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£2-Perturbations of Space-Periodic Equilibria 
of Navier-Stokes 

B. Scarpellini 

Abstract. We assume that a smooth equilibrium solution uo,po of Navier-Stokes on an infinite 
plate 1 = R 2 x(—,+) is given, which is L-periodic with respect to the unbounded variables 
x,y E R. We investigate the stability of uo,po with respect to perturbations which are not 
L-periodic but belong to L2 (9). To this end we study the L 2 (Q)-spectrum of the linearization 
around uo,po and describe it in terms of so-called 0-periodic spectra in a similar way as it is 
done for Schrôdinger equations with periodic potentials. 
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0. Introduction 

In the present paper we treat a stability problem which has been invoked by D. Sat-
tinger and K. Kirchgässner at different places [4, 10, 11] and which will be described in 
what follows in non-technical terms. Let a vector function uo(x, y, z) (x, y E R, z E 
(- 1. , +)) be a smooth equilibrium of a nonlinear evolution equation u  = F(u) (typi- 
cally F(u) = Lu + 1(u)) and assume that besides satisfying some boundary conditions 
at z = it is L-periodic in x and y for some L> 0. One can then discuss the stability 
of u 0 with respect to various classes of perturbations. An established way to proceed is 
to set u = uo + v in u 1 = F(u) in order to find after some computational steps 

v1 = (dF)(uo)v + R(uo,v)	 (0.1) 

with (dF)(uo) the derivative of F at uo and R(uo,v) a term such that IR(uo,v)II = 
o(11v11) in a suitable functional setting. A well known procedure amounts to test the 
stability of u0 against L-periodic perturbations. To this end one considers (0.1) as an 
evolution equation in an appropriate space of functions which are L-periodic in x and 
y and satisfy the boundary conditions. The stability behaviour of u0 is then reduced to 
a discussion of the stability of the equilibrium solution v0 0 of (0.1) in this particu-
lar functional setting. Under the proviso that the principle of linearized stability resp. 
instability has been justified, the stability behaviour of v 0 0 is then essentially deter-
mined by the spectrum ap (dF(uo)) of dF(uo) considered as an unbounded operator on 
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the space of L-periodic functions in question. In [10], D. Sattinger suggests to investi-
gate the stability of u 0 not against L-periodic perturbations, but against perturbations 
from some other function class. He also suggests to develop a Hill type theory for the 
linearization dF(uo). Such a program has been carried out in 112, 13] for the case where 
the basic equation Ut F(u) is a reaction-diffusion system Ut = Lu + 1(u), with u an 
rn-vector u = (u 1 ,.. ,Urn) defined on R" (n < 3) and assumed to be L-periodic in all 
its variables (no boundary conditions); 1(u) is a polynomial nonlinearity. As a model 
Hill type theory we have taken the theory of Schrodinger equations iot = L4' + Vi,1' 
with L-periodic potential V, discussed in Reed and Simon [8]. This forced us to take as 
possible perturbations the class of vector functions which have components which'are 
in £2 () (with Q = R" (n 3) in [12, 131 while Q = R 2 x (-,+) here). In [12] the 
following problem is adressed (which is treated in the Schrödinger context in [8]): 

(A) How is the spectrum aper(dF(uo)) of dF(uo) as an operator on a space of L-periodic 
functions related to the spectrum crC2(dF(uo)) of dF(uo) as an operator on a space 
of £2(Q)-functions? 

This question cannot be treated directly, but, following the pattern set out in [8], requires 
a detour via a more general problem. To this end one needs the notion of "Floquet" or 
"0-periodic" function: 

f(x,y) is 0 = (0 1 ,02 ) - periodic with respect to x,y if  
f(x + L, Y) = e'0 'f(x,y) and f(x,y + L) = eIO2f(x,y) (0 E [0, 27r]2). (02 ) 

The problem which is treated in [8] in the Schrödinger context and in [12] in the context 
of reaction diffusion systems is: 

(A)* How are the spectra ae(dF(uo)) of dF(uo) as an operator on a space of 0-periodic 
functions related to the spectrum c2(dF(uo)) ? 

The answer given in [8, 12] is 

(B) ac2(dF(uo)) = Uet7e(dF(uo))	(0 E [0,27r]2) 

what implies 

(C) t7per(dF(uo)) c	dF(u0)). 

Here we investigate as to. what extent (B) and (C) or part of it remain true if dF(uo) is 
the linearization of Navier-Stokes around a periodic equilibrium solution restricted to 
the space of divergence free fields (see Subsection 1.1). 

We now briefly describe content and results of this paper. In Section .1 the basic 
material regarding the £ 2 -setting of Navier-Stokes on an infinite plate is compiled, 
mostly without proof; a glance at Section 1 suffices in a first reading. Section 2 contains 
the necessary prerequisites about 0-periodic vector fields, 0-periodic Stokes operators 
etc. A basic regularity result (see Theorems 2 and 2) is stated without proof; a proof
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is given in [14]. In a first reading it suffices to take notice of the material in Section 2. 
Section 3 is crucial in that it contains the theory of direct integrals to the extent needed 
here. It is selfcontained to some extent but we can not avoid to borrow material from 
[12, 131. The following basic result of independent interest is proved: 

(D) dF(uo)2 is unitarily equivalent to JM dF(tio)ede 

where M = [0, 27r] 2 . Here dF(uo)2 is dF(uo) acting on £ 2 -vector fields, while dF(uo)e 
is dF(uo) acting on 0-periodic vector fields. The second expression in (D), i.e. fm is 
a direct integral in the sense of [8) and requires for its interpretation the vocabulary of 
Section 3 (resp. (8] or [12]). Relation (D) serves as starting point in Section 4 for the 
derivation of spectral relations similiar to (B) and (C). Here we assume the periodic 
equilibrium solution u 0 = (u i ,u2 ,u3 ) to satisfy: 

(E) u 1 ,u2 are even in z and u 3 is odd in z. 

This assumption, which could be dispensed with in principle, helps to simplify the 
presentation, gives finer and nicer results and gives more insight into the difficulties 
associated with the corners (0, 0), (0, 27r), (27r, 0) and (27r, 27r). The main result then is 
(Theorems 5 and 6 plus Corollaries) 

(F) a complete description of a2(dF(uo)) in terms of ao(dF(uo)) (0 E [0, 27r)2). 

This is somewhat vague; a full interpretation of (F) requires a slight technical digression 
(see Subsection 4.4). However, two consequences of (F), close to (B) and (C) are the 
following: Let M be [0, 27r] 2 minus the corners. Then (Corollary to Theorem 4) 

(G) if 0 E M, then e(dF(uo)) c 2(dF(uO)) 

and

(H) if Ao E ciper(dF(uo)) is real, then Ao E a2(dF(uo)). 

What happens in the case of complex A0 is open; (F) does not contain (immediately 
at least) the necessary information. This leaves room for the possibility that u 0 is 
periodically unstable but £ 2 -stable, a case excluded for reaction-diffusion systems by 
virtue of (C). The present paper is more difficult than [12] mainly because the four 
corners of [0,27r] 2 together with the divergence condition are a source of difficulties. 
For reasons of space we do not treat the principle of linearized instability, which can in 
fact be proved along the lines of [13], making thereby extensive use of Section 4 in the 
present paper. Likewise, we do not discuss the Benard problem; however, once one has 
mastered the difficulties of Navier-Stones alone, the Benard problem is easily accessible. 
This topic will be presented separately. 

Notations. IR and C denote the real and complex numbers, respectively. For X 
and Y Banach spaces, 11 . lix and 11 . y denote their respective norms, and for U ç X 
an open set, C P (U, y) is the set of p-times continuously differentiable mappings from 
U to Y. For F E C'(U, y), dF(u) is the derivative of F at u. If the underlying space
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is fixed in a context, we write instead of ii 11 x. L(X,y) is the space of bounded 
linear operators T from X to Y, with il T iI or even 11 T 1 the operator norm. For T a 
bounded or unbounded operator on X, having E c X as an invariant subspace, PE(T) 
and aE(T) denote the resolvent set and spectrum of T restricted to E, respectively. For 
a multiindex a = (o,... , c), we set D =	O" where ai is the derivative 
with respect to x, and call jal = ai the order of D°. For ci having the segment 
property (see 11: p. 54]) an I E £2 is in H P(Q) if and only if there is a sequence of 
I,, E C(?) which is a Cauchy sequence with respect to the Sobolev norm Ii HP(0) and 
such that limp Ilf - fnhlt 2 = 0. Here C'(ci) is the space of functions having compact 
support in 1i and continuous derivatives up to order p; likewise with C(ci). Finally, 
(•, .)p is the scalar product on HP (ci), given by 

(u, v) = E (Du,Dav)o	 (0.3)

IaI:5p 

where (u,v)o = fu(x)i1(x)dx. We set £ 2 (fl) = H O (Q) and write 11 . 1k" instead of 
ii lliiP	if no confusion arises. We extend this notation to vectors and set 

M U lI 2 = ii u i 11 '0+ ik211 C 2 + hlU3IIC2 

whenever u = (u i ,u 2 ,u 3 ) E ( L 2 ) 3 , similarly with the Sobolev norms ii u llHp. The scalar 
product in (HP )3 is (., .),, where 

(tz,v)=(ui,vi)+(u2,v2)+(u3,v3) 

where the components u 3 and v1 of u and v are all in H. We write (,.) instead of 
(,•). We also use the following convention: if A(x,y) depends only on x,y and ((z) 
only on z, then A( denotes the function A(x, y)((z). 

1. L 2 -setting of Navier-Stokes on an infinite plate 
1.1 Navier-Stokes on an infinite plate. As a starting point we take the Navier-
Stokes equations on an infinite plate ci = R2 x (-i, +): 

u j =	- (uV)u - Vp - f
(1.1) 

divu = 0 

where u = (u i ,u2 ,u 3 ) satisfies Dirichlet boundary conditions at z = ±, p is the 
pressure and f a time independent outer force. We assume that a smooth equilibrium 
solution u0 = (u i ,u 2 ,u3 ), po of equations (1.1) is given, which is L-periodic in x and y, 
i.e. uo(x + aL, y +,3L, z) = uo(x, y, z) (a, /3 E Z) and likewise with po Since the case 
of L i -periodicity in x and L2 -periodicity in y leads to exactly the same technicalities as 
the case L = L 1 = L2 , we restrict us to the latter for simplicity of notation. Following 
the pattern set out in the introduction we insert u = u0 + v and p = Po + ir into (1.1). 
Using the assumption that uo,po is an equilibrium solution of (1.1) we obtain formally 

V1 = ziLv + T0 v - Vir - (vVv)	 (1.2) 
div v = 0 plus Dirichlet boundary conditions.
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Here To is the operator given formally by 

To y = —(uoV)v - (vV)uo.	 (1.3) 

Relations (0.2) have been obtained in a formal way but the intention is to let v be a 
member of the subspace

E = £2 -closure of f E (H2 (cZ) n	
(1 4 

divf	0. 

We then must choose Vir from the orthogonal complement E1 of E, but contrary to 
the case of bounded Q we can only assume 

E1 = £2 -closure of Vp	(p E H'()).	 (1.5) 

In fact, examples q E E1 exist which are not of the form q = Vp, p E H'(cz) (see 
Subsection 1.5). Letting P be the orthogonal projection onto E, we apply P to both 
sides of (1.3) in order to get

Vt = vPLv + PT0 v - P(vV)v.	 (1.6) 

If one denotes by Eper and Pper the counterparts to E and F, respectively, in the periodic 
case, one obtains the corresponding equation 

Wt = VPperLW + PperToW - Pper(WV)w	 (1.7) 

with w an element of Eper. This is an evolution equation in the sense of Pa2y [7: Chapter 
6.3]; the principles of linearized stability and instability are known to hold (Kirchgässner 
[4, 5]). The situation is different for equation (1.6). It seems to be known among experts 
that (1.6) is indeed a well posed evolution equation although, as discussions indicate, it 
is difficult to find explicit references. This, and the fact that we have to handle space 
very economically forces us to state two auxiliary results on regularity properties of 
Stokes operators without proof. The proofs, which require some place, will be given in 
[14]. The central task of the paper is to study the relationship between the spectra 

aEp ( vPperA + PperTo)	and	CTE(J1P1 + PT0 ).	 (1.8) 

As pointed out in the introduction, this requires a new tool, that of e-periodic vector 
fields and related concepts, to be studied later. 

1.2 Remarks on Sobolev spaces. First we fix some notations. Let Sr {z E 1R3 

ri <r}, set a'clr (Sr flal)U(1flaSr) and Q, = Srfl. Set also r = R2 x 
= R 2 {-}, r = r fl Sr and r = r u r-, r' = r- u r-. Using well known 

results about traces on smooth bounded domains and the fact that Q has the (j,2)- 
extension property (see Adams [1: pp. 83 - 94]) one can define for any R > 0 trace 
operators	E L(H3+'(cl),.C2(a'clR)) (j = 0,1) such that:
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(a) If v E H'(f) fl C'(i), then 7(v)(x) = v(x) for all x E a'clR 

(b) If u E H2 (l) fl C 2 (n), then y(u)(x) = () (x) for all x E &R, with () (x)an
 the outer unit normal at x E a'cR. 

(c) If r < R, them 7(uj )(x) = 7j(u)(x) for a.e. x  rr, where u 3 E H 3 (Q) (j = 

0, 1). 

From the validity of Gauss' identity for domains such as Qr and elements V E C' (ar) 
and ii E (C 1 (r)) 3 (see König [6]) we obtain via familiar approximation procedures the 
following extension to elements v E H'(1) and iZ=(u i ,u2 ,u3 ) E (H'(1))3: 

J 7(v)(w)-y(il)(w)n(w)dw = J ((Vv)i1+vdivi1)dx3	(1.9) 

where
= (R(u1)(w)7i(u2)(w)(u3)(w)) 

and with ii(w) the outward unit normal at w E °' IZR. By noting that i(w) is (0,0,+l) 
and (0, 0, —1) for w E r and w E F-i- , respectively, we have the decomposition 

f
. 7(v)(i )iidi=J	v)(iZ)#idw 

,OR 1naSR 

+ f -y(v)(u3)dw— [ y(v)7(u3)dw. 
Jr 

We now define Hd (l) according to 

f E Hol 	•	I E (Q) and -y( (f)(x) = 0 for a.e. x E ni and R> 0.	(1.11) 

Thus for any sequence f'	C(), 11f fIIH' - 0 and R> 0 we have that .y01i(f,) - 0 
in £2 (I'R). Likewise we define 

IE f12 (Q) <= f H2 () and yfi(f)(x) 0 for a.e. x E rR and R > 0. (1.12) 

Proposition 1.1. The following assertions are true: 

•	(i) If f E H 2 (cl), then y (f) = -y() ac. on F and y1hi(f) = —y() a.e.az 
on f. 

(ii) U E Hd() if and only if u E H 1 (Q) and	+	u)dx = 0 for allaz 
E H'(cl).

.2(cl): if and only if U E H 2 (fl) and	+	= 0 for all
EH'(cl). 

- Proof. Assertion (i) follows via fundamental sequences by straightforward approx-
imation arguments based on properties (a) - (c) of	With assertion (i) at disposal
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we have that U E H 2 (1) if and only if u E H2 (cl) and

	

	E H(), yielding assertionaz 
(iii) as a consequence of assertion (ii). 

