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Abstract. We study the bounded solutions with bounded derivative on R+ of Lagrangian 
systems in the form i(x,x) = 241 i(x,i) - ot(x,i), where £ : R" x R'-+ R is a concave 
differentiable function and 6 a positive number. These systems are usual in the macroeconomic 
theory of growth. We formulate specific variational problems to study the bounded trajectories. 
We obtain results about the uniqueness of such solutions, and about the constant solutions and 
the almost-periodic solutions. We study the linear case and we describe a special non-local 
linearization method. 
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0. Introduction 

We study the bounded solutions, with bounded derivative, on	= [0, ), of the
systems 

(1,6) £1 (x,th) =	±(x,) - 6e(x,)dt 

where 6 > 0, ± =	and £: R x R'1 -* R is a concave differentiable function. Recall dt 
that a concave differentiable function automatically is of class C'. When 77 E R', 

Problem (1, 8, i) 

stands for system (1,6) with the initial condition x(0) = 77. Taking L(t,x,±)
system (1,6) is equivalent to the Euler-Lagrange equation 

x,	=	L1 (t, x, ±).	 (1) 
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Under the classical Hubert condition, £(x, th) invertible, the Lagrarigian system 
(E,6) is translatable in a normal second order system with (x,) as unknown function 
(see [12: p. 34]). In another hand, under some suitable assumptions, we can introduce 
the Hamiltonian functions 

H(t,x,p) = sup p v + L(t,x,v): v E Rn}

h(xP)=suP{P.v+(x,v):vEllr} 

where p . v denotes the usual inner product of p and v in R'. We easily obtain the 
relation H(i,x,p) = e_ t h(x , e t p) , and the Hamiltonian system associated to (1) is the 
following:

±=H(t,x,p)	
(2)

p=—H(t,x,p) 
and the relation between the solutions of system (1) and those of system (2) is p(t) = 
—L * (t, x(t), th(i)). Taking P(t) = e 6tp(t), system (2) is equivalent to 

= h,,(x,P)
(3) 

P = —h(x, P) + SP. 

For instance, assuming that h is of class C 1 , if (x, P) is a solution of system (3), 
to say that (x, F) is bounded on R is equivalent to say that x is a solution of system 
(E, 8) which is bounded, with i bounded, on R.f . These considerations show us that the 
natural concept of boundedness for a solution x of system (E, 8) is the boundedness of x 
and 1. The major motivation for this class of differential systems is the macroeconomic 
model of the optimal growth in infinite horizon (cf. [13, 16]). We consider the functional 

Jó(x) = J e -6 (x(i), ±(i))dt.	 (4) 

In this expression, 8 is a discount rate, £(x, ) is built from a utility function and some 
structural equations of the economic model, and then Jo(x) appears as an intertemporal 
utility. The integral which defines J6 does not ever exist and so, we ought to consider 
domJ5 , the set of the functions x : -p R of class C' such that the above mentioned 
improper integral exists. The Optimal Growth problem is the following: 

(P,6,i7) Maximize J6 (x) when x E domJ6 , x(0) = ii, 

where 77 is a fixed initial value. 

Among the numerous mathematical works about this subject, we quote of Rockafel-
lar [15], Ekeland [11], and Medio [14]. The system (1), and consequently system (E, 8), 
is the Euler-Lagrange equation of problem (P, 6, j). 

In this work we also consider the linear case. If A, B, C, D are real (n x n)-matrices 
such that the (2n x 2n)-matrix

(A B 
C D
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is symmetric negative semi-definite, we build the quadratic concave function 

A(x,th) = (x T ± T )S(x) = { X T AX 2x T B +TD}	(5) 

and - the quadratic functional

Q6(x) = f e t A(x(t), (i))di	 (6) 

which generates the linear Lagrangian system 

(C,5) Ax + B	
di 

= (BT x +' ) - 6(BTx + Di). 

Further, 

Problem (C,6,ij) 

stands for the system (C, 6) with the initial condition x(0) = 

In preceding works [2 - 5, 7], which were concerned with the case 6 = 0, numer-
ous structural results about the almost periodic solutions of system (E, 0) have been 
established in using original technics. We shall adapt some of these results to the case 
6 > 0. The general viewpoint of our approach is the following: to study the bounded 
(specially the periodic or the almost-periodic) solutions of system (E, 6), we formulate 
some suitable variational problems on bounded functions spaces such that the bounded 
solutions of system (E, 6) are exactly the solutions of the variational problems. 

Now we precisely describe the contents of the paper. 

In Section 3 we introduce concave variational problems (1, 6, i) which are restric-
tions of problems (P, 8, i) to bounded differentiable functions spaces and which permit 
to characterize the bounded solutions of problem (E, 6,) as optimizers of problem 
(1, 6, ii). In Section 4, under second order conditions, we establish results about the 
uniqueness of the bounded solutions with bounded derivative of problem (E, 8,17) and 
we give some structural properties of these solutions. In Section 5 we establish that 
the presence of several periodic solutions with non-commensurable periods generates 
almost-periodic non-periodic solutions of system (E, 6). In Section 6 we study the con- 
stant solutions of system (E, 8) and the specific properties of problem (E, 6,17) when 77 is 

a constant solution of system (E, 6). In Section 7 we study the linear case (C, 8) and we 
generalize some results previously established in the case 6 = 0. In Section 8 we use a 
non-local linearization method special to the concave case in order to obtain properties 
of system (E, 6) from properties of system (C, 6).
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1. Some notations 

We precise our notations about certain subspaces of the space of bounded continuous 
functions. 

• BC°(R+, IR") denotes the space of the bounded continuous functions from IR+ 
into R". It is a Banach space when it is endowed with the supremum norm II x IIoo = 
sup {II x( t )II : t E lR}. 

• BC' = BC'(R,R") = {x: x E BC°(R+,R")flC'(R,R"), ± E BC°(R+,IR")}. 

It is a Banach space when it is endowed with the norm li x il, = II x II + II±I. 

• For T> 0, C	C4(R+, R") is the space of the T-periodic continuously differ- 
entiable functions from IR+ into R". 

