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Existence and Uniqueness of a Regular Solution
of the Cauchy-Dirichlet Problem
for Doubly Nonlinear Parabolic Equations

A. V. Ivanov

Abstract. Existence and uniqueness of some Holder continuous generalized solution of Cauchy-
Dirichlet problem for a class of degenerate or singular quasilinear parabolic equations is estab-
lished. Similar equations arise in the study of turbulent filtration of a gas or a fluid through
porous media.

Keywords: Quasilinear parabolic equations, generalized solutions, eristence, uniqueness, Hol-
" der estimates

AMS subject classification: 35K 55, 35 K65, 76 A 05

1. Introduction

Let 2 be a bounded open set in R* (n > 1), Qr = Q x (0,T], S = 9Q x (0,7,
't = ST U (8 x {t = 0}) the parabolic boundary of the cylinder Q7. Consider in Q7
the equation

Flu] := ?6—1:- —diva(y,Vu) = f o (1.1)

where Vu = (£%,..., &%), f = f(z,t) is a given function and a = (a',...,a") is a
continuous function on IR x IR" satisfying for all (u,p) € R x IR" the inequalities

a(u,p) - p > volul'lp|™ = go(u) (o >0, go(u) > 0))

oo | (1.2)
la(u,p)| < mlul'lpI™ ™ + ¢1(u)  (m>1,120, 1(u) 20). .
Equations (1.1), (1.2) are known as doubly nonlinear parabolic equations. Their proto-
type is

Ou _

Folu] := £

div(Ju['|Vu|™"?Vu) = 0. (1.3)

In this paper we consider a special case of doubly nonlinear parabolic equations. In
particular we limit ourselves by consideration equations (1.1), (1.2) only for m > 1 and
[ > 0 (instead of more general conditionsm > 1 and I > 1 —m.
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Equations (1.1), (1.2) and in particular (1.3) arise in the study of turbulent filtration
of a gas or of a fluid through porous media and non-Newtonian flows (see [13]).

Existence of generalized solutions of Cauchy-Dirichlet problem for doubly nonlinear
parabolic equations were established first by Raviart {17] and J.-L. Lions [15] and then
by many authors. In particular Bamberger stated in [1] his results on existence and
uniqueness of some non-negative generalized solution of Cauchy-Dirichlet problem for a
non-homogeneous equation Fylu] = f (see (1.3)).

Up to recent time there were no regularity results for doubly nonlinear parabolic
equations. The simple modification of the Barenblatt explicit solutions lets to show
that at least in the case | > 1 Holderness is the best possible smoothness of generalized
solutions of equation (1.3). Hence the key question of the regularity theory for doubly
nonlinear parbolic equations is establishing Hélder estimates for their generalized solu-
tions. At first such estimates were established in [4] for the case of, so-called, doubly
degenerate parabolic equations, i.e. for eqautions (1.1), (1.2) in the case m > 2 and
1>0.

This paper is devoted to the proof of existence and uniqueness of some Hélder
continuous generalized solution of Cauchy-Dirichlet problem for equations of the type
(1.1), (1.2). The crucial role is played by the Holder estimates established by the author
in [5-9]. ‘

Acknowledgement. This paper was written during the stay of the author at Bonn
in 1994. We would like to thank the Max-Planck-Institut fiir Mathematik and Professor
Hirzebruch for support and hospitality.

2. Statement of the main result .
Assume that for any u,v € IR and p,q € IR™ we have
(G) la(w,p)l < u(lul'lp™ ! +7(|u)) (1 =const >0, m>1,1>0)

7(s) > 0 being non-decreasing.

Definition 2.1. We say that a non-negative function u bounded in Qr is a weak
solution of equation (1.1), (G) with f € L,(Q7) if

(a) weC([0,T;Lx(R)), Vu'* € Lm(Qr) (0= 7i5)

(b) for any ¢ € C'(Qr) with ¢ = 0 on St and any t;,t; € (0,7

t;
t
/ud)d:xl gt // (- ué: +a(u,ur) - Vo - f8)dzdt =0 (2.1)
t
Q ' HQ
where u, = (u,l,....,u,,.‘) and u,, (:=1,...,n) are defined by
a+ll

(1+ o)“u“’agz in {Qr : u > 0}

(2.2)
0 in {@Qr:u =0}
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Consider the Cauchy-Dirichlet problem

Flu) := (Zt—u —~diva(u,Vu)=f in Qr (2.3)
u= ¥ onIr
where
f e Li(Qr) and 0<V¥e WII(QT). (2.4)

Definition 2.2. We say that a function u is a weak solution of the Cauchy-Dirichlet
problem (2.3), (2.4) if it is a weak solution of equation (1.1), (G) and « = ¥ on I'r.

Remark 2.1. Every weak solution of equation (1.1), (G) and every function ¥ €
W} (Qr) have trace on I'r.

Definition 2.3. Let inf (¥,I'r) > 0. We say that a function u is a strong solution
of the Cauchy-Dirichlet problem (2.3) if it is a weak solution of (2.3) and, moreover,
inf (u,Qr) > 0 (and hence u € WH(Qr)).

Definition 2.4. Let ¥ € W}(Qr). We say that a function u is a quasistrong
solution of the Cauchy-Dirichlet problem (2.3) if it is a weak solution of (2.3) and,
moreover, there exists a sequence {un}nem of strong solutions of problems

F[un] = fn in QT
up, =¥, on I'r

such that

un — u in C([0,T); Li(R)); fn € Li(QT), fan — f in Li(QT)
U, =V +ep(z,t) (2.5)
en € WHQT)NC(Qr), inf(en,I7)>0, sup(en,I'r) — 0.

Definition 2.5. Let ¥ € W}(Qr). We say that a function uisa regular solution
of the Cauchy-Dirichlet problem (2.3) if it is Holder continuous in Q1 and a quasistrong
solution of equation (2.3).

Introduce the following assumptions:

(Q) |Bo(2)NQ| < (1—ao)|By(z)| (z € 8Q,p € (0, po)) for some pg > 0, ap €.(0,1)

(BI) 0<% eWHQT)NCpg/m(Tr) (B €(0,1)
(RHS) 0 < f € Loo(Q7)-

Moreover, assume that the following conditions are fulfilled for equation (1.1):

0) The functions u™%a*(u,u~%p) (i=1,...,n; a = ﬁ) are continuous on R, x R".
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1) (Growth condition). For any u € R, and p € R"™

2<é< L af 1>2
a(wp)-p 2 solulpl” = p(lult +1) (10> 0:{F g <L Hmal> 2y

l
la(e, P)| < puaful o™ + w(ullul® (@ = —, (s) 2 1 non-decreasing on R, ).

2) (Strict monotonicity condition). There exists a constant v, > 0 and a continuous
vector function b: IR — IR™ such that for any u € R and p,q € R

(a(w,p) —a(u,9)) - (p— @) 2 vlul'lp— q|*(Ip ~ bI™ + |g — b|™)' /™
where k =mifm>2andk=2ifl <m < 2.

