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L’-Perturbations of Space-Periodic Equilibria
of Navier-Stokes
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Abstract. We assume that a smooth equilibrium solution ug, po of Navier-Stokes on an infinite
plate @ = R? x (-4, +1) is given, which is L-periodic with respect to the unbounded variables
z,y € R. We investigate the stability of uo,po with respect to perturbations which are not
L-periodic but belong to L*(£). To this end we study the L?(Q)-spectrum of the linearization
around uo,po and describe it in terms of so-called O-periodic spectra in a similar way as it is
done for Schrédinger equations with periodic potentials.
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0. Introduction

In the present paper we treat a stability problem which has been invoked by D. Sat-
tinger and K. Kirchgassner at different places [4, 10, 11] and which will be described in
what follows in non-technical terms. Let a vector function ug(z,y, z) (:c,y eER, z€
(—3,+3)) be a smooth equilibrium of a nonlinear evolution equation u; = F(u) (typi-
cally F(u) = Au+ f(u)) and assume that besides satisfying some boundary conditions
at 2 = :t% it is L-periodic in z and y for some L > 0. One can then discuss the stability
of ug with respect to various classes of perturbations. An established way to proceed is
to set u = ug + v in u, = F(u) in order to find after some computational steps

v = (dF)(uo)v + R(uq,v) (0.1)

with (dF)(uo) the derivative of F at ug and R(ug,v) a term such that ||R(uo,v)|| =
o(|lv|]) in a suitable functional setting. A well known procedure amounts to test the
stability of uo against L-periodic perturbations. To this end one considers (0.1) as an
evolution equation in an appropriate space of functions which are L-periodic in z and
y and satisfy the boundary conditions. The stability behaviour of uq is then reduced to
a discussion of the stability of the equilibrium solution vy = 0 of (0.1) in this particu-
lar functional setting. Under the proviso that the principle of linearized stability resp.
instability has been justified, the stability behaviour of vy = 0 is then essentially deter-
mined by the spectrum ope:(dF(ug)) of dF(ug) considered as an unbounded operator on
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the space of L-periodic functions in question. In [10], D. Sattinger suggests to investi-
gate the stability of ug not against L-periodic perturbations, but against perturbations
from some other function class. He also suggests to  develop a Hill type theory for the
linearization dF(uo). Such a program has been carried out in [12, 13] for the case where
the basic equation u; = F(u) is a reaction-diffusion system u; = Au 4 f(u), with u an
m-vector u = (u1,...,um) defined on R® (n < 3) and assumed to be L-periodic in all
its variables (no boundary conditions); f(u) is a polynomial nonlinearity. As a model
Hill type theory we have taken the theory of Schrédinger equations iy, = Ay + Vb
with L-periodic potential V', discussed in Reed and Simon (8]. This forced us to take as
possible perturbations the class of vector functions which have components which’are
in £2() (with @ = R™ (n < 3) in (12, 13] while = R? x (—3,+3) here). In [12] the
following problem is adressed (which is treated in the Schrodmger context in (8]):

(A) How is the spectrum o e,(dF(uo)) of dF(uo) as an operator on a space of L-periodic
P

functions related to the spectrum oc2(dF(uo)) of dF(uo) as an operator on a space
of £2(€)-functions?

This question cannot be treated directly, but, following the pattern set out in [8], requires
a detour via a more general problem. To th1s end one needs the notion of “Floquet” or
“©-periodic” function:

f(z,y) is © = (©,,0,) ~ periodic with respect to z,y if

flo+ L) = ™ () sod Sloy+ D)= flzy) (O €02 - 02)

The problem which is treated-in [8] in the Schrodinger context and in [12] in the context
of reaction diffusion systems is:

(A)* How are the spectra og(dF(uo)) of dF(up) as an operator on a space of ©-periodic
functions related to the spectrum oz (dF(ug)) ?

The answer given in (8, 12] is

(B) 0c3(dF(uo)) = Ue 00(dF(u0)) (O € [0,27)%)
what implies

(©) oper(dF(uo)) c au(dF(uo))

Here we investigate as to what extent (B) and (C) or part of it remain true if dF(uo) is
the linearization of Navier-Stokes around a periodic equilibrium solution restricted to
the space of divergence free fields (see Subsection 1.1).

