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Abstract. Existence and uniqueness of some Holder continuous generalized solution of Cauchy-
Dirichlet problem for a class of degenerate or singular quasilinear parabolic equations is estab-
lished. Similar equations arise in the study of turbulent filtration of a gas or a fluid through 
porous media. 
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1. Introduction 

Let ci be a bounded open set in JR" (n > 1), QT = ci x (0, T1, S = aQ x (0, T], 
rT = ST U (n x it = 0)) the parabolic boundary of the cylinder QT. Consider in QT 
the equation

F[u] :	- diva(u,Vu) = I	 (1.1) 
where Vu =-), f = f(x,t) is a given function and a = (a',... ,a) is a ax,	ar

,continuous function on JR x JR'S satisfying for all (u,p) E JR x JR" the inequalities 

a(u,p) . p	uo IuI h IpI m - 00 (u)	(110 > 0, cbo(u) ^! 0))
(1.2) 

Ia(u,p)I	IL l IuI l IpI m_l + 0 1 (u )	(in> 1, 1 > 0, q i (u) ^! 0). 

Equations (1.1), (1.2) are known as doubly nonlinear parabolic equations. Their proto-
type is

Fo[u] :=	- div(IuI h IVuI m_2 Vu) = 0.	 (1.3) 

In this paper we consider a special case of doubly nonlinear parabolic equations. In 
particular we limit ourselves by consideration equations (1.1), (1.2) only for m > 1 and 
I > 0 (instead of more general conditions m> 1 and 1> 1 - m. 

A. V. Ivanov: Max-Planck-Institute für Mathematik, Gottfried - Claren-Str. 26, D - 53225 
Bonn; permanent address: Steklov Math. Inst., Fontanka 27, 191011 St. Petersburg, Russia 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag



752	A. V. Ivanov 

Equations (1.1), (1.2) and in particular (1.3) arise in the study of turbulent filtration 
of a gas or of a fluid through porous media and non-Newtonian flows (see [13]). 

Existence of generalized solutions of Cauchy- Dirichlet problem for doubly nonlinear 
parabolic equations were established first by Raviart [17] and J.-L. Lions [15] and then 
by many authors. In particular Bamberger stated in [1] his results on existence and 
uniqueness of some non-negative generalized solution of Cauchy- Dirichlet problem for a 
non-homogeneous equation Fo[u] f (see (1.3)). 

Up to recent time there were no regularity results for doubly nonlinear parabolic 
equations. The simple modification of the Barenblatt explicit solutions lets to show 
that at least in the case 1 > 1 Hölderness is the best possible smoothness of generalized 
solutions of equation (1.3). Hence the key question of the regularity theory for doubly 
nonlinear parbolic equations is establishing Holder estimates for their generalized solu-
tions. At first such estimates were established in [4] for the case of, so-called, doubly 
degenerate parabolic equations, i.e. for eqautions (1.1), (1.2) in the case m > 2 and 
1>0. 

This paper is devoted to the proof of existence and uniqueness of some HOlder 
continuous generalized solution of Cauchy- Dirichlet problem for equations of the type 
(1.1), (1.2). The crucial role is played by the HOlder estimates established by the author 
in [5 - 9]. 

Acknowledgement. This paper was written during the stay of the author at Bonn 
in 1994. We would like to thank the Max-Planck-Institut für Mathematik and Professor 
Hirzebruch for support and hospitality. 

2. Statement of the main result 

Assume that for any u, v e 11? and p, q E 1R' we have 

(G) a(u,p)I 5 ,(IuIhIpIml +i(I u I))	( = const > 0, m> 1, 1 > 0)


i(s) ^! 0 being non-decreasing. 

Definition 2.1. We say that a non-negative function u bounded in QT is a weak 
solution of equation (1.1), (G) with f E LI(QT) if 

(a) u E C([0,T];L2(cl)), Vu' E Lm(QT) ( = 
(b) for any 4 E CWT) with 0 = 0 on ST and any t i ,tz E [0,T] 

uO dxV + Jf (- U + a(u, u) .	- i) dxdt 0	(2.1) 

where u = (u t ,, .... u) and u. (i = 1,... ,n) are defined by 

au+l 
J(1 + a)'u	 in {QT : u > 0)	

(2.2) 

uri=l

ax1 
0	 in{QT:u=0}
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Consider the Cauchy-Dirichiet problem 

F[u) := 
on- - diva(u,Vu) = f in QT	 (2.3)


u='P onrT 

where
I E L i (QT )	and	0 < 'F e Wi'(QT) .	 ( 2.4) 

• Definition 2.2. We say that a function u is a weak solution of the Cauchy-Dirichiet 
problem (2.3), (2.4) if it is a weak solution of equation (1.1), (G) and u = 'F on rT. 

Remark 2.1. Every weak solution of equation (1.1), (G) and every function 'P E 
Wi'(QT) have trace on 

Definition 2.3. Let inf('P,FT) >0. We say that a function u is a strong solution 
of the Cauchy- Dirichlet problem (2.3) if it is a weak solution of (2.3) and, moreover, 
inf (u ,QT) >0 (and hence u E W,,'°(QT)). 

Definition 2.4. Let 'F E W (QT) . We say that a function u is a quasistrong 
solution of the Cauchy-Dirichiet problem (2.3) if it is a weak solution of (2.3) and, 
moreover, there exists a sequence {u n } nJjv of strong solutions of problems 

	

F [u ] = fn	in QT 
On rT 

such that

	

U in C([0,T];Li()); fn E L l(QT), f	f in LI(QT) 
= 'F+c,(x,t)	 (2.5) 

En C Wl'(QT)flC(QT), inf(e,rT) >0, SUP(En,I'T) - 0. 

Definition 2.5. Let 'F E T'i'(QT). We say that a function uis a regular solution 
of the Cauchy-Dirichlet problem (2.3) if it is Holder continuous in QT and a quasistrong 
solution of equation (2.3). 

Introduce the following assumptions: 

() IB(x)flI :5 (1—ao)IB(x)I (x C Ofl,p E (0,po)) for some Pa >0, Ceo E.(0, 1) 

(BI) 0 'F	' E	(QT)flCpfl/m(1'T) ( C (0,1)) 

(RHS) 0 < I C L(QT). 

Moreover, assume that the following conditions are fulfilled for equation (1.1): 

0) The functions u_0ai(u,up) (i = 1,... ,n; a = fr) are continuous on	x 1W'.
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1) (Growth condition). For any u	and p E 1R 

2<5<m+l ifm+l>2 \ a(u,p).p^vo IuI h IpI m _,1o (IuI o +1) (vo>o;{6_2	
ifm+1<2 ) 

a(u, p)I :^ mIuIhIpIm_I +(Iu I)IuI (a =	, p(s) 21 non-decreasing on 

2) (Strict moriotonicity condition). There exists a constant v > 0 and a continuous 
vector function b: JR - Rn such that for any u E JR and p, q E JR 

(a(u,p) - a(tz, q)) (p - q) 2 v I u I'Ip -	- b l tm + Iq - bIm)m


where ,'c =rn if  22 and r, = 2 i 1 <in <2. 