3) (Local Lipschitz condition). For any u,v € [e, M] (0 <e < M) and any p € R

la(w, p) — a(v, p)| < Alu —v|(1 +[p|™7")

where A = A(e, M) > 0.
4) (m,l) € D\ w where

D={(m,1): m>1,'120}

oc+1 1 1 l
w = : <—=- = — V.
{(m,l)GD p—— 0 l}

Theorem 2.1 (Existence and uniqueness of regular solution). Let conditions (2),
(BI), (RHS) and 0) - 4) hold. Then the Cauchy-Dirichlet problem (2.3) has ezactly one

regular solution.

Remark 2.2. Conditions 0) - 3) are fulfilled for equation (1.3).

Remark 2.3. It is easy to see that @ C F := {(m,l) € D: m+1 < 2}. We
constructed a counter-example (see [10]) showing that for every (m,l) € w the local
boundedness of generalized solutions of equation (1.3) fails to be true.

Remark 2.4. Existence of Holder continuous weak solution of the Cauchy-Dirichlet
problem for some class of equations of the type (1.1), (1.2) in the case m > 2 and
I > 0 was proved in [11]. Existence and uniqueness of regular solution of the Cauchy-
Dirichlet problem (2.3) under conditions (2), (BI), (RHS) and 0) - 3) and for I > 0,
max (1, %) <m <2, m+ 1> 2 can be derived from results of [12]. The proofs of the

results of [11] and {12] are based on using Holder estimates established in [4] and [5 -
9], respectively. .
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3. Uniqueness of quasistrong solution

In this section we state the uniqueness results of paper [12]. Assume at first that for
any u,v € IR and any p,q € IR" the function a = (a!,...,a") satisfies the following
conditions:

(G) la(u,p)l < p(lpI™* +1) (4 20)
(M) (a(%,p) —a(u,9)) -(p~g) 20

(L) |a(u,p) — a(v,p)| < Alu—v|(lp|™"* +1) (A= const>0,m >1).

Definition 3.1. We say that a function u is a generalized solution of equation (1.1),
(G) if u e WhY(Q7)NC([0,T); Li(R)) and for all 0 < ¢ € W (QT) N Lo(Q7) and any
tl 3 t2 € [0’ T]

/nuqu:r "+/ﬂ (—u¢,+a(u,vu)-v¢—f¢)d;dt=o. (3.1)

L3

Analogously, the function u is called subsolution and supersolution if in (3.1) the sign
?=" is replacesd by ”<” and ">”, respectively. :

Proposition 3.1 (Comparison Principle, see [12]). Assume that conditions (G),
(M) and (L) hold. Let uy and uy be a generalized subsolution and a supersolution,
repsectively, such that

Flu,) < A and Flug) 2 f2
where f1, f» € Li(QT). If uy S up on Sp = 80 x (0,T), then for any 7 € (0,T) we have
t=r t=0
/(ul — u2)+dz| < /(ul - u2)+dz|
Q Q
(3.2)

+ b/n/(fl - f2)sign (uy — uz)tdzdt.

Proof. Let 0 <7 € WLY(QT)NLoo(QT),0 < h <ty <ty < T — h,Qu 1y := R x
[t1,%2]. Then from the conditions of Proposition 3.1 it follows (see also (14 : pp.167,477])
that

//Q. . {(u1 - u2)iu77'4+' ((a(ul,Vul)),-, - (a(uQ,Vuz))h) . Vn}d:l:dt

< //Q (f1 — fa)an dedt

t1.62

(3.3)

where

t
1
gh = 7 /g(z,‘r)dr.
: Zh
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Denote
1 ifs>46 s—g ifs>6
His)={ 7 #0<s<6  and  Gy()={ & o0 .
. 28
0 ifs<0 0 ifs>0

so that G(s) = Hs(s) on IR. Set in (3.3)

n = Hs(ur — up). ' (3.4)

Obviously that the test function (3.4) is admissible. In view of the concavity of the
function Gs we have

(w1 — ug)g Ho(ur — u2) > (Go(ur — u2));,-

Then from (3.3) it follows that

//Q  (Gs(ur — uz));, dzdt

t1.t2

*Ih,..

< //Q (fi = fo)aHs(us — u) ddt.

t1.62

((a(ul., Vul))h - (a(uZ,V‘U2)),—1) - V(uy — u2)Hyg(uy — ug) dzdt (3.5)

Using the Newton-Leibnitz formula for the first term in (3.5)and then letting h — 0 we
obtain for any 7 € (0, T]

/ Gs(uy —ug)dz
Q

0
+ %//;Qo.r10<u|—uz<6} (a(fin,Vun) - a(uz,Vuz)) - V(uy — ug)dzdt (3.6)
s //Qo.,(fl — f2)Hs(uy — uz) dzdt.

Taking into account that
Gs(ur — uz) — (ug —ug)? and Hs(uy — uz) — sign(u; —uz)™*
as 6 — 0 we derive from (3.6) and conditions (M) and (L) that inequality (3.2) holds

Consider now the Cauchy-Dirichlet problem (2.3) assuming that condition (G) holds
and f € Li(Qr), ¥ € W/(Qr).

Definition 3.2. We say that a function u is a generalized solution of the Cauchy-

Dirichlet problem (2.3) if it is a generalized solution of equation (1.1) and u = ¥ on
Tr.

From Proposition 3.1 we can derive directly the following
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Proposition 3.2. Let conditions (G), (M) and (L) are fulfilled. Then there is at
most one generalized solution of the Cauchy-Dirichlet problem (2.3).

Replace now condition (G) by condition (G) (see Section 2) and consider instead of
assumption (L) the local Lipschitz condition

(L) |a(u,p) ~ a(v,p)| < Alu—v|(1+[p|™"") (A= A(e, M) 2 0)
for any u,v € [,M] (0<e < M) and any p€ R".

From Proposition 3.2 we can derive the following

Proposition 3.3. Let inf (¥,I'r) > 0 and let conditions (G), (M) and (L) hold.
Then there is at most one strong (in sense of Definition 2.3) solution of the Cauchy-
Dirichlet problem (2.3).

The main uniqueness result for doubly nonlinear parabolic equations is the following

Theorem 3.1 (Uniqueness of quasistrong solution, see [12]). Let ¥ € WHQr) and
let the conditions (G), (M) and (L) be fulfilled. Then there is at most one quasistrong
(in sense of Definition 2.4) solution of the Cauchy-Dirichlet problem (2.3).