We now briefly describe content and results of this paper. In Section 1 the basic
material regarding the L?-setting of Navier-Stokes on an infinite plate is compiled,
mostly without proof; a glance at Section 1 suffices in a first reading. Section 2 contains
the necessary prerequisites about ©-periodic vector fields, ©-periodic Stokes operators
etc. A basic regularity result (see Theorems 2 and 2*) is stated without proof; a proof
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is given in [14]. In a first reading it suffices to take notice of the material in Section 2.
Section 3 is crucial in that it contains the theory of direct integrals to the extent needed
here. It is selfcontained to some extent but we can not avoid to borrow material from
[12, 13]. The following basic result of independent interest is proved:

(D) dF(uo)c2 is unitarily equivalent to f,, dF(ug)ed®

where M = [0,27]?. Here dF(uo)c: is dF(uo) acting on L2-vector fields, while dF(uo)e
is dF(uo) acting on ©-periodic vector fields. The second expression in (D), i.e. Sy is
a direct integral in the sense of {8] and requires for its interpretation the vocabulary of
Section 3 (resp. (8] or [12]). Relation (D) serves as starting point in Section 4 for the
derivation of spectral relations similiar to (B) and (C). Here we assume the periodic
equilibrium solution up = (u,u2,u3) to satisfy:

(E) u;,u; are even in z and u;3 is odd in 2.

This assumption, which could be dispensed with in principle, helps to simplify the
presentation, gives finer and nicer results and gives more insight into the difficulties
associated with the corners (0,0), (0,2r), (2x,0) and (27,27). The main result then is
(Theorems 5 and 6 plus Corollaries)

(F) a complete description of o.2(dF(up)) in terms of gg(dF(uo)) (© € [0,27)?).

This is somewhat vague; a full interpretation of (F) requires a slight technical digression
(see Subsection 4.4). However, two consequences of (F), close to (B) and (C) are the
following: Let M be [0, 27]? minus the corners. Then (Corollary to Theorem 4)

(G) if © € M, then oe(dF(u)) C o,2(dF(u0))
and
(H) if Ao € 0per(dF(uo)) is real, then Ag € oz1(dF(uo)).

What happens in the case of complex Ag is open; (F) does not contain (immediately
at least) the necessary information. This lecaves room for the possibility that ug is
periodically unstable but £?-stable, a case excluded for reaction-diffusion systems by
virtue of (C). The present paper is more difficult than [12) mainly because the four
corners of [0,27)? together with the divergence condition are a source of difficulties. -
For reasons of space we do not treat the principle of linearizéd instability, which can in
fact be proved along the lines of {13], making thereby extensive use of Section 4 in the
present paper. Likewise, we do not discuss the Benard problem; however, once one has
mastered the difficulties of Navier-Stones alone, the Bena.rd problem is easily accessible.

This toplc will be presented sepa.ratcly

1

Notatlons R a.nd C denote the real and complex numbers, respectlvely For &
and Y Banach spaces, || - ||x and || - ||y denote their respective norms, and for ¥ C X
an open set, CP(U,)) is the set of p-times continuously differentiable mappings from
U to Y. For F € CY(U,Y), dF(u) is the derivative of F at u. If the underlying space
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is fixed in a context, we write || - |} instead of || - |x. L(X,Y) is the space of bounded
linear operators T' from X to Y, with ||T||ec or even ||T|| the operator norm. For T a
bounded or unbounded operator on &, having E C X as an invariant subspace, pg(T)
and o g(T') denote the resolvent set and spectrum of T restricted to E, respectively. For
a multiindex a = (a1,...,an), we set D* = 3" 35 --- 3~ where §; is the derivative
with respect to z; and call |a| = }°. &, the order of D®. For Q having the segment
property (see [1: p. 54]) an f € £? is in H?(Q) if and only if there is a sequence of
fn € C§(R) which is a Cauchy sequence with respect to the Sobolev norm | - |70y and
such that lim, ||f — fallc2 = 0. Here C§(2) is the space of functions having compact
support in 2 and continuous derivatives up to order p; likewise with CH(S?). Finally,
(+,)p is the scalar product on H?(?), given by