Now assume first u E H() and p € H'(l). We apply (1.9) to (p and 7= (0,0,u), 
taking (1.10) into account. We obtain 

Las, 
0 'Lw 

= in	
+ u) dx 

where ii = (n i ,n2 ,n3 ). Following the arguments in the proofs of Proposition 1.1 and 
Lemma 1 in [15] we infer that the function 

1(r) = LS, 7(&y(u)n3dw 

is in £' (0, oo). Since it is also continuous it follows that lim p 1(m) = 0 for some 
sequence rn T oo. The "only if" part then immediately follows. 

Now assume conversely that the right-hand side of the assumption in assertion (ii) 
is satisfied, and that u H(). Then there is an R > 0 such that 7(u)(x) 0 for 
a.e. x E rR fails. We thus may assume, e.g., that the set 

E r+ : y(u)(x)	o} 

has non-zero r-measure. Choose ( E C([—,+]) as follows: 0	(	1, ( = 0 on
[—,0] and ( = 1 on [8, +] for some small 8> 0. In accordance with our convention 
in 'Notations' we set = (u. Clearly E H'(cl). Moreovery() = 0 a.e.	r and
y(ç) = .y(u) a.e. on 1' for any r. With 7= (0,0,u), the identity (1.9) then reduces 
to	

th + 
j 

(u) dw = j	+ u) dx. 

For r > R the second term on the left-hand side above remains greater or equal E for' 
some fixed E > 0 while the first term tends to zero for a suitable chosen sequence r	00.
This means that the right-hand side of the equality above remains greater or equal 
as rn T 00, contradicting the assumption U 

1.3 Fourier expansions. First we consider the eigenvalue problem y" + Ay = 0 
on [—k, +] both with Neumann and Dirichlet boundary conditions. A complete set 
{}>o of orthonormalized eigenfunctions for the Neumann case may be given as fol-
lows:

o=1 

S02k = ( _1)/cos2irkx	for k > 1	 (1.13) 

2k+1 = (- 1)'v'sin(2k + 1)7rx	for k > 0. 
Setting A,, = p2 ir2 we then have 4 +	= 0 and, in addition, 

/ 
2k	= 2k	=	for k> 1 

2k+1 (+) =	2k+1 (- ') 
=	

for k > 0.	
(1.14)
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A complete orthonormalized set {}P>' of eigenfunctions for the Dirichiet case is then 
obtained by setting

	

= ^O pl	whence	= —A/ 2	(p > 1).	(1.15) 

It will have great advantages to take the parity of the eigenfunctions into account. 
Therefore we set for later purposes 

	

= P2k+1,	Tk = b2k+,,	Ak = A2k+1	 (k > 0)	
(1 16) 

Pa = 1,	Pk = P2k,	irk = 02k,	/-2k	A2k	(k > 1). 

Next fix I E r 2 (c) and set 

	

+1/2	 +1/2 

Ak(x,y)= f f(x,y,z)k(z)dz and B(x,y)= J f(x,y,z)(z)dz. 

	

—1/2	 —1/2 

Then A A,, Bj E £ 2 (R 2 ) (k > 0, j > 1) and 

f =	Ak(x,y)yk(z) =	Bj(x,y)j(z) 

in the sense that II LN - f110 and I IHN - fIk 2 tend to zero where 

	

L N = > Ak o k	and	HN=Bj. 

Moreover we have that 

fn fI2dx3 
=	

A,2dx2 = 1: f jBj 12 dX2. 

All this follows easily from Fubini's theorem and the completeness of the systems 
{k}k>o and {0}>,, respectively. Important is the characterization of H'() and 
Ho' (Qf in terms of Fourier series, provided by Proposition 1.2 below, in which Ak and 
B3 are as in (5). 

Proposition 1.2. Let I E £2(). 

(i) I E H'(cl) if and only if Ak E H'(R2 ) (k >0) and if 

00	 00	 00 

	

ôAkI2dx2,	E
fR2 

Iôy Ak I 2 dx2 ,	.	Aicf
R
 AkI2dx2 

k=O fR	 k=O	 k=1	 2 

are all finite.
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(ii) f E Ho(Q) if and only if B, E H'(R2) (j 21) and if 
00	 00	 00 

JR2 IôBI2dx2,	
1: JR O,,B, 2 dx2 ,	Ajj B,12dx2 

are all finite. 

Proof. Consider assertion (i). If the right-hand side conditions on the Ak's are 
satisfied, then the LN =	'Ø	are all in H'(ci) and form a Cauchy sequence with 
respect to	IIH 1. Since limN_.LN = f in C2(Q) we have that f E H'(cl) and 

00	 00	 00 
91 f =	(ôAk)k,	ôf = E(ay Ak)Wk,&f =	A /2 Akk.	(1.17) 

If conversely f E H' (ci), then one easily verifies Ak e W (R2) (k > 0) and in addition 
+1/2	 +1/2 

ôAk =
I 

(ôf)ço dz	and	ôAk = J (ôf)' dz 
-1/2	 -1/2 

a.e. on R2 . From this, the relations 
00	 CO 

Jô1 A 2 dx2 <co	and	IJayAk 1 2 dX 2 <00 

follow. In order to establish the third relation of (i), we use assertion (iii) of Proposition 
1.1 replacing therein W by f and setting u = ac.p (k 2 1) with a E C,'°(R 2 ) arbitrary 
but fixed; we note u E f12 (Q). From assertion (iii) of Proposition 1.1 and via the Fubini 
theorem we find

+1/2 

	

f dx2 a J	- A!2fk) dz = 0	(k 21). R2	-1/2 

By the arbitrariness of a we obtain 
+1/2	 +1/2 

IJ 7I)k dz = A'2 f fPk dz = A/2Ak 
-1/2	 -1/2 

a.e. on R2 , from which the third relation on the right-hand side of assertion (i) follows. 
The proof of assertion (ii) is essentially the same. In order to verify the third 

relation in the right-hand side of assertion (ii) under the assumption f E HO' ( Q) we use 
Proposition 1.11(u) by setting W =aWk therein, with a E C'°(lR2 ) arbitrary but fixed. 
By reasoning similar to the above one then finds 

	

+1/2	 +1/2 

A/2 f ft,b, dz = - J J(Pk dz = A/2Bk 

	

-1/2	 -1/2 

a.e. on R2 , from which the required relation follows U
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Remarks. Relations (1.17) in the above proof show that and .9 commute 
with >, symbolically 5 E = E 0. The proof of this fact applies verbatim to the case 
I E H(l), f = > J BOj.As to higher Sobolev spaces all we need is 

Proposition 1.3. Let f E £ 2 (cl), I = >J Akcok and A k e H 2 (1R 2) (k 2 0). 
Assume that the expressions in Proposition 1.2/(i) and also all the expressions 

0JR2 52 AkI2dx2,
	1: A k 	ISA k I 2 dx2 ,	Aj IAkI2dx2 

are finite, where S E {S,O} and 52 e	 Then I E H 2 (l) and Df =
k D(Ak co k ) with D any derivative of order lesser or equal 2 in x, y and z. Likewise 

with f =	B,, B, E H 2 (R2 ) (j > 1). 

The straightforward proof, in which one recognizes L N = >2	Akpk (N 2 0) as
a Cauchy sequence in H 2 (cl), is omitted. 

1.4 The Stokes operator. For the following, it helps to bring parity with respect 
to z into play: for I E £ 2 (cl), f E £(1) if and only if f is even in z, and f E 
£(?) if and only if I is odd in z. Next set L 2 = (r2 ) 3 , L = (L 92 (cl)) 2 x £,(l) and = (L(1l))2 x £(1l). Clearly L2 =	L. The scalar product on L2 is given by 
(u,v) =	 where u = ( 11 1,u2,113) and v = ( 11 1 ,v2 ,v3 ). Next we need the
space E of divergence-free vector fields: 

E is the £2 -closure of all f = (u,v,w) E (H' (Q))3 such that divf = 0. 

Evidently E = Eg 0 E, where Eg is the £2 -closure of all I E (H I (cl)) 3 fl with 
div f = 0, and likewise with E. The orthogonal projections onto E, E9 and Eu are 
P,Pg and P, respectively. Next let Ad be the Laplacian on domz d = H2(Q)flH(Q). 
Then /a is selfadjoint and Ad < — E for some e > 0. Moreover, it is easily seen that 

and L(l) reduce Ad, i.e. they are invariant under 1d• We also recall Gauss' 
formula

j(VvVu+vu)dx 3 = 0	(v E Hl), u E H2(Q)) 

(see, e.g., (61). td induces a selfadjoint operator A on domA = (H2 () fl H(Q))3 
according to A(u, v, w) = (au, Av, sw). The Stokes operatorAo is now given as follows: 

I E domA0	f E dom A, divf = 0 and A0 f = PAf in this case. 

A0 has some simple properties, provided by 

Proposition 1.4. A0 is symmetric, densely defined in E and A0	—E for some
e > 0. The spaces E9 and E. reduce A0 , i.e. P9 A 0 ç AO P,and PAo ç AoP. 

The straightforward proof is omitted. 

In order to recognize A0 as selfadjoint one introduces
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Definition 1.1. u E (H,' (Q))3 with. divu = 0 is a weak solution of AO  = f (1 E 
E) if and only if

(Vuj ,Vvi ) + (f,v) = 0 for all v E (H0'(cZ))3

divv = 0 (with u = (u i ,u2 ,u3 ) and v (vi,v2,v3)) 

It is readily established that given f E E, there is at most one weak solution of equation 
Aou = 1 . By Proposition 1.4 and Lax-Milgram theory there is a selfadjoint (Friedrich's) 
extension A., D Ao given as follows: 

u E domA,	==	u is the weak solution of 
A0 u = f for some f E E and Au = f in this case. 

Proposition 1.5. A,	- with c as in Proposition 1.4, and Eg , Eu reduce A,,
i.e. PA, ç A,Pu and P9 A, c A,Pg . If u E domAo and A,u = 1, then A0 u = f. 

Proof. The first part follows straightforwardly from the definitions. As to the 
second part, let u E domA0 satisfy A,u = 1, i.e.	(Vuj,Vvj) + (f,v) = 0 for all 
• E ( Hol 	with divv = 0. From Gauss' formula we then infer (Au - f, v) = 0 for all
• in a dense subset of E whence PAu - Pf = 0, i.e. Aou = I since Pf = f I 

The main result about A0 and A, is the following 

Theorem 1.1. There exists C > 0 such that, for all f E E and u E domA, 
satisfying A,u = f, u E (H 2 (ul))3 and ll u llH 2 <Gill Ilc2. 

In conjunction with Proposition 1.5 we get 

Corollary. A0 = A,, i.e. A0 is selfadjoint. 

For reasons of space we cannot go into the proof of Theorem 1; the details for a 
comparable situation are in [14]. 

The main consequence from Theorem 1.1 concerns the operator To given formally 
by (1.3) and now supplied by the setting domT0 (H(l))'. 

Corollary. Given e > 0, there is a positive constant Ke such that 

IITo u ll, :^ C II A, u 11c 2 + Kellull2	 (*)

for all u E domA,. 

Proof. We recall the operator A on (IL 2 ())3 such that (Au), = Auj for u E 
domA = (H2 (1l) fl H())3 . It is known that given > 0 there is a Ke such that 

I1( —A)' 12u 11z 2 < eAuM + KelI u Il 2	(u E domA) 

lI( —AY'2u lI 2 = >(Vuj, Vu)
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for u E dom(—A)' /2 (H'()) 3 . Moreover there is a positive constant C' such that 

	

Au II	C 'II u IIH 2	(u E domA). 

On the other hand
11u11H2 !^ C II A 3 u II 2	(u E domA3) 

by Theorem 1.1. Finally we have

"2 II To u Ik 2	" c(((vUvu)) 	+ IIuII2) 

for u E (H' (Q))3, with a positive constant C" depending only on the equilibrium 
solution u 0 which enters the definition of T0 (see Subsection 1.1). The corollary now 
follows I 

Remarks. By the Corollary A3 + PTO is the generator of a holomorphic semigroup 
on E (see Pazy [71). This enables us to introduce fractional powers and to handle the 
nonlinearity in (1.6) in such a way that (1.6) becomes a nonlinear evolution equation 
in the sense of [7: Subsection 6.3]. These steps, necessary to establish the principles of 
linearized stability/instability are not needed here and not further discussed. 

1.5 The projection operator. In order to discuss the projection operator P onto the 
subspace E (see (1.4)) we need the following 

Lemma 1.1. E is the 0 -closure of the vector fields I E (H 1 (1))2 xH(), divf = 
0.

By taking into account the results on Fourier expansions one recognizes Lemma 1.1 
as consequence of 

Proposition 1.6. The following assertions are true: 

(i) Fix k > 1, let A,B E H'(R2 ) and C = A"2 (ôA + t9B). Then (Apk,Bcp, 
Ct,bk ) E E. 

(ii) Let A,B E H I (RI ) satisfy OA + ôB = 0. Then (Açao,Bçoo,0) € E. 
+1/2 Proof. Since k > 1 we have f_1 12 (pk ds = 0. Hence there is a sequence 'Dn E 

C'°(—,+) such that lim	Wk in £2(_,+) and	 = 0. Observe 
that fZ112 

4 n ds E C'°(—,	Next let A, B E C0°°(R2 ) be such that lim o A = A 
and limp B = B in H 1 (R2 ). Recalling the convention in 'Notations' we set 

ds 
f1/2 

whence fn € ( Hol 	divf = 0 by construction. By (1.15) we have 

	

Z	 z
2 / 1	i\ 

	

lim J	ds 
= J Q5 k ds = —A 1/ k(Z)	in £2 

	

-1/2	-1/2
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By these remarks it follows that 

	

1imf = ( Apk,BçOk,Ct,b,)	in the £2 - sense 

proving assertion (i). Next let A,B E H'(R 2 ) satisfy OA + c9B = 0, let I E 
Cr( — ,+) (n > 1) be even and such that limI = = 1 in £2(_,+). Let 
fn = (A',B4,O). Clearly f, E (H01 (Q)) 3 , divf = 0 and limn fn = ( Açoo,Bcpo,0) in 
the £ 2 -sense, whence (Açoo,Bçoo,0) E E, proving assertion (ii)I 

Remarks. It is clear that if k 2 1 is even or odd, then the sequence {f}>o 
can be chosen in L 2 or L. Lemma 1 respectively Proposition 6 enable us to reduce 
the investigation of the projectors P and Q = 1 - P to straightforward manipulations 
with Fourier series and transforms. We will therefore be brief. In order to investigate 
E1 = L2 e E we note 

Proposition 1.7. If p E H'(), then Vp±E. 