Proof. Let u and @ be two quasistrong solutions of problem (2.3). Let (un, fn, ¥s)

— (u, f,¥) and (u,,,f,,,\ll ) = (@, f,¥) in sense of (2.5). Obviously we can choose
subsequences {¥,} and {\Il } such that sup(¥,,St) < 1nf(lIl,,,ST) (n € IN). Then
we can apply Proposition 3.1, i.e., for any 7 € (0, T

/(un—un)+d:r /(\1: -\1:,,)dz+// |fa = fal dzdt.
Q

Letting n — oo and using (2.5) we obtain that (u —@)* =0 ae. in Q7T K

Remark 3.1. In some sense Definition 2.4 of quasistrong solution and Theorem
3.1 are similar to the definition of "limit of strong solutions” and the corresponding
uniqueness theorem given by Bamberger (1] for equation (1.3). However instead of our
condition inf (u, @) > 0 in the definition of strong solution Bamberger used condition

% ¢ Li(QT).

We introduce now the following

Definition 3.3." We say that a function u is a mazimal weak solution of the Cauchy-
Dirichlet problem (2.3) if it is a weak solution of problem (2.3) and, moreover, for any
weak solution v of this problem we have

u(z,t) > v(z,t) in Qr. (3.7)

The reason of uniqueness of quasistrong solution of equation (2.3) can be found by
means the following proposition that easily follows from the proof of Proposition 3.1
given in [12).
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Proposition 3.4 (A. V. Ivanov, W. Jiger and P. Z. Mkrtychyan). Every qua-
sistrong solution of the Cauchy-Dirichlet problem (2.1) is @ mazimal weak solution of
this problem.

Proof. Inequality (3.3) remains valid for any weak solutions u; and up of the
Cauchy-Dirichlet problem if we change Vi, and Vu, in (3.3) by (u,), and (u2)., respec- -
tively (where u; is defined by (2.2)). Let u be a quasistrong and v be a weak solution
of (2.3). Consider the sequence {u(ys)} of strong solutions of problems

f[U(n)] = f,, in QT
u(,,) = \I/,, on FT

satisfying conditions (2.5). In particular,
U(n) 2 E(n) and E(n) = inf(E,,,QT) >0 (ne€ V).

Consider (3.3) in the case u; = v and uz = u(y). Set in (3.3)

n= H&(v - ‘U(,,)) (38)

where H;(s) is defined like above. Such a test function is admissible for (3.3) because
Hs(v - u(m) = Hs((v —'u(m)*) = Hs((v(n) — u(my))*)

where v(n) = sup(v,€(n)). Therefore, function (3.8) belongs to VOV;;O(QT) N Loo(QT).
Then repeating arguments of the proof of Proposition 3.1 we obtain

/ (v - ugw) " dz
Q

|t=f

<0 forany 7€ (0,7). (3.9)

Using (2.5) we derive from (3.9) that v —u < 0 a.e. in R, i.e., inequality (3:7) is
established il

4. Holder estimates for doubly nonlinear parabolic equations

Establishing Holder estimates is the key question of the regularity problem for doubly
nonlinear parabolic equations not only in view of the fact that Holderness is the best
possible smoothness for a large class of such equations. In fact Holder estimates for
bounded generalized solutions are crucial and the best difficult step in proving of ex-
istence of regular solution of Cauchy-Dirichlet problem for doubly nonlinear parabolic
equations.

Directly from our results [5 - 9] for doubly nonlinear parabolic equations of the full
type

Ou

5 diva(z,t,u,Vu) + ao(m,t,u,‘Vu) =0 (4.1)
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with the limit growth conditions we can derive the following estimates for equations of
the type (1.1), (1.2). Introduce condition

(H) a=(a’,...,a") is continuouson R x R (i =1,...,n)
a(u,p) - p 2 wolul'|pI™ = o (10 > 0)
la(u, p) < malulpI™ ! + [ul®¢1 (a = )
|f(z,t)] < 2

where ¢; = const > 0 (¢ = 0,1,2). For the sake of brevity we state here only global
Hoélder estimates (i.e. Holder estimates up to the boundary) for equations (1.1), (1.2).

Theorem 4.1 (see [5 - 8]). Assume that m+ 1 > 2 and let conditions (H) and ()
hold. Let u be a weak solution of equation (1.1) (in sense of Definition 2.1) such that
1ts trace on the parabolic boundary 't is Holder continuous. Then function u belongs
to the class C*™(Qr) for some A € (0,1). Moreover

|‘U.(I,f) i u(x',t')|
u)y, g = sup <K 4.2
a2 = L 0P cor (= 2 T = EDV7 (2)

where A € (0,1) and K > 0 depend only on sup(u,Qr), n, m, I, vo, po, wo, Y1, P2,
|, T, ag, po and the Holder constant and ezponent of the trace of function u on I'r.

Theorem 4.2 (see [9]). Assume that m + 1 < 2 and let conditions (H), (M), (L)
and () hold. Let u € Wh°(Qr) be a weak solution of equation (1.1) (in sense of
Definition 2.1) such that its trace on the parabolic boundary I'r is Holder continuous.
Then u belongs to C**™(Qr) for some A € (0,1). Moreover estimate (4.2) holds with
some .constants A € (0,1) andK > 0 depending on the same data as in the case of

Theorem 4.1 (in particular A and K are independent of |Vu||, (or) and the constant
A from condition (L)).

Remark 4.1. Theorems 4.1 and 4.2 remain valid if the inequalities in condition
(H) are fulfilled only for values u from the range of weak solution under consideration.

Remark 4.2. The proofs of Theorems 4.1 and 4.2 (as well as Hélder estimates for
general equations (4.1) in [5 - 9]) are concerned with some development of the methods
of papers by De Giorgi, Ladyzhenskaya and Ural’tseva (see {14]), DiBenedetto (3], Chen
and DiBenedetto [2], and the author [4].

Remark 4.3. Other results on Hélder estimates for some classes of doubly nonlin-
ear parabolic equations are obtained in [16, 18].
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5. The auxiliary Cauchy-Dirichlet problem

This section has an auxiliary character. At first we prove some generalization of the
well-known Friedrieks inequality (cf. [14: pp. 529 - 530}) which will be used not only

in this section.

Lemma 5.1. Let {¥.} be an orthonormal basis in Ly(R2) and let § > 0 be fized.
Then for any € > 0 there ezists a number N, such that for any function u satisfying the

condition

o 1 1
[ulfu € Wh(RQ) (m >, 1<ty Lﬂ)
m n 2

we have
N, 1/2
1/(8+1)
llully < (Z(u,wm) +e||Viulfu)ll )
4 k=1

where (u, ¥x) := [, u¥xdz and N, does not depend on u.