3) (Local Lipschitz condition). For any u, v E (e, M] (0 <e < M) and any p E 1R'1 

Ia(u,p) - a(v, p)I	Au - v I( 1 + IpPm') 

where A = A(e,M) 20. 

4) (m,l)E D \ w where 

D= {(m,l): m> 1,1>0) 

J(In,	
o+1

=	 1)ED:	< 0= or +-::j-;-;'	rn-1J 

Theorem 2.1 (Existence and uniqueness of regular solution). Let conditions (a), 
(B!), (RHS) and 0) - 4) hold. Then the Cauchy- Dirichlet problem (2.3) has exactly one 
regular solution. 

Remark 2.2. Conditions 0) - 3) are fulfilled for equation (1.3). 

Remark 2.3. It is easy to see that Q C F {(m, l) E D : rn+l < 21. We 
constructed a counter-example (see [10]) showing that for every (m, 1) E w the local 
boundedness of generalized solutions of equation (1.3) fails to be true. 

Remark 2.4. Existence of Holder continuous weak solution of the Cauchy- Dirichlet 
problem for some class of equations of the type (1.1), (1.2) in the case in 2 2 and 
1 2 0 was proved in [11]. Existence and uniqueness of regular solution of the Cauchy-
Dirichlet problem (2.3) under conditions (cl), (B!), (RHS) and 0) - 3) and for 1 2 0, 
max (1, n+2) <Tn <2, in + 1 > 2 can be derived from results of [12]. The proofs of the 
results of [11] and [12] are based on using HOlder estimates established in [4] and [5 - 
9], respectively.
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3. Uniqueness of quasistrong solution 

In this section we state the uniqueness results of paper [12]. Assume at first that for 
any u,v € JR and any p,q E ]R' the function a = (a ...... a") satisfies the following 
conditions: 

(0) Ia(u, p) I :5 IL (IpI m_I + 1)	( > 0) 

(M) (a(u,p) —a(u,q)) (p — q) > 0 

(L)Ia(u,p)_a(v,p)I:5AIu_vI(IpI m_l +1)	(A= const>0,m> 1). 

Definition 3.1. We say that a function u is a generalized solution of equation (1. 1), 
(G) if u € W°(QT) fl C([0, T]; L 1 (Q)) and for all 0 < 0 € W (QT) fl L (Qr) and any 
ti,t2 € [O,T]

I 	fi
uçb dx i2 +(-uqS	 a(u, Vu) V5 - fc6)dxdt = 0.	(3.1) 

'  

Analogously, the function u is called subsolution and supersolution if in (3.1) the sign 
is replacesd by "s" and ">", respectively. 

Proposition 3.1 (Comparison Principle, see [12]). Assume that conditions (C), 
(M) and (L) hold. Let u 1 and u2 be a generalized subsolution and a supersolutzon, 
repsectively, such that

F(u j ] < 1'	and	F[u2] > 12 

where 11,12 € L l(QT) . If U IS u2 on ST =	x (0,T], then for any r € (0,T] we have 

J(u i - u 2 )+dx	<f(ui - 112)+dx

(3.2) 

+JJ ( fi — f2) sign (uI —u2)dxdt. 

Proof. Let 0 r € W,°(QT) flL (QT), 0 < h <t0 <t2 <T — h,Q11j2 := x 
[t 1 , t 2 ]. Then from the conditions of Proposition 3.1 it follows (see also [14 : pp.167,477]) 
that

14J (Ul - u2)y71 + ( (a(ui,Vui)) - (a(u2, Vu2)) h ) . ViJ}dxdt

(3.3) 

< [f	(f' —f2)-,jdxdt 
JJQ,,,,2 

where
if = ; J g(x,r)dr.
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{	5 
s-- ifs>5 2	- 

and	Go(s) =	if 0 < s <5 
25 

0	ifs>0 

Denote

1 ifs>8 

ifO<s<S 

0 ifs<0

so that G(s) = H6 (s) on R. Set in (3.3) 

Ii =	- u 2 ).	 (3.4) 

Obviously that the test function (3.4) is admissible. In view of the concavity of the 
function G 6 we have

(u i - u2),Ho(u l - u 2 ) ^! (Go(u i - u2)) 

Then from (3.3) it follows that 

ff (G 5 (u 1 —u2))dxdt 
Q 1 .2 

+ 11 6 Q t 1 9 2	Vul)), - (a(u2,Vu2))) . V(u i - u 2)H(u i - u 2)dxdt (35) 

ff (1' —f2)H6 (u i —u2)dxdt. 

Using the Newton-Leibnitz formula for the first term in (3.5)and then letting h - 0 we 
obtain for any T E (0,T] 

if, 
Go(u i —u2)dx 

+ 
"( Q0,1:0<U1-U2<6)

 (a(ui,Vui)_a(u2,Vu2)) .V(ui —u2)dxdt	(3.6)  

ff	—f2)Ho(ui —u2)dxdt. 0..  
Taking into account that 

G6 (u i —u 2 )---(u i _u 2 )+	and	H6(111 —u2)-----*sign(ui _u2)+ 

as 5 - 0 we derive from (3.6) and conditions (M) and (L) that inequality (3.2) holds U 

Consider now the Cauchy-Dirichlet problem (2.3) assuming that condition (G) holds 
and f E Ll(QT), 'P E Wi'(QT). 

Definition 3.2. We say that a function u is a generalized solution of the Cauchy-
Dirichlet problem (2.3) if it is a generalized solution of equation (1.1) and u = 'I' on 
rT.

From Proposition 3.1 we can derive directly the following
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Proposition 3.2. Let conditions (G), (M) and (L) are fulfilled. Then there is at 
most one generalized solution of the Cauchy-Dirichlet problem (2.3). 

Replace now condition (G) by condition (G) (see Section 2) and consider instead of 
assumption (L) the local Lipschitz condition 

(L) a(u,p) - a(v,p)	Au - v1(1 + IpI m )	(A A(e,M) 20) 
for any u,vE le, M] (0<e<M) and any pEiR'. 

From Proposition 3.2 we can derive the following 

Proposition 3.3. Let inf(',rT) > 0 and let conditions (G), (M) and (L) hold. 
Then there is at most one strong (in sense of Definition 2.3) solution of the Cauchy-
Dirichlet problem (2.3). 

The main uniqueness result for doubly nonlinear parabolic equations is the following 

Theorem 3.1 (Uniqueness of quasistrong solution, see [121). Let 'I' E W11 (QT) and 
let the conditions (G), (M) and (L) be fulfilled. Then there is at most one quasistrong 
(in sense of Definition 2.4) solution of the Cauchy- Dirichlet problem (2.3). 