Proof. By Lemma 1.1, Proposition 1.6 and Subsection 1.3 it suffices to show 
that if p = Pkc'k with Pk E H'(1R2 ), then Vp is orthogonal to all fields of the form 
(Acpk,Bcpk,Cl,bk) with A,B E H'(R 2 ) and C = A l2 (OX A + aB) if  2 1, and to all 
fields of the form (Ao,Bo,O) with A,B E H'(R2 ) and ôA +ôB = 0 if k = 0. Both 
cases follow immediately if we express the arising scalar products and the assumptions 
in terms of the Fourier transforms A,... ,13k of A,. . . ,Pk, a computational step which 
we omit  

Next we invoke the Neumann operator A such that A = A on dom A = 
(see (1.12)). It is known that A is selfadjoint and lesser or equal 0. We note also the 
validity of Gauss' formula (1.9) now under the assumption v E H'(Il) and u E H2(l). 
Moreover it is easily seen that the subspace 

1  +1/2 

	

E2 (Q) 	f€L2(cl) J	fsoods=0 a.e. on R2 
1	 —1/2 

is invariant under A, i.e. reduces A. An important property of A is given by 

Proposition 1.8. A is boundedly invertible on 

	

Proof. Let I = >	fkcok in (l) be given. The unique solution p E j2() fl 

Z) of equation L?p = I is then given by	PkPk = p where 

= 1Lk(a,/3)'fk(l,/3)	(k? 1) 

where a,,3 E R, Lk = —(a2 +,32 + AO and 1k and p are the Fourier transforms of 1k 
and Pk, respectively I 

For use below it is convenient to introduce 

the space L2	(2(cl))2 x 

the set . = (H'(l) fl £(1))2 x H(cl).
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We note that if p E	 2(f) and I E H, then Vp € H and divf E 
(Proposition 1.1). The space L2 c L2 turns out to be invariant under P and Q = 1—P. 
In order to study the action of Q on L2 we pick f € H and let p E H2 (cl)flL(cl) be the 
solution of equation Lp = divf (Proposition 1.8). Since VP € H by the above remark 
and div(f - Vp) = 0, we have that f - VP E E (Lemma 1.1) and VpIE (Proposition 
1.7). We thus conclude

Qf=Vp	and	P1=1—Vp. 

The action of the projection operators Q and P on L2 is thus determined by their action 
on the dense subset H ç L2 according to the above description; the action on all of L2 
then follows via approximation. It remains to determine Q and P on the complement 
L2 e L2 . To this end we not that an I E L2 e L2 has necessarily the form 

I = (A,B 4 O)	(A,B e £2 (1R 2 ), o = 1).	(1.18) 

Now assume first that the Fourier transforms A and B are smooth, with compact 
supports in R 2 \ { O}, whence f E (H' (Q))2 x H(1l). Setting p = POYO with 

	

—(icLA + 2 i3B)z/'	(LI = cL2 + /32) 

we have that p E H 2 (1l), Vp E (H'(Q))2 x Hol 	and 1p = diyf. As in the previous 
case we conclude

Qf=Vp	and	P1=1—Vp. 

By a straightforward approximation argument one shows that in the general case of an 
f of the form (1.17) we have Qf = (Co,D 0 ,0) where 

= a(aA+fi)u 1	and	B = fl(aA+flB)v,	(1.19) 

what completes the description of Q on L2 e Z2 and hence on L2 = (r2 (c)) 3 . From 
formulas (1.19) one extracts examples of fields f±E which have not the form Vp, for 
some p E H'(Il). On the other hand it is clear from the above that the set {Vp}peff1(cz) 
is dense in E1 . From the above analysis one also easily deduces that the spaces L 2 and 

are invariant under Q and P. 

This concludes the discussion of the £2 -setting of Navier-Stokes on an infinite plate. 
It concerns merely the linear part, the only one which is relevant here, but which is also 
essential for the handling of the nonlinear part, a point to be discussed 'elsewhere.
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2. The 0-periodic counterparts 

2.1 0-periodic functions. In order to discuss the relation between £2 -spectrum and 
periodic spectrum (see (1.8)) one is forced to proceed via an extension of periodicity, 
i.e. we need the concept of 0-periodic functions. Let L > 0 as in (0.2) be fixed. Set 
QL = (0,L) 2 and Q QL x (— 1 , -- ). Set, for a fixed small E > 0, M = ( — E, 27r + c)2 
and let ML be M minus the four points (0, 0), (0, 27r), (21r, 0) and (27r, 21r). Let finally 
M = Mfl[0, 2ir] 2 . By 0 = (0 1 , 02) we denote a typical point in M, calling 0 "generic" 
if 0 E M. As before we set ci = R2 x (—,+) and ci = R2 x [ — i, +]. 

Next we need spaces. By Cep ( Q) we denote the set of f E C() such that 0. 

f(x +jL,y+ kL,z) = ehIe2If(x,y,z)	 (2.1) 

for j, k E Z, where Hep  now denotes the set of I E £2 (Q) such that lim IIfn - 
I IIH ' = 0 holds for some sequence f,, E C(Q). By (2.1), f admits a unique extension 
I E H1 , (ci ) such that limp 11f — fnhIH P = 0 holds on any bounded subdomain ci' ç ci 
and satisfying (2.1) in the a.e. sense; we identify I with f henceforth. Clearly H(Q) = 
£2 (Q). The spaces HP (Q) are the usual Sobolev spaces on Q; for simplicitywe denote 
the scalar product on H P (Q) again by (.,	It is also convenient to introd'uce spaces
C ,0 and C as follows. Let f E C 0 if and only if f E C(Q) and f(x, y, ±) = 0 for 
all x, y E R. Further, let f EC(Q) if and only if I E C(Q) and 5f(x, y, ±) = 0 for 
all x,y ER. 

In order to handle boundary conditions we use again the notion of trace. To this end, 
let ô'Q be c9Q minus the edges, more precisely 'Q = c9Q \ Up7q where runs through 
the closed edges connecting adjacent corners p and q of Q. We also set r = r± n O'Q, 

= r n O'Q = r ,+ U I,,— with f and r± as in Subsection 1.2. 

Similarly one introduces boundary operators fj E L(H''(Q),C2(o'Q)) (j = 0,1) 
which satisfy (a) and (b) in Subsection 1.2 (with Q in place of ci). Gauss formula 
(1.9) remains valid for v E H'(Q) and u E (H'(Q) ) 3 . In case where v E H(Q) and 
U = (u,,u2,u3) E (H(Q) ) 3 it assumes the form 

	

f 7o(J)7o(u3)dw - j -yo)-yo(u)dw = J ((Vi)u + iu) dx 3 .	(2.2) 

The other boundary terms due to cifl&ci cancel since u is 0-periodic while the complex 
conjugate ii is (-0)-periodic. We now define H 0 (Q) and H(Q) according to 

f E H',0(Q) .. I E H(Q) and o(f) = 0 a.e. on
(2.3) 

I E ft(Q)	I E H(Q) and .y,(f) = 0 a.e. on 

The periodic case arises for 0 = (0, 0), (0, 27r), (27r, 0) and (27r, 27r). We emphasize it by 
writing Her(Q), H er,0 (Q), ... instead of H,(Q), H' 0 (Q), ..., respectively; likewise
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with Cper (Q), C er0 (Q). .... There is a simple connection between the periodic and 
the 0-periodic case, expressed by the proposition below, in which we set 

m(0,£) = e_!(e1z+e2y)L' ( = (x, y ))	 (2.4) 

Proposition 2.1. The following assertions are true.

(i)f E Hep 	if and only if m(®,x)f E Her(Q) 

(ii) f E H ,0 if and only if m(0, 1)1 E Hier,o(Q) 

(iii) Likewise with H(Q), C 0 (Q) etc. 

We omit the straightforward proof. Proposition 2.1 permits us to reduce statements 
on 0-periodic functions to known statements on periodic functions. For simplicity we 
write henceforth H, H 0 , ... instead of H(Q), H,0(Q)..... 

2.2 Fourier series. Fourier series are again the most useful tool in connection with 
pressure, divergence-free fields etc. In order to handle them in an economic way it is 
advisable to use some space-saving notations. We fix some 0 (®, (3 2) E Me and let 
a, fl, j,k,l range over Z. We then set 

& = L'(27r& + 0)	 e	LIetC+ 
-	 and	 (2.5) 
/3 = L 1 (27r/3 + (32)	 Zap = L'e'. 

Here and below we suppress the dependence on (3 or x and y if no ambiguity arises; 
in cases where this is not so we write more explicitely e(0) and e(®, ) or similar. 
We also let C2 (Q) and C' .(Q) be the subspaces of those f in £2 (Q) which are even and 
odd, respectively, in z. Finally we recall the eigenfunctions Ok, Ok, 17 k, Tk,... of (1.16). 
Complete orthonormal systems in £2 (Q) are given by {e }>o and {e,b, } i > i and, 
similarly, by {eafio,},>o and {ers}i>ó in C2 and £, respectively. An f E £2 (Q) thus 
admits the Fourier series

=	f01e0ço1 =	fcfl1eafl01	 (2.6) 
l>o	 I>1 

where f, = (f, ea cp,)o and j j = (f,e,7,)o. For use below and later we set 

1â2 + 2 +1 for j=O  

' l&2 + ^2 + Ai for j>1	
(2.7)

 

Proposition 2.2. Let f E .C2 (Q). Then the following assertions are true. 

(i) f E H if and only if j Aj( c ,/3)IfajI 2 <00 

(ii) I E Ji, if and only if Aj(c ,fi)IfjI 2 <00. 

The proof proceeds along similar lines as that of Proposition 1.2.
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Proposition 2.3. Let f E £2 (Q). Assume that	Aj(a, /3) 2 IfcsjI 2 <oo. Then
I E H and

Ill II	(()2Iffi.I2)	(,/3 E Z) 

for some constant C >0 independent of  E Me. Likewise with E>1 

Proof (sketch). Let LN = > fe0 ço (I aI, I/I,j N). By virtue of the 
assumption, {L N } N > 1 then is a Cauchy sequence in H2 , whence f e H. This implies 
that summation E and differentiation d commute for any derivative d of order lesser 
or equal 2. We thus can express III lI2 in terms of Fourier series. The statement then 
follows by observing that there is a positive constant C independent of a,# E Z,	0
and ® E M such that A(a,/3) + ( I & I + 1131 + A2)4 < CA(c,/3)2U 

2.3 The Stokes operator. Next we come to the 0-periodic version of the Stokes 
operator. For simplicity we write /:2, £, £ instead of £2(Q).... . We then set L2 = 
L2 (Q) = (/:2)3, L 2 = (/: 2 )2 x £ and L = (/:2)2 x £. We recall the notations 11u1112, 
(u, v) and IIUIIHP, (u, v) for vector fields tL,V E L2 and u,v E (H)3 , respectively. For 
®EMwedefine	 - 

EE) is the £ 2 -closure of all I E (H' 0)3 with divf = 0.	(2.8) 

Clearly EE) = EEJE; here E is the £ 2 -closureofallf E (HA 0 )3 flL such that divf 
0, and likewise with E. We also let P9 , P.9 and P4 be the orthogonal projections onto 
Eq, Eg and E, respectively. Next we let A 9 be the Laplacian A on domAe = 
H.2 fl HA,0. The operator A9 so defined is selfadjoint and A9 —e 0 for some co 
independent of 0 e M; the subspaces 'C2 and 'C2 are easily recognized as invariant 
under Ae. From (2.2) one infers 

IQ (VvVii + vAfl) dx 3 = 0	(v € HA,0, u E Hi).	(2.9) 

A0 induces a selfadjoint operator A0 on L2 according to dom A0 = dom A and 
(Aeu), = Aeui for u = (u I ,u2 ,u 3 ) E domA9 . The Stokes operator A0 ((3) is then 
defined as follows:

f € domAo(E))	f € domAe and divf = 0	(2.10)
and A0 (®)f = P9 A9 f in this case. 

Ao((3) has the following four simple properties. The proof is easy and therefore omitted. 

Proposition 2.4. Ao(Ei) is symmetric, densely defined (in Ee) and Ao((i) 
for some 0-independent ei > 0. The spaces E	E and	reduce A 0 (e), i.e. PAo((3) ç
AO (E))P4 for s € {g,u}. 

Of importance is
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Definition 2.1. u = (u i ,u 2 ,u 3 ) E (H 0 ) 3 with divu = 0 is called a weak solution 
of equation Au = f, for I E Ee, if 

(Vu,Vvj ) + (f,v) = 0 for all v E (H 0 ) 3 with divv = 0 

where v = (vi,v2,v3). 

Given I E Ee there is at most one weak solution u of equation 1u = f. By 
Proposition 2.4 and Lax-Milgram theory there is a selfadjoint extension A 3 (e) 3 A0(e) 
such that

U E domA,(0)	u is the weak solution of Au = f 
for some I E Ee and A(0)u = I in this case. 

From Proposition 2.4 and clause (2.9) we infer 

Proposition 2.5. A3(0) —e1 with e l as in Proposition 2.4 and Eeg ,Eg reduce 
A,(0). If u E domAo(e) and A 3 (0)u = 1, then Ao(e)u = f. 

We now come to the E)-periodic counterpart of Theorem 1.1. In its simplest form 
it states that domA,(0) c (H)3 what according to Proposition 2.5 yields A3 (e) = 
Ao(0). However more is required for the needs of Section 4. In fact a more refined 
version of Theorem 1.1 is available. It is stated below in two parts without proof; a 
proof is given in [14). 

First we fix some notations. With C the set of complex numbers we recall e > 0 in 
M = (—i, 2r + e)2 . We then set 

Me = {e E C2 : dist(®,[0,2ir] 2 ) <}. 

We also set
a,fleZ, j >0, E Iacj I 2 <} 

SI = { a j : a,/3 E Z, j ^! 1, E I a I 2 <o}. 
These are Hubert spaces under the norm IIII2 = >2• I a , I 2 , where a = We 
adopt the following notations. If, e.g., a E 'C2 and a = >2, aa6je1j is the expansion 
with respect to the system {ea fl rj }, then clearly {aafl,} E 5; we then set 9 = {a}. 
Likewise in the case of expansions with respect to {ea}, { e 0fl } etc. Finally, in 
order to shorten expressions we set 

F(x,y,pIc,k S 3) = (x2 +y2)(x2p' + xyp2 ) +p3 .	(2.11) 

Definition 2.2 (Property (P)). 
(i) A family	 of mappings M x 53 — C has property (P) if 

(1) for fixed 0 E M, F.,gj is linear in S3
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(2) there is C such such that for all 0 E Me and a,b,c E 5, > 
C(IIII2 + IIII2 + 11c112) 
(3) for fixed a ,b,c E 5, F06 (0,a,b,c) is holomorphic in 0 E M. 

(ii) A family {Fj},,pEz,>1 of mappings M	(S')2 x S _-+ C has property (P) if
conditions (1), (2) and (3) above with (S') 2 x S in place of 53 hold. 

In the theorem below, u = (A, 5,C) is in domA,(0)flE and satisfies A,(0)u = f 
for some I = (a, b, c) e E and 0 E M, - The components A,... , c then have Fourier 
expansions with respect to the complete orthonormal systems {e0flr} in C2 and {eoflaj} 
in £, i.e. 

a = 1 a Y9j ea$ r) ,	b= > bajerj,	c=
(2.12) 

A =	A0fl e0fir,	B =	B0 se . pr,	C =	Cofljeac.rj 

where a8 E Z and  >0. 

Theorem 2.1. There are families 

{Aj}c€,j>o, {Bsj }o,flez,j>o (k	1,2,3)	and	{Cj}a,EZ,j>O 

having property (P), as follows. Let u E dom A,(0) fl Ego satisfy A(0)u = f for some 
I E E,-9' and 0 E M. The Fourier expansions of their components a, b, c and A, B, C in 
(2.12) then satisfy 

(i) = aaj + F(6e,fi,A(0,a,b,c),k 23) 

(ii) =	 23) 

(iii) C	= capj +C(0,,k,c) 
where A, = &2 + 2 + Aj (a,[3 E Z, j 20). 