Proof. It is sufficient to prove that for any § >0 and e > 0

N, 1/2

s

1/(8+1)

lullzae S Q48 | Do, ¥)? | +e|[V(ulfu)l, (q) -
k=1

Really, for the function v = |u|u we have the well-known Sobolev inequality

2
L@ SclVollne  (r=1=5>0)

ol e

because from condition & < 1 + %ﬁ it follows that + > L — L Rewrite (5.4) as

lullL,0) < e ||V(|“|B“)||IL/,£‘(3;)I)'

Then from (5.3) and (5.5) it follows that
Ne s 1/2
- 1/(B+1)
ellacey < (Z@,w) (a8 +e) [ V(ulPu)lE,
k=1

i.e., the result of Lemma 5.1 is true. So prove that (5.3) holds.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

If (5.3) is violated, then there exist an ¢g > 0 and a sequence of functions {u,}

satisfying condition (5.1) such that for some fixed § > 0 and any v € IV

Y 1/2
1/(B+1)
luwllLaoy > (1 +6) (Z("v"l’k)z) + o ”V('“"'ﬁ“")”Lm(n) :

k=1

(5.7)
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Then for functions @, = u,/||u,||1,(q) we have

N 1/2

. . . 1B A1/ (B

L=t > (1 +6) (z(uy, \Ilk)z) + €o IIV(I“”Iﬂu”)llL{.(.(O) ). (5.8)
k=1

Denote v, = |4,|?4,. In view of (5.8) the norms || Vv, |1, () are uniformly bounded and
hence (taking into account that £ > L — 1 for r = ﬁ) there exists some subsequence

{v.,} converging strongly in L,(f). It is easy to see then that the subsequence {u,,}
converges strongly in Ly(2) to some function @ € L2(2). Really, in view of the strict
monotonicity of the function z — |2|?z (8 > 0) we have

c_llﬁv - ﬁu|2+ﬂ < (|'&,,|ﬂ'&,, - |a“|ﬂﬁ,“)(-&,, - '&#) < |v,, - vul |ﬁv - aul

with some constant ¢ > 0 and hence

. - 2 _
ld, — ul* < clv, —v,|" (r = —) N

1

T3/
Moreover, it is obvious that ||%||;,@) = 1. The functions P,,@,, = 3 ro, (@, , ¥x)¥x
also converge strongly in Ly(2) to @ because

||u - Py,uy.|

L) = |2, (i _"“‘v.) +(E-P, )’}"L,(n)
|L,(n) +||(E - P":)ﬂ”L;(ﬂ)

—0 as s-— o00.

S ”‘& - ﬁu,

Then

v, 1/2
(Z(ﬁ,,,\pk)z) =Py, ts, [l Lo0) — llEllLy) =1 as s — oo. (59)
k=1

In view of (5.8), (5.9) we obtain then the impossible inequality 1 > 1+ 611
Now we consider the Cauchy-Dirichlet problem

Flu]= f in Qr

5.10
u=V on I'r ( )

assuming the following;:

0’') a =(a!,...,a") is continuous on R x RR™

1') a(u,p)-p 2 volp|™ — po (v0 >0), la(u,p)l < pi(lp|™ "' +1) for any u € R, p € R"
2') (a(u,p) —a(v,9)) (P~ ¢) 2 ilp—¢|™ (11 >0) for any u € R, p,q € R"

3') la(u,p) — a(v,p)| < Alu = v|(]p|™"* +1) (A > 0) for any u,v € R and p,q € R"

4') m > maz(1, ;2Y).
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Proposition 5.1. Let f be measurable and bounded in Qr, ¥ € W}(Qr) and let
conditions 0') - 4') hold. Then the Cauchy-Dirichlet problem (5.10) has ezactly one
generalized (in sense of Definition 3.1) solution u. Moreover this solution belongs to

C (10, T}; Lo(2)).
Proof. Uniqueness of the generalized solution of problem (5.10) follows from Propo-

sition 3.2. So we have to prove only existence of solution cited. The forthcoming proof
is a suitable adaptation of the proof of Theorem 6.7 of [14: Chapter 5.

Let {¥x}rem be a basis in W) 1 () such that fn Uy, dz = 8, (k,l € IN), where
55‘ is the Kronecker delta, and

sup (|}, ) + sup ([V¥[, Q) < cx = const (k€ V).

Set
N
uV =3 V() Ti(2) (5.11)
k=1
where {ck }\k/=1,....N is the solution of the system of ordinary differential equations

(uN, o)+ (a"(u u™), 6‘1”‘) =(f, %) (k=1,...,N) (5.12)
with initial conditions
e (0) = (¥(2,0),Tx)  (k=1,...,N). (5.13)

From the conditions of Proposition 5.1 it follows that the second and third terms in
(5.12) are bounded and measurable functions of the variables ¢,c} on any set [0,T] x
{lcf| < const (k =1,...,N)}; moreover these functions are continuous in cf’. There-
fore existence at least of one solution of (5.12), (5.13) will be established if we could
show that all possible solutions of this problem are uniformly bounded on {0, T]. Exactly
in the same way as in [14: pp. 533 - 535] we can prove that the a priori estimate

tES[uP M%) + IVEN T, (@r) S € (5.14)

holds with some constant ¢ independent of N. Then from (5.14) it follows that
s 2 Z e () = e w1 ) S ¢ (5.15)
t .

and hence existence at least of one solution (5.12), (5.13) is established. ;From (5.14)
it follows (see [14: p. 534]) that

IluN||L,,.(,.+,)/,,(QT) <ec (5.16)

where the constant c is independent of N. Moreover, for any fixed k the functions

Ins(t) = (u¥(z,t),¥k(z)) (N, k€ ). (5.17)
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are equicontinuous (with respect to N) in-t on [0,T]. Together with (5.14) it gives the
possibility (see [14: p. 535]) to choose some subsequence {u™} that converges weakly
in L2(§?) uniformly with respect to t on [0, T] to some function u such that

sup ("u"L:(ﬂ)a [0) T]) <ec (518)

Moreover, using again (5.14) we can count that

uN Ou .
5. " oz, weakly in L,(Qr)as N — oo (5.19)
and hence u € W1%(Qr) and
IVellLmer S ¢ (5.20)

with some constant ¢ depending only on the data (see [14: p. 535]).
Obviously, from (5.12) it follows that the integral identity

/uN<pd:c +// (—uN<p,+a(uN,qu)-V(p)dxdt=// fodzdt  (5.21)
0 0 Q- Q.

holds for any 7 € (0,T] and ¢ = Zf;l di(t)¥i(z) where di are arbitrary functions
continuous in t on [0, T] and having bounded on [0, T] generalized derivatives d}. Denote
the class of such functions ¢ as Py. Obviously, uV belong to Pyr. Denote A =
a'(uN,Vu¥) (i = 1,...,N). In view of the second inequality in condition 1') and
estimate (5.14) we have the uniform (with respect to N) estimate

NAM L. .oy <S¢ (G=1,...,N; N € IN). (5.22)
Therefore we can count that there exist functions A; € L,/(Qt) such that
AN — 4 weakly in L (QT). (5.23)

Using estimate (5.14) and taking into account that u™ — u weakly in L2(§2) (uniformly
with respect to ¢t on [0,T]) we derive from inequality (5.2) in the case § = 0 for the
difference u¥ — u™ that

uV —u strongly in Lz m(QT) (5.24)

and hence we can count that

uV —u strongly in L2(Q2) for a.e. t € [0,T) (5.25)

and
uV — a.e. in Qr. (5.26)