(1,v), = Y (D%, Dv)o (0.3)
la|<p

where (u,v)o = [ u(z)v(z)dz. We set L2(Q) = H°(Q) and write || - ||;» instead of
| - | #2() if no confusion arises. We extend this notation to vectors and set

lullZz = NuslZa + lluallZe + lusliZs

whenever u = (u;,u2,u3) € (£?)3, similarly with the Sobolev norms ||u]|y». The scalar
product in (H?)? is (-,),, where '

(u'lv)}’ = (ulvvl)P + (uZav2)p + (US, ‘U3)p

where the components u; and vj of u and v are all in HP. We write (-,-) instead of
(*,-)o. We also use the following convention: if A(z,y) depends only on z,y and ((z)
only on z, then A( denotes the function A(z,y)((z).

1. L’-setting of Navier-Stokes on an infinite plate

1.1 Navier-Stokes on an infinite plate. As a starting point we take the Navier-
Stokes equations on an infinite plate Q = R? x —%, +%):

uy =vAu —(uV)u —Vp— f

1.1
divu=0 (1-1)

where v = (u),uz,u3) satisfies Dirichlet boundary conditions at z = :i:%, p is the
pressure and f a time independent outer force. We assume that a smooth equilibrium
solution ug = (u1,uz,u3), po of equations (1.1) is given, which is L-periodic in z and Y,
ie. uo(z + alL,y + BL,2) = ug(z,y,2) (a,B € Z) and likewise with py. Since the case
of L;-periodicity in z and L-periodicity in y leads to exactly the same technicalities as
the case L = L, = L,, we restrict us to the latter for simplicity of notation. Following
the pattern set out in the introduction we insert u = ug + v and p = py + 7 into (1.1).
Using the assumption that ug, po is an equilibrium solution of (1.1) we obtain formally

v = vAv + Tov — Vr — (vVv) (1.2)

divv =0 plus Dirichlet boundary conditions.
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Here T is the operator given formally by
Tov = —(ueV)v — (vV)uy. (1.3)

Relations (0.2) have been obtained in a formal way but the intention is to let v be a
member of the subspace

E = L*-closure of f € (H*(Q)N H(}(Q))3 (1.4)
divf = 0. '
We then must choose V7 from the orthogonal complement E; of E, but contrary to
the case of bounded 2 we can only assume’

E) = L%-closure of Vp (pe H'(Q)). (1.5)

In fact, examples ¢ € E, exist which are not of the form ¢ = Vp, p € H!(Q) (see
Subsection 1.5). Letting P be the orthogonal projection onto E, we apply P to both
sides of (1.3) in order to get

ve = vPAv + PTov — P(vV)u. (1.6)

If one denotes by Epe; and Ppe; the counterparts to E and P, respectively, in the periodic
case, one obtains the corresponding equation

wt = VPpe; Aw + Pper Tow — Pper(wV)w 1.7)

with w an element of Ey¢,. Thisis an evolution equation in the sense of Pazy [7: Chapter
6.3]; the principles of linearized stability and instability are known to hold (Kirchgassner
(4, 5]). The situation is different for equation (1.6). It seems to be known among experts
that (1.6) is indeed a well posed evolution equation although, as discussions indicate, it
is difficult to find explicit references. This, and the fact that we have to handle space
very economically forces us to state two auxiliary results on regularity properties of
Stokes operators without proof. The proofs, which require some place, will be given in
[14]. The central task of the paper is to study the relationship between the spectra

0Epe;(VPper A + PperTo) and og(vPA + PTy). (1.8)

As pointed out in the introduction, this requires a new tool, that of ©-periodic vector
fields and related concepts, to be studied later.

1.2 Remarks on Sobolev spaces. First we fix some notations. Let S, = {z € R?:
|z| < r}, set &'Q, = (S, NAN)U(2NDS,) and Q, = S, NQ. Set also I't = R? x {+1},
I"=R*x{-}},T¥=T*NS, and' =T*Ul", T, =T} UI;. Using well known
results about traces on smooth bounded domains and the fact that © has the (j,2)-
extension property (see Adams [1: pp. 83 - 94]) one can define for any R > 0 trace
operators YR € L(H*'(Q),£%(8'Qr)) (j = 0,1) such that:
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(a) If v € HY(2) N C}(Q), then y&(v)(z) = v(z) for all z € I Q.