There is a variant for the case where f = (a,b,c) and u = (A,B,C) are in Eg and 
domA 3 (0) fl E, respectively. Recalling (1.16) we now have the expansions 

a = >aa$jeap7rj
	b = E b0 e0fl 7r	C = 

A = E A0fle67r	B = E Be0,97r
	

C =
	 (2.13) 

Theorem 2.1. There are families 

{Ao j }aflEZ,j>I, {ffaj}a,flEZj>1	and	{ã}€z,i>o 

having property (P), as follows. Let u in domA.(0)nEu satisfy A(0)u = f for f E E 
and some 0 E M. The Fourier expansions of their components a,b,c and A,B,C in 
(2.13) then satisfy
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(i) Ili A.# = Aaflj(®,jb,C) 

(ii) = 

(iii) (1 + /Lk)Caflk = Ck(®,a,b,c) 

where c, ,B E Z, j > 1, k> 0 and Pk = (&2 + 2 
+11k). 

Corollary 2.1. The following assertions are true. 

(1) There exists a positive constant C 1 as follows. If U E domA3 (e) fl	and 
= f for some ® E Me and f E E, then u E (H)3 and IItL IIH 2 <CIf2. 

(ii) Likewise with u E domA 3 (0) fl E 3 and f E E?, and likewise with u E 
domA 3 (®) and I E E°. 

Proof. We prove assertion (i) via Theorem 2; the first part of assertion (ii) follows 
from Theorem 2 in the same way, while the second then follows via Proposition 2.4. 
First note that since e E M we have that Fe 2 + /32 > 0 whence &2(&2 + /32)_I < 1 and 
1&fl1(â2 + /32)_1 < 1. From Theorem 2/(i) and the definition of F in (2.11) we infer 

3 
2 I3 j I 2 IAaflj I 2	2ajI +2lA(e,,k,Q)l2. 

k= 1 

By summing over a, # e Z and  > 0 and then using (2) in Definition 2.21(i) we infer 

ii I j l 2 IAoj I 2 < 2 IlqI12 + 2C (IlqI12  + 11I12 + 1Q112) 
OAj 

with the 0-independent constant C of Definition 2.2. Since Ill 11 2 = lllI 2 + I1k11 2 + IIcII2 
we infer

Ii 1 3 , 12 IAI2 C1 Ill II (2.14) 

for some positive ®-independent constant C1 . We now invoke Proposition 2.3 according 
to which A = > A,6 j e,,3 ri is in H, satisfying 

II AII2 ^ C2 1 1 2 1A	2 
I .iI I	8uI	 (2.15) 

for some positive 0-independent constant C2 . By (2.14) and (2.15) we have 

II A IIH 2 <C3 1IfIIc2	 (2.16) 

for some positive 0-independent constant C3 . By a similar reasoning we infer 8,C E H 
and find a positive 0-independent constant C4 such that 

	

11 8 1111 2 , II C IIH 2 < C41If11c 2	 (2.17)

proving assertion (i) and thus the corollary I
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Remark. The in Theorems 2 and 2' are constructed explicitely in [14]. 
We note the disparity between the E 9 -case (Theorem 2) and the Es-case (Theorem 2'). 
In contrast to the second case, singular factors such as &2(6,2 + fl2 )' appear in the 
first case, which force us to restrict 0 to Me. These singular factors are a source of 
complications in the perturbation-theoretic Section 4. 

For what follows we recall the operator T0 in (1.3) and the stipulation domTo = 
(H'(Q)) 3 . We note the further 

Corollary 2.2. Given ö there is a positive constant K 6 such that 

(i) II To u Ik2	II A3(0 )u II 2 + K&IIuII,.2 
(ii) II To u II2	6 II A ( ® )u II2 + K6	f2 

for any 0 E M and u E domA3(0). 

Proof. It suffices to prove assertion (ii); assertion (i) then follows by resealing K6. 
Thus fix 0 E M and recall the operator Ae at the beginning of this subsection. 1e is 
selfadjoint with pure point spectrum A3(a,fl) (see (2.7)) and associated eigenfunctions 
eb (a,/3 E Z, i > 1) (see (1.16)) giving rise to the expansion 

u =	a,#je,,60j	for u E £2(Q).

From the spectral theorems for selfadjoint operators we infer 

II/ U IIc2	AIajI2 
if u E domz 9 . Since —I.e ^! e0 > 0 it follows from the theory of quadratic forms that 
H ,0 = dom(—Ae)' /2 and 

II Vu IIc2 =	A j Iaaj I 2	(u E H0). 

By elementary arguments we infer given 8 there is a positive constant K6 such that 
A,(a,8) <6A(a,fl) 2 + K6 

for a, ,3 E 7Z, > 1 and 0 E M. From all these relations we infer that given 8 there is 
a positive constant K6 such that 

I:iiv ii 2 <6 II LUjII2 +K6IIuIIz 

for 0 E M and u = (11 1 ,u2 ,u 3 ) E dom. On the other hand there is a positive 
0-independent constant Co such that 

II 7-'IiC 2 < CoIlvII.p	(v E H2 (Q)). 

According to the last corollary there is a positive 0-independent constant C1 such that

II tL III 2	CiIIA,(0)ulI2	(u E domA 5 (0), 0 E Me). 
Finally we find a positive constant C2 depending only on 770 such that 

II To u II2 <— c2
 (	

;iv112 + II u II2)	 0 

for u E (H'(Q))3 . Assertion (ii) now follows from the last relations upon resealing K5 I
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2.4 The projection operators. We now investigate the projection operators Pe and 
Qe more closely. To this end we assume that e is generic, i.e. ® E Me. Under this 
assumption, essentially all relevant properties of Pe and Qe can be obtained via Fourier 
series. 

First we stress an alternative definition of E0. 

Lemma 2.1. Ee is the £2 -closure of all f in (H& )2 x H ,0 such that divf = 0. 
Proof. We proceed as in the proof of Propositon 1.6, i.e. for fixed j ^! 1 we consider 

the field
= (ae	 j,A7'/2(i&a + ib)7,b).	 (2.18) 

We then pick a sequence of functions D. E C000(,+) such that	/2 C, ds = 0 and 
limp 4P,, =	in £2 and define

	

fl
f. = (ae sn, be0fl cF, —(i&a + ifib) 	n ds'. 

/2 

By arguing as in the proof of Proposition 1.6 we infer that limp I,, = I in £2 and 
f E (Hel 	with div f,, = 0, whence f E E0 . In case j = 0 we consider a field 

	

f = (ae a 9o,bepo,0)	 (2.19)

with i&a + iflb = 0. As sequence of approximating fields we take 

f. = (aefl,be6fl,0) 

where	E C0°°(--,+) and lim	=	= 1 in £2. Again f,3 E (40) with
div f,, = 0 and lim,, f,, f in £2. Since the linear hull of fields of type (2.18) and (2.19) 
is H 1 -dense in (H)2 x H 0 , the statement follows I 

Proposition 2.6. If p E H, then VplEe. 
Proof. It suffices to prove the statement for p's of the form p eçøj since the 

linear hull of such p's is H 1 -dense in H. For such a p we have 

Vp—
 {

(i&eoo,ifieascp0,0) 
12	

if  = 0 

(26e j ,z/3eaj,A 1j e0 tb) if j > 1. 

It now suffices to show that any of these fields is orthogonal to any of the fields (2.18) 
and (2.19). But this follows immediately by computation I 

Next we introduce the Neumann operator	which acts like A on dom Le = 
with H as in (2.3). It is easy to see that L0 is selfadjoint with pure point spectrum 
consisting of the eigenvalues Xi (a, 0) (j ^! 0; a,,3 E 7L) where 

A = A,(a,8) = (&2 +	+A,)	 (2.20)
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with associated normalized eigenfunctions Note that A, —Ce for some Ce > 0 
due to our assumption 0 E Me. By familiar spectral theorems we have that an I E £2 

is in H if and only if

X2 1	1 2 <	where I = >a, j eafl çoj .	 (2.21) 

Since —ie ^ e it follows that given g E £2, there is a unique solution p E H of 
ep = g. With p =	and with the series subject to (2.21) one infers by 

termwise differentiation that Vp E (H' )2 x H 0 . Now fix I e (H)2 x	and let 
p e H be the solution of tep = divf. By Lemma 2.1, Proposition 2.6 and the above 
remarks we have that f - Vp and Vp are in (H' )2 x H 0 , that div(f - Vp) = 0 and 
VpIE0 , whence

Qef=Vp	and	Pef=f — Vp. 
It is usefull to express Vp in terms of Fourier series. Thus let f = (a, b, c) with 

a =	a flj e Q 2,,	b =	 c = 
j ^! O	 j>O 

with a,,8 ranging over Z. Set also 

i&ao + i/3b0flo	 for j = 0 

= { 
1 i&a i +	- j caj for > 1. /2	

(2.22) 

Then div f = > fajeapj and with p above, 

p =	 (2.23)

The gradient Vp is now given by: 

t3zP =
j >0 

p= 1: i/3X 71 -f.,6je.pVj	(a,,8 E Z)	 (2.24)
j>o 

=
j^ I 

A simple approximation argument shows that (2.24) remains valid for arbitrary f = 
(a,b,c) E L 2 , i.e. if Qef = (u,v,w), then the Fourier expansions of u,v and w are 
given by those for ôp, ô,p and (9p above. From this remark one reads off from (2.24) 
that the subspaces L 2 and L are invariant under Qe. 

In order to stress a further invariance, let f E £2 if and only if f E £2 and 

f/ fcpo ds = 0; let I 2 = £2 eZ2 and denote by {0} the null space. According to the 
formulas (2.24) we read off that L2 = (2)2 x £2 and L2 = (E2 )2 x {0} are invariant
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under Qe. On L2 , Qe acts as follows. With  = (a,b,O) in L2 and a =	aa$jeQ2o 
and b =	we have that Qef = (u, v, 0) where 

= > (&2a +'8b) Ao(u,fl)eo	
(2.25)

v = - > (&aa$ + bc) Ao(a,3)ecpo. 

That is, the same singular factors as in Theorem 2 reappear, a source of concern in 
Section 4. 

3. Direct integrals 

3.1 The language of direct integrals. Below we describe the method of direct 
integrals which connects the AP + PT0 P and A,(e)Pe + Pe To Pe . The description is 
selfcontained but as to results we rely on [2, 8, 12, 13]. 

Let N' be a separable Hilbert space with scalar product (., .)	and norm 
Recall M = [0, 27r] 2 and Lebesguc measure /1 on M. A mapping M - N' is 
measurable if it is defined for a.e. 0 E M and if (g, (I( . )) is measurable for all g E N'; 
II()II' is then also measurable. A Hubert space N = fm N'd1.t is then defined as 
follows. It consists of the set of (equivalence classes) of measurable mappings	such
that

I(®)IIdi < JM	
(3.1) im (1(0),2(0))'dp = (1,2)n for	eN. 

The basic example is given by N' = £ 2 (Q) and N = £2 (M x Q) . Given 'I C N we have 
by the Fubini theorem that 4(0,) E N' for a.e. 0 E M and 

IM 
II(®,)II,d 

= IM XQ	
(3.2) 

The measurability is evident. Next we describe a unitary mapping V from £2(1) onto 
N. Thus set x = (x, y), n = (n j ,n2 ), Inj = max( I n iI, 1 n21) and let On = ® 1 n 1 + 02ri2 
for  = (01,02) EM. Now pickle C(). Since suppf c is compact, there is for 
every x' C R 2 a neighbourhood Ue x' and an N > 0 such that 

f(+nL,z) = f(x + n i L , y + n2L,z) =0 

for X  U, I nj ^! N and izi. We then have that 

j(®,.,z)	->e°f(x+nL,z) =	e"°f(x+nL,z)	(3.3)
27r 1: 

TI	 InI<N
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for all I E U and I z) -5 .. From (3.3) we read off that 1(e, • ) E CE") (?!). By the Heine-
Boreitheorern and the above remarks there is an N > 0 such that f(x_ + nL, z) = 0 for 
x E QL = [0, L] 2 , In j ^! N and Izi < . We thus have that 

IiI'ji2dO4.dz =	I If ( IL +nL,z)i 2 ddz	(3.4) 
MxQ	 InI<N Q 

for x E QL and I zI < . But due to our choice of N the right-hand side of (3.4) is just 
iIIiI2 () . Thus the mapping Vf = 7,b f given by (3.3) for f E C() is a Hubert space 
isometry from C'() c C2(Q) into £2 (M x Q), which extends into a Hubert space 
isometry from £2() into £2 (M x Q) . In order to recognize V as unitary, i.e. as "onto", 
we let V' be the isometry from £ 2 (R2 ) into. C2(M x QL) which we obtain if we restrict 
(3.3) to functions f E C() which do not depend on z. It is shown in [12] (see also [8]) 
that V' is onto £2 (M x QL), i.e. unitary. Now it is easily established that if f = gI with 
g E £ 2 (1R2 ) and I' E £2 (_ , +) , then VI = (V'g), whence V(> g4 ) = 
for any finite sum >2g such that g3 E C 2 (1R 2 ) and (Dj E £2(_, +). Since the finite 
sums > h2 1, with hj E £2 (MXQ L ) and ', E £2(_, +) are £ 2 -dense in L2 (M x Q), 
the unitarity of V follows from that of W. 

In the lemma below, x 1 = x, ±2 = y, x3 = rand i9 = ô2 ,, ô = 

Lemma 3.1. The following assertions are true. 

(i) Let I in H 2 (1) or in H 2 (1l). Then there exists E c M with (E) = 
such that 0 E E implies: 
(1) (Vfl(®,.) is in f12 or H, respectively. 
(2) (vOJ)(®,.) e HA and (Vof)(®,.) = 
(3) (V193k f)(0,.) e £ 2 (Q) and (VôjkI)(®,.) = ak(Vf)(e,.) (j,k =1,2,3). 

(ii) Let I in Hd(cl) or H'(Il). Then there ., E c M with 1i(E) = (M) such that 
0 E E implies: 
(1) (V 1(0,.) is in HA0 or HA, repectively. 

(2) (Vaf)(e,.) E L2 (Q) and (VôI)(®,) = c9(Vf)(®,.). 

Proof. Since it is essentially the same as that of Lemma 1 in [12] we only stress 
the main points. First note that by virtue of (3.3) we have that 

= (VOk')(0,.)	or	ô(V)(0,.) =(Vo)(e,.), 

respectively, for j,k = 1,2,3 and any E C() and 

(V4)(®,.) E OA()	if 1b. E 

Now let f e i2(Sl). Based on our remarks concerning the Neumann operator. A in 
Subsection 1.5 and on Proposition 1.8 one infers that the Fourier series >f p , of 
I satisfies the assumptions of Proposition 1.3, whence lim,v I lf - L NIIH 2 = 0 where
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LN =	fjp3. Since LN E H2 (Q), and by a simple approximation argument one 
finds C, E C() such that urn 11f - 4' n hI H 2 = 0. By the unitarity of V and (3.3) we 
then have that 

II Vf - V4',1 2,	IlVgj - 5jV4'n1112,	ll Vhik - ôjkV4'nhIt2 

all tend to zero as n T oo where	is the norm in .C2 (M x Q) and where gj = 9f
and hk ôf. Via the Fubini theorem one then finds a set E C M with z(E) = (M) 
and a subsequence	} such that e E E implies that 

(Vf)(®, •),	(VO)f)(®,.),	(Vakf)(e, ) 

are all in £ 2 (Q) and such that 

IKvf)(e,.) - (V4'flk)(®,.)II2 

(Vg3 )(0,.) - a( V4'flk)(0, )II t2 

(Vh3k )(0, .) - 5k(V4'. )(®, )II2 

all tend to zero as k I 00, where now	11,C 2 is the norm in £2 (Q). But this is exactly
what is claimed in assertion (i). 