Moreover, in view of (5.16) and condition 4')

uV —u weakly in L2(Qr). (5.27)
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Then from (5.21) and (5.23) - (5.27) we can conclude that for ae. 7 € (0,T] and

¢ € Uiz, P
/ updr| + // (—upe+ Aips,) dzdt = // feodzdt. (5.28)
Y 0 Q- Q-

In the same way as in [14: p. 538] we can derive from (5.28) and (5.18) that

u € C([0,T); Lo(Q)) (5.29)

and to prove that identity (5.28) holds for any 7 € (0,T}]. Moreover, we establish that
for every 7 € (0,T]

1 T
—/uzd:cl +// A,'u:_.dzdt=/ fudzdt. (5.30)
2Ja o Jlg, Q.

To prove that u is a generalized solution of (5.10) it is sufficient to establish that

// Ao, d:dt:// a'(u, Vu)g,, dzdt (5.31)
- Q-

for any ¢ € Use, Pk because |Jio, Pk is dense in W1 (Qr). To prove (5.31) it is
sufficient to establish that

ulN Ou

a_zi RN a—z‘ (1, = l,...,N) a.c. 1n Qr (5'32)

because in view of (5.32) and (5.26), the continuity of the functions a'(u, p), condition
1'), estimate (5.14) and the Vitali theorem we obtain that for any ¢ € sz, Pk

lim j/ a'(u™,vul)e,, dzdt:// a‘(u, Vu)p,, dzdt.
N=eJlq, Qr

On the other hand in view of (5.23)

Jim // a‘(uN,qu)g;,,.dzdt:// Aip., dzdt.
—+oo Qr r

Hence (5.32) implies (5.31). The remainder of this section is devoted to proving of
(5.32).

Choosing ¢ = u" in (5.21) we obtain

%/n(uN)2 dx|;+// a(uN,VuN)~VuNd:cdt=//Q, fu® dzdt. (5.33)

Using (5.25) and (5.27) we derive from (5.33) and (5.30) that for any 7 € (0, T)

A}im // a(uN,vuMy. vuN dzdt = // Aju,, dzdt. (5.34)
—00
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Using now condition 2') we have

vy // [Vul — Vu|™ dzdt
o

< ,//Q (a(uN,qu) - a(uN,Vu)) (Vu® _ Vu)dsd, (5.35)

Using (5.19), (5.23) and (5.34) and taking into account (in view of 1'),(5.20) and (5.26))
that

a'(u, Vu) — a*(u, Vu) strongly in L, (Qr) as N — oo (5.36)

we derive from (5.35) :
lim // |VuN — Vu|™ dzdt = 0. - (5.37)
N—oo Q. . .

But from (5.37) it follows that (5.32) holds for some subsequence {u™} il

6. A priori estimates for solutions of regularized
Cauchy-Dirichlet problems

In view of Theorem 3.1 to prove Theorem 1.1 it is sufficient to establish the following

Theorem 6.1. Let conditions (), (BI), (RHS) and 0) - 4) hold. Then the Cauchy-
Dirichlet problem ‘

(CD) Fluj=f in Qr
u=" onlyp

has at least one regular (in sense of Definition 2.5) solution.

The result of Theorem 6.1 correspondent to the case
m> 2 and 120 (6.1)

can be derived from the proof of the main theorem of the paper [11] if to use Theorem
4.1 of the present paper. Therefore we shall prove Theorem 6.1 only in the case when

l<m<?2 and 1>0. (6.2)
It is easy to see that
wC{(m):1<m<2}x{(ml):1>0}.

The proof of Theorem 6.1 correspondent to the case (6.2) can be easily transformed in
one applicable in the case (6.1).
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In the remainder of this paper we assume that all conditions (), (BI), (RHS) and
0) - 4) of Theorem 6.1 and also condition (6.2) are fulfilled.

Consider the regularized Cauchy-Dirichlet problems

(RCD)s e n Fsenlu]:= gt—u - 6Vu —diva(x(u),Vu) = f in Qr

u=WP+¢e onlyp

where
6 >0, x(v) = min {max (u,¢), N}, e>0, N >e¢. (6.3)

Without loss of generality we can and shall count that § <1 and e < 1. It is easy to
see that in view of conditions 0) - 4) and (6.2) and the structure of the left-hand side of
equation in (RCD)s . n assumptions 0') - 3') of Proposition 5.1 are fulfilled with m = 2
because € < x(u) < N and |p|™~! +1 < |p| + 1 for any m € (1,2).

Denote v = u — € and consider the Cauchy-Dirichlet problem

i - Vv —diva(x(v+¢),Vv) = f in Qr

at (6.4)

v=V on I'r

where ¥ € WZI(QT) In view of previous conclusions it follows obviously that for the
problem (6.4) all conditions of Proposition 5.1 are fulfilled with m = 2. Hence there ex-
ists exactly one generalized solution v of this problem (such that v € C([0,T); L2(2)) N
W}(QT)) But then the Cauchy-Dirichlet problem (RCD)s . n has exactly one general-
ized solution u such that u € C ([0, T]; L2(22)) N W;'O(QT), i.e., we proved the following

Lemma 6.1. For anyé > 0,¢ > 0, N > ¢ the Cauchy-Diricklet problem (RCD);s o, N
has ezactly one generalized solution u € C([0,T); L2()) N W;’O(QT).

In the remainder of this section we consider problem (RCD)s. n for § > 0,6 > 0
and N > e. Now the term "generalized solution u” means in particular that u €
C([0,T); L2(2)) N W,"°(Q7) in the case § > 0 and u € C([0,T]; L2(2)) N WL*(Q7) in
the case § = 0.

Lemma 6.2. Let u be a generalized solution of problem (RCD)s . n for any fized
6>0,6 >0 and N >¢. Then

inf (u,QT) 2 €. (6.5)

Proof. Obviously that the conditions of Theorem 6.1 imply validity of the as-
sumptions (G), (M) and (L) of Proposition 3.1 for the operator Fs, n[u] (with m = 2
if § > 0). Then taking into account that Fs. n[u] = f, Fs.n[e] =0 and u = € on
St, we can apply Proposition 3.1 for u; = €,u; = v and f;, = 0, f, = f. Using that
uy =€ S P +e=uy;onQx{t =0} (because ¥ > 0) we derive from (3.2) that
(e~u)t <Oae inQr,ie,u>cae inQrll
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Lemma 6.3. There ezist constants ¢, and c2 depending on n,m,l, the parameters
from conditions 1) - 3), and sup(¥,Qy) such that for any generalized solution u of
problem (RCD)s, v with any fized § > 0,6 > 0 and N > ¢, we have

sup(u,Qr) < (6.6)

¢! // |Vu|™dzdt < // Vutmdsdt < (a= ). 6.7)
Qr Qr m

Proof. The proof of validity of estimates (6.6) and (6.7) in the case m +1 > 2 is
given in [11]. The case m + | < 2 required to find new (a more difficult) version of the
Moser method of establishing Loo-estimates. It was made in paper [10]. In the case
m + | < 2 the lemma follows from Theorems 1.1 and 1.2 of {10] §

and

Remark 6.1. In the remainder of this paper we consider problem (RCD); . v with
N = ¢, where the constant ¢, is defined by Lemma 6.3. In view of estimates (6.5) and
(6.6) we can rewrite problem (RCD)s . ~ as

ou _

(RCD)s,e Fselu] := > 6Vu —diva(u,Vu)=f in Qr
u=W¥+¢e onI'r

where § > 0 and ¢ > 0.