Proof. Let u and ü be two quasistrong solutions of problem (2.3). Let (u n , f, 'P,) 
- (u,f,'I') and (u ,J,'P ) - (ü,f,'F) in sense of (2.5). Obviously we can choose 
subsequences {W} and {'.P,% } such that SUP ('I'n,ST) !^ inf('F,ST) (n E .1IV). Then 
we can apply Proposition 3. 1, i.e., for any r E (0,T1 

J(un - ü)dx	 - 4dx +	un - fnldxdt. 
OQ 

Letting n - :: and using (2.5) we obtain that (u - ii)+ = 0 a.e. in QT  

Remark 3.1. In some sense Definition 2.4 of quasistrong solution and Theorem 
3.1 are similar to the definition of "limit of strong solutions" and the corresponding 
uniqueness theorem given by Bamberger [1) for equation (1.3). However instead of our 
condition inf (u, QT) > 0 in the definition of strong solution Bamberger used condition 
au E LI(QT). 

We introduce now the following 

Definition 3.3. We say that a function u is a maximal weak solution of the Cauchy-
Dirichlet problem (2.3) if it is a weak solution of problem (2.3) and, moreover, for any 
weak solution v of this problem we have 

	

u(x,t) 2 v(x,t)	in QT.	 (3.7) 

The reason of uniqueness of quasistrong solution of equation (2.3) can be found by 
means the following proposition that easily follows from the proof of Proposition 3.1 
given in [12).
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Proposition 3.4 (A. V. Ivanov, W. Jäger and P. Z. Mkrtychyan). Every qua-
sisirong solution of the Cauchy- Dzrichlet problem (2.1) is a maximal weak solution of 
this problem. 

Proof. Inequality (3.3) remains valid for any weak solutions u 1 and u 2 of the 
Cauchy-Dirichiet problem if we change Vu 1 and Vu 2 in (3.3) by (u1) and (u 2 ), respec-
tively (where u is defined by (2.2)). Let u be a quasistrong and v be a weak solution 
of (2.3). Consider the sequence { u() } of strong solutions of problems 

	

= In	in QT 

	

U(n) = 'u n	on 

satisfying conditions (2.5). In particular, 

U(n) 2 6 ( n )	and	6(n) = inf(c fl , QT) > 0	(n E IV). 

Consider (3.3) in the case u 1 = v and u 2 U(n). Set in (3.3) 

= H6 (v - U(n))	 (3.8) 

where H6 (s) is defined like above. Such a test function is admissible for (3.3) because 

H6 (v - U()) = H6 ((v _U(n))) = H 6 ((v ( . ) - U(n)))) 

where V(n) = sup (V,E(n)). Therefore, function (3.8) belongs to *,"(QT) fl Loo(Q). 
Then repeating arguments of the proof of Proposition 3.1 we obtain 

for any rE(0,T].	 (3.9) 

Using (2.5) we derive from (3.9) that v - u	0 a.e. in Q, i.e., inequality (37) is 
established I 

4. Holder estimates for doubly nonlinear parabolic equations 

Establishing Holder estimates is the key question of the regularity problem for doubly 
nonlinear parabolic equations not only in view of the fact that HOlderness is the best 
possible smoothness for a large class of such equations. In fact HOlder estimates for 
bounded generalized solutions are crucial and the best difficult step in proving of ex-
istence of regular solution of Cauchy- Dirichlet problem for doubly nonlinear parabolic 
equations. 

Directly from our results [5 - 9] for doubly nonlinear parabolic equations of the full 
type

au 
—diva(x,t,u, Vu) + ao(x,t,u,Vu) = O	 (4.1)
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with the limit growth conditions we can derive the following estimates for equations of 
the type (1.1), (1.2). Introduce condition 

(H) a = (aI,...,ahl) is continuous on JR x JR'S (i = 1,...,n) 
a(u,p) p2 L,o IuI h IpI m - 'P0 (11° > 0) 

Ia(u,p)I	ILl IuI h IpI T_l + I u I°i (a = 
I Ax, t )I	'P2 

where cp j = const > 0 (i = 0, 1, 2). For the sake of brevity we state here only global 
Holder estimates (i.e. HOlder estimates up to the boundary) for equations (1.1), (1.2). 

Theorem 4.1 (see [5 - 8)). Assume that m + I 2 2 and let conditions (H) and (l) 
hold. Let u be a weak solution of equation (1.1) (in sense of Definition 2.1) such that 
its trace on the parabolic boundary rT is Hölder continuous. Then function u belongs 
to the class C A, '/m (QT ) for some A E (0, 1). Moreover 

Iu(x, t) - u(x', t')I
K	 (4.2) ( u ) A 	sup 

(z,t),(z't')EQr (I x - x 'I" + It - tsI)A/m 

where A E (0, 1) and K > 0 depend only on sup(u, QT), n, m, I, vo, /Lo, WO, i, 'p2, 

I ci, T, a0 , po and the Holder constant and exponent of the trace of function u on rT. 

Theorem 4.2 (see [9]). Assume that m + 1 < 2 and let conditions (H), (M), (L) 
and () hold. Let u € W,'°(QT) be a weak solution of equation (1.1) (in sense of 
Definition 2.1) such that its trace on the parabolic boundary rT is HOlder continuous. 
Then u belongs to C/ m (QT ) for some A € (0, 1). Moreover estimate (4.2) holds with 
some constants A € (0, 1) andK > 0 depending on the same data as in the case of 
Theorem 4.1 (in particular A and K are independent of IIVuIIL,.(QT) and the constant 
A from condition (L)). 

Remark 4.1. Theorems 4.1 and 4.2 remain valid if the inequalities in condition 
(H) are fulfilled only for values u from the range of weak solution under consideration. 

Remark 4.2. The proofs of Theorems 4.1 and 4.2 (as well as Holder estimates for 
general equations (4.1) in [5 - 9]) are concerned with some development of the methods 
of papers by De Giorgi, Ladyzhenskaya and Ural'tseva (see [141), DiBenedetto [3], Chen 
and DiBenedetto [2], and the author [4]. 

Remark 4.3. Other results on HOlder estimates for some classes of doubly nonlin-
ear parabolic equations are obtained in [16, 181.
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5. The auxiliary Cauchy- Dirichiet problem 

This section has an auxiliary character. At first we prove some generalization of the 
well-known Friedrieks inequality (cf. [14: pp. 529 - 5301) which will be used not only 
in this section. 

Lemma 5.1. Let {'P} be an orthonorrnal basis in L 2 () and let 13 > 0 be fixed. 
Then for any e > 0 there exists a number Al such that for any function u satisfying the 
condition

1	1 1+13 ' '',1(c)	(m> 1, -	- + 
21	

(5.1) rn n  
we have

1/2 

	

II U IIL2(l) < (>U W)2)	+ e lV(IuIu)Z)' 

where (u, F) := fn u'I' dx and Al does not depend on u. 

Proof. It is sufficient to prove that for any 8 > 0 and e > 0 

1/2 

II U IIL2()	(1 + 6) ((u, l)2)	+ e V(Itzu) 11 11',6+1)

k=1 

Really, for the function v = I u I u we have the well-known Sobolev inequality 

/ 
II v IIL(t1) <	

2 
C II VV IIL()	(r =	> o 

"	
)


 1+13 

because from condition -I- < -1 + 1 it follows that I > I - I Rewrite (5.4) as M n 

11 u 11L2(Il) <c1 V(IuIu) 

Then from (5.3) and (5.5) it follows that

(5.2) 

(5.3) 

(5.4) 

(5.5) 

i.e., the result of Lemma 5.1 is true. So prove that (5.3) holds. 