If merely f E H 2 (1l), then the sequence 4',, E C,() exists by definition of H2(l). 
The proof of assertion (ii) is quite the same and omitted I 

Corollary. For f E H 2 (Q) fl H(1l) there is E ç M with (E) = p(M) such that 
® E E implies that (Vf)(O,.) E H2 n H 0 and that assertions (2) and (3) of Lemma 
3.1/(i) hold. 

Lemma 3.2. Let h E C°(i) be L-periodic in x and y, and let f E £2 (Q). Then 
there is E C M with p(E) =y(M) such that 0 E E implies that (Vf)(0,.), (Vhf)(0,.) 
E £2 (Q) and that h(Vf)(0,•) = (V'hf)(O, .). 

Proof. It is based on (V4)h) = h(V4') for 4' E C(i) and similar to the above but 
simpler and omitted I 

The above setting extends straightforwardly to the vector-valued case. As "fiber" 
space we take fl" = (C2 (Q)) 3 . The direct integral = fm fl"dy is now the set of 
measurable mappings 4' = ( 4'1, 4'2, 4'3) which map M into 7-1" according to 4'(0) = 
(4' 1 (0),4' 2 (0),4' 3 (0)) e fl" for a.e. e EM such that 

3 

IM hI(	= I IM II 4'(o)II ,dp < 

and with the scalar product (-, ). defined in terms of (, )w' in the obvious way. A 
unitary mapping U from ( L 2 (?))3 onto 7-1* is then given by 

U4' = (V4' 1 ,V4' 2 ,V(D 3 )	 (3.5) 
with V as above. There are obvious extensions of Lemmas 3 and 4 and the Corollary to 
the vector-valued case, the most important being the lemma below in which A, T0 and 
A0 are the operators in Subsections 1.4 and 2.3, respectively.
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Lemma 3.3. Let f in ( H 2 (1) n H0'(1)) 3 or in (H'(1Z)) 3 . Then there is E ç M 
with p(E) = ji(M) such that 0 E E implies: 

(i) (Uf)(0,.) E (H.2 fl 
(UAI)(0,.) E (C 2 (Q)) 3 and (UAI)(0,.) = Ae(Uf)(E), .). 

(ii) (UT0I)(0,.) E (C2 (Q)) 3 and T0(Uf)(0,.) = (UT0 f)(E), .). 

Proof. It follows immediately from Lemmas 3 and 4 and the Corollary U 

Next we come to the direct integrals of bounded and unbounded operators, notions 
discussed at length in [2] for the bounded selfadjoint case, in [8] for the unbounded case 
and in [12, 13] for semigroup generators. Here we stress the definitions, but rely on [2, 8, 
12, 13] as for as results are concerned. A family {B(0)}e E M C L(fl",i-") of bounded 
operators is measurable, if (g, B( .)f) is measurable for all f,g E fl". If we have that 
JIB(0)11,,. :5 C for a.e. 0 E M for some positive constant C, then a bounded operator 
B E L(if,if) exists according to 

(Bq)(0) = B(0)p(0)	for a.e 0 E M and ( E if.	(3.6) 

That Bp E if is shown in [2, 8]. We write B = fm B(0)dp (for details see [8: p. 281] 
and [2: Subsection 11.2]). Next let {A(0)}eEM be a family of linear operators on 
An unbounded operator A = JM A(0) dt on if is defined according to 

Definition 3.1. W E domA if and only if: 

(i) (0) E domA(0) for a.e. 0 e M 

(ii) 0 - A(0)(0) is measurable 

(iii) JM lI A (0 )c(0 )II,, di, <oo. 

For such p we set (A)(0) = A(0)(0) for a.e. 0. 

Remarks. There are cases in which in Definition 3.1 condition (ii) is a consequence 
of condition (i). Operator families for which this is the case will be said to have property 
(M). Such is, e.g., the case if the A(0) are semigroup generators such that (Ao,00) ç 
p(A(0)) (0 E M) for some A 0 and if there are A E (Ao,00) and a positive constant C 
such that 

(i) (A(.) - A) 1 is measurable on M 

() IK A(0) - A) — ' 11	C for all 0 E M. 

For a proof see [12: Lemma 4] and [13: Appendix]. If in addition the A(0) are selfad-
joint, then A is selfadjoint (see [8: Theorem XIII.85]). It may be usefull to take parity 
into account by setting 

= (L(Q))2 < £(Q),	H11= (,C 2 (Q)) 2 x 

= LWdp, 
= IM 

i-1di.	
(3.7)
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One then has the decomposition if =	i. Recalling L2 (Q) 3 = L 2 ED L in
Subsection 1.4 one then has that U maps L 2 and L unitarily onto i1 and 'H*., respec- 
tively. Likewise, recalling	() and .2(l) in Subsection 1.5, and £2 (Q) and 2 (Q) in
Subsection 2.4 we set 

fill = ( 2 (Q)) x .i?' = (E2 (Q)) 2 x {O} 

fi- = I 
JM

I'd,
= f i?'dz.	

(3.8) 

M

We then have the decomposition if = if ED if, and U maps L2 and L2 unitarily onto 
if and i, respectively. 

Now we come to the main result of this section, which serves as basis for the next 
section, but which has independent interest. First we note that every linear operator L 
on ( L 2 (l)) 3 has a unitary transplant L = ULU' on if. Next we recall the operators 
A, T0 and P in Subsections 1.4 and 1.5, and Ae, Pe in Subsections 2.3 and 2.4. Let 
{Te}e be the family of unbounded operators on (C2 (Q)) 3 , which are formally given by 
(1.3) but supplied with the stipulation domTe = (H) 3 . The result in question then is 

Theorem 3.1. The equation P(A + T0)P = fm Pe(Ae + Te)Po d1z holds. 

The proof of this theorem will be given in Subsection 3.2, assuming the following 
lemma, whoose proof is relegated to Subsection 3.3. 

Lemma 3.4. The equations .1 = P = fm P9 du are valid. 

3.2 Proof of Theorem 3.1. For simplicity we write (.,.) and 11 . 11 for (.,	and 
., respectively, if it is clear to which space the symbols refer; likewise with f 

instead of fm . Next we stress that the operators A(0) and B(0) above need only be 
defined for a.e. E) E M. In fact all families below are defined at least on M, i.e. M 
minus the corners. For e a corner we might set, e.g., A(®) = 0 or A(0) = 1; we leave 
this open. 

We start with some remarks and consider a family {A(EJ)}9 E M of operators on i-I" 
which in all cases of interest has property (M), although the statements below hold 
without this property. The operator A = f A(0) di is then defined via Definition 
3.1. We also let {B(e)}9EM and {C(e)}OEM be two measurable families of bounded 
operators on 71" such that, for some constant c, II B ( B)II :5 cand II C (e )1100 c for a.e. 
9, giving rise to the bounded operators B = f B(®) dp and C = f C(®) dp; property 
(M) is then automatically satisfied (see [12, 13]). We also set 

C = j 
A(®)B(®)dp, H = J B(®)A(®)dp, Z = JC(®)A(9)B(e)d. 

Straightforwardly from the definitions we infer 

Ab c C,	H ç BA,	CAB ç L.	 (3.9) 
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We also note the implication 

A(®) are symmetric =	A is symmetric.	 (3.10) 

Next let A be a semigroup generator on a Banach space X and T an operator which is 
A-bounded with relative bound zero (see [3: p. 190]). Then 

	

A + T	is a semigroup generator on X 

(see [7: p. 80] and [3: p. 190)). We also have the following maximality property. 
Proposition 3.1. Let A and B be semigroup generators such that A c B. Then 

A=B. 

Proof. We have to prove domB ç domA. Fix ) E p(A) fl p(B), pick x E domB 
and set (B — .X)x = y. Then there is z E domB with (A - A)z = y. Since A ç B, 
(B — .X)z = y holds. By unicity x = z e domA, proving the claim I 

Similarly, if A is selfadjoint and B D A a symmetric extension, then A = B since A 
is maximal, i.e. has no proper symmetric extension. We now apply these remarks to the 
"Dirichlet"-operators A and A0 . First fix f E 7-1". Then A'f can be expressed compo-
nentwise by Fourier series with respect to the eigenfunctions e,,#Oj of i.e, from which 
the measurability of A for 0 E M is easily deduced. Since a(Ae) ç 00, 0] (0 e M) 
we have that the family {Ao}O E M has property (M) by the remarks in Subsection 3.1. 
Also, since the A0 are selfadjoint, A = f Ae d1z is symmetric by (3.10). 

Next pick w . E domA, i.e. W = Uf for some I E domA, and set PA= UAI. By 
Lemma 3.3, Ae(0) = WA(0) for a.e. 0 whence cp e domA and Aço = A. That is, 
A c A and thus by (3.10) 

	

A = A. di	is selfadjoint and A = A.	 (3.11) 

Similar remarks apply to T0 (see Subsection 1.4) and T0 , given by (1.3) but with 
domT0 = (H,) 3 . Property (M) of the family {Te}O E M reduces via components to 
property (M) of the families {o,(0)} 0 on 7-1' = £2 (Q), where ô(0) = ai on its domain 
H. This in turn is easily proved by Fourier series arguments. Next, let W E domT0, 
i.e. V = Uf for some f E domT0 = (H'(f)) 3 and Out cp'r = U(T0 f). By Lemma 5 we 
have that VT(0 ) = Te(0) for-a.e. 0, whence E domT and Tcp = T0 , i.e. 

	

T0 CTo,	where	IT. d.	 (3.12) 

The last remark is provided by 

Proposition 3.2. The following assertions are true. 

(i) If jr E (H' (Q))2 x Hol 	and f e E, then divf = 0. 

(ii) If  E ( He' )2 x H ,0 and f . E Ee, then divf = 0, 0 EM.
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Proof. In case of (ii), I = Pef f - Vp for p E H with Ip = divf, whence 
divf = 0. In case of (i), we have that I = (a, b, c), with a =	App,, b = Ej-to B,cp, 
and c = > j>1 C3	subject to Proposition 1.2. By Proposition 1.7, (f, Vp) = 0 for all
p E H'(). Testing this relation for all p's of the form pj çoj with p3 E H 1 (R2 ) (j > 0) 
we infer straightforwardly via Fourier transforms that	 = 0 (j > 1)
and ôAo + ôB0 = 0, i.e. divf = 0. 

As a consequence we have that domA3 = domAflE and domA 3 (0) = domAe flEe 
whence

A3P=PAP	and	A,(0)Pe=P0A0Pe. 
We now come to the proof of Theorem 3.1 proper which splits into propositions. 

Proposition 3.3. The equation PAP = f P0 A9 Pe dP is valid. 

Proof. The operator PAP is selfadjoint: PAP = A 3 on E and PAP = 0 on E1. 
By the same reason, .PeAePe is selfadjoint. From Lemma 3.4 and clauses (3.9) and 
(3.11) we infer

PAP = PAP cfPeAePed. 

Since PeAe P0 is selfadjoint and by a remark above, f P0A0Pe du is a symmetric 
extension of the selfadjoint PAP, whence by maximality they coincide I 

We now combine Proposition 3.3 with Lemma 3.4, and clauses (3.9) and (3.12) in 
order to infer

PAP + PTO P ç 
f 

P0 A9 Pe d,u + J PeT0P8 d1i.	 (3.13) 

We can replace "ç" by "=" if we recognize the right-hand side of (3.13) as a semigroup 
generator. In fact 

Proposition 3.4. f P0T0 P0 du is (f P0 A0 Pe di)-bounded with relative bound 
zero.

Proof. Set provisionally
= PeAe Pe, He = PeTe P9 

	

ZzfLediz,	H=rJHedi.t. 

Pick w E dom Z. By this assumption we have that 

	

Pe(®) E (H 2	el fl H 0 )3 for a.e. 0	and	J II Le'(e )II 2dp < cx.	(3.14) 

Next recall the second corollary to Theorems 2 and 2* and fix e > 0. By assertion (ii) 
in this corollary and clause (3.14) we have for a.e. 0 

II Heco (0 )11 2 < e II Lec(0 )II 2 + KeII(0 )II 2	 (3.15)

for a positive 0-independent constant Ke. By integrating (3.15) we get 

e ii l ii 2 + KeIIII2 

with domL c domH included by virtue of (3.14) 1
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By this proposition and the remarks prior to Proposition 3.1 we have that L+H is a 
semigroup generator. By the second corollary to Theorem 1.1!we recognize PAP+PT0P 
and hence PAP + PTO  as a semigroup generator having L + H as an extension. By 
Proposition 3.1 they coincide: 

PAP + PTOP = J Pe Ae Pe d1 z + J Pe TePe dp.	 (3.16) 

Thus Theorem 3.1 reduces to 
Proposition 3.5. The equation 

f PeAePe dp + f P0T9 P8 d1u = f Pe(Ae + Te)Pe 

holds. 
Proof. We retain the notations Le, He and L, H in the proof of Proposition 3.3 

and set also
Be = Pe(Ae + Te)Pe	and	BJBediz.

In a first step one shows the implication 

EdomLfldomB	: 

The proof of this amounts to evaluate the definitions straightforwardly; we may safely 
omit it. It remains to show dom L = dom B. One half of this is provided by 

domL c domB. 

But this is settled by (3.15) which permits us to infer E domB from W E domL. It 
remains to prove

domBCdomL.	 (3.17) 
Thus fix e > 0 small and let K be such that (ii) in Corollary 2.2 holds. Next let 

E domB, whence Peço(e) E domA 9 for a.e. 0 and 

2II2 = f II Pe( Ae + Te)Peco (0)lI 2dii < oo.	 (3.18)

By elementary reasons we have that 

IILe(0)II 2 < 2IIBe'(0)II 2 + 2IIHe(9)II 2 .	 (3.19) 

By our choice of e and K, inequality (3.15) is available. Thus we can insert the right-
hand side of this inequality for IIHe(e)II 2 into (3.19). Since e > 0 is small, we get 
after a rearrangement of terms 

(1 - 2 )II Le(e )II 2	2B(0) 2 + 2KII0(e)II2.	(3.20) 

By (3.18), the integral over the right-hand side of (3.20) is finite, and so is the integral 
over the left-hand side, proving W € domL. Thus (3.17) holds whence the proposition 
follows I
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Theorem 3.1 has a variant, whose proof is virtually the same. We now assume that 
the equilibrium solution (u i , u 2 , u 3 ) which determines T0 formally via (1.3) satisfies 

U1, U2 are even in z	and	U3 is odd in z.	 (3.21) 

Next recall the spaces	= (i(Q))2 x £(Q) and 7i = (L(Q)) 2 x £(Q), giving 
rise to the direct integrals 11 = f 11' d1i and fl;	f N dt. As noted earlier, A, A
and P leave L 2 and L invariant while A0 , A ., (0) and P0 leave 7t'!' and ?-1 invariant. 
Based on (3.21) it is easily checked that T0 (with domTo = (H'())3 ) leaves L 2 and 
L invariant, while T8 (with domT0 = (H)3 ) leaves	and	invariant. Since the 
unitary U maps L 2 onto	and L onto 7i we can restrict the arguments leading to 
Theorem 3.1 to the pairs L,7-1 and respectively. In order to state the variant 
let D9 be the restriction of the linear operator D to L 2 or 7i according to the case; 
likewise with Du. 

Theorem 3.1'. The equation U 9 P9 (A9 + T)P9 (U 9 ) 1 = fP(A + T)Pdp 
holds, likewise with u for g. 