• AP
O
 = AP°(R+, R") is the space of the Bohr almost-periodic functions from IR+ 

into R" (cf. [8]), and AP' = AP 1 (R+,R") = {x: x  APO (lR+,R1)flCl(R+,Rh1), d E 
AP°(IR+ , R")}. AP°(lR, R") is a Banach subspace of (BC°(IR+, IR"), 11  and AP' 
is a Banach subspace of (BC', II 

• When x E AP
O
, its mean value is M{x} = M{x(t)} = linlT— o.  

and its Fourier-Bohr coefficients are a(x,A) := M{x(t)e_ t } t when A E R. We denote 
by Mod  the Z-module in IR generated by {A E R: a(x, A) 0 0}. 

• Let w = (w 1 ,w2 , ...,w) be a family of s real numbers which are Z-linearly indepen-
dent. Then for k = 0, 1, Qpk = QPk(w R+, R") is the space of the x E APk (R+, IR") 
such that Modx is generated by w. QP are the initials of quasi periodicity. 

• When ElR",we note E,,={xEBC' : x(0)=i}. 

• We consider the following assumptions: 

	

£ is concave and of class C' on R n x R"	 (7) 

	

£ is concave and of class C 2 on R n x R".	 (8) 

2. Variational tools 

We build the variational setting which will permit us the study of the bounded solutions 
of system (E, 6). 

	

Lemma 1. Let p and q be two positive integers, up: 1R' -	a mapping and
the Nemytski operator defined by AI,(u) = up o u, for u E BC°(R+, IR"). Then we have: 

(i) Fork E {0,1,2}, if up E Ck(1RP,R), then 

V; E C k (BC O (R+, RP ), BC°(R, Re)). 

(ii) Fork = 1, when u,h E BC° (R+,IRP ), then 

(H(u) . h)(t) = up'(u(t)) h(t)	for every t E lR.
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(iii) Fork = 2, when u,h,h, E BC°(R,RP ), then 

(AI(u)(h, h 1 ))(t)	(u(t)) (h(t), h, (t))	for every t E R. 

Proof. We fix u E BC°(R,RP). Since the image u(R+) is bounded in R, its 
closure K is compact. Therefore there exists r > 0 such that the set V,. = { j E R' 
d(77, K) r} also is compact (cf. [9: Chapter 3, §18)). First we assume that W is 
continuous. Then it is clear that V o u is continuous and that (K) is compact. The 
inclusion y o u(R+) C (K) ensures that W o u E BCo (R , R) . And so .iV is a well-
defined mapping from BC°(R+,RP) into BCo(R,lR). By the Heine theorem, V is 
uniformly continuous on Vr. Given e > 0, we denote by a, the module of uniform 
continuity of V on Vr and we define /3, = min{a,r} > 0. When v E BC°(R+,RP ) is 
such that Ilu - v ll < /3, we have, for every t E R+, v(t) E V and ll u ( t ) - v(t)Il < 
that implies l(u(t)) - (v(t))ll :S e, i.e. llH(u ) —A1,, ( v)11 0o	E. The continuity of.Af,,,,
is proven. 

Now we assume that W is of class C'. Given e > 0, by a mean value theorem (cf. 
[1: p. 1441) we have, for every h E BC°(lR,ll P ) and t E 1R.4, 

p(u(t) + h(t)) - p(u(t)) - p'(u(t)) . 

lI h ( t )ll sup {l a '(u ( t )) - ca '(ii)ll : 17 E [u(t),u(t) + h(t)1 }. 

By the Heine theorem, ' is uniformly continuous on Vr. We denote by Yc the module of 
uniform continuity of ' on Vr, and we define 0 e = min{-ye , r) > 0. If lI h lI	o, then, 
for every t E R+ and for every 77 E [u(i),u(t) + h(t)], we have Il u ( t ) - 'ill	lIh(t)lI 
therefore i E Vr, and ll u ( t ) -	l'e implies llc'(u(t)) - ( 'i)ll	e. And so we have 

+ h) - jV(u) - H(u) . h	<E ll h ll	when lIhlI 

hence .Af is Fréchet differentiable in u, with Aç(u) . h = '(u) . h. After that we 
have established in the case k = 0, since cp' is continuous, .Ni,, also is continuous and 
consequently we obtain the continuity of A/. And soAç is of class C'. 

Finally we assume that cp is of class C2 . Using the previous reasoning to ' instead 
of V, we obtain that Ar,, is of class C' and that iV,,(u) . h, = ' j) . h,. From this, we 
obtain that A is of class C 2 and assertion (iii) holds I 

Lemma 2. For every 5 > 0 and k e {0,1,2}, if e E C Ic(R x R", R), then J6 E 
C k (BC 1 , R). Further: 

(i) When k = 1, for x,h E BC', we have 

J(x) . It = I e— 6Y (x(t), th(t)) (h(t), (t))dt.	 (9) 

(ii) When k = 2, for x,h,h 1 E BC', we have 

J'(x) . (h, h,) = f e' ell (x(t), (t)) ((h(t), (i)), (h 1 (t), h, (t))) di.	(10)
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Proof. We split the functional J6 in the following way: 

-	 J6=IoAl,oT 

where
T: BC'(R,R') -p BC0 (R,R" x R'), T(x) = (x,) 

A1,: BC°(R,R' x R'1) -p BC°(R,R), A(e(u,v) = £o(u,v)

I: BC°(R+, R) -p R, 1(u) = f e öt u( t ) dt 

Here Al, is the Nemytski operator built on £. We note that T and I are linear continuous, 
hence of class C2 . By Lemma 1, if £ is of class Ck, Al, is of class C', and so J6 is of class 
Ck as a composition of mappings of class CC. Formulae (9) and (10) are straightforward 
consequences of the application of the Chain Rule to the previous splitting I 

Proposition 1. Let 5 > 0 and ij E R". We assume that £ E C'(R' x 
Then, for every x E E,7 , the two following assertions are equivalent: 

(i) For every h E E0 , J(x) . h = 0. 

(ii) The function t —* £ (x(t), (t)) is of class C' on R+, and x is a solution of 
problem (E, 8, ii). 