If (5.3) is violated, then there exist an co > 0 and a sequence of functions {u,} 
satisfying condition (5.1) such that for some fixed 6> 0 and any ii E 

E

1/2 

II U VIIL2(fl) > ( 1 + 6) ((u	k)2)	+ E L_(n) (5.7)
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Then for functions ü, = U j, /II U VIIL,(fl) we have 

1/2 

1 = II U VIIL 2 (fl) > (1 + 8) ((u	)2)	
+ Co	 (5.8) Z—d

Denote v =	In view of (5.8) the norms II VvvIIL,(n) are uniformly bounded and 
hence (taking into account that > — for r = there exists some subsequence 
{v } converging strongly in Lr(fZ). It is easy to see then that the subsequence {u) 
converges strongly in L2() to some function ü E L 2(). Really, in view of the strict 
monotonicity of the function x -4 x I x (/3> 0) we have 

c'ü —	 Iu1zIu)(u — u,) < vi, — v	- 

with some constant c > 0 and hence 

	

u i, — u 2 < c'vi, - v I"	(r = 
2 

Moreover, it is obvious that II u IIL2(ci) = 1. The functions Pi,,ft, 
also converge strongly in L2(Q) to ü because 

P.(ii — u i,. + (E - .Pv.)tL IL 2 (cl) L2(fl)

<
11 1a- 

ui, IL(fl) + (E - Pv,)üIL() 

—40 as s —+oo. 

Then

k))
1/2


	

= II Pv.tz v. 11L2(fl)	I	 = 1	as S .	.	(5.9)


In view of (5.8), (5.9) we obtain then the impossible inequality 1 > 1 + 81 

Now we consider the Cauchy-Dirichiet problem 

	

F[u)=f	in QT (5.10) 

	

u=4'	on 1'T 

assuming the following: 

0') a = (a',... ,a') is continuous on JR x 1R' 

1') a(u,p) . p ^!	— po (v0 >0), Ia(u,p)I :5 p i (IpIml +1) for any u E JR, p E R"

2l)(a(u,p)_a(u,q)).(p_q)zi1p_qm (v,>O) for any uEJRpqEJJ 

3') Ia(u,p) - a(v,p)I Al- - vI(IpI m_I + 1) (A > 0) for any u,v E JR and p,q E 111" 

4') in > max (1, n+2)
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Proposition 5.1. Let f be measurable and bounded in QT, 'F E W21 (QT ) and let 
conditions 0') - 4') hold. Then the Cauchy- Dirichle t problem (5.10) has exactly one 
generalized (in sense of Definition 3.1) solution u. Moreover this solution belongs to 
C([O, T]; L2(c)). 

Proof. Uniqueness of the generalized solution of problem (5.10) follows from Propo-
sition 3.2. So we have to prove only existence of solution cited. The forthcoming proof 
is a suitable adaptation of the proof of Theorem 6.7 of [14: Chapter 51. 

Let {'Jik}k E JN be a basis in W,,(1) such that J 'Fk'Fl dx = öj (k, I E iN), where 
S is the Kronecker delta, and 

SUP (l'F kl, l ) + sup (l VW kl, 1 ) < Ck = const	(k E iN). 

Set

uA' =	c(t)' k (x)	 (5.11) 

where {c'} i N is the solution of the system of ordinary differential equations 

(ut', W k) + (ax(UN, Vu N),	= (f 'F t )	(k = 1,. .. , N)	(5.12) 

with initial conditions

c'(0) = ('F(x, 0), 41 k)	(k = 1,. . . , N).	 (5.13) 

From the conditions of Proposition 5.1 it follows that the second and third terms in 
(5.12) are bounded and measurable functions of the variables t, c on any set [0, T] x 
{ lc'l < cons (k = 1,.. . , N)}; moreover these functions are continuous in c 1 . There-
fore existence at least of one solution of (5.12), (5.13) will be established if we could 
show that all possible solutions of this problem are uniformly bounded on [0, T]. Exactly 
in the same way as in [14: pp. 533 - 535] we can prove that the a priori estimate 

N 2	+ IlVu 1V Il ,,(QT)	C	 (5.14) SUP lu 1lL2(t)) 
tE[o,T] 

holds with some constant c independent of N. Then from (5.14) it follows that 

N
2	 N SUP	lc'(t)l = sup lu ll

2
L 2 (fl) ^ c	 (5.15) 

tE [o , T]	 te(o,Tl 

and hence existence at least of one solution (5.12), (5.13) is established. ,,From (5.14) 
it follows (see [14: p. 534]) that

u ' llL, (fl+ , ) , fl (QT )	C	 (5.16) 

where the constant c is independent of N. Moreover, for any fixed k the functions 

1N,k(t) = (u"(x,t), 'Fk(X))	(N, k E iN).	 (5.17)
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are equicontinuous (with respect to N) in't on [0,T]. Together with (5.14) it gives the 
possibility (see (14: p. 5351) to choose some subsequence {u"} that converges weakly 
in L2 (l) uniformly with respect to t on [0, Tj to some function u such that 

Sup (I1uI1 L2(), [0, TI) < C.	 (5.18)


Moreover, using again (5.14) we can count that 

atL'	att .—	weakly in Lm(QT) as N	 (5.19) 
oxi	(ix 

and hence u E W°(QT) and
IIVUIIL.,(QT) < c	 (5.20)


with some constant c depending only on the data (see [14: p. 535]). 
Obviously, from (5.12) it follows that the integral identity 

Ju N Vdx + 11
(_	+ a(UN,VuN) . VV)dxdt 

= A fodxdt	(5.21) 

holds for any r E (0,T] and V = EN 
k=l dk(t)'I'k(x) where dk are arbitrary functions 

continuous in t on [0, T] and having bounded on [0, TI generalized derivatives d. Denote 
the class of such functions 'p as PA(. Obviously, UN belong to PA(. Denote A = 
a I (u l ' , Vu N) (i = 1,...,N). In view of the second inequality in condition 1') and 
estimate (5.14) we have the uniform (with respect to N) estimate 

IIAIIL m ,( Qr) <c	(i = 1,... ,N; NE W).	 (5.22)


Therefore we can count that there exist functions A 1 E Lm'(QT) such that 

	

A," - A i	weakly in Lm'(QT).	 (5.23) 

Using estimate (5.14) and taking into account that UN - u weakly in L2(Q) (uniformly 
with respect to i on [0, TI) we derive from inequality (5.2) in the case /3 = 0 for the 
difference U N - UN, that

	

U	strongly in L2,m(QT)	 (5.24)


and hence we can count that 

U N —* u	strongly in L2 (1) for a.e. t E [0,T]	 (5.25) 

and
UN —4 U	a.e. in QT.	 (5.26) 