(b) If u.€ H*(Q) N C?*R), then v (u)(z) = (%) (z) for all z € 0'Qg, with (%) (z)
the outer unit normal at r € &Qp.

(c) Ifr )< R, them ’y;(u,)(x) = vf(u;)(z) for ae. z € Ty, where u; € H+1(Q) (j =
0,1

From the validity of Gauss’ identity for domains such as 2, and elements v € C'(Q,)

and 7 € (C'(R,))® (see Konig [6]) we obtain via familiar approximation procedures the
following extension to elements v € H'(Q) and @ = (u,uz,u3) € (H*(Q))3:

/ 75(1_))(w)7§(17)(w)r'i(w) dw = / (V)@ + vdiv @) dz® (1.9)
9'Qr : Qg

where .
W(@W) = (3 )(@), W (u2) (@), 18 (u)())

and with 7i(w) the outward unit normal at w € & Qg. By noting that ni(w) is (0,0,+1)
and (0,0,—1) for w € T't and w € T'*, respectively, we have the decomposition

' / ()R ()7 i = / R enE@ads | S
(1.10)
+ [ A ond ) do - / A us) do
r}
We now deﬁne H l(Q) according to
fEHNQ) <= f¢€ HI(Q) and 7o R(f)(z)=0forae. z €Tgand R> 0. (1.11)

Thus for any sequence f, € C4(Q), || fa— fll#» — 0 and R > 0 we have that 7({2(.{.11) -0
in 52(1";3) Likewise we define

fe HYQ) < fe H*Q)and yR(f)(z) =0forae z € Tgand R>0. (1.12)

Proposition 1.1. The following assertions are true:

() If £ € H¥(Q), then v(f) = 1(3) ae. on Tk and 1f(f) = ~2f(3) ae.
on I‘R

(ii) u € H{(N) if and only if u € H'(Q) and fn(tp zu)d:z = 0 for all
p € H(Q). '

(iii) v € Hz(Q) if a.n.d only if u € Hz(Q) and fn(<p %‘2 )da: = 0 for all
v e HY(Q).

- Proof. Assertlon (1) fol]ows via fundamental sequences by straightforward approx-
imation arguments based on properties (a) - (c) of 71 With assertion (i) at disposal
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we have that u € H2(Q) if and only if u € H"’(Q) and &% € H}(Q), yielding assertion
(iii) as a consequence of assertion (ii).

Now assume first u € Hy(Q2) and ¢ € H'(2). We apply (1.9) to ¢ and & = (0,0, u),
taking (1.10) into account. We obtain

[ omoma (2 +82)

where 77 = (n1,n3,n3). Following the arguments in the proofs of Proposition 1.1 and
Lemma 1 in [15] we infer that the function

f(r) = /n (s (ms d

is in £'(0,00). Since it is also continuous it follows that lim, f(r,) = 0 for some
sequence 7, T 0o. The “only if” part then immediately follows.

Now assume conversely that the right-hand side of the assumption in assertion (ii)
is satisfied, and that u ¢ H}(R2). Then there is an R > 0 such that vf{(u)(z) = 0 for
a.e. € I'g fails. We thus may assume, e.g., that the set

{z €Tk (=) # 0}

has non-zero I'-measure. Choose ( € C*([~1,+1]) as follows: 0 < ( < 1,( =0on
(-2,0] and ¢ =1 on [6,+3] for some small § > 0. In accordance with our convention
in 'Notations’ we set ¢ = (u Clearly ¢ € H'(Q2). Moreover 75(¢) = 0 a.e. on I'; and
15(¢) = v5(u) a.e. on I’} for any r. With v = (0,0, u), the identity (1.9) then reduces

’ | wengtums do+ [ = [ (o5 + 5ou) =

For r > R the second term on the left-hand side above remains greater or equal ¢ for
some fixed ¢ > 0 while the first term tends to zero for a suitable chosen sequence r,, T co.
This means that the right-hand side of the equality above remains greater or equal £
as r, T oo, contradicting the assumption il

1.3 Fourier expansions. First we consider the eigenvalue problem y" + Ay = 0
on [—5, += ] both with Neumann and Dirichlet boundary conditions A complete set
{eplp>0 of orthonormalized elgenfunctlons for the Néumann case may be glven as fol-
lows: :

po=1

P2k = (—l)k\/icos27rkx for k>1 (1.13)
Dokl = (—l)k\/isin(2k + 1)7wz for k> 0. i
Setting A, = p*n? we then have ¥y + Appp = 0 and, in addition,

1 1
Y2k (+§) = Y2k (—5) ='\/§ for ’CZI

1 1 (1.14)
P2k+1 (+-) = —P2k+1 (—5) =V2 for k> 0.