If in adition we assume that condition (7) is fulfilled, then J, is concave and the two 
first assertions are equivalent to the following: 

iii) J6 (X) = sup 

Proof. If assertion (ii) is true, in using Lemma 2, we have, for every h E E0, 

J(x) . h = f e 6t (x(t), (t)) . (h(t), (t))dt 

= I e ' 6' ( (x (t) ±(t)) h(t) + £* (x (t), th(t))	(t)) dt 

	

= Je6t	 h+(x,±).h)dt 

=
 
J({e_t±(x,±)} . h + e 6t (x , ±) i) dt 

dt 

= J d {e 6t i (x , th) h} dt 

= lim e T e (x (T), i(T)) h(T) — £ (ri , x(0)) h(0) 

=0
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since £±(x(T),i(T)) . h(T) is bounded and h(0) = 0. 

Conversely we assume that assertion (i) is true. From condition (9), for every 
h E E0 , we have 

0 = J(z) h = J e1(x, ). h dt + J e6te±(x, ). h di, 

hence
00	 co fe_6z(x, ) . h di = — J e_6t±(x, th) . it di. 

We work on the components of these functions. We fix k E {O, 1,..., n} and we denote 

f(t) = e 6t tzk (x(t), (t)) and g(i) = e ôt txk (x(t), ±(t)) 

fo, go the restrictions of f,g to (0,), respectively. 

Following the current notation of the Distributions Theory, V(0, co) is the space of the 
C'-functions with compact support. If i ' E D(0, ), we can extend 0 onto R+ = 
[0,) to a function 0 1 equal 0 at 0. And so 01 E BC'(R+,IR). Then when we take 
h = (h 1 ,h 2 ,. .. ,h,), with h k = and h = 0 if j k, from an above mentioned 
equality, we obtain 

00	 00	 co	 00 

I fo (t)	(i) di = I f W 0 1 (t) dt = — I g ( t ) . () dt = - I 90( t) . (t) di. 

This relation means that Jo is the distributional derivative of go (cf. [17: Chapter II, 
§1]), and since fo is a continuous function, go is of class C' and Jo = go . By the 
continuity of f, we obtain that g is of class C' on IL, and f = . We note that 

= .(e_ 6 ) = —oe t e1 + 

that implies £ =	-	(this is system (E, s)) . Since k was arbitrarily choosen, we
have proven assertion (ii). 

Concerning the last assertion, the concavity of £ implies the concavity of J5 , and 
since E0 is the tangent space of E,1 , assertion (i) is the first order necessary condition 
of (iii), and the concavity of J6 ensures the equivalence between assertions (i) and (ii)U 

We introduce the Problem 

(7?.,.5,7)	Maximize J6 (x) when x E E,,. 

Then Proposition 1 establishes that problem (E, 6, q) is the Euler-Lagrange equation of 
the variational problem (1Z,8,77 ). And in the concave case, when x E BC', x solves 
problem (E, 8, i) if and only if x is an optimal solution of problem (Ri, 6, i) . In the 
following proposition we have collected some properties about the time translations.
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Proposition 2. Let e E C' (R" x R", R), 5>0 and x E BC'. Then we have: 

(i) For every r 2 0, Jo(x( . + r)) = eor (Jó(x) - 
I r

 eOt(x(t), (t))dt). 

(ii) For every r 0,	J6 (X(- + r))	5J5 (x( . + r)) - dr 

(iii) J5 (x( . + r)) = Jo(x) for every r > 0 if and only if £(x(t), 1(t)) = £(x(0), ±(0)) 
for every t 2 0. 

(iv) If x is a solution of system (1,5) on R+, then, for every r > 0, x( . + r) is a 
solution of system (1,5) on R, and if condition (7) is fulfilled, we have J6 (x( . + r)) = 
sup J (Ez(r)). 

Proof. Assertion (i) is obtained in using the change of variable s = t + r. Differen-
tiating the formula of (i) we obtain (ii). Assertion (iii) is a straightforward consequence 
of (ii). To prove assertion (iv) we note that the time translations of a solution of system 
(1, 5) remains a solution of system (1, 5) since system (1,5) is autonomous, and the last 
assertion is a consequence of Proposition ii 

Proposition 3. Let S > 0 and 77 e R Th , and let x and y be two solutions of problem 
(E, 6, i) on R which belong to BC'. We assume condition (8) fulfilled. Then the three 
following assertions hold and are equivalent: 

(i) .J'(x)(y - x, y - x) = 0. 

(ii) For all t E R, £" (x(t), (t)) . (y(t) - x(t), v (t) - (t)) = 0. 

(iii) For all t E R, 

	

(x(t), 1(t)) (y(t) - x(t)) +	(x(t), th(t)) ((t) - ±(t)) = 0
(11) 

(x(t), 1(t)) (y(t) - x(t)) + £± (x(t), (t)) ((t) - ±(t)) = 0. 

Proof. First we prove that assertion (i) holds. Since x and y are solutions of 
problem (E,5,7), by Proposition 1, J6 (x) = Jo(y) = sup J6 (E,,). Since E, is convex 
and J6 is concave, for every A E 10, 1], we have J6 ((1 - A)x + Ay) = sup J5 (E,,). Hence 
J(x + A(y - x)) . h = 0 for every h E E0 . Therefore, 0 =4x J (x + A(y - x)) . h, that 
implies J'(x)(y - x, y - x); taking h = y - x and A = 0. Writing £"(x, ) as a Hessian 
matrix ft(x,) £±(x,)\ 

£(x,) £±j(x,) 

we immediately see the equivalence of assertions (ii) and (iii). From assertion (ii) we 
have £"(x, th)((y—x, .—i),(y—x, i— ±)) = 0, and using formula (10) we obtain assertion 
(i). Conversely, since '(x, i) is negative semi-definite, by an argument of continuity, 
we can show that assertion (i) implies (ii) I
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3. On the uniqueness 

We give sufficient conditions to ensure the uniqueness of bounded solutions of system 
(E, 5), and we give some consequences of this uniqueness situation. 

Theorem 1. We assume that condition (8) is fulfilled. Then we have: 

(i) Given S > 0 and 77 E R". Let x E BC' a solution of problem (e,5,77) on 
R.f . If, for every t E R+, £±1(x(t),(t)) is negative definite, or if, for every t E R+, 
£ (x(t), i(t)) is invertible, then x is the unique solution of problem (E,6,77) on 
which belong to the space BC'. 