Moreover, in view of (5.16) and condition 41) 

UN	U	weakly in L2(QT).	 (5.27)
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Then from (5.21) and (5.23) - (5.27) we can conclude that for a.e. r E (0,T] and 
pEUiPk

f uodx + JJ (- tzç j +	dxdt 
=fj 

fçcdxdi.	(5.28) 

In the same way as in [14: p. 5381 we can derive from (5.28) and (5.18) that 

C([0,T];L2(cl))	 (5.29) 

and to prove that identity (5.28) holds for any r E (0, T). Moreover, we establish that 
for every r E (0,T]

j+ 
ff 

A1 u dxdi = 11 fu dxdt.	 (5.30) 

To prove that u is a generalized solution of (5.10) it is sufficient to establish that 

AQ r Aco dxdt = A I a'(u, Vu)W,, dxdt	 (5.31) 

for any p E U1 Pk because UI Pk is dense in W(QT). To prove (5.31) it is 
sufficient to establish that 

au  t9u 
- (z = 1,... ,N)	a.e. in Q,.	 (5.32) clxi	ox1 

because in view of (5.32) and (5.26), the continuity of the functions a R (u , p) , condition 
1'), estimate (5.14) and the Vitali theorem we obtain that for any 'p E U1 Pk 

lim AQ ai (u V , Vu N ) Wr dxdt =
 JfQ at(u,Vu)'p1 dxdt. N—.  

On the other hand in view of (5.23) 

lim AQ at(uN, VuN)ç dxdt = AQ i ., dxdt. N—.00  

Henãe (5.32) implies (5.31). The remainder of this section is devoted to proving of 
(5.32). 

Choosing 'p = u" in (5.21) we obtain 

	

I (UN)2 dx + Jf a(u N , Vu N ) . VuNdxdt = 11 fuN dxdt.	(5.33) 

Using (5.25) and (5.27) we derive from (5.33) and (5.30) that for any T E (0, T) 

LmfJ a(u N , Vu N ) . V U N dxdi = A A1 u dxdt.	 (5.34)



Existence and Uniqueness of a Regular Solution	765 

Using now condition 2') we have 

A Ru l" — Vul m dxdt
(5.35) If (a(u N , vu t') - a(u N , Vu)) (VuN - Vu)dxdt. 

Using (5.19), (5.23) and (5.34) and taking into account (in view of 1'), (5.20) and (5.26)) 
that

a'(u",VU) -p a'(u,Vu)	strongly in Lm' (QT) as N -	 (5.36)


we derive from (5.35)

urn A IVu N - Vu I tm dxdt = 0.	 (5.37) 
N—oe 

But from (5.37) it follows that (5.32) holds for some subsequence {u''} 

6. A priori estimates for solutions of regularized 
Cauchy- D irichlet problems 

In view of Theorem 3: 1 to prove Theorem 1.1 it is sufficient to establish the following 
Theorem 6.1. Let conditions (1?), (B!), (RHS) and 0) - 4) hold. Then the Cauchy-

Dirichlet problem 

(CD) F[u] = f in QT 
u=	on FT 

has at least one regular (in sense of Definition 2.5) solution. 

The result of Theorem 6.1 correspondent to the case 

m>2	and	1>0	 (6.1) 

can be derived from the proof of the main theorem of the paper [11] if to use Theorem 
4.1 of the present paper. Therefore we shall prove Theorem 6.1 only in the case when 

1 <m < 2	and	1> 0.	 (6.2)


It is easy to see that

C {(rn,l) :1< m < 2} x {(m,l) :1 > o}. 

The proof of Theorem 6.1 correspondent to the case (6.2) can be easily transformed in 
one applicable in the case (6.1).
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In the remainder of this paper we assume that all conditions ( a ), (BI), (RHS) and 
0) - 4) of Theorem 6.1 and also condition (6.2) are fulfilled. 

Consider the regularized Cauchy-Dirichiet problems 

311 
(RCD) S,e,N Fs,,N[u]	a-t - 6Vu - div a((u), Vu) = I in QT 

u=P+e on r7, 

where
6>0,	(u) min { max (u,e),N},	c >0,	N> E.	(6.3) 

Without loss of generality we can and shall count that 6 1 and e 1. It is easy to 
see that in view of conditions 0) - 4) and (6.2) and the structure of the left-hand side of 
equation in (RCD) b ,e N assumptions 0') - 3') of Proposition 5.1 are fulfilled with rn = 2 
because e x(u) N and IpI m_l + 1	II + 1 for any m  (1, 2). 

Denote v = u - 6 and consider the Cauchy-Dirichiet problem 

av

	

- 6Vv - div a((v + 0, Vv) = f	in QT	
(6.4) 

	

v='I'	on 

where 'I' e 14q(QT). In view of previous conclusions it follows obviously that for the 

problem (6.4) all conditions of Proposition 5.1 are fulfilled with rn = 2. Hence there ex-




ists exactly one generalized solution v of this problem (such that v e C([0,T1; L2 (1l)) fl

W(QT)). But then the Cauchy- Dirichlet problem (RCD)o,, N has exactly one general-




ized solution u such that u E C([0,T]; L 2 (cl)) fl W'°(QT), i.e., we proved the following


Lemma 6.1. For any 6 > 0,c > 0, N > e the Cauchy- Dirichle t problem (RCD),N 
10 has exactly one generalized solution u E C((0, T]; L2 (cz)) fl W2 (QT). 

In the remainder of this section we consider problem (RCD) 6 ,e, N for 6 > 0,e > 0 
and N > e. Now the term "generalized solution u" means in particular that u E 
C([0,T];L2(Q)) flW'°(QT) in the case 6>0 and u e C([0,T];L2(Q)) fl W,'°(Q) in 
the case 6 = 0. 

Lemma 6.2. Let u be a generalized solution of problem (RCD),eN for any fixed 
6 >0,e>0andN>e. Then

	

inf(u,QT) > 6.	 (6.5) 

Proof. Obviously that the conditions of Theorem 6.1 imply validity of the as-
sumptions (G), (M) and (L) of Proposition 3.1 for the operator Fo,,rv[u] (with m	2 
if 6 > 0). Then taking into account that Fo,,v[u] = 1, F ,N[E] = 0 and u 6 on 
ST, we can apply Proposition 3.1 for u 1 = E,u 2 = u and f1 = 0,12 = f . Using that 
U1 = c < 'F + e = u 2 on Q x {t = 01 (because 'F > 0) we derive from (3.2) that 
(e - u)+	0 a.e. in QT, i.e., u	e a.e. in QT I
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Lemma 6.3. There exist constants c 1 and c2 depending on n, m, 1, the parameters 
from conditions 1) - 3), and SUP OP , QT) such that for any generalized solution u of 
problem (RCD), N with any fixed 6 2 0,e > 0 and N 2 c1 we have 

Sup ( u ,QT) <C1	 (6.6) 

and

	

eiJj
Ivulmdxdt 11 Ivu h I m dxdt <2	(a =

	
(6.7)


QT	 QT  

Proof. The proof of validity of estimates (6.6) and (6.7) in the case m + 1 2 2 is 
given in [ill. The case in + 1 < 2 required to find new (a more difficult) version of the 
Moser method of establishing L-estimates. It was made in paper [10]. In the case 
in + I < 2 the lemma follows from Theorems 1.1 and 1.2 of [loll 

Remark 6.1. In the remainder of this paper we consider problem (RCD)b,,N with 
N = c 1 where the constant c 1 is defined by Lemma 6.3. In view of estimates (6.5) and 
(6.6) we can rewrite problem (RCD),N as 

au 
(RCD)5, F6,1u) :=	- 6Vu - diva(u,Vu) = f in QT


u='I'+e on FT 

where 6 > 0 and c > 0. 