2
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A complete orthonormalized set {1),},>; of eigenfunctions for the Dirichlet case is then
obtained by setting

A"y =, whence ¥, = —A,/*p, (p21) (1.15)

It will have great advantages to take the parity of the eigenfunctions into account.
Therefore we set for later purposes

Ok = P2k41, Tk = Pak41, A = Ay (k>0) (1.16)
po =1, Pk = P2k, T = Y2k, pk = Az (k>1). ’
Next fix f € L2(Q2) and set
+1/2 +1/2
ae@n= [ feundn@d wd Bew= [ feunanede
~1/2 -1/2

Then A, Bj € L%(R?) (k>0,; > 1) and

(e} o0
f= Az, v)er(z) = Y Bj(z,y)9;(2)

k=0 j=r

in the sense that [[Ly — fl||z2 and ||Hy — f||¢2 tend to zero where
N N

LN=ZAI¢‘PI: and HN=ZB]'1[)]'.

k=0 1=1

Moreover we have that
|f|?dz® = ./'|Ak|2d1:2= / |B;|?dz?.

All this follows easily from Fubini’s theorem and the completeness of the systems
{¢x}r>0 and {3;};>1, respectively. Important is the characterization of H!(Q) and
H§ () in terms of Fourier series, provided by Proposition 1.2 below, in which A; and
B; are as in (5).

Proposition 1.2. Let f € L%().
(i) f € H'(Q) if and only if Ax € H'(R?) (k > 0) and if

oo fe o] [ o]
Z/ |0: Ax|2dz?, Z/ |8, Ax|?dz?, .EAk/ |Ag|?dz?
k=0 /R? k=0’R? k=1 R?

are all finste.
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(ii) f € HJ(Q) if and only if B; € H'(R?) (j > 1) and if
oo (o} oo
|8: B;|*dz?, / |8y B;|*dz?, A»/ B;|*dz?
sz/R ; > [, o8 S [, 15

are all finste.

Proof. Consider assertion (i). If the right-hand side conditions on the A’s are
satisfied, then the Ly = Zi\(:o Arpg are all in H'(Q) and form a Cauchy sequence with
respect to || - || 1. Since imy oo Ly = f in L2() we have that f € H () and

o] oo e o]
0:f = ) (B Ar)or,  Oyf =D (ByA)er,  O:f =3 AV A (117)
k=0 k=0 k=1

If conversely f € H'(f), then one easily verifies Ax € H'(R?) (k > 0) and in addition

+1/2 +1/2
O Ay = /(6,f)(pkdz and Oy Ak = /(ayf)cpkdz
-1/2 -1/2

a.e. on R%. From this, the relations .

Z/ 10, Ax?dz? < 00 and Z/, |8, Ak [2dz? < oo
k=0 /R? k=0 VR

follow. In order to establish the third relation of (i), we use assertion (iii) of Proposition
1.1 replacing therein ¢ by f and setting u = apx (k > 1) with a € C$°(R?) arbitrary
but fixed; we note u € I?Q(Q). From assertion (iii) of Proposition 1.1 and via the Fubini
theorem we find

+1/2
/dzz ‘a / (%m - A;/2f¢k) dz=0 (k>1)
R? -1/2
By the arbitrariness of a we obtain

+1/2 +1/2

d
/ a—'ﬁz/)k dz = A}/? / fordz = A Ay

-1/2 -1/2
a.e. on R?, from which the third relation on the right-hand side of assertion (1) follows.