(II) If, for every (77,v) E R" x R", £ 1 (77,v) is negative definite, or if, for every 
(77,v) E R" x Ri', £i(77,v) is invertible, then, for each S > 0 and 77 E R", problem 
(E,S,i7) cannot possess more than one solution in the space BC'. 

Proof. Assertion (ii) is a consequence of assertion (i), and so it is sufficient to prove 
the last. To simplify the writing we denote 

A(t) = £ (x(t), *(t)),	B(t) = £ (z(t). i(t)),	D(t) = £ (x(t), (t)). 

Knowning that D(t) is negative definite (resp. B(t) is invertible) for every t e 
if y e BC' is a solution of problem (E, 5,77) on R+, then by the second (resp. first) 
equation of system (11) we have 

B(t) T (y(t) - x(t)) + D(t)(y(t) - i(t)) = 0 

A(t)(y(t) - x(t)) + B(t)(i(t) - i(t)) = 0, 

respectively, that implies

d
- x)(t) = —D(t)'B(t)T(y - x)(t) 

dt 
d 
dt

- x)(t) = —B(t)'A(t)(y - 

respectively. Moreover we have (y - x)(0) = 77 - = 0, and the matrix-valued function 
t —D(t)'B(t) (resp. t i- —B(t)'A(t)) is continuous on R. By the theorem 
about the uniqueness of the solutions of the linear normal Cauchy problems (cf. [9: 
Chapter I, §5]) we obtain that y - x = 0, i.e. y = x I 

Remarks. Via the Hubert theorem (cf. [12: p. 34]) the hypothesis 

e±(77 , v) negative definite for every (77,v) E R" x 

ensures that problem (E, 5,77) can be translatable as a normal second order equation and 
consequently as a normal first order system with (x, i) as unknown function. Under 
some additional assumption (for instance £ to be of class C3 ) we can use the uniqueness 
theorem about the normal Cauchy problems. And so a solution x of problem (, 5,77 ) is 
completely determined by the initial value x(0) since x(0) is fixed equal to 'l• Theorem 
1 asserts that there is at most one initial value x(0) which can furnish a bounded
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BC'-solution of problem (E,5,q) on IR+. When ' is a constant solution of system 
(E,5), assuming that e ii, in negative definite or that £ is invertible, by assertion (i) of 
Theorem 1, problem (E, 5, i) cannot possess any other solution in BC', and consequently 
cannot possess any non-constant periodic solution. 

Theorem 2. We assume that condition (8) is fulfilled. Let S > 0 and x E BC' a 
solution of system (S. 6) on R. We assume that, for every t E R+, e±(x(t),(t)) is 
negative definite or that, for every t E R, £±(x(t), ±(t)) is invertible. Then we have: 

(i) For every r 2 0, x( . + r) is the unique solution of problem (E, 5, x(r)) on 
in the space BC'. 

(ii) If  E BC' is a solution of system (E,5) such that {y(+r) r E R+}fl{x(•+r) 
r E R} = 0, then x(R+ ) fl y(R..) = 0. 

(iii) If there exist t,, t 2 E R. such that t, < t 2 and x(t,) = x(t 2 ), then x is (t 2 - t, )-
periodic on (1,,	). 

(iv) If there exist t 1 , t 2 , t 3 e R such that t, < t 2 < 13 , x(t,) = x(t 2 ) = X(t3) and 
Q or	Q, then there exists a to E R+ such that z is constant on (to, oo). 

(v) If x is not periodic on any interval [t 0 ,), t0 20, then x is one-to-one on R+. 
(vi) When n = 1, either there exists a to E R+ such that x is constant on [t0, ) 

or x is strictly monotonic on R+. 
Proof. (i) By Proposition 2/(iv), x( . + r) is a solution of problem (E, 5, x(r)), and 

its uniqueness results of Theorem 1/(i). 
(ii) If x(R+) fl y(R) 54 0, then there exist so, s i E R such that x(s0 ) = y(s,) = r. 

By Proposition 2/(iv), x ( . + s 0 ) and y( + s,) are two solutions of problem (E,S,i1) 
in BC'. Then, by Theorem 1/(i), x( . + so) = y( + s,), therefore {x( . + r) : r e 
IR+} fl {y( + r): r E 1R} ^ 0. 

(iii) Denoting Ti = x(t,) = x(t 2 ), by Proposition 2/(iv), x ( . + t,) and x( . + t 2 ) are 
two solutions of problem (E,S,q) on R in BC'. By Theorem 1 1( i ), x(t+t,) = x(t+t2) 
for every I E R+. Hence, for every s 2 t,, we have x(s +(t2 - t,)) = x((s - t 1)+ t2) = 
x((s—t,)+tt) =x(s). 

(iv) From assertion (iii), t 3 - t2 t 2 - t, and t 3 - t 2 are periods of x at least on 
(1 2 , co). The hypothesis of non-commensurability and the continuity of x imply that 
is constant on [1 2 , oo). 

(v) It is a consequence of assertion (iii). 
(vi) We assume that x is not strictly monotonic on R+. Therefore there exist 

t,,t 2 e R+ such that I, < t2 and x(t i ) = x(t2 ). Hence, by assertion (iii), x is T-
periodic, with T = 12 - 1, on 1R. Denoting y = x( . + t,), y is a solution of system 
(E,5) on R in BC' and is T-periodic. There exist t., t * e [0,T] such that 

y(t.) = min y([0,T]) =min(R) and y(t) max y([0,TI) = maxy(IR+). 
For each r E (0,T), we define L(t) = y(t) - y(t + r). We have (t) 2 0 and 
Lr(t.) < 0. Therefore, by the Bolzano theorem, there exists tr E [0,T] such that 
Lr(tr) = 0, i.e. y(t) = y(t,. + r). Then, by assertion (iii), y is r-periodic. Since y 
is continuous and r-periodic for each rE (0,T), yis constant, hence x is constant on 
[t,,00)I
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Remarks. The assertions (ii) and (iii) look like classical results about first order 
autonomous ordinary differential equations. But system (1,5) is a second order ordinary 
differential equation. In view of this, (ii) and (iii) appear as surprising results. 