Remark. Another way to express Theorem 3.1' is 

(P-(A + ?0)P)	J (Pe(Ae + Te)Fo) 9 di.	 (3.22) 

The relationship expressed by Theorems 3.1 and 3.1' is in our view fundamental in that 
they relate, via unitarity U, the physical operator P(A + T0 )F on (2(Q))3 with the 
®-periodic objects Pe(Ae + Te)Pe via the concept of direct integral. How to exploit 
this relationship will be seen in the next subsection. 

Since the equations in Theorems 3.1 and 3.1' remain invariant under multiplication 
with a scalar ii > 0, we can replace A by vA, since the factor ii may be put into the 
equilibrium solution ( U 1, u2, 113) defining T0. 

3.3 Proof of Lemma 3.4. The proof of Lemma 3.4 is based on Lemma 3.1 and three 
remarks. First, since P + Q = Id and P0 + Qe = Id it suffices to prove 

Q=JQediu.	
0	

(3.23) 

The measurability of the family {Qe}OEM is an easy consequence of the Fourier series 
representation in Subsection 2.4, but it is also contained in the arguments below and is 
not further discussed. The third remark is given by 

Proposition 3.6. There is a set  c(H'(Q)) 2 xH(1l)) which is dense in (12(Q))3 
and such that f E S implies 

Lp = divf and Qf = Vp	for some p € f1 2 (Q). 
Proof. By the arguments in Subsection 1.5 S may be taken as the union S 1 U S2 

where
(a) S C (H1()fl(l))2 x H(STl) 

(b) 82 is the set of f = (Ao,B 0 ,O) with A,B € H2(R2) 

whose Fourier transforms A and .8 have compact support in R2 \ {0}I
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By Proposition 3.6, = if they coincide on the set US. Thus the proof of (3.23) 
and hence of Lemma 3.4 reduces to 

Proposition 3.7. If  E S, then QUJ = QUI. 

Proof. Let f E S. By Proposition 3.6, f is in (H'(fl))2 x H(1), and there is 
P E f12(Q) such that

Lp = div I	and	Qf = Vp.	 (3.24) 

By (3.5) and a repeated application of Lemma 3.1 we find a set E c M with p(E) = 
(M) such that e E E implies 

(Uf)(O,.) E (H' ) 2 x	
(Vdiv f)(® ,.) = div (Uf)(B,.) 

and	V(Vp)(®,.) = U(Vp)(E),.)	(3.25)
(Vp)(O,.) e

= V(Lp)(e,.). 

Exploiting the commutativity expressed by the right three equations one finds by 
straightforward computation for e E E that 

div(Uf)(O,)	i.(Vp)(e,.).	 (3.26)

By the first and second relation in (3.25), by (3.26) and Subsection 2.5 we infer 

Qe( Uf)(e ,) = V(Vp)(e, .).	 (3.27) 

On the other hand, since QUf = UQI, and by exploiting once more the commutativity 
in (3.25) we find

(Uf)(e,.) = U(Vp)(O,.) = V(Vp)(®, .).	 (3.28)

Thus by (3.27) and (3.28) 

Q0(Uf)(e,) = (Uf)(O,.)	(0 E E) 

whence QUI = QUI by definition I 

4. Spectral relations 

4.1 Holomorphic considerations. If we would be generous we would claim that, 
with Theorems 3.1 and 3.1' at disposal, we can proceed as in [12] in order to infer the 
validity of (B) and (C) in Section 1. While the situation is not so simple, we intend to 
restore it such that the results in [12] become applicable. 

In order to simplify the presentation we assume that the equilibrium solution which 
defines T0 via (1.3) is in L, i.e. satisfies (3.21). In this case, the spaces L 2 and L 2 are 

g
9	U 

invariant under Pe(A3 (0) + T0 )Pe, what allows us to treat them seperately, allowing 
some simplifications. We treat the difficult case L, contenting us with some remarks
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as to L. Our first aim is to extend Pe and A,(19) — 'Pe into the complex. To this 
end we set henceforth ii = v(, 3) &2 + $2 and replace the complex domain M (see 
Subsection 2.3) by a smaller one as follows. With ®o E Me we associate a complex 
spherical neighbourhood 11e0 so small that 

(i) U90 ç M. 

(ii) 1&2 v 1 1, Iâv'I, I 2 v_ 1 I < for E) E U90 and a,8 E Z. 

Note that in case of (ii), only a,/3 E {O,-1} have to be considered. We then set 

M0UeUe	(®EM).	 (4.1)

The purpose of the shrinking M —+ M is to keep the factor v 1 under control 
Lemma 4.1. There are holomorphic families { RE) }eE	{'}eE. of boun-

ded linear operators on	such thatP,, = P and R9 = A 3 (®) 1 P if E) E M. 

Remark. As to holomorphy we refer to [3: pp. 365 - 366] and the remarks in [12]. 
Since weak, strong and uniform holomorphy coincide, we simply speak of holomorphy. 
The proof, which yields more information than provided by the lemma, is routine but 
tedious in detail and may be skipped in first reading. We do not formalize every step 
but content us with an outline. 

We first aim at P and recall the factor m(®,.) (see (2.4)), the Fq (see (2.5)) and 
5,5' (see Subsection 2.3). Next we fix I E C2 and 0 E M0 . The Fourier coefficients 
with respect to er3 are given by 

fpj = ( e0fl r,f)o = (r,m(®,.)f)o.	 (4.2) 

If we allow 0 e M, then (4.2) still makes sense and it follows that the family of 
mappings {M}eEM such that Mf = {f} is a holomorphic family of bounded 
operators from C2 onto 5, which has a bounded holomorphic inverse (Mi)'. Likewise 
we introduce holomorphic families {N}o E M,, {M}e E M. and {N}oeM which per-
form analoguous tasks but: N with respect to ep,, and for I E £, Mg with respect 
to e0flo 3 and Ng with respect to eir. These mappings extend to the vector case, i.e. 
for f (a, b, c) in L2 we set 

Mel (Ma,Mb,Mc) E 

No  = (Na,Nb,Nc) ES2 x 51.	
(4.3) 

{ Me}eM and {Ne}e EM are holomorphic families of operators from L 2 onto 53 and 
52X 5', respectively, having holomorphic inverses M 1 and N 1 . We note that there 
is a 0-independent unitary map W from 52 x .S' onto S3 such that 

WN9 = M9	(0 E Me).	 (4.4) 

Next we consider the projections P9 and Qe = 1 - Pe described by (2.24). The 
restrictions P and Q to	are obtained by omitting the 2j+I in the first two, and
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the 2j+I in the last of the series in (2.24), resulting in expansions in terms of e,pp, 
and e7r, respectively. From this remark and an analysis of (2.24) we extract sets of 
functionals and (j 2 0, z = 1,2,3) and S (j 2 1) for a ,,8 E Z having 
property (F) of Definition 2.2, which describe P as follows. Given I = (a, b, c) in L 
and 0 E Me, let

Peg  

with
{A0fl} = NA,	{B} = NB,	{C0} = NC. 

Let also a = Na, b = Nb and c = Nc. Then 

A.,6 = — Pfl(0,a,b,c)+ P P j(0,a,b,c)+P j (0,a,b,c)	(4.5) 

and likewise with and Ca = Spj(O, a, b, c). That is we have a description 
Of P in terms of functionals similar to that of A(0)' via Theorem 2. If we drop the 
condition 0 E Me, i.e. admit 0 E M and let a,b and c range over 52 x 5', then we see 
that the right-hand side of (4.5) defines a holomorphic family {Pe}e of bounded linear 
operators from 52 x 5' into 52 x 5' which in case that 0 E M is tied to I via 

	

Peg Nef = Ne P f	(0 E M., I € L)	 (4.6)eg 

from which we extract the holomorphy family {P}e of Lemma 4.1 according to 

	

P = Nj'F'eg 	(0 E Me).	 (4.7) 

Next we come to A 3(0) on E, i.e. to its description in Theorem 2.1. Here too 
we can look at the systems (i) - (iii) and of Theorem 2 as describing a holomorphic 
family {Re}ec of bounded operators from S3 to 53, which is tied to A,(0)' as 
follows: if 0 E M and I = (a,b,c) E E, then 

= M'ReMef.	 (4.8)

The holomorphic extension from M to M of A.,(0)- 'Pg is then given by 

Re = M'ReW Peg Ne (0 E M)	 (4.9)

where (4.4) and (4.7) has been used. 

Next we discuss formal properties of the extensions Re and P, refraining thereby 
from an analysis into elementary steps. An examination of (i) - (iii) in Theorem 2.1 on 
the basis of Definition 2.2 shows that given f E L, MReMef is in (H2 (Q)) 3 for 
0 E M, and that

IIM1ReMefIIH2 S Cf2	 (4.10)
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for some positive 0-independent constant C. The procedure in this connection is to 
look at the appearing Fourier series, e.g.	AOeO$T, not as an expansion 
which for complex 0 E M is not an orthonormal system, but rather as an ordinary 
Fourier expansion in	i.e. of the form	Aofljarj, and to apply to this series
the arguments in Proposition 2.3 and the Corollaries to Theorems 2.1 and 2.1*, treating 
thereby ni and	as a smooth bounded multiplier. This remark also applies to the 
situations below. 

Let I be the 3 x 3 unit matrix and IL the operator acting on its domain (H2(Q))3 
componentwise like A. Bytermwise differentiation of the appearing Fourier series, one 
recognizes that {ILM 1 ReMe }e€.c. is a holomorphic family of bounded operators 
on L. Since a product of holomorphic factors is again holomorphic, we have that 
{1ee. is a holomorphic family. 

Proposition 4.1. The equalities 

(i) (P)2 = 

(ii) PR9 = P 

are true. 

Proof. We note that a scalar holomorphic function f on M which vanishes on M, 
vanishes on all of M. This property is inherited by holomorphic families of bounded 
linear operators {Be }e€ . Now assume 0 E M. According to Lemma 4.1, R0 = 
A(0)P, while P/ = P. The range of A, (0) — 'Peg is domA 3 (0) fl L, i.e. (14 fl 

H 0 ) 3 , div = 0 intersected with L. But Pg A, restricted to domA 3 (0), coincides with 
A, (0), whence

	

PARE) = A3(0)A,(0)—'P = P = P	(0 E Me).	(4.11) 

By the preliminary remarks, this extends to all of M, proving assertion (ii). Assertion 
(i) is treated likewise I 

Next we consider the operator T0 , given by (1.3), supplied with domT0 = (H2(Q))3. 
We recall assumption (3.21), according to which T0 leaves L 2 invariant. By decomposing 
the action of T0 into elementary steps, one is ultimately led to recognize {I5Re}9, 
{IôyRe}e and { Ia. Re}e as holomorphic families of bounded linear operators on 
with values in Ll in the first two cases, and in L in the third one. The procedure is 
again by termwise differentiation of the Fourier series in Theorem 2.1. Since smooth, 
0-independent factors preserve holomorphy, we obtain 

	

Proposition 4.2. {ToRe}e EM . and {PToRe}ee	are holomorphic families of 
bounded operators on L. 

4.2 Resolvents. In [12], the notion of a strongly holomorphic family of unbounded 
operators (see Rellich [9]) was used in the proofs of the basic theorems. This notion 
requires that all operators have the same domain of definition. This is definitely not
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so in the present case, what forces us to use the more general notion of a holomorphic 
family in [3: p. 366]. 

In order to study resolvents from this point of view we first note that by Lemma 
4.1,

	

= (1 - P)	( E Me)	 (4.12) 

is a holornorphic extension of Q into M. We now fix 0 r E R arbitrarily for the 
moment and consider the holomorphic family 

	

Ve = P + PToRe + rQ'	(® E Me).	 (4.13)

The operators, in whose resolvents we are primarily interested are 

H0 = Peg 	+ To) Peg	(® E M)	 (4.14)

but it is advantageous to study instead the resolvents of 

	

He = He + rQ	(e e Me ).	 (4.15)

For simplicity of notation we have suppressed the r in He, He and Ve. Note also that 

	

(E)EM)	 (4.16) 

holds by holomorphic extension from 0 E M by virtue of Lemma 4.1. By Lemma 4.1, 
Proposition 4.1 and the relations (4.16) a simple computation shows that for 0 E M, 
V0 admits the factorization 

V0 = H®(R8 + Q)	(0 e Me).	 (4.17) 

Note that no holomorphic extension of He into M is defined, since no such extension 
is defined for A 3 (0). We also note that for 0 E M we have the implication 

A 0 T	 {.A E p E0 ( 11e)	A E PL2(He)}.	 (4.18) 

Lemma 4.2. Let ®o E M, A 0 E PE9 ( He) and A0 0 r. Then there are complex 
neighbourhoods U and V of Oo and A 0 , respectively, with U ç M such that (Ve - 
A(R0 + Q))	exists on L for 0 E U and A E V, and depends holomorphically on 0 
and A. 

Proof. We recall the relations (4.16) according to which 

(P/s + Q)(R0 + Q) = (Re + Q)	(0 e Me).	 (4.19)

Using the factorization (4.17) and (4.19), we get the identity 

	

Ve - A(Re + Q) = (He - A(P + Q'8 )) (Re + Q)	 (4.20)
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for e E Me. For ® E M we have Re = A 3 (0)'P by Lemma 4.1 what implies that 
R6 , restricted to E, maps Eeg one-to-one onto domA 3 (®)n L, i.e. domA 3 (®)fl Eeg 
This in turn implies that Re + Q'e maps L 2 one-to-one onto its range 

(domA(®)flE) x (LeE).	 (4.21) 
On the other hand it follows from the definitions (4.14) and (4.15) that domHe and 
dom(He - A) are given by (4.21). From our assumptions on 0 0 , Ao and r and according 
to (4.18) we also have that HE) , - A 0 maps its domain (i.e. (4.21)) one-to-one onto L. 
This, together with the remark previous to (4.21) and by clause (4.20) implies that 
Ve 0 - Ao(Re 0 + Q 0 ) maps L 2 one-to-one onto itself. We now invoke [3: Theorem 
1.3/p. 3671 according to which there are complex neighbourhoods U and V of Oo and 
Ao, respectively, with U ç M, such that the inverse of Ve - A(Re + Q) exists for 
e E U and A E V, and depends holomorphically on E) and A U 

Corollary. Let A0 , 00 and r satisfy the assumptions of Lemma 8. Then there is a 
real neighbourhood U' e0 with U' c M, and a complex neighbourhood V such 
that (He - A)-' exists (i.e. A E p L (He)) on U' x V and is simultaneously real analytic 
in 0 and complex analytic in A. 

Proof. By the assumptions, Lemma 4.1 is applicable, giving rise to complex neigh-
bourhoods U0 Oo and V0 Ao having the properties of the lemma. Set U' = U0 fl M, 
and let 0 E U' and A E V0 . From the lemma, the factorization (4.20) and the remark 
prior to (4.21) we infer that (HE) - A)' exists as a bounded linear operator on and 
is given by

(He - A)' = (Re + Q)(Ve - A(Re + Q))' .	(4.22)
The statement then follows from Lemma 4.11 

Remark. The invoked Theorem 1.3 in [3: p. 367] is expressed for one complex 
variable only, but a technical check shows that it extends straightforwardly to several 
variables. We conclude with a statement on compactness. 

Proposition 4.3. Let 0 E M. Then A3 (®)+ PeT0 has compact resolvents on E eg 
and E. 