Lemma 6.4. Let u be a generalized solution of the Cauchy-Dirichlet problem
(RCD)s,e for 6 = 0 and € > 0. Then there ezist constants A € (0,1) and K > 0
independent of € such that (see (4.21))

(u)r 3, < K. (6.8)

Proof. In view of conditions 1) - 3), Remark 6.1, estimates (6.5) - (6.7) and Remark
4.1 we can apply either Theorem 4.1 or Theorem 4.2 and hence establish (6.8) with some
A €(0,1) and K > 0 independent of € il

7. The passing to the limit as § — 0

In this section we show that generalized solutions us of the Cauchy-Dirichlet problems
(RCD)s,e (for any fixed € > 0) tend to a generalized solution of the Cauchy-Dirichlet
problem

du

(RCD), F.[u]:= 5 —diva(u,Vu)=f -in Qr
u=P%+e on I'r

as § — 0. For proving this we use estimates (6.5) - (6.7) and Lemma 5.1 with appropriate
B >0.
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Obviously, the functions us satisfy for any r € (0,T) and every function ¢ € WZI(Q7)
the integral identity

./ngd)dx‘;+//qr (—u6¢+6vu6.v¢+a(u5,vu6)-v¢-f¢)dxdt=o. (7.1)

Set here ¢ = ¥ € Cg(2). Then from condition 1) and estimates (6.6) and (6.7) it
follows that for any t;,t2 € [0,T] we have

ta
1
/ug\Il dz\ ’ < c// (|Vu5| + Vgt m=1 4 1)da:dt
ty
Q

Hh Q (7‘2)
< e((ta = tal 19277 + (1t = ta11020) ™ + |12 — 11112 )

From here it follows that the integrals Jqus¥dz (8 €(0,1)) are equicontinuous (with
respect to &) in t on [0, T for any fixed ¥ € C}(Q). Using the density of C3(Q) in Ly(£2)
and the uniform boundedness of the sequence {us} in Qr (see (6.6)) we can derive from
here that there exists a subsequence {us} which converges weakly in L,(Q2), uniformly
with respect to ¢ on [0, T, to some function u satisfying inequality (5.18) with a constant
c independent of § (see also [14: pp. 182-183]). Moreover, in view of (6.5) - (6.7) we
can count that

Vudt! — vyot! weakly in L,(Qr) as § =0 (7.3)
Vus — Vu “weakly in Ln(Qr) as 6 > 0 (7.4)
V§Vus — 0 weakly in Ly(QT) as 6 —0 (7.5)
sup (us, Qr) + sup (v, Qr) < a1 (7.6)

el // |Vu5|'"dzdt+5'// |Vu|™dzdt
Qr Qr

+// |Vug+l|'"dzdt+// |Vu*™dzdt < e,
Qr Qr :

where a = # Denote A} = a‘(us, Vug) (i =1,...,n). In view of condition 1) and
inequalities (7.6) and (7.7) we have the estimate uniform with respect to &

(7.7)

”A:s”L,,.l(Qr) <ec (t=1,...,n;6 >0). ~(7.8)
Then we can count that there exist functions A* € Lm/(Q7) (i =1,...,n) such that
L — A' weakly in Lo (Qr)asé—0 (i=1,...,n). (7.9)

On the other hand, from inequalities (7.6) and (7.7) it follows that for any 6,6' > 0

//QT |V(|u5 — g |Pus — uy))‘md:zdt <ec (ﬂ = - : 2) (7.10)
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with some constant ¢ independent of §. Really, in view of the definition of 8 we have
E% = 247 and hence the conditions m > 1, Lcly %é of Lemma 5.3 are fulfilled for
B = ;57 in view of condition 4). It is easy to see that from inequalities (7.6) and (7.7)
it follows that the constant c in (7.10) is independent of é. Using (7.10) and taking into
account that us — u weakly in L,(2), uniformly with respect to t on [0,7), we derive
from inequality (5.2) in the case 8 = o7 for the difference us ~ ug that

us — u strongly in Lo m(@QT) (7.11)
us — u ae. in Qr (7.12)
us — u  weakly in Ly(Qr) (7.13)
us — u strongly in L,() for a.e. t € [0,T). (7.14)

Then from (7.2), (7.5), and (7.12) - (7.14) we can derive that for a.e. 7 € (0,7) and any

¢ € W3(Qr) .
/Qud)dx'o + //Q (— ude + Al — f¢)dmdt =0. (7.15)

The following proposition is well-known (see, for example, [11]).

Proposition 7.1. Let the function g satisfy a Lipschitz condstion uniformly on
IR and its derivative g' be continuous everywhere on IR with possible exception of
finstely many points at which ¢' has a discontinuity of the first order. Further, let
u€ C([03T11L2(Q)) n ern’o(QT)u p € ern(QT)7 fi € Lm’(QT) (l = 0) 17' ERERL i +

=1 (m>1)). Atleast, assume that for any t,,t; € [0,T] and any ¢ € VQV,I,‘(QT)

/r;wﬁdx‘: +7/(—U¢z+f.-¢z.. +fo¢>d:cdt =0

L Q

1
ml

and let w = ¢ on S7. Then for any t),t, € [0,T] we have
t2
[ (6 - ug(e)) da

Q

? 7.16
+// (ug'(<p)soz + fi(g'(wuz, — ¢'(0)ee:) + folg(w) —g(w)))dzdt (718)

HQ
=0

where G(u) = fou g(&)de.

Using Proposition 7.1 we can conclude (in the same way as in [14: p. 538]) that in
view of (7.15) and (5.18) or (7.6) condition (5.29) holds for the function u. Moreover,
using Proposition 7.1 we can derive from (7.15) that for any 7 € (0, T] we have

/Q (%u2 - ue)d:c

" //Q (A'ur, = flu = ))dzdt = 0. (7.17)
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In view of (5.29) the integral identity (7.15) holds for any 7 € (0, T).