The assertion (iv) indicates us that, when n = 1, under (8), a non-constant periodic 
solution cannot arise in system (E, 6). 

4. On the almost-periodic solutions 

We show how periodic solutions of system (1, 5) can generate almost-periodic solutions 
of this system. 

Theorem 3. We assume that (7) is fulfilled. Given S > 0, we assume that system 
(1,5) possesses two non-constant periodic solutions on R+, z 1 which is Tj -periodic and 
X2 which is T2 -periodic. We also assume that	Q and that xi(R+) fl x2(R) 
0. Then system (1,5) possesses a uncountable family of quasi-periodic non-periodic 
solutions on R+ which are in the space QP' (, 4). 

Proof. By hypothesis, there exist t,,t 2 E R+ such that x( t i) = x(t 2 ) = ii. Then, 
by Proposition 2/(iv), y, = x( . + t,) and Y2 = x( . + t 2 ) are solutions of problem (E, b, ij) 
on R, and y i E C,-, for i = 1, 2. For each A (0, 1),

' = (1— A)y, + A112 E QP'( 2 
11, 

2 ,._,. 

Since Q, we have Yl 54 Y2 and hence A - zA is one-to-one. Therefore {z,\ A E 
(0, 1)} is a uncountable set. Since E,, is affine, z.,, e E,, for each A E (0, 1). From the 
concavity of Jb and Proposition 2/(iv), 

J6(zA) > (1 - A)J5 ( y i ) + AJ6(y2 ) = ( 1 - A + A) sup J6 (E,7 ) = sup Jô(Eq). 

Therefore, by Proposition 1, z is a solution of problem (E, 6, i) on R+I 

Remarks. Theorem 3 is an extension of Theorem 3 of [2] to the case S > 0. Let 
us observe that in the previous case, S = 0, we did not need the hypothesis xi(IR+) fl 

x 2 (R+) 54 0. Here, with this additional hypothesis, for ij = x, (t 1 ) = x2 (t 2 ), the problem 
(1, 5, i) possesses a uncountable set of solutions in BC'. Hence, taking account of 
Theorem 2/(i), we see that there necessarily exist 5 1 ,s 2 ,s,s E R+ such that, for 
i = 1,2, 

det,(xg(ij +	+ s)) = 0 and det 1± (x 1 (t, + s), ± 1 (t 1 + s))	0, 

We can say that the framework of Theorem 3 needs some degeneration on the second 
differential of £.
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5. On constant solutions 

A constant solution of system (E, 8) is a vector c E lR which verifies the equation 

(C,5)	£(c,0) + 6t±(c,0) = 0. 

In [3) one finds a classification of the constant solutions of this equation in the case 
S = 0. When 5 > 0, we distinguish between two cases: £(c,0) = 0 and t 1 (c,0) 0. In 
all the results of this section we shall assume that condition (7) is fulfilled. 

Proposition 4. Let c E R'. Then all the following assertions are equivalent: 

(i) There exists S > 0 such that c is a solution of equation (C, 8) which verifies 
t(c,0) = 0. 

(ii) There exist 51 > 0 and 62 > 0, 61 54 52, such that c is a solution of equations 
(C,51 ) and (C,82). 

(iii) For every S > 0, c is a solution of equation (C, 5). 

(iv) £'(c,O) = 0. 

(v) £(c,0) = sup t(R x 0) = sup t(R'1 x 

(vi) For every 8 >0, t(c,0) = J6 (c) = sup Jo(E,? ) = sup J6(BC') 

Proof. From (i) we obtain £(c, 0) = 0 = £(c, 0) and assertion (ii) is satisfied. 
If (ii) holds, then (52 - S ) ti ( C , 0) = 0 implies t(c,0) = 0. Therefore t(c,0) = 0 by 
equation (C, 5), and consequently, for every 5> 0, we have equation (C, 8), and assertion 
(iii) is verified. From (iii) we deduce that £(c,0) = t(c,0) = 0, hence assertion (iv) 
holds. Under (iv), because of the concavity oft, t(c,0) = sup t(R'3 x R'). Moreover, 
£(c,0) sup t(R' x 0) supt(W x R' 1 ) imply the two equalities of assertion (v). The 
first equality of (vi) results of a simple calculation. By (v), for every x E BC', we 
have t(c,0) ^! £(x(t),th(t)) that implies Jö(c) J6 (x). Hence J6 (c) = sup J6(BC'). 
Moreover, J6 (c) supJ6 (E) 5 supJ6 (BC') = Jo(c) imply the two last equalities of 
assertion (iv). Finally, if (vi) is true, then, for every ij e R', 77 E BC'. Therefore 
Js(c) ^: J6 (), i.e.t(c,0) ^ .t(ij,0), i.e. £(c,0) ^ t(7,0), and by the first order 
necessary condition of minimality, we have t,, (c, 0) = 0. Moreover, sup J6 (E,) ^! J6 (c) 
sup J6 (BC') ^! sup J6(E). Therefore J5 (c) = sup J6(E) and, by Proposition 1, we can 
assert that c is a solution of system (E, 8). Hence c is a solution of equation (C, 8), and 
assertion (i) holds I 

Proposition 5. If there exists 77 € R'2 such that £(q,0) = 0 and £±(t,0) 54 0, 
then, for every S > 0, when c € R'1 is a solution of system (E,6), we necessarily have 
£(c,0)	0. 

Proof. Let 6 > 0, and c E R'2 a solution of system (E, 5) such that t. (c, 0) = 0. By 
the lemma of [3: p. 4611, we necessarily have £(c, 0) 54 0 and consequently c cannot 
solve system (E, 5). This is a contradiction I
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Proposition 6. Let c E R" such that £'(c,O) = 0 and let x E E. Then all the 
following assertions are equivalent: 

(i) There exists 6 > 0 such that x is a solution of problem (E, 6, c) on IR.f. 
(ii) For every 6 > 0, x is a solution of problem (e,6,c) on IR+. 

(iii) For every t € R.,, e(x(t),(t)) = £(c, O). 

(iv) For every t € R-,., £'(x(t),x(t)) = 0. 