Lemma 6.4. Let u be a generalized solution of the Cauchy- Dirichlet problem 
(RCD)6, for 6 0 and E > 0. Then there exist constants A e (0, 1) and K > 0 
independent of c such that (see (4.21))

K.	 (6.8) 

Proof. In view of conditions 1) -3), Remark 6.1, estimates (6.5)- (6.7) and Remark 
4.1 we can apply either Theorem 4.1 or Theorem 4.2 and hence establish (6.8) with some 
A E (0,1) and K > 0 independent of e  

7. The passing to the limit as 6 —+ 0 

In this section we show that generalized solutions u 6 of the Cauchy-Dirichiet problems 
(RCD) 6,e (for any fixed E > 0) tend to a generalized solution of the Cauchy-Dirichiet 
problem 

(RCD) F[u] 
au

 - diva(u,Vu) = f in QT 

u=+e on FT 

as 6 - 0. For proving this we use estimates (6.5) - (6.7) and Lemma 5.1 with appropriate 
0 >0.
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Obviously, the functions u satisfy for any r E (0, T] and every function e 4T1 (Q.) 
the integral identity 

f u 6 cbdx + If (—u 6 +SVu 6 Vq + a (u6,Vu 6) . V_f)dxdt = 0. (7.1) 

Set here 0 = 'F E Co'(f). Then from condition 1) and estimates (6.6) and (6.7) it 
follows that for any t j , t2 E [0, T] we have 

f uöFdxI t' <c fJ(1 vu 61 + IVu +l I m_l + l)dxdi
(7.2) 

<c((t -	+ ([t2 - t i I IcI) 1/rn 
+ It2 -	I ii): 

From here it follows that the integrals fl, u 5 'J.' dx (6 E (0,1)) are equicontinuous (with 
respect to 8) in ton [0, T] for any fixed 'F E C(). Using the density of C() in L2() 
and the uniform boundedness of the sequence {u 5 } in QT (see (6.6)) we can derive from 
here that there exists a subsequence {ub} which converges weakly in L2 (cl), uniformly 
with respect tot on [0, T], to some function u satisfying inequality (5.18) with a constant 
c independent of 6 (see also [14: pp. 182-183]). Moreover, in view of (6.5) - (6.7) we 
can count that

Vu' —* Vu'	weakly in L,,, (QT) as 6 — 0	 (7.3) 
Vu 6 -.---+ Vu	<weakly in L,,, (QT) as 6—+ 0	 (7.4) 

vVu 6 —i 0	weakly in L2 (QT) as 6—p 0	 (7.5) 

Sup ( u o, QT) + SUP ( u,QT) c 1	 (7.6) 

and
•	E1JJ Ivu6l m dxdt+6 1 Jf lVulmdxdt 
• QT	 QT	 (77) + ff + Jf Ivu l I m dxdt < c2 

where c fr. Denote A' = a'(u 6 , Vu 6) ( i = 1,. . . , n). In view of condition 1) and 
inequalities (7.6) and (7.7) we have the estimate uniform with respect to S 

AL,(QT)	c	(i = 1,... ,n; (5>0).	 (7.8) 

Then we can count that there exist functions A' E L,,, , (QT) (i = 1,. . . , n) such that 

A'6 -. A' weakly in Lm'(QT) as 6 - 0	(i = 1,... ,n).	(7.9) 

On the other hand, from inequalities (7.6) and (7.7) it follows that for any 6,6' > 0 

Jf V(u 6 — u6'I( u 6 - uö))dxdt c	(i3 =
	 (7.10) 

Qr
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with some constant c independent of 6. Really, in view of the definition of 6 we have 
2	a+2.1 =	and hence the conditions m> 1,	+	of Lemma 5.3 are fulfilled for 


/3 =—a in view of condition 4). It is easy to see that from inequalities (7.6) and (7.7) 
it follows that the constant c in (7.10) is independent of 6. Using (7.10) and taking into 
account that u6 - u weakly in L2 (IZ), uniformly with respect to t on [0, Tj, we derive 
from inequality (5.2) in the case 0 =	for the difference u6 - up that 

us -4 u strongly in L2,m(QT)	 (7.11) 
a.e. in QT	 (7.12) 

u -i u weakly in L2 (QT)	 (7.13) 
U6 —* u strongly in L2() for a.e. t E [0, T).	 (7.14) 

Then from (7.2), (7.5), and (7.12) - (7.14) we can derive that for a.e. r E (0,T) and any 
q5EW2'(QT)

L
uqdx + Jf ( - uO, + AcbX , - fc)dxdt = 0.	(7.15)


The following proposition is well-known (see, for example, [111). 

Proposition 7.1. Let the function g satisfy a Lipschitz condition uniformly on 
JR and its derivative g' be continuous everywhere on JR with possible exception of 
finitely many points at which g' has a discontinuity of the first order. Further, let 
u E C([0,T];L2(cl))flW°(QT), ço E W,,(QT), fj E Lm'(QT) (i	0,1,...,ri,	+ 

= 1 (in >1)). At least, assume that for any t 1, t2 E [0,T1 and any 0 E W(QT) 

/uqdxI +Jf(_u&+f+fo)dxdt=o 
Jci	Iti

ti 0 

and let u = on ST Then for any t1, t2 E [0, T] we have 

f (G(u) - ug(o))
It 

t2

' 

+ 
Jf	

+ f(g'(u)u - g') + fo(g(u) - g()))dxdt	
(7.16) 

ti 
=0 

where G(u) = fou 

Using Proposition 7.1 we can conclude (in the same way as in [14: p. 538]) that in 
view of (7.15) and (5.18) or (7.6) condition (5.29) holds for the function u. Moreover, 
using Proposition 7.1 we can derive from (7.15) that for any r E (0, T] we have 

1( 
2 

u2 - ue) dx r + JJ (A ' u., - f(u - C))dxdt = 0.	(7.17)
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In view of (5.29) the integral identity (7.15) holds for any r E (0, T]. 