The proof of assertion (ii) is essentially the same.  In order to verify the third
relation in the right-hand side of assertion (ii) under the assumption f € H(2) we use
Proposition 1.1/(ii) by setting ¢ = apx therein, with a € C§°(R?) arbitrary but fixed.
By reasoning similar to the above one then finds '

+1/2 +l/2a
AY? / fordz = — / 5£—<pkdz=AL/sz
-1/2 —-1/2

a.e. on R?, from which the required relation follows il
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Remarks. Relations (1.17) in the above proof show that 0:,0, and 8, commute

with 3, symbolically 83" = 5~ 0. The proof of this fact applies verbatim to the case
fEHNQ), f= z Bji;. As to higher Sobolev spaces all we need is

Proposition 1.3. Let f € L%(Q), f = 3, Axpx and A € H*(R?) (k > 0).

Assume that the ezpressions in Proposition 1.2/(i) and also all the expressions

oo oo e .
S [ adat, Sa [ joadar, Y a [ 14z
k=0 /R? k=0 R? k=0 R?

are finite, where 0 € {0;,0,} and 8% € {07, azy, y} Then f € H?(Q) and Df =
>« D(Akpi) with D any derivative of order lesser or equal 2 in z y and z. Likewise
with f = ¥, Byy, B; € HA(R?) (> 1),

The straightforward proof, in which one recognizes LN = Zk 0 Akc,ok (N >0) as
a Cauchy sequence in H?(2), is omitted.

1.4 The Stokes operator. For the following, it helps to bring parity with respect
to z into play: for f € L%3(Q), f € Eg(ﬂ) if and only if f is even in z, and f €
L(Q) if and only if f is odd in z. Next set L2 = (£2)?, L2 = (£23(2))? x L%(Q) and

= (L3(Q))* x L3(9). Clearly L? = L2 @ L2. The scalar product on L? is given by
(u,v) = E, 1(u‘,,vl)o, where u = (ul,ug,ug) and v = (vl,vg,v3) Next we need the
space E of divergence-free vector fields:

E is the £%-closure of all f = (u,v,w) € (H§(2))® such that div f = 0.

Evidently E = E, @ E,, where E; is the L?-closure of all f € (H}(Q))* n L? with
div f = 0, and 11kew1se with E,. The orthogonal projections onto E, E; and E are
P, P; and P,, respectively. Next let A4 be the Laplacian on domAgq = HZ(Q) NHL(Q).
Then Ay is selfadjoint and Ay < —¢ for some € > 0. Moreover, it is easily seen that
L2(9) and L2(Q) reduce Ay, i.e. they are invariant under Ay. We also recall Gauss’
formula

/‘;_(VvVu +vAu)dz® =0 (v € Hy(Q), v € H}(Q))

(see, e.g., [6]). A4 induces a selfadjoint operator A on dom A = (H*(Q) N H}(Q))?
according to A(u,v,w) = (Au, Av, Aw). The Stokes operator'Ag is now given as follows:

fe€domAy <<= fedomA, divf=0and Agf = PAf in this case.

Ap has some simple properties, provided by

Proposition 1.4. Aq is symmetric, densely defined in E and Ay < —¢ for some
€ > 0. The spaces Ey and E, reduce Ay, i.e. P,Ay C ApP, and P,Ag C Ao P,

The straightforward proof is omitted.

In order to recognize A4q as selfadjoint one introduces
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Definition 1.1. u € (H}(R))® with.divu = 0 is a weak solution of Agu = f (f €
E) if and only if

Z(Vuj,Vv,-) +(f,v) =0 forall ve (Hy(Q))*
j
dive = 0 (with u = (u;,uz,u3) and v = (v1,v2,03)).

It is readily established that given f € E, there is at most one weak solution of equation
Aou = f. By Proposition 1.4 and Lax-Milgram theory there is a selfadjoint (Friedrich’s)
extension As D Ag given as follows:

u € domA, <= u 1s the wea.k» solution of
Apu=f forsome f€ E and A,u= f in this case.
Proposition 1.5. A, < —¢ with € as in Proposition 1.4, and E,, E, reduce A,,
ie. PbA, C A P, and PjA, C A,P;. Ifu € dom Ay and A,u = f, then Agu = f.

Proof. The first part follows straightforwardly from the definitions. As to the
second part, let u € dom Ay satisfy A,u = f, ie. 3 (Vu;,Vv;) + (f,v) = 0 for all
v € (H§(£2))® with divv = 0. From Gauss’ formula we then infer (Au — f,v) = 0 for all
v in a dense subset of E whence PAu — Pf =0, i.e. Apu = f since Pf = f i

The main result about Ay and A4, is the following

Theorem 1.1. There exists C > 0 such that, for all f € E and v € dom A,
satisfying Ayu = f, u € (H*(Q))® and ||ullu2 < C||f|lc2-

In conjunction with Proposition 1.5 we get
Corollary. Ay = A,, 1.e. Ag is selfadjoint.

