - k13 k>m+	 ) 
Ik-mi>I 

Using the expression (4.6) for Ak, it is not difficult to see that the sums on the right-
hand sides of the last two big inequalities are bounded by a constant not depending on 

	

m. From here and from (5.7) it follows that (still assuming x E	) Am]) 

	

[lnb(x) —Vk (x)]	C6 
kEiV 

1k- ml> I 

with C6 independent of x and rn. 

Now by (5.4) and (4.10) we may write 

m+1 
ln I Bp( x ) I —V (x ) —

	

	[In lbk (x)I—Vk (x)1	C7 
k=m-1 

where C7 <00 is independent of x and m. Thus, estimating in IB(x)I - V(x) has been 
reduced to estimating the sum of three terms. Since (see (5.5) and (A2)) for 1k - mi :5- 1 

A+x a — a_ = 
ak+x	I - ak+x 

as ni co, we have

A 

	

In  urn	J 
IA+xI

dn(A)=0.

	

z -.00	 I 

I k -MI ^IA,	+ X1
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From here, taking into account (5.3), we derive that 

/ rn-f l 
in l Bp(x)l_ V ( r)_ I	inlx—akl— J in I A_x I dn( A)) :5 C8 

k=m-I 

where C8 < no does not depend on x and 7-n. We estimate the difference 

in i x — aki — J ln I A — xldri(A) 
m-1<k<m+l 

by looking at the sum and at the integral separately. Although the integral here cannot 
be calculated explicitly, it can be estimated easily. We use the expression (4.3) for n(A): 

Am+i

In lx - Aldn(A) =2f in lx - Al	dA

(x—*oo) 
2	

f	
inlx—AldA+o(1). 

Because
in Am+i <	inA_2	

(x E lArn_2,Arn+ij) Arn+i - A - Am-2 

and m I x—A l 20,

A- + I 
,2inAm+i 

f 
lnlx—AIdA+o(1) Am+i

Am2

In Ix - A l dn( A )	 (5.8) 

<2inArn_2 J lnhx—AIdA+o(1) -
	

Am-2 

for x E [Arn_i,Am]. The last integral can be calculated: 

Al2 

In Ix - A I dA = (A rn + i - x)in(A rn + i - x) +(x - Arn_2)ln(x - A m-2)-	(5.9)
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Here x e [A,,-,, Am], and hence 

(Am - Am_i) 5 Am. 1 - X <3(Am - Am_i) 

(A m - Am_i) < (x - Am_2) :5 3(Am - Am_i). 

Thus,

(Am+i - )ln(Am+ i - x) - (Am+ i - x)ln(Am - Am_ i ) <3lfl31A m - Am_il 

(x - Am_ 2 )1n(x - Am_2) - (x - Am_ 2 )lfl(Am Am_ i ) <3lfl3lAm - Am_il. 

From here and from (5.9) it follows that for x E lAm_i, AmI, 

Am +' 

m2 

ln l x - A I dA - 5m <61fl3lA m - Am_il	 (5J0) 

where Sm = (Am+ i - Am_2) ifl(Am - Am_ i ). From this and (5.8) we derive the inequalities 

2 1n A m+i	 _ 2w	Sm - 12w 1n3 
inAm+i

(A m - AM-1) 
Am+i	 Am+i 

Am+i 

< J inx - Adn(A) 

Am_2 

	

<2w2 In Am-2 Sm + 12w 2 in 3 in Am-2 
A	

(Am Am_i). 
Am-2	 m_2 

Since the values 

lflAm_2 (Am -A m _ i )	and	
iflAm+i

(A m - Am_i) 
Am-2	 Am+i 

are bounded as m - , we get

+ 
2lnAm+1 

Sm + 0(1) < J In Ix - Aldn(A) < 2w2lflAm_2 Sm + 0(1).	(5.11) 
- Am +i	 Am-2 

Am.2 

Using the expression (4.6) for Ak, we obtain 

2w2inAm_2 (A
m+ i - Am-2) 3 + 0	 (m .. no). 

Am-2	 In A m )
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Thus, for in -* oo we have the asymptotic estimates 

2.2 	
Sm	3ln(A m - Am_ i ) + 0(1)

Am-2 
21flAm+i	

= 31n(Am - Am_ i ) + 0(1).
A m+ i 

From these and (5.11) it follows that 

In Ix - A l dfl ( A ) 31n IA,,, - Am_il	C9 

where C9 is a constant not depending on x and in. Further, since 

l x - akl 4( Am- A m_I)	(k=m-1,m,m+1) 

we have
m+i

	

iflX2,1 < 31fl(AmAm_ i )+31n4.	 (5.12) 
k=m-1 

On the other hand, if X E [ A m _ i , Am] and lx - ami ^! c l am - am_Il, then 

1	 1 

	

lx - am+il	lAm - Am_il	and	Ix - am_il ^ l''m - Am_il 

and hence
m+i

In I x - aki ^! 31n(A m - Am_ i ) - 31n4 - inc.	(5.13)
k=m—i 

From (5.12), (5.13) and (5.10) we derive the estimates 

m+1
ln1x-ak- J inlx-Aldn(A) {

	
C 

	

k=m-1	 > -Ci o - inc 

valid for lx - al ^: c(am - am- 1 ), where C10 <00 is a constant not depending on x, in 
and E. Comparing the last estimate with (5.12), we get the inequalities 

J < V(x)+C 1	ifxE(0,00) 
In lB(x)l 1 V(x) - C11 - In  if XE (0,00) \ N(e)). 

+ I 

L. 

These, together with (4.5) give the desired estimates (4.1) and (4.2).
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