To prove that u is a generalized solution of problem (RCD)e it is sufficient to 
establish that JJQ Aqdxdt 

= AQ a'(u,Vu)çb 1 dxdt	 (7.18) 

for any 0 E C(1) (because C(1) is dense in *(QT)). To prove this it is sufficient 
to establish that

	

ôti6au 	
a.e. in QT	(z = 1,.. .,n)	 (7.19) Oxi	(/Xj 

because in view of (7.19) and (7.12), the continuity of the functions a, condition 1'), 
estimates (7.6) and (7.7) and the Vitali theorem we obtain that for any 0 E W,(Q7) 
and any r E (0,T] 

lim 11 at (u6, Vu 6) q5 , dxdt 
= 

11 a'(u, Vu)dxdt.	(7.20) 6-0

On the other hand, in view of (7.9) the left-hand side here is equal to that of (7.18). 
Hence (7.19) implies (7.18). 

Choosing 0 = U6 - e in (7.1) we obtain with the aid of Proposition 7.1 that 

f (	- ) dx + ff (a'	
au6 -
	- c) ) dxdi = 0.	(7.21) 

axi	
f(u6 

Using (7.13) and (7.14) we derive from (7.21) and (7.17) that for any T E (0, T) 

lim	a(-uó,Vu6)±-dxdt 
= A A'-dxdt.	 (7.22) 

6-0 IJQ^ 
Using now condition 2) we have 

v
 JJQ ^

IVua - Vu12 dxdt ( I vu I + VuIm)2/m_ 

11 (7.23)(a(uo,Vuö)_a(u,Vu)) (Vu 6 —Vu)dxdi
 

Using (7.3) - (7.5), (7.9) and (7.22) and taking into account that in view of (7.12), (7.6) 
and (7.7), condition 1) and the Vitali theorem 

a'(u 6 ,Vu) -* a'(u,Vu) strongly in Lm'(QT) as S - 0	(7.24) 

we derive from (7.23) that
lim R6 = 0.	 (7.25)
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Using this limit and inequalities 0 < J < V 1 I*H6 we obtain 

lim J6 = 0.	 (7.26) 

Show that from here it follows that (7.19) is true. Denote 

IVtz 6 - Vu12 h(x,t) :=

	

	 (7.27)

(IvuI m + lVuIm)21m_l 

From lim6 ... 0 J6 = 0 it follows that there exist some subsequence {8} and subset Q C 
Qr, IQI = IQTI, such that

	

lim hô(x, t) = 0	on Q .	 ( 7.28) 

Without loss of generality we can count that au- are finite on Q, i.e., jVuI is bounded axi
(non-uniformly) at any point (x, t) E Q . In view of (7.27) we have for any (x, i) e Q 

- (I
Vu 6I - c)2	

(7.29)
 (IVI+c)2_m 

with a constant c depending on (x,i) E Q. Suppose now that jVu b j is unbounded in 
some point (x,t) E Q . Then IVu 6 I - oo for some subsequence {8} and hence in view 
of (7.29) we obtain that for this subsequence h.5(x, t) = oo, i.e., we obtain a 
contradiction with (7.28). Hence 

jVu b j are bounded (non-uniformly) at any point of Q .	( 7.30) 

Then from (7.27), (7.28) and (7.30) it follows that the numerators of h 6 tend to zero on 
Q as 6 - 0, i.e. (7.19) is true. Therefore the function u E C([0,T]; L 2 (Q)) n W,'° (QT) 
is a generalized solution of problem (RCD) E . From Lemmas 6.2 and 6.3 it follows that 
this function satisfies estimates (6.5) - (6.8). In view of (6.5) and Proposition 3.3 the 
function u is a unique strong solution of problem (RCD)e. So we proved the following 

Lemma 7.1. For any fixed e > 0 there exist exactly one strong solution (in sense 
of Definition 2.3) of problem (RCD)e satisfying estimates (6.5) - (6.8) with constants 
c 1 , c2 ,.X E (0,1) and K independent of e.
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8. The passing to the limit as E —p 0 

Now we are ready to prove Theorem 6.1 and hence Theorem 1.1. In the remainder of 
this section we denote the solution of problem (RCD) C as ue. We are going to realize the 
passing to the limit as e -+ 0 using the a priori estimates (6.5) - (6.8). This passing can 
be done in the same way as one in [12] where existence of regular solution of problem 
(CD) was proved in the case 1> 0, max (i,	<m < 2, in + 1> 2. 

In view of estimates (6.5) - (6.8) we can conclude that there exists a function u such 
that

u	uniformly in QT
	

(8.1) 

uu	weakly in Lm(QT)
	

(8.2) 

0< inf ( u ,QT)	sup (u,Q'p) < c1	 (8.3) 

JfQ T 
U u IUI m dxdt 5 C2

	
(8.4) 

and (see (4.2))
< K.	 (8.5) 

In (8.2) and (8.4) we used the following notation similar to one from Definition 2.3: 

ux = (u i ,,. . . ,u,,) 

	

U'j
((a+1)u° on{QT:u>0}	

(a= J_.	(8.6) 
= 1 0	 on {QT = 01	 in) 

Obviously, uu 2 E Lm(QT) (i = 1,.. . ,n) (in view of (8.4)). In view of the bounded-
ness of u and inequality a = > a the expressions for u, in (8.6) and (2.2) coin- 
cide. Moreover, from condition uu 2 E Lm(QT) it follows that	E Lm(QT) (i 
1,. . . , n). We use below the following auxiliary propositions (see [11] or 1121). 

Proposition 8.1. Let the function u be bounded and non-negative in QT and such 
that Vu' E LTII(QT) for some a> 0. Further, let the function i be defined by 

= SUP (u - E l' 0)	(e = const >0).	 (8.7) 

Then i has generalized derivatives- E L,, (QT) (i = 1,.. . , n) such that 

au

 

	

^u,,, in {QT : U > E	

(8.8) 
ôXiO	in{Qy:0<u<ei} 

where u, are defined by (8.6). Moreover, 

.11	

L-WT)
lim Iiu°- - u'u 2 = 0.	 (8.9)
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Proposition 8.2. Let A' E Lm'(QT) (i = 1,...,n) and B E Lm'(QT) ( + 
= 1, in > 1), and let the function u be bounded and non-negative in QT and such 

that Vu+l E Lm(QT) for some a > 0. Assume that for any t i, t 2 E [0,T] and any 
E W,(QT)

(udx2 + Jf (_ u j + u°A 1 + B)dxdt = 0.	(8.10) tj
tj 

Let W E W(QT) and u = w on ST. Then for any t1, t 2 E [0, TI 

2	 12 
iu 
j (2

- ) dx + fJ (ut + uaA*(u1 -	) + B(u - ))dxdt = 0 (8.11) 

where u., are defined by (8.8). 

Returning to (8.1) - (8.5) we see that the function u is non-negative and bounded 
in QT, U E C /m ( T), Vua+I E Lm(QT) (a = fr) (so that Vua+I E Lm(QT), = 

-r) and u = on rT. Hence to prove Theorem 6.1 it is sufficient to show that for 
any t i ,t2 E [0,Tj and 0 E Wm' (QT) 

i2 

IUdX +Jf (- u + a(u,u) .	- f)dxdt =0	(8.12) 

where u 1 is defined by (8.8) in the case a = fr . Really, in this case from the kind of 
the problem (RCD) C it will follow that u is a quasistrong and hence regular solution of 
problem (CD). 