~ For reasons of space we cannot go into the proof of Theorem 1; the details for a
comparable situation are in [14].

The main consequence from Theorem 1.1 concerns the operator T given formally
by (1.3) and now supplied by the setting dom Tp = (H}(R))3.

Corolléry. Given € > 0, there is a positive constant K, such that
IToullz2 < ellAsullc2 + Kellullc2 (%)

for all u € domA,.

Proof. We recall the operator A on (£2(2))® such that (Au); = Auj for u €
dom A = (H%(2) N H}(Q))®. 1t is known that given € > 0 there is a K, such that

I(=A)Pullcs < ell Aullcs + Kellulls  (u € dom 4)
3
I(=4)"2ullzs = > (Vuj, Vu,)

=1
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for u € dom (—A)'/? = (H}())*. Moreover there is a positive constant C' such that
lAullzz < C'llully= (u € dom A).

On the other hand
lullg> < CllAsu|| 2 (u € dom 4,)

by Theorem 1.1. Finally we have

3 1/2
| Toullc= < C"((Z (Vu;, Vu;) ) + ||u||c=)

for u € (Hg(Q))®, with a positive constant C" depending only on the equilibrium
solution uo which enters the definition of T, (see Subsection 1.1). The corollary now
follows

Remarks. By the Corollary A, + PT is the generator of a holomorphic semigroup
on E (see Pazy [7}). This enables us to introduce fractional powers and to handle the
nonlinearity in (1.6) in such a way that (1.6) becomes a nonlinear evolution equation
in the sense of [7: Subsection 6.3]). These steps, necessary to establish the principles of
linearized stability/instability are not needed here and not further discussed.

1.5 The projection operator. In order to discuss the projection operator P onto the
subspace E (see (1.4)) we need the following

Lemma 1.1. E is the L?-closure of the vector fields f € (H())? xH}{(Q), divf =
0.

By taking into account the results on Fourier expansions one recognizes Lemma 1.1
as consequence of

Proposition 1.6. The following assertions are true:

(i) Fiz k> 1, let A,B € H'(R?) and C = A;"/*(8. A + 8,B). Then (Apx, Box,
Ciyr) € E.

(ii) Let A,B € H'(R?) satisfy 9;A + 8, B = 0. Then (Ago, Byo,0) € E.
Proof. Since ¥ > 1 we have f 1/2 prds = 0. Hence there is a sequence ®,, €

C§°(—3,+3) such that lim, ®» = ¢k in L2(—1,+1) and f+ll/22 ®,ds = 0. Observe

that fjl/z ®,ds € C§°(—3,+3). Next let A, By € C°(R?) be such that lim, A, = A
and lim, B, = B in H'(R?). Recalling the convention in 'Notations’ we set

fo= <A B, Badn, (8 An + 0, B )/ s)
1/2

whence f, € (H}(2))3, div f = 0 by construction. By (1.15) we have

lim / d,.ds = / ¢kds — —A;1/2¢k(z) in £2 (_%’_*_%) .

~1/2 ~1/2
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By these remarks it follows that
lim fn = (Apk, Bok, Cii) in the £? — sense

proving assertion (i). Next let A,B € H'(R?) satisfy ;A + 8,B = 0, let &, €
Cs°(—%,+3) (n > 1) be even and such that lim, &, = o = 1 in L£*(—3,+3). Let
fn = (A®,, B®,,0). Clearly f, € (H}(R2))?, div f = 0 and lim, fn = (Ao, Byo,0) in
the L2-sense, whence (Awo, Byo,0) € E, proving assertion (i) B

Remarks. It is clear that if £ > 1 is even or odd, then the sequence {f,}n>0
can be chosen in L: or L?. Lemma 1 respectively Proposition 6 enable us to reduce
the investigation of the projectors P and Q@ = 1 — P to straightforward manipulations
with Fourier series and transforms. We will therefore be brief. In order to investigate
E, = L? 6 E we note

Proposition 1.7. If p € H(Q), then VpLlE.