Proof. The implications (iv) =. (ii) and (ii) = (i) are obvious. Since £ is concave, 
£'(c, O) = 0 is equivalent to £(c,0) = sup E(R' x R"). From (iii) we obtain, for every 
t € IR.,, £(x(t),i(t)) = sup(IR" x 1W'). Therefore £'(x(t),(t)) = 0. That proves the 
implication (iii) =. (iv). It remains us to prove the implication (i) =. (iii). From (i) and 
Proposition 1, we have J6 (x) = sup J6(E), and since c is a solution of problem (, 6, c), 
we have J6 (c) = sup J(E). Therefore Jö(x) - Jö(c) = 0. From Proposition 4, we have 
£(c, 0) = sup £(R" x R"), therefore, for every . t E 1R, we obtain £(c, o)_(x(t), ±(t)) 2 0, 
hence e_6t (8(c, 0) - £(z(t), i(t))) 2 0. Since 0 = f0°° e 6 (e(c, 0) - £(x(t), d(t)))dt, the 
usual properties of the integral permits us to assert that £(c,0) - £(x(t),th(t)) = 0, for 
every t € R I 

Remarks. An assertion equivalent to the previous is the inclusion { (x(t), i(t)) 
t € R..} C ArgmaxL 

Let c € 1W' such that £'(c, 0) = 0. Let x € BC' a solution of system (E, 6) on R+ such 
that c E x(R+). Then there exists to € 1R+ such that, for every t 2 to, t(x(t),±(t)) = 
£(c,0). This fact is easy to verify: there exists to E R+ such that x(to) = c. Then 
x( . + to) is a solution on R+ of problem (E, 6, c), and we conclude in using Proposition 
6.

Proposition 7. Let c € R" such that £'(c, O) = 0 and let x € AP'. Then all the 
following assertions are equivalent: 

(i) x is a solution of system (E,0) on IR+. 

(ii) For every I € 1R, £(x(t), th(t)) = £(c, 0). 

(iii) For every I E R+, £'(x(t),x(t)) = 0. 

(iv) There exist 6 > 0 and 62 > 0, 6, 0 62 , such that x is a solution on R+ of 
systems (e,6 1 ) and (E,62). 

(v) For every 8 2 0, x is a solution on R+ of system (E, 6). 

Proof. The equivalence (i)	(ii) is established in Proposition 4 of [3]. The equiv-
alence (ii)	(iii) results of the concavity of R. The implications (iii) = (v) and (v) = 
(iv) are obvious. From (iv) we have £(x,th) - = —61 e1 (x,d) = —521(x,th), 
and since 6, 54 62 we obtain £±(x,) = 0 and consequently £(x,) = 0, that implies 
£'(x,th) = 0. This proves the implication (iv) = (iii) I 

Remarks. Proposition 7 is an extension of Proposition 4 of [3] to the case 6 > 0. 
In Proposition 7, we do not assume that x(0) = c. It is important to note that the
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existence of a 6 > 0 such that x E AP' is a solution of system (1, 8) is not an assertion 
equivalent to the assertions of Proposition 7. 

Proposition 8. Let c E R'1 such that £'(c, 0) = 0, and let 6 > 0. Them we have: 

(i) If there exists two non-constant periodic solutions of system (1,8) on R+, x1 
which is T1 -periodic and x 2 which is T2 -periodic such that Q and £(x 1 (t), 1 1 (t)) = 
e(c,o), for i = 1,2 and every t E R+, then there exists a uncountable family of quasi-
periodic non-periodic solutions of system (1,6) on R+. Moreover each element z of this 
family belongs to QP' (4, ) and satisfies, for every t E R+, £(z(t), (t)) = £(c,0). 

(ii) If z E AP' is a solution of system (1,6) on R+ such that, for every t E 
R, £(z(t), i(t)) = £(c, 0), then there exist periodic solutions . x of system (1,6) on lR 
which verify, for every t E R+, £(x(t),(t)) = £(c,0). Moreover, the mean value M{z} 
of z isa constant solution of system (1,6) and verifies e(M{z},0) = £(c,0). 

Proof. To obtain assertion (i), we use the results of [2] and the equivalence (i) 
(ii) of Proposition 7. For assertion (ii), we use [3]I 

Proposition 9. We assume that (8) is fulfilled. Let c E IR' a solution of system 
(1,8) with 6 > 0. If dim Keil"(c,O) 5 1, then c is the unique solution of problem 
(E,8,c) in AP'. 

Proof. It is the same as that of Proposition 3 of [7]I 

6. The linear case 

In this section we discuss the linear systems (C, 6). We consider the condition 

	

= ()BT 	is symmetric negative definite.	 (12) 

This hypothesis ensures the concavity of A defined in (5). System (C, 6) is a particular 
case of system (1, 6), hence all the results of the preceding sections are relevant for 
system (C,6). For instance, using the functional Qt defined in (6), given 6 > 0 and 
77 E lR', the application of Proposition 1 to system (C,8) gives us, for h E E,,, the 
following equivalences: 

Q 6 (h)= supQo(E,,)	Q'5(h) k = 0 for all k E E0 

.	h is a solution of (C, 6, i) on R+. 

And when 77 = 0, these assertions are also equivalent to the following one: 

Q 6 (h) =0. 

In using Proposition 3, when i = 0, these assertions are also equivalent to 

Ah(t) + Bh(t) = 0

j	
for every t E R.	 (13)

BTh(t) + Dh(t) = 



Bounded Solutions and Oscillations of Lagrangian Systems	745 

The application of Theorem 1 on system (C, 6) furnishes the following result: 

When D is negative definite or when B is invertible, problem (C, 6, ) cannot possess 
more than one solution in BC', for each 6 > 0. In particular, 0 is the unique solution 
of problem (C,8,0) in BC'. 

We note that A(x,i) = Ax + Bi and A1 = BTx + Dx (A is defined in formula 
(5)), and so the constant solutions of system (C, 6) are the vectors c E IR" which solve 
problem 

(CL, 6) (A + 6B T )c = 0. 

The condition A(c,0) = 0 used in Section 6 becomes Ac = 0, i.e. c E KerA. 

Proposition 10. We assume that condition (12) is fulfilled. Then we have: 

(i) IfdetA = 0, then KerA = fl6>0 1c E IR" : c solves equation (CL, 6)). 