To prove that (8.12) holds denote 

= ua'(ue,Vue)	(a = I. ; i = 1,... n	 (8.13) 

In view of the second inequality in condition 1) and estimate (8.4) we have the uniform 
estimate

IIAIlLm(QT) :5 c	(i = 1,... ,n).	 (8.14)


Then we can count that there exist functions a' E Lm'(QT) such that 

A -p A'	weakly in L,, (QT) as e - 0	(i = 1,... ,n).	(8.15)


Letting e - 0 in the integral identity 

t2 

+ if (- ug + a(uc,Vue) Vq5 - fcb)dxdt = 0	(8.16)
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for j E	we obtain in view of (8.1) and (8.15) that for any t 1 ,t 2 E [0,T] and

EW(QT)

f udx2 + if (- Uj + uA t 1 - i) dxdt = 0.	(8.17) 
it 0 

To prove Theorem 6.1 it is sufficient to show that 

ffu'A'O,,,dxdt = if a'(u, Vu)o ,,: i dxdt = 0	for any 0 E O( T )	(8.18) 
it 	it  

because A', &(u, Vu) E L,,, , (QT) and 6 1 ( T ) is dense in W,, (QT) . To prove equality 
(8.18) it is sufficient to establish that for some subsequence {e} 

uu	a.e. in QT	(i = 1,.. . ,n)	(8.19) 

because in view of (8.19) and (8.1), the continuity of the functions ua'(u, up) ( = 
on	x IR'1 , condition 1), the uniform estimate (6.7) for u = u and the Vitali


theorem we obtain that for any 0 E 6'( T ) the integral 

if a(u, Vu,) V0 dxdt 

= JfuAdxdt	 (8.20) 

= fJ

 

u' (u - 'a'(u, ue	e (uVue)))xdxdt 

tends to the integral fit 2fn &(u,ur)cbzdxdt. On the other hand, in view of (8.1) and 
(8.15) the integral (8.20) tends to the integral f1t2fn u c Ai0z. dxdt . Hence (8.19) implies 
(8.18). 

The remainder of this section is devoted to the proof of (8.19). Applying Proposition 
7.1 with g() = - we derive from (7.16) thatau 

j (u 2- Eu) dz 2 + JJ (ai(u" Vu)	- AU - 6)) dxdt = 0.	(8.21) 
it 0 

Applying Proposition 8.2 with g() = and using that u = 0 on ST (in view of (8.1), 
because u = C on ST) we derive from (8.11) 

t2 

J '2dx It+ 11 2  
-	 (u4u, - fu)dxdi = 0.	 (8.22) ,  it 
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Using (8.1) we derive from (8.21) and (8.22) that 

	

lim ff &(u, Vue) 
au , dxdt = if UOA'u,idxdt.	 (8.23)axi  

till 

Let ü be defined by (8.7). Obviously that the following proposition holds (see also [111). 

Proposition 8.3. We have the convergence., 

u O ai(u , Vü) —* ua'(u,Vti)	strongly in L,,,, (QT) as e —* 0	(8.24) 

ua'(u,Vü) —* ua'(u,u) strongly in Lrn'(QT) as e 1 —* 0.	(8.25) 
Using now condition 2) we have 

il l 71e ,e, 

u1 Jf u I Viz - vu 2 (IVte	
1-2/rn 

- b(ue)I" + I	b(Ue)I )	dxdt 
ii Il 

ff (a'(u, Vu) - a'(u, Vu)) (!±. -afi 
dxdt	 (8.26) ax) 

till 

t2

(a'(u,,	t9Ue - Au-- - uat (ue,Vü) (\ue b— - u	dxdt 

	

/	 ail= ax, 
ii II 

Using (8.1), (8.2), (8.15), (8.23), (8.24) and letting e - 0 we obtain 

lim J, 

t2 

	

=	 (A'(u-u.,-	- uai(u , Vu)	- U- 
aii	

dxdt	(8.27) 
a)	 ax, 

t i Il 

Using (8.25) and (8.9) we derive from (8.27) 

urn J = 0. 
Cl -0 

From (8.27) and (8.28) it follows that there exist subsequences {ek) and {e1k} tending 
to zero such that lirn_ = 0. Because 0 we derive from 
here that

(8.28) 

lim	= 0.	 (8.29) k
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Rewrite Hek,elk as 

Elk

dxdt = if (I u	 )I + Iu 

IuVu Ek - t4k VtL l 2CA:

VuE k - U e b(U ekC  Vii - Uekb(UEk)I)	 (8.30)
it l 
12 

ff hk(X , t) dxdt. 
it 

Is should be recalled that ü = sup (U - E lk ,O) herein. From (8.28) and (8.29) it follows 
that there exist a subsequence {k} and a subset Q C Qt,,, = Q x [t 1 , t 2 ], IQI = 1Q11,12 11 
such that

lim h k(x , t ) = 0	on Q .	 ( 8.31) 
k—.00 

Without loss of generality we can count that the derivatives	--- are finite on Q (i axi 
1,...,n). Then using (8.1) and (8.3), the definition of ü (see (8.7)), (8.8) and (8.6), 
and the continuity of the vector function b(u) we can conclude that 

IuVuI and Iub(uek )I	are bounded (non-uniformly) on Q .	(8.32)

On the other hand, in view of the definition of the functions hk we can estimate 

hk( x , 1)>	
tL	Ue - C_m	((x, t) E	 (8.33) 

c(I ti Vu ekI + c) Ch 

with some constant c depending on (x, t). Assume that Iu VUE k are unbounded at 
some point (X, t) E Q. Then for some subsequence {k} we have Jua VuckI -oo as 
k —* oo and hence (using that rn E (1,2)) we derive from (8.33) that 

urn h k( x , t ) = 00	on Q .	 ( 8.34)

k .-.oo 

But this gives a contradiction with (8.31). Hence 

UVtL e k I	are bounded (non-uniformly) on Q .	 (8.35) Ck 

Then from (8.31), (8.30) and (8.35) it follows that the numerators of hk tend to zero on 
Q as k -400, i.e.,

aôUek	ckôÜI	 -. 
bIn 'U 
k-. 00l	ox,	ekOx. = 0	on Q	(z = 1,...,n).	(8.36)


Remark now that

I 
1 hrn Pu c1 ou 

-u — = 0 on Q	(i = 1 , -, n ) .	(8.37) 
k—.o	Ox	 I Ox,  

Really, if (x,t) E Q and u(x,i) > 0, then a(,i) = u,(x,t) for all sufficiently large k 0x, 
and hence (8.37) follows from (8.1). On the other hand, if (x, t) E Q and u(x,t) = 0, 
then	= 0 for any k and hence (8.37) follows from (8.1) and the definition of ü,. 

Finally, from (8.36) and (8.37) it follows obviously that (8.19) holds. Theorem 6.1 
(and hence Theorem 1.1) is proved.
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