To prove that u is a generalized solution of problem (RCD), it is sufficient to

establish that
// Ai¢z.»d1dt=// ai(u,Vu)d),;dzdt (7.18)
r Q-

for any ¢ € C3(Q) (because C{(Q) is dense in W,L(QT)) To prove this it is sufficient

to estabhsh that
: . Ql t 1’ ? ") ] 1 E )
61:, aI| ( (

because in view of (7.19) and (7.12), the continuity of the functions a*, condition 1),

estimates (7.6) and (7.7) and the Vitali theorem we obtain that for any ¢ € W (Q7)
and any 7 € (0, T

lim // a‘(ug, Vug)g,, dzdt = // a‘(u, Vu)é, dzdt. (7.20)
- Qr -
On the other hand, in view of (7.9) the left-hand side here is equal to that of (7.18).
Hence (7.19) implies (7.18).
Choosing ¢ = us — € in (7.1) we obtain with the aid of Proposition 7.1 that

/n (%ug - uae) gz + //Q , (a"(ué,wa)g—’: ~ flus - e)) dzdt =0.  (7.21)

Using (7.13) and (7.14) we derive from (7.21) and (7.17) that for any 7 € (0, T}

. . Ous . Ou
3 —_— = — dt. ~2
;Er(l) //Q, a (uo,Vua)azi dzdt //Q, A ax.'dI (7.22)

Using now condition 2) we have

_ 2
nJs:=un // [Vus = Vul 2o dzdt
Q: (|Vu6|"’ + IVul'")

< //Q, (a(ug,Vug) - a(u,Vu)) - (Vug — Vu)dzdt
=: 'Hg.

(7.23)

Using (7.3) - (7.5), (7.9) and (7.22) and taking into account that in view of (7.12), (7.6)
and (7.7), condition 1) and the Vitali theorem

a‘(us, Vu) — a'(u, Vu) strongly in Ln/(Qr) as 6§ — 0 (7.24)

we derive from (7.23) that
}irr(l) Hs =0. (7.25)
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Using this limit and inequalities 0 < Js < v; '"H; we obtain
}1_% Js = 0. (7.26)
Show that from here it follows that (7.19) is true. Denote

|Vus — Vul?
(|Vu5|"‘ + Ivulm)Z/m—l .

hg(z,t) := (7.27)

From lims—o Js = 0 it follows that there exist some subsequence {6} and subset é C

Q-, |Q] = |Q+|, such that
lim hg(z,) =0 on Q. (7.28)

Without loss of generality we can count that g—x'{_- are finite on Q, i.e., |Vu is bounded

(non-uniformly) at any point (z,t) € é In view of (7.27) we have for any (z,t) € Q

ho(z,t) > (|(|Vu5| o (7.29)

Vusl + ¢)2—m

with a constant ¢ depending on (z,t) € é Suppose now that |Vus| is unbounded in
some point (z,t) € Q. Then |Vus| — oo for some subsequence {6} and hence in view
of (7.29) we obtain that for this subsequence lims—o hs(z,t) = 00, i.e., we obtain a
contradiction with (7.28). Hence

|Vus| are bounded (non-uniformly) at any point of Q. (7.30)

Then from (7.27), (7.28) and (7.30) it follows that the numerators of hs tend to zero on
Q as § — 0, i.e. (7.19) is true. Therefore the function u € C([0,T}; L»(R)) N WL°(Qr)
is a generalized solution of problem (RCD),. From Lemmas 6.2 and 6.3 it follows that
this function satisfies estimates (6.5) - (6.8). In view of (6.5) and Proposition 3.3 the
function u is a unique strong solution of problem (RCD),. So we proved the following

Lemma 7.1. For any fized € > 0 there ezist ezactly one strong solution (in sense
of Definition 2.3) of problem (RCD), satisfying estimates (6.5) — (6.8) with constants
c1,¢2,A € (0,1) end K independent of €.
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8. The passing to the limit as € — 0

Now we are ready to prove Theorem 6.1 and hence Theorem 1.1. In the remainder of
" this section we denote the solution of problem (RCD), as u,. We are going to realize the
passing to the limit as ¢ — 0 using the a priori estimates (6.5) - (6.8). This passing can
be done in the same way as one in [12] where existence of regular solution of problem
(CD) was proved in the case [ > 0, max (1, '.2—+",‘,) <m<2,m+1>2

In view of estimates (6.5) - (6.8) we can conclude that there exists a function » such
that

Ue — U uniformly in Qr (8.1)
0 atl _ o : C . _ !

oz te T Ut weakly in L,(QT) (z =1,...,n « —;) (8.2)

0 <inf(u,Qr) <sup(v,Qr)<c (8.3)

// ullug|™dzdt < ¢, ' (8.4)
Qr

and.(see (4.2))
(u)yg, < K. (8.5)

In (8.2) and (8.4) we used the following notation similar to one from Definition 2.3:

Uz = (u211~'~)utn)
{ (a+1)"'u" on{Qr:u >0} ( l ) (8.6)
Ug; = a=—].
0 on {Qr:u =0} m

Obviously, u®us; € Lm(Qr) (¢ =1,...,n) (in view of (8.4)). In view of the bounded-
ness of u and inequality 0 = —t5 > o the expressions for u,, in (8.6) and (2.2) coin-
cide. Moreover, from condition u®u;; € Lm(Qr) it follows that u%u,, € L,(Qr) (=
1,...,n). We use below the following auxiliary propositions (see [11] or {12]).

Proposition 8.1. Let the function u be bounded and non-negative in Qr and such
that Vu®*t! € L,(Qr) for some a > 0. Further, let the function T be defined by

u = sup(u — €;,0) (€1 = const > 0). (8.7)

Then u has generalized derivatives % € Ln(Qr) (:=1,...,n) such that

ou | ux in {Qr:u>e} (8.8)
9zi 0 in{Qr:0<uc<e) '
where u;; are defined by (8.6). Moreover,
lim u°£ — u%u,, =0. (8.9)
€10 i Lm(Qr)
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‘Proposition 8.2. Let A' € Ln(Qr) (i = 1,...,n) and B € Ln(Qr) (L +

1

w =1L m> 1), and let the function u be bounded and non-negative in Qr end such

that Yu°+l € Lm(Qr) for some a > 0. Assume that for any t;,t; € [0,T] and any
¢ € Wa(QT)

Q/wﬁd:v’: + ]/ ( —ugy +uCAid,, + B¢)dzdt = 0. (8.10)

4L Q

Let o € W) (QT) and u = ¢ on St. Then for any t;,t2 € [0, T}

/ (%u2 - ucp) dz
Q

where u,,; are defined by (8.8).

tz

tz .