(ii) If det A 54 0 (for instance A is negative definite), then there are at most n dis-
tinct positive values of 6 for which system (C, 6) can possess non-zero constant solution,. 

Proof. (i) From Lemma 1 of [7] there exists a real (n x n)-matrix M such that 
B T = MA. If Ac = 0, then BTc = 0 and therefore (A + 6B T )c = 0 for every 6 > 0. 
Taking 6 - 0+, we obtain Ac 0. 

(ii) We have (A + 6B T) = _6A(_A_BT - I I) . Let c 54 0 in R". Then we have 
the following equivalences: 

(A+6BT)c=0 

(A 1 B)c = 

c is an eigenvector associated to the eigenvalue of - A—' B T  

Therefore system (C, 6) possesses a non-zero constant solution if and only if I is an 
eigenvalue of —A—' B T. Since _ABT possesses at most n real distinct positive eigen-
values, we obtain the announced result I 

Proposition 11. We assume that condition (12) is fulfilled. Let h E C'(R,R°). 
If h(R+) C KerAflKerD, then h is a solution of system (C,6) on R+, for each 6>0. 

Proof. From Lemma 1 of [7], there exist M and N, two n x n real matrices such 
that BT = MA and B = ND. And so B T h(t) = 0 = Bh(t), hence Bh(t) = 0 = Dh(t). 
Therefore h is a solution of system (C, 6) on IR+, for every 6> 0. 

Proposition 12. We assume that condition (12) is fulfilled. Let h E E 0 a solution 
of problem (C, 6,0) on H, with 6 > 0. Then we have: 

(i) For every t E R, Ah(t) . h(t) = Dh(t) . h(i) = —Bh(t) . h(t). 

(ii) If B is symmetric, then h(R) C KerAflKerD.
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Proof. (i) In the system (13), it is sufficient to calculate the inner product of the 
first equation and of h(t), and the inner product of the second equation and of h(t). 

(ii) By the second equation of (13), we have B T h(t) + Dh(t) = 0. We know that 
BT = B = ND, and taking k(t) = Dh(t), we obtain Nk(t) + k(t) = 0. Therefore 
k(t) = e_'k(0) = 0 (cf. [9: Chapter III, §4]). And so h(t) E KerD, that implies 
Dh = 0, and by assertion (i), Ah(t) . h(t) = 0. Since A is symmetric negative semi-
definite, we have Ah(i) = 0, i.e. h(t) e KerA I 

Proposition 13. We assume that condition (12) is fulfilled. Let h e BC' a solution 
of problem (C,(5,0) on R. 4 such that 0 E h(R+). Then there exists t 0 E R+ such that 
h( . + to) is a solution of system (13) on R. 

Proof. Let to E R.4 such that h(to) = 0. By Proposition 2, h( . + to) is a solution 
of problem (C,6,0) on R, therefore h( . +to) is a solution of system (13) on R I 

In order to study the almost-periodic solutions of system (C, (5), we extend to the 
case (5 > 0 the method used in [7] to the case S = 0. For each A E IR, we introduce the 
n x n complex matrix 

U5 ,,. = A 2 D + iA(B - BT) + A + S(BT + iAD)	 (14) 

where i =	and the polynomial 

P5 (A) = detU5, .	 ( 15)

We have:

(i) deg P6 2n 

(ii) for every S > 0 and A E R, U6, ,. = U6, _,\ where the upper bar denotes the 
complex conjugation 

(iii) P0 (A) = P6(—A) 

and so, if A is a real root of P6 , —A also is a real root of Pb. 

Lemma 3. Given 5 > 0, if A is a non-zero real root of P5 and if C E Ker	(in 
C'2 ), then t - x(t) = Ce iAt +	is a real-periodic solution of system (C,(5) on

R+. Conversely, if system (C, 5) possesses a non-constant T-periodic solution (T > 0), 
then there exists k E Z \ {0} such that	is a non-zero real root of Po. 

Proof. For every t e R+, taking z(t) = .e 1" E KerU6, ,. in C", we have (t) 
iAz(t) and (t) = —A 2 z(t). From Us, ,.z(t) = 0 we obtain 

—D(t) + (B - BT)(t) + A + 6BTz(t) + 5D(t) = 0, 

i.e.
Az(t) + Bi(t) = (BTz(t) + D(t)) - S(BTZ(t) + D(t)). 

And so, z is a complex solution of system (C, 5). Since the coefficients of system (C, 5) 
are real, T also is a solution of system (C, 5), and since system (C, 5) is linear, x = z + 
is a real solution of system (C, 6).
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Conversely, if x is a real solution non-constant T-periodic of system (C, 8), then 
there exists k E Z \ {O} such that the Fourier coefficient a(x,	)	0. From the 
relation a(0, A) = iAa(ço, A), taking A =	, we obtain 

(A + iAB)a(x, A) = iA(BT + iAD)a(x, A) - 8(BT + iAD)a(x, A), 

i.e. U6,Aa(x , A ) = 0, hence we have detUö,A = P5 (A) = 0 since a(x,A) 54 0. 

Proposition 14. Let h e AP' a solution of system (C, 6) on lR, with 6 . > 0. Then 
we have: 

(I) M{h} is a constant solution of (C,6), i.e. M{h} E Ker(A + SBT) 

(ii) For every A E IR,a(x,A) e KerU6,A. 
(iii) System (C, 6) possesses periodic solutions defined on R+ which are non-constant 

when h is non-constant. 

Proof. Taking A = 0 in (ii) we obtain assertion (i). With the same argument as in 
the proof of Lemma 3, converse part, we obtain that, for every A E R, Uo,Aa(h, A) = 0 
and assertion (ii) is proven. 

To prove assertion (iii) we use a theorem of Besicovitch (cf. [6]) which asserts that, 
for V e AP' and each T < 0 and denoting cv(ga) = + CT), the sequence 
(cp(ço)) p uniformly converges on towards a T-periodic C'-function, and the sequence of 
the derivatives (ijcp(ço)), also is uniformly convergent on R+. We denote by x the limit 
of (c,, ( ^O) ) ,,, x E Ci.. Since h solves system (C, 6) and since the functional operators c 
are linear, we have, for every zi E N, 

c,, ((BTh + Dh)) Ac(h) + Bc(k) + 8(BTcv(h) + Dc(h)). 