Proof. We consider E. By Theorem 2.1 we have 

II A ( OY'fIIH 2 <C[ffl2	(1 E E 
for a positive 0-independent constant C. Since Q, i.e. (0, L) 2 x (_ 2 1 , + ) has dimension 
n = 3, compact embeddings (see [ 1: p. 144)) imply that A,(0)' is compact on E. 
It then follows from the resolvent formula that all resolvents of A3 (e) (on E) are 
compact. Next we recall the Corollary to Theorems 2.1 and 2.1* according to which 
PT0 , restricted to E, is bounded relative to A 3 (0) with relative bound zero. By [7: 
p. 80] we have that A E R sufficiently large is in the resolvent set of A 3 (0) + PT0 and 
that its resolvent has the form 

(A ., (0) + Peg To - A)' = (A, (0) - A)'B(A,®)	 (4.23) 
with B(A,0) bounded on E. Since A,(0) has compact resolvents on E, the com-e 
pactness of the left-hand side of (4.23) follows. For arbitrary A's in the resolvent set of 
A. (0)+ Peg To (on E) the claim now follows from the resolvent formula. The proof for 
EA via Theorem 2* is the same I
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Remark. Formula (4.23), given explicitely by [7: Formula (2.3)], and the 0-
independence of the constants C and K0 in Theorems 2.1 and 2.1* and their Corollaries 
imply the existence of constants -y and C' > 0 such that 

	

II(A3 : e + Peg To - A) -'I	C'	(0 e	A > ).	 (4.24) 

4.3 Local spectral relations. We now come to a first result relating the spectrum of 
A 5 (0) + PT0 (on E) with that of A 5 + PT0 (on Eg ); we thereby use material from 
[12].

We recall that M is M = [0,27r] 2 minus the corners, He and He are as in (4.14) and 
(4.15). By fm . dp we always denote a direct integral with fibre space fl and values in 
H; (see Remarks prior to Theorem 3.1*). 

Theorem 4.1. Let 0 0 r 0 A. If A is in the spectrum of He,, for some Oo E M, 
then A is in the spectrum of fm He d,u. 

Corollary. Let, for some Oo e M, A be in the spectrum of He,, (on E 0 ). Then 
A is in the spectrum of As + PTo (on E9). 

Proof. Fix 0 0 r j4 A. By our assumption and (4.18), A is in the spectrum of He,, 
and that of

J(P(A 3 (e) + To)P + rQ) d = IM He d1z	 (4.25) M 
by Theorem 4.1. By Theorem 3.1 and (4.25), fm He dj.t is unitarily equivalent to 

P9 (A,+ T0 )P9 + rQ 9	 (4.26) 

and hence A is in the spectrum of the last operator. Since A 5k T, we have by a remark 
similar to (4.18) that A is in the spectrum of P9 (A 3 + T0 )P9 (on E9 ), proving the 
corollary I 

Theorem 4.1 is a consequence of two facts, the first of which follows directly from 
(4.24): Given r 0 there are positive constants C and 70 with	r such that 

	

(He - A)'II <C	for A > 70, 0 E M.	 (4.27) 

Below, a set U C M is relative open if U = U' fl M for some open set U'. The other fact 
is

Lemma 4.3. Let 0 r 0 A0 and assume that, for some Oo E M, A0 is in the 
spectrum of He.. Then there is a relatively open neighbourhood Uo of 00, a mapping A 
from U0 into C and a measurable mapping Lp, mapping 0 E Uo into dom He such that: 

(i) A(0 0 ) = A0 , and A is continuous at 0 

(ii) Hecp(0) = A(0)p(0) (0 E Uo) 

(iii) There are constants a,b > 0 such that a	II(0)II	b for all 0 EU0.
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The proof of Theorem 4.1 via (4.27) and Lemma 4.3 is by purely measure-theoretic 
reasoning and is given in [12: Proof of Theorem 1]. We now rephrase Lemma 4.3. First 
we note that by Lemma 4.2, its Corollary and (4.27) there is a complex neighbourhood 
U1 of 0o, (U1 c M,,) and a holomorphic family of bounded operators {Fe}o€u, such 
that

Fe= (He - 70)'	for OEU1 flM0	 (4.28) 

with yo as in (4.27) and 0 0 as in Lemma 4.3; we denote the complex extension F® also 
by (He - yo)'. Lemma 4.3 is easily seen to be equivalent to 

Lemma 4•3*• Let the assumptions of Lemma 4.3 hold and set ito = (o - 
There is a relatively open neighbourhood ho of 0, a mapping 8 from Uo into C and a 
measurable mapping from U0 into L, defined for all 0 E U0 , such that: 

(i) (H® - yo) - ' p (0) = (Yo + 8(®))ç0(0) (0 E U0) 

(ii) 8(0) = 0 and S is continuous at 0 

(iii) a	I(0)II	b (0 EU0 ) for some constants a,b > 0. 

In order to investigate Lemma 4.3 we note that according to (4.13) and (4.14) we 
have

(H®,, - -yo' = ( H® - -YO)-'PE)(,+ ( r - 7oY'Q 0	 (4.29) 

where (H®,, --yo) - ' is compact on E ,, . Now yo is in the spectrum of (He,, --yo); since 
pa 54 ( --yo) - ' and by (4.29), ito is an eigenvalue of the compact operator (He,, -yo)', 
which we denote temporarily by T. By the spectral theory for compact operators there 
are closed subspaces £ and Al of E ,, with dime = N < oo, a basis { e) } ,=1 N of £ 
and functionals e E (E) (j <N) such that: 

(i) CEB.V=E,, 

(ii) £ and Al are invariant under T - ito 
(iii) The restriction of T - yo to £ is idempotent (i.e. (T - po)" = 0 for some 

(iv) The restriction of T - yo to Al is boundedly invertible, i.e. maps Al surjectively 
onto Al 

(v) If  E E ,, , then I eAlifandonly if(e,f) = 0 (j 1,...,N). 

Now (H®,, -yo)' (denoted temporarily by 7') is not compact but due to (4.29) inherits 
the above structure. That is, closed subspaces £ and Al of L 2 with dimr = N, a basis 
{j}j<N C £ and functionals C (L	are defined by: 

(a) C = £ 

()Jci=Al(L2eE) 

(y)ej = j (j<N) 

(5) If z = x + y with x E E ,, and y C L 2 e E, ,, , then (z) = (x) = e(x).
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The objects , SI and Fi, then satisfy properties (i) - (v) above with respect to T0 - 
and L. An inspection of the proof of Lemma 8 (i.e. Proposition 4) in [121) shows that 
this proof requires only the above structure plus the analytic extension property (4.28) 
in order to carry out the perturbation theoretic arguments. This proof therefore carries 
over to the present situation in a verbatim way and provides, as it stands, a proof of 
Lemma 4•3* and hence of Theorem 4.1 and its Corollary I 

4.4 The corners. While Theorem 4.1 has to do with 0's in M, the corners of M need 
special consideration. It follows from Theorem 2.1 in case of A 3(0)' and from (4.5) in 
the case of pressure that if the integers a, ,3 and j which label the Fourier coefficients, 
assume certain specific values, i.e. j = 0 and ofl E {0,-1}, then the corresponding 
Fourier coefficients are affected by singular factors, which in case of a = 0 and 3 = 0 
are of the form 

®V,	®v1,	0I 02V	where i,=0+0	(4.30) 

and with similar factors in the other cases. It suffices to investigate the case a = 3 = 0 
since A, (19) and Pe, P' are easily seen to be 2ir-periodic in M, i.e. if 00,01 E M 
and, e.g., 0 1 = 0 + (27r,0), then A(0o) = A,(0 1 ), Pe,, P91 , etc. In order to get 
rid of the singularities in (4.30), we make the substitution 0 = r cos 9 and 0 2 = r sin 9, 
where 9 is in a small complex neighbourhood W of [0, 27r] while the complex r satisfies 
I ri <e0 for some small Co. The real case is r E [0, co) and GE [0, 27r), and we are in M 
if also r 0 0. An inspection of Definition 2.2, the representation of A 3 (0)' in Theorem 
2.1 and of P in (4.5) shows that by this substitution holomorphic families {R(r,9)}r,o 
and {P, 8 }r 9 are defined for Irl <Co and 9 E W such that 

R(r,9) = A,(6) — 'PE)	and	P,'9 = P	 (4.31) 

for r E (0, 6o), GE (0, 27r] and 0 = (r cos 9,r sin 9). In order to study the limiting case 
R(0,9) and P 0 we fix 9 E [0, 27r) and consider {R(r,9)} and {P,'9 } as a holomorphic 
families of bounded operators in one complex variable r, In <Co. 

Notation. We write 0 = (r,9) if 0 = (0 1 ,02 ) and 0 1 = r cos 9, 0 2 = r sin 9. We 
also label operators and spaces by r and 9 rather than by 0; e.g. we write P, instead 
of P and R(r, 9) instead of R(0). 

Next we recall the two equivalent definitions of E0 and E, one given by (2.8), 
the other provided by Lemma 2.1. We rephrase the version in Lemma 2.1 slightly in 
terms of r and 9 (r E [0, Co), 9 E [0, 27r]). Let, to this end, E 0 be the space of fields 
(aeoo po, beoo po, 0) (recalling po and iri in (1.16)) such that 

acos9 + bsin9 = 0.	 (4.32)

Let also E, 9 be the £2 -closure of the linear hull of all fields 

(aepj ,be,,ppj ,ce,pirj ), a2 +$2 +j 2 >0
(4.33) 

where y = i&a + i$b -	= 0.
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Then Er°O±EO and E1?9 = E, 9 E 9 . From this representation one easily obtains a 
mild variant of definition (2.8) of E 9 , namely: 

E 9 is the £2 -closure of all f = (A,13,C) in	which are in (H 0 ) 3 (E) = (r,9)), 
satisfy div f 0 and (4.32), where 

a = (A, e00 p0 )	and	b = (8, eoopo).	 (4.34) 

In the periodic case r = 0, e and H 0 become Fq and H er o, respectively. The 
spaces E 9 , Er°g and E 9 have orthogonal projections P!9 , Pr°9 and P 9 where P,! (= 
P, 0 = (r, 9)) has the holomorphic extension P,' 9 into the complex Irl <e 0 , mentioned 
at the beginning of this subsection; evidently P, 9 = P,?9 + 

pro _ For reference below we 
briefly describe P,?9 . Given I = (A,8,C) in L, P,?9f has the form (Aeoopo, Beoo po, 0) 
where

A = asin2 0 —  b cos 9 sin 9 

with a and b given by (4.34).

and	B=—a cos 9 sin 9+b cos 29 

For the use below we emphasize the dense set in the above definition of E9 

Dr9- {
f 

E L2g I E (H ,0 ) 3 (0 = (r,9)), divf = 0 
-	f satisfy (4.32) with a,b as in (4.34)f	

( E [0, co)) 	(4.35) 

We note in this connection (0 = (r, 9)) the implication 

E (0,o) =	domA 5 (r,9) = rgR(r,9) = (H) 3 fl Dr9 .	(4.36) 

Proposition 4.4. The relation rg R(0, 9) c (HP 2 er) fl D09 holds. 

Proof. The substitution 0 = rcos9, 02 = rsin9 eliminates the singularities 
(4.30) which appear in the assertions (i) - (iii) of Theorem 2.1. An inspection based on 
Proposition 2.3 then shows that, after this substitution, the Fourier series given by (i) - 
(iii) define elements in (H)3 (0 = (r,9)) for all Irl <co. Next, it is easily established 
that an f E H is in H 0 if and only if 

f(fazco + çoaf)dzdx 2 = 0	for all W E H'(Q). 

By this characterization, f E (H' )3 is in (He' 0)3 if and only if 

(,9.9, f) + (g ,&f) = 0	for all g E (H'(Q))3 

where ô(u,v,w) = (ôu,ôv,5w). By (4.35) and (4.36) we have that 

(ôg,R(r,9)f) + (g,OR(r,9)f) = 0	(r e (0,e O ))	 (4.37) 

for f E L 2 and g e (H'(Q))3 . By the arguments in Subsection 4.1 and the remarks 
at the beginning of this subsection, the family {ô:R(r, 9)}iri<eo is holomorphic with
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values in L, whence it follows that each term in (4.37) is holomorphic in Irl <Co. The 
left-hand side of (4.37) is thus a holomorphic function which vanishes on r E (O,eo) and 
hence on all of Irl < Eo, in particular at r = 0. Since f E L and g E (H'(Q))3 are 
arbitrary, this proves the first of three conditions. 

The other two conditions involved in the definition of Dr0, i.e. divR(r,9)f = 0 
for all I Eand the validity of (4.32), with a and b defined by (4.34) in terms of 
R(r, 9)f, can be characterized in a similar way by expressions which are holomorphic 
on ri <CO and vanish on r E (O,eo). The expressions then vanish at r = 0 implying 
that the conditions in question hold for R(0, 9)f for all I E L 2 I 

We now define the "limit" of A,(r, 9) as r 10: 

A3(0,9) - DO 
-	 on domA 3 (0,9) = ( Hper )3 n D09 ,	 (4.38) 

i.e. A 3 (0,9) is the restriction of Pg9L to (HP 
2")3fl Doe. Next recall that Proposition 

4.11(u) rewritten in terms of r and 9 yields 

P, 0 LR(r,9)	Pt'e	(i n < Co).	 (4.39) 

In fact, both sides of (4.39) are holomorphic in in < co and (4.39) holds for r E (0,eo) 
by virtue of Proposition 4.1, whence it holds for in <CO by analytic continuation, and 
thus for n = 0. This fact, combined with (4.38) and Proposition 4.4 yields 

A 3 (0,9)R(0,9) = P 0 .	 (4.40) 

On the other hand, it is easily seen that As(0, 9) is symmetric, densely defined on 
and A(0,9) < —C for some C > 0. By (4.40) we now also have that rgA,(0,9) = E9 
whence

A3(0,9) is selfadjoint	and	A3(0,9)-'Pogo = R(0,9).	(4.41) 

Now R(r,9) = A,(r,9)1P,!9, n e (0, co), is compact by Proposition 24 and R(0,9) as 
the uniform limit lim 10 R(r, 9) of compact operators is compact, whence by (4.41) 

A(0,9)'	is compact.	 (4.42) 

It remains to show that A 3 (0, 9) + P 9 T0 has compact resolvents. First note that by the 
same arguments in Subsection 4.3 we have that 

{T0 R(n,9)} 1r1 < eo	is a holomorphic family.	-	(4.43)

Next we recall that by Corollary 2.2 we have 

1i To R(n, 9 )1 ii 5 C ii P,!9fii + K ii R(r , 9)1 ii
	

(4.44) 

for n E (0, CO), I € L and a positive n-independent constant Ke. Since the expressions 
between the norm signs are holomorphic in Irl <Co, we may let n 10 in order to infer 

ii To R( 0 1 9)1 11 :5 eiiPof 11 + Keii R(0 , 9)1 ii .	 (4.45)
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Now pick U E domA 3 (O,9)) and set I A 3 (O,9)U in (4.45). We then get 

T0U II e II As(0 , 9 )U II + KeII UH (U E domA,(O,9)). (4.46) 

With this crucial inequality at hand, we can repeat the arguments in the proof of 
Proposition 4.3 in order to infer that 

A 3 (O,9) + P 9 T0	has compact resolvents.	 (4.47) 

We now have reached a point where we are precisely in the same situation as in 
Subsections 4.2 and 4.3 with the only difference that here we have holomorphic functions 
R(r,9) and P, 6 ,Q',.9 in one complex variable Irl < eo (9 E [0,27rj has been kept fixed) 
while in Subsections 4.2 and 4.3 one has holomorphic families {R(®)} and {P}, {Q} 
in the complex variables E) = ( ® i ,02), in the complex neighbourhood of some E)o E M. 
In all other respects the situation is the same and so we are entitled to draw the same 
conclusions. 