. + // (ugot + u“A'(ug; — g, ) + Blu - t,o))d:z:dt =0 . (811)
HQ

Returning to (8.1) - (8.5) we see that the function u is non-negative and bounded
in Qr, u € CM™(Q), Vuet! € Lh(Qr) (a = #) (so that Vu°*! € L.(Qr), 0 =
;i_—l) and u = ¢ on I'r. Hence to prove Theorem 6.1 it is sufficient to show that for

any tl,tg € [0, T] a-nd ¢ € ern(QT)

n/ud)dm‘:? +7/(—u¢,+a(u,u,).v¢—f¢)dzdt=o (8.12)

H Q

where u, is defined by (8.8) in the case a = # Really, in this case from the kind of
the problem (RCD), it will follow that u is a quasistrong and hence regular solution of
problem (CD). :

To prove that (8.12) holds denote

. L l
A, =u,;%a'(ue, Vu,) (a: o t= l,...,n> . (8.13)

In view of the second inequality in condition 1) and estimate (8.4) we have the uniform
estimate

4l om Sc  (=1,...,n). ©(8.14)
Then we can count that there exist functions a* € L (QT) such that

Al — A" weaklyin L (Qr)ase—0  (i=1,...,n). (8.15)

£

Letting € — 0 in the integral identity

n/u,d) dz

t2
: +// (—ue¢( +a(u,,vu,)-v¢—f¢)dzdt =0 (8.16)

th
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for ¢ € W1 m(QT) we obtain in view of (8.1) and (8.15) that for any ¢;,t, € [0,T] and
¢ € WL(Qr)

ta
/u¢ dz|: + // (- uee+uoA'g, - f6) dzdt = 0. (8.17)
Q

13181

To prove Theorem 6.1 it is sufficient to show that

// u® Al drdt = // @'(u, Vu)gsdzdt =0 forany ¢ € C(Qp)  (8.18)

HuQ

because A*, a*(u,Vu) € Lm'(Qr) and C’(QT) is dense in W,I,,(QT) To prove equality
(8.18) it is sufficient to establish that for some subsequence {¢}
o Oue
e Bz,
because in view of (8.19) and (8.1), the continuity of the functions u~®a‘(u,u~%p) (a =
1) on R; x R™, condition 1), the uniform estimate (6.7) for u = u, and the Vitali
theorem we obtain that for any ¢ € Co'l(ar,-) the integral

— u%u,, a.e. in Qr (z=1,...,n) (8.19)

]2/ a(u,,Vu,) - Védzdt

6 Q
t2
= //ugqus,,.dzdt (8.20)
& 0
// (ue,ue™ (ue"Vue)))qS,‘d:cdt
6L Q

tends to the integral f:’fn a‘'(u,u;)¢z,dzdt. On the other hand, in view of (8.1) and

(8.15) the integral (8.20) tends to the integral L o utAlds, dzdt Hence (8.19) implies
(8.18).

The remainder of this section is devoted to the proof of (8.19). Applying Proposition
7.1 with g(€) = € — £ we derive from (7.16) that

/Q (%ug _ Eu‘) dz | 4 // (ai(uC,Vuc)aa—; — flu— e)) dzdt =0.  (8.21)
tH N

Applying Proposition 8.2 with ¢g(¢) = £ and using that u = 0 on St (in view of (8.1),
because u, = € on St) we derive from (8.11)

/12dz

/ / (v Aius, — fu)dadt = 0. (8.22)

t 2
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Using (8.1) we derive from (8.21) and (8.22) that

tz ta
lim // ai(uc,Vuc)g—Z—e_-dzdt = // u® A'u, dzdt. (8.23)
t N ! 4H Q

Let u be defined by (8.7). Obviously that the following proposition holds (see also [11]).
Proposition 8.3. We have the convergences
u;%a*(ue, Vi) — u™%'(u, Vi)  strongly in L (Qr) ase—0 (8.24)
u;%a'(u, Vi) — u"a'(u,u;) strongly in L (Qr) as €; — 0. (8.25)
Using now condition 2) we have
vy He,el
tz )
1-2/m
S // u! |V, — Va|? (|Vu, —b(ue)|™ + |V — b(u,)r") dzdt

t

/ / (e, Vate) = a¥(ue, Vi) ) ( g:' 63:,) dzdt (8.26)

L Q

u e o0t o Ot
//(a (ue,Vu,)a - Ay ga“ - a(u,,vu)< a‘;i - u? aT)) dzdt

6N
=:J.,.

Using (8.1), (8.2), (8.15), (8.23), (8.24) and letting ¢ — 0 we obtain
lim Jeen

//( (“ e ""gf,,) — u"%a’(u, Vi) (u Uy, —u %)) dzdt  (8.27)

llﬂ

!1'

Using (8.25) and (8.9) we derive from (8.27)

lim J,, =0. (8.28)

¢, —0

From (8.27) and (8.28) it follows that there exist subsequences {€x} and {€1x} tending
to zero such that limg .o Jeye;, = 0. Because 0 < H,, .,, < Jey,e,x We derive from
here that
lim H., ., =0. (8.29)
k—o0
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Rewrite H,, .,, as

’HH €1k

[u2, Vu,, —ug Vu? ;
Iua Vu., —u® b(u )lm + |u° Vi — u°’ b(u )im)(2 m)/m dzdt
o e, Vier = Ug, O, e

// hi(z, ) dadt.

HQ

Is should be recalled that @ = sup (u — €, 0) heiein. From (8.28) and (8.29) it follows
that there exist a subsequence {k} and a subset Q C Qi,.r, = 2 x [t1, 2], |Q| = |Q¢,,¢2 s
such that

(8.30)

lim hy(z,t)=0 on Q. (8.31)
k—oo

Wlthout loss of generality we can count that the derivatives a:; are finite on Q (z=
.,n). Then using (8.1) and (8.3), the definition of & (see (8. 7)), (8.8) and (8.6),

a.nd the continuity of the vector function b(u) we can conclude that

lug, Va| and  |ug, b(ue, )| are bounded (non-uniformly) on Q. (8.32)
On the other hand, in view of the definition of the functions hy we can estimate

c(|(z|zu vvuue;|+ c)) (=) € Q) (8.33)

with some constant ¢ depending on (z,t). Assume that |u$ Vu,.,| are unbounded at

hk(zu t) Z

some point (z,t) € Q. Then for some subsequence {k} we have |u® " Vu,,| = oo as
k — oo and hence (using that m € (1,2)) we derive from (8.33) that

lim hg(z,t) = on Q. (8.34)
k—oco
But this gives a contradiction with (8.31). Hence
fug, Vue, | are bounded (non-uniformly) on Q. (8.35)

Then from (8.31), (8.30) and (8.35) it follows that the numerators of k4 tend to zero on
Qask — oo, e,

kli‘n;o ug, ;“ —ug, g—:' =0 on Q@ (i=1,...,n) (8.36)
Remark now that
lim u"@— o0y =0 on Q (t=1,...,n). (8.37)
k—oo| °* 3.’1,',' az, ’ !

Really, if (z,t) € Q and u(z,t) > 0, then A:—"—) = ug,(z,t) for all sufficiently large k
and hence (8.37) follows from (8.1). On the other hand, if (z,t) € Q and u(z,t) = 0,
then A:—' = 0 for any k and hence (8.37) follows from (8.1) and the definition of 4,,.

Finally, from (8.36) and (8.37) it follows obviously that (8.19) holds. Theorem 6.1
(and hence Theorem 1.1) is proved.
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