Moreover,

C, ( -(BTh + Dh)) = cv(BTh + Dh). 

When ii -, no, we obtain 

(BTx + D) = Ax + B + 6(BTX + Di), 

i.e. x solves system (C,8). When h is non-constant, there exists A 54 0 such that 
a(h, A) 0 0. Taking T	, the function x provided by the Besicovitch theorem 
satisfies a(x, A) = a(h, A). Hence a(h, A) 36 0 with A 36 0 that implies the non-constancy 
of X  

Remark. Since system (C, 6) is linear, if system (C, 8) possesses periodic solu-
tions with non-commensurable periods, then system (C, 6) possesses non-periodic quasi-
periodic solutions built as sum of the periodic solutions.
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Theorem 4. We fix (5 > 0. Then we have: 

(i) P6 = 0 if and only if, for each finite or countable subset F of R, there exists a 
solution x E AP' of system (C, 6) such that {A E R: a(x, A) 0) D F. 

(ii) If P6 0 . 0 and if P6 possesses non-zero real roots, denoting by A 1 , ..., A. the 
distinct real positive roots of P6 , each function of the form 

h(t) =

	

	 +e_t) 
k=1 

with c E Ker(A + 6B T) and k E KerU6,A k is an almost-periodic solution of system 
(C,. Conversely each h E AP' which is a solution of system (L, b) necessarily has 
this form.

(iii) P6 does not possess any non-zero real root if and only if system (C; 6) does not 
possess any non-zero solution in AP'. 

Proof. (i) First we assume that P6 = 0 and we fix a countable subset F of R. We 
build a bijective mapping j - A, from N into F, and so F = {A1 jE N). Since 
P6 = 0, for each j E N, we have P6 (A1 ) = 0. Therefore there exists	E Ker U6,..,, 

0. For each j E N, we choose w1 E C \ {O} such that, denoting a3 = w 3 , we 
have 11 a 11 < 2', II Aj a,H < 2 and IAa3 II < 2. We take x,(t) = ae"i t + e"1, 
and so by Lemma 3, x3 is a solution of system (C, 6). Since system (C, 6) is linear, for 
every m E N,	x1 also is a solution of system (C,6). With our choice of the a 1 , the 
three sequences (' Xj),,,, (ir	) m and (Ir th j ) m uniformly converge on 
towards x,:± and i, respectively, which are almost-periodic, and we easily verify that x 
is a solution of system (C, 6) in AP'. Moreover, for each j E N, a(x, A) = a1 54 0, hence 
F C {A E R: a(x, A) 54 0}. When F is finite, we proceed in a more simple similar way. 

Conversely, we consider an one-to-one mapping j - A,, from N into R. By hypoth-
esis, taking F = {A, j e N), there exists a solution x E AP' of system (C, 6) such that, 
for every j E N, a(x, A3 ) 54 0. By Proposition 14, for every j E N, a(x, A,) E Ker U,i,. 
Therefore KerU6,j, 54 {0}, hence P6 (,\,) = 0. And so P6 possesses an infinite set of 
roots, that implies P6 = 0. 

(ii) By Lemma 3 and by the linearity of system (C, 6), h is a solution of system 
(C, 6). Conversely, if h is a solution of system (C, 6) in AP', then, by Proposition 14, 
a(x,A) 0 implies Ker USA 36 {0}. Hence P6 (A) = 0, and so A E (±A, : j = 
Therefore, the only non-zero Fourier-Bohr coefficients of h are among the a(x, ±A,), 
and consequently, h is in the announced form. 

(iii) By Proposition 14/(ii), if P6 does not possess any real root, then the Fourier-
Bohr coefficients of a solution of system (C, 6) in AP 1 necessarily are zero. Therefore, 
from (8], this solution is equal to zero. Conversely, if system (C, 6) does not possess any 
solution in AP', then, by Proposition 141(u) and Lemma 3, P6 does not possess any 
real root I 

Remarks. Theorem 4 is an extension of Theorem 2 of [7] to the case 6 > 0.
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7. A non-local linearization 

Because of the concavity of problem (E, 6, ii), we can built a linearization technique 
which provides non-local results about (E, 6). 

Proposition 15. We assume that condition (8) is fulfilled. Let 6 > 0 and c E R' 
a constant solution of system (E, 6). We consider system (C, 6) with A = £(c, 0), B = 
£±(c,0) and D = e±(c,0). Then system (C,6) satisfies condition (12), and when 
x E BC' is a solution of problem (E, 6, c) on x - c is a solution of problem (C, 6,0) 
on

Proof. In Proposition 3, we take x = c and y = x. Then system (11) becomes 
system (13) and as we remark it at the beginning of Section 6, system (13) is equivalent 
to problem(C, 5,0) I 

Theorem 5. We assume that condition (8) is fulfilled. Let 6 > 0 and c E R n a 
constant solution of system (, 6) such that £i(c, 0) = £ 1 (c, 0). Then we have: 

(i) If  E BC' is a solution of problem (E,6,c) on R, then x(R+)—c C Ker(c,0) 
fl KerF2(c,0). 

(ii) If y BC' is a solution of system (E,6) on R+ such that c e y(R+), then there 
exists t 0 E R+ such that y([to, )) - c C Ker e(c, 0) fl Kere± 6 (c, 0). 

Proof. Using Propositions 15 and 13 we obtain assertion (i). We consider to E lR
such that y(to) = c and take x = y( + t0 ). Then assertion (ii) is a consequence of (i)I 

Theorem 6. Under the assumptions of Proposition 15, we have: 

(i) If P6 does not possess any real root, then problem (E, 6, c) does not possess any 
non-constant almost-periodic solution. 

(ii) If P6 54 0 and if A,,..., ) are the distinct real positive roots of P 6 , then a 
solution of problem (E, 6, c) in AP' necessarily has the form 

x(t) = c+m+2e(Ekeit) 

where
in E Ker((c,0) + Se±(c,0)) 

k E Ker((c,0) + iAk( 1 (c,0) - 

+ e(c,0) + 6((c,0) + i\k±(c,0))) c C'. 

Proof. This is a straightforward consequence of Proposition 15 and Theorem 41
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