In particular, Lemma 4.3 holds in the present setting. We recall He and He in 
(4.15) which in terms of r E [0, co) and 9 are 

- Pr9O \ (A (r,9) + To)P 9	and	H9 = lirO + rQ 9	(4.48) -  

with r E R to be fixed suitably. 

Lemma 4.4. Assume 0 0 r A 0 and Ao in the spectrum of H09 . Then there 
is a relative neighbourhood U c [0,Eo) of r = 0, a mapping A from U into C and a 
measurable mapping which maps r E Uo into W(r) E dom Hr0 such that: 

(i) A(0) = A0 , and A is continuous at r = 0 

(ii) Hro cp(r) = A(r)ço(r) (r E Uo) 

(iii) a < iI p(r )il	b (r E Uo) for some positive constants a and b. 

The proof is again via a variant Lemma 4.4 in resolvent form, whose proof follows 
by precisely the same arguments that succeed Lemma 4•3*• The basic conclusion is 

Theorem 4.2. Let A 0 be in the spectrum of A,(0,9) + P 9T0 for some 9 E [0,2n]. 
Then A0 is in the spectrum of A 3 + P70. 

Proof. Let first 9 E [0, fl. Fix 0 54 r E R with r 54 A 0 . By assumption, A 0 is in the 
spectrum of H09 and thus in the spectrum of H09 since A0 54 T. By Lemma 4.4 there 
is a neighbourhood U E [0, E0) of r = 0 and a mapping A from U into C, continuous 
at r = 0 such that A(r) is in the spectrum of Hr9 for r E U, and A(0) = A 0 . We may 
assume that A(r) 54 r for r E U. 

If 0 54 r E U, then (3 = (r, 0) is in M and A(r) is also in the spectrum of H,.9, 
since A(r) 54 r. By the Corollary to Theorem 4.1, A(r) is then also in the spectrum of 
A3 + PT0 and since A 0 = lim,.10 A(r), A0 too is in the spectrum of A3 + PT0. 

In case where, e.g., 9 E [n, ], let (3= (r,9) and (3' = 0 + (27r, 27r); for 0 0 r E U, 
0' is a point in M. With A as above and the periodicity properties mentioned at the
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beginning of this subsection, A(r) is then also in the spectrum of He', if 0 0 r E U. 
By the Corollary to Theorem 4, A(r) is then in the spectrum of A, + PTO , and so is 
A O = urn,. 10 .\(r). 

The cases 9 e [f,irj and 9 E f,ir] are handled similarly via translations (27r, 0) 
and (0,2ir)I 

Corollary. Assume that A O is in the spectrum of A,(0) + PT0 (on E) for some 
® E M or in the spectrum of A,(0,9) + P'9T0 (on E 9 ) for some GE [0, 27r). Then .\o 
15 in the spectrum of A, + PT0 (on E9). 

Proof. Via Theorem 4.2 and Corollary to Theorem 4.11 

The question is if there is more in the spectrum of A, + PT0 than provided by 
the corollary. The answer is "no". In order to see this, we let now range 9 over 
the whole complex neighbourhood W of [0, 21r] introduced at the beginning of this 
subsection. {R(r, 9)},. , and {P,'9},.,o, fQ'rolr,O are now holomorphic families of bounded 
operators on L 2 for Irl < Co and 9 E W. Likewise, by termwise differentiation of the 
appearing Fourier series it is easily recognized that {ILtR(r, 9)},. , and {T0 R(r, 9)}r, 
are holomoi-phic families on Irl <eo and 9 E W. The relevant identities such as (4.39) 
above then hold for {P,' 9 /R(r, 9)},.e in the complex neighbourhood Irl <eo and 9 E W 
by analytic continuation since they hold for r E 10, co) and GE [0,27r] (Proposition 4.1 
and (4.39) for r = 0). With {R(r,9)},.,9 and {P,8,Q.9}r,8 on Irl < Co and 9 E Wwe 
are precisely in the same situation as with {R(®)}e and {P}e, {Q'e}e on (E) E Me, 
what allows us to handle them in the same way and to draw the same conclusions. In 
particular we may set 

V,.8 = P + Pro ToR(r,G) + rQ.9	(Id < Co, 9 E W) 

IIrO = Pr99 (A,(r,8) + T0) Pr90	(r E [0,eo), 0  [0, 27r])	(4.49) 

HrO =Hr9+ T Q9,. 0	 (OrER) 

with r a free parameter to be fixed later. We now repeat the proof of Lemma 4.2 as it 
stands, obtaining a variant of Lemma 4.2 in terms of V,.9 , H,.9 and H,.9 . We content us 
to state a corollary of this variant, which is an immediate consequence of it. 

Lemma 4.5. Let 0 0 r 54 A0 and assume that A O is in the resolvent set of H,.090 
for some r0 C [0, co) and 0o E [0,27r]. Then there are positive 5o and 6 1 such that: 

(i) If Ir - rol < 8o for r E [0, co and 10— 00  < t for 0  [0, 27r], then A O is in the 
resolvent set of Hr. 

(ii) (Hrg - Ao)	is continuous on Ir - rol < 8o and 10 - 9o1 < 81 in the uniform 
topology. 

Theorem 4.3. Let A 0 be in the resolvent set of A,(0,G) + PJ9T0 (on E) for all 
9 E [0, 27r] and in the resolvent set of A,(®) + Peg To (on E) for all ® E M. Then A0 
is in the resolvent set of A, + PT0 (on E9). 

Proof. We fix 0 54 r E R with r 54 Ao and proceed in two steps.
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Step (Si). Since T A 0 and by our assumption we have by clause (4.18), which 
holds in the present setting, that A 0 E p(Hoo) for all 9 € [0, 27r]. We now apply Lemma 
4.5 with r0 = 0 in order to find via continuity for each Oo € [0, 27r] positive constants 
5(Oo) and IL(E)o) with the property: if r E (0,(9)) and 8 - 6 l <S(9) for  E [0, 27r], 
then A0 € p(Hr9 ) and

(Hr9 - A0)' 1100 :5 II( H090 - A0 )' 1100 + 1.	 (4.50) 

By the Heine-Borel theorem there are finitely many 91,... , ON € [0, 27r] such that 9 € 
[0, 27r] implies 1 0 - 9 < bj for some j, where we set 8, = 6(9,) and pj = i(9,). Let also 

= I mm 3 lij. By (4.50) we have 

II( hlrg - A 0 )' 1100 < max lI(Hoo, - A0)' 1100 + 1 = C	 (4.51) 

for r € [0,i'] arid 9 € [0,27r]. We now label the corners (0, 0), (27r, 0), (0, 27r) and 
(27r, 27r) by e 1 , e2, e3 and e4 , respectively, and let S, = {® : 10 - ejl < A * 1, with , the 
closure. By . (4.51) we have 

II( He - Ao)'1100 < C	for 0 0 0 € S.	 (4.52) 

By the periodicity property stressed at the beginning of this subsection we have 

(He - A 0) 1100 C	for e3 54 0€ Si (j = 1, 2,3,4).	(4.53) 

Step (S2). Next note that if 0 € M \ U, S,, then A0 € p(He) by our assumptions. 
Since M \ U,S, is closed, and by the Corollary to Lemma 4.2 we may use a covering 
argument similarly to that above, i.e. exactly the same as in the proof of Theorem 2 in 
[12], in order to find a positive constant C' such that 

II(He - Ao)'1100 < C'	if 0 E M \ u,S,.	 (4.54) 

To sum up we have 

II(He - Ao)'1100 <max(C',C') = C	for 0 € M.	 (4.55) 

By exactly the same measure-theoretic arguments as in the proof of Theorem 2 in [121 
we then infer

A0	is in the resolvent set of P9 (AS + To)P 9 + rQ9 .	(4.56) 

Since r 0 Ao and again by (4.18) adopted to the present situation we conclude 

A 0	is in the resolvent set of A. + P9 T0 on E9	 (4.57) 

and the theorem is proved I
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Corollary. A0 is in the spectrum of A., + P9 T0 (on E9 ) if and only if it is in the 
spectrum of A.,(0) + Peg To (on 4) for some 0 E M or in the spectrum of A, (0, 9) + 
P 9T0 (on E 9 ) for some 9 E [0, 27r). 

Proof. Via corollaries to Theorems 4.2 and 4.3 I 

4.5 Comments. Theorems 4.2 and 4.3 give a complete description of the spectrum of 
A .,+ PTO as an unbounded operator on the invariant subspace E. in terms of the spectra 
of the 0-periodic constituents A.,(0) + PeT0 on the invariant subspaces 4 under the 
assumption that the L-periodic equilibrium solution u 0 (u i , u 2 , u 3 ) of Navier-Stokes 
which defines T0 via (1.3) satisfies 

ul,u2 are even in z	and	u3 is odd in z.	 (4.58) 

This assumption simplifies the presentation, gives nicer results and admits a more precise 
analysis of what happens at the corners of M. However, it has to be stressed that only 
minor modifications are needed in order to extend the theory to the case of an arbitrary 
L-periodic equilibrium solution. The extension to the arbitrary rectangular case (L 1 -
periodicity in x and L 2 -periodicity in y) is completely straightforward. This might be 
true to a lesser extent for lattice cells other than rectangular, since the corners might 
cause caution. Below, however, we base our discussion on (4.58). In Subsections (4.1) 
- (4.4) we have concentrated on the restriction of A., + PT0 to E9 , (i.e. A., + PTO) 
and neglected the other case A., + P L To on E. This neglect is justified since the 
case of A., + pu70 on E is considerably simpler, in fact much closer to the reaction-
diffusion case in [12]. The reason for this is that all difficulties related to the corners of 
M = [0, 27r] 2 are absent in this case. A glance at Theorem 2.1* and the formulas (2.24) 
which define Qe and hence Fe, Pg and P4 shows that the denominators ii = &2 + fl2 do 
not appear, what makes the considerations in Subsection 4.4 superfluous. For reasons 
of space we just state the relevant result 

Theorem 4.4. A 0 is in the spectrum of A., + P'T0 on E if and only if it is in the 
spectrum of A.,(0) + PT0 on Eu for some 0 E M = [ 0, 27r]2. 

Note that in Theorem 7 the corners of M appear on an even footing with all points 
of M. We come back to this point after a brief digression into the periodic case which 
was the starting point but retired into the background in Subsections 4.1 - 4.4. In case 
of reaction-diffusion systems (see [121) a simple relationship between the periodic and 
the £2 -case emerges: a point in the periodic spectrum is a point in the £2-spectrum. 
Here, the situation is not so simple. In order to digress on this we briefly recall the 
periodic case. With L2 = ( L 2 (Q)) 3 and L, L as before, we let Eper be the £2-closure 
of I E (H 1,0 ) 3 such that div f	0. Then Eger = Eper fl	is the £2 -closure of all 
f in fl (Her ,0 ) 3 such that div I = 0; likewise with L and E1. Then Eper is thepe 
orthogonal sum of E ger and E er . The orthogonal projections onto Eper, Eer and Eer 
are denoted by Pp,,, .Pg 1 and ;er' respectively. The Stokes operator Aper now acts 
like Ppe,A on its domain (Her fl Hier,o) 3 with div = 0. It is well known that Aper 
is selfadjoint, Aper —c for some e and that Aper leaves Eer and Eer invariant, i.e. 
reduces to Pger A and 1erA on dom Ape,nEger and dom Aper fl E er , respectively. The



826	B. Scarpellini 

"Perturbation" Aper + PperTo is then recognized as a holomorphic semigroup generator 
on Eper which, by virtue of (4.58), leaves E er invariant, i.e. coincides with A 3 + PerTo 
on Eger, and likewise with E er . A straightforward analysis then shows that if e is one 
of the corners (e.g. ® = (0,0)), then the periodic case arises, i.e. A3 (®) + PT0 on E 
becomes Aper + P erT on E;er. 

Corollary. If Ao as in the spectrum of Aper + P er T0 on Eer, then it is in the 
spectrum of A 3 + P u T0 on E. 

The case of Aper + 139 To on Ep9er is more delicate. Recall that A 3 (0,8) on E 9 is 
PL restricted to (H er ) 3 fl Doe D09 as in (4.35). Thus A3 (0,8) on E 9 is simply 
the restriction of Poe Aper to dom A 3 (0, 8) fl E 9. Moreover E 9 is a closed subspace of 
Eer, whence 'e"ger P 9 . The relevant statement is 

Lemma 4.6. Let A 0 be real and in the spectrum of Aper + Pp9erTo on Ep9er . Then 
A 0 'is in the spectrum of A3 + P9 T0 on E9. 

Proof. Since Aper + P er To has compact resolvents, A 0 is necessarily an eigenvalue 
of it. Thus there is a real eigenfunction 0 0 cpo E domAper fl 

(Aper + P9 To) cpo = Aoçoo.	 (4.59) 

With Wo real, the two numbers a and b associated with cpo via (4.34) are real and 
hence there is a 8 E [0, 27r] such that (4.32) holds. Thus cpo is in (H er )3 n D 9 , i.e. in 
domA3 (0,9) fl E 9 , whence P'9 cpo = cpa. Applying P 9 to (4.59) yields 

P(P9 L + P9 To)cpo = Aocpo per	per 

that is
(A,(o,O) + P 9T0 )cpo = Aocpo.	 (4.60)

By (4.60) and Theorem 4.2 we have that A0 is in the spectrum of A 3 + PTo on E91 
Remarks. The basic open problem is if there may exist complex eigenvalues of 

Aper + Pp9er TO on Eger which are not in the spectrum of A3 + PT0 on E9 . This would 
allow for the possibility of periodic equilibrium solutions which are periodically unstable 
but £2 -stable, a situation that cannot arise in the diffusion case. Among the open 
problems there is of course the difficult task to determine quantitatively or qualitatively 
the spectrum of the operators A,(0, 8)+P 9 T0 and A 3 (0)+ PT0 (® E M) and A3(0)+ 
PT0 (0 E M), and to determine eventually classes of periodic equilibrium solutions for 
which this problem is solvable. This task is important for the stability analysis of the 
periodic equilibrium solution against £ 2 -perturbations, a direction which might reveal 
new phenomena. 

That the L-case is more difficult that the L'-case can be seen as follows. Eer 
contains a two-dimensional subspace, the set of 

	

(aoopo, beoopo, 0)	(a, b E C),
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call it Ep°er , on which the divergence condition is trivially satisfied since Zoo and P0 are 
constant. The corresponding space in case of generic 0 E M is given by 

(aeoo po, beoo po, 0)	with a&+b/=0, 

call it E. Since OEM, &2 + 2 >0 whence dim = 1. As 0 - 0, coo -4 Coo, 
but the one-dimensional space E.0 cannot converge toward the two-dimensional space 
E er . This is the major source of the difficulties in the L-case, absent in the L-case. 
All results and proofs obtained so far for a solution pair u0 = (u i ,u2 ,u3 ) and P0 which 
is L-periodic in x and y carry over to the case where uo,po are L i -periodic in x and 
L2 -periodic in y. The only exception is condition (4.32) which has to be replaced by 
the more general one

aL 1 cosO + bL' sin  = 0. 

In view of its relation to stability it is a question of great interest to extend the above 
methods to domains such as half-planes or cylinders and to investigate whether the 
problem with the singularities persists. The infinite strip, a special case of the plate, 
has been studied in detail (0 E [0,27r] and u = (u i ,u2 )). Here, the difficulties caused 
by the singularities disappear, but a little rest of the above paradox remains. 
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