Proof. By Lemma 1.1, Proposition 1.6 and Subsection 1.3 it suffices to show
that if p = prpx with px € H!'(R?), then Vp is orthogonal to all fields of the form
(Agx, Box,Cibx) with A, B € H'(R?) and C = AY/*(8;A + 8,B) if k > 1, and to all
fields of the form (Ao, Byo,0) with A, B € H'(R?) and 3; 4 + 8,B = 0if k = 0. Both
cases follow immediately if we express the arising scalar products and the assumptions
in terms of the Fourier transforms A,...,px of A,...,px, a computational step which
we omit il

Next we invoke the Neumann operator A such that A = A on domA = H Q)
(see (1.12)). It is known that A is selfadjoint and lesser or equal 0. We note also the
validity of Gauss’ formula (1.9) now under the assumption v € H'(2) and u € ﬁQ(Q).
Moreover it is easily seen that the subspace

+1/2
/ foods =0 ae. on R?

—1/2

LX) = {f € L*(R)

is invariant under Z, i.e. reduces A. An important property of Ais given by
Proposition 1.8. A is boundedly invertible on Ez(Q)

Proof. Let f =3 ro, fepk in E’(Q) be given. The unique solution p € ﬁz(ﬂ) N
EZ(Q) of equation Ap = f is then given by 37—, pxwx = p where

Pr(e, B) = me(e, ) fi(enB) (k2 1)
where o, 8 € R, ux = —(a® + 82 + Ay) and fx and Pk are the Fourier transforms of fx
and p;, respectively i
For use below it is convenient to introduce
the space L? = (L?"’(Q))2 x L}(Q)
the set H = (H'(2) N L3 (Q))? x HA(Q).



792 B. Scarpellini

We note that if p € HZ(Q) n CQ(Q) and f € H, then Vp € H and divf € £? ()
(Proposition 1.1). The space L2 C L? turns out to be invariant under P and Q=1-P
In order to study the action of Q on L? we pick f € H and let pE HZ(Q)ﬂE?(Q) be the
solution of equation Ap = divf (Proposition 1.8). Since Vp € H by the above remark

and div (f — Vp) = 0, we have that f — Vp € E (Lemma 1.1) and VpLE (Proposition
1.7). We thus conclude

Qf=Vp and Pf=f;vp.

The action of the pro_]ectlon operators @ and P on L? is thus determined by their action
on the dénse subset H C L? according to the above description; the action on all of I?
then follows via approximation. It remains to determine Q and P on the complement
IL?g L2. To this end we not that an felL*o 12 has necessarily the form

f = (Apo, Bgy,0) (A,B € L3(R?), po =1). (1.18)

Now - assume first that the Fourier transforms A and B are smooth, with compact
supports in R? \ {0}, whence f € (H!(2))? x H3(f2). Setting p = ppo with

Po=—(iaA+iBw™'  (v=oa?+p?)

we have that p € H*(Q), Vp € (H'(R))* x Hj(R) and Ap = div f. As in the previous

case we conclude

Qf=Vp and 'Pf=f~—Vp.

By a straightforward approximation argument one shows that in the general case of an

f of the form (1.17) we have Qf = (Co, Dpo,0) where
C = a(aA + ﬂg)u_l and D= ﬁ(ou:f+ BB}, (1.19)

what completes the description of @ on L2 & L? and hence on L? = (£%())®. From
formulas (1.19) one extracts examples of fields f L E which have not the form Vp, for
some p € H!(§2). On the other hand it is clear from the above that the set {Vplrenr (@)
is dense in E . From the above analysis one also easily deduces that the spaces L2 and
L? are invariant under Q and P.

This concludes the discussion of the £2-setting of Navier-Stokes on an infinite plate.
It concerns merely the linear part, the only one which is relevant here, but which is also
essential for the handling of the nonlinear part, a point to be discussed elsewhere.
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2. The O-periodic counterparts

2.1 ©-periodic functions. In order to discuss the relation between £2-spectrum and
periodic spectrum (see (1.8)) one is forced to proceed via an extension of periodicity,
i.e. we need the concept of @-periodic functions. Let L > 0 as in (0.2) be fixed. Set
QL =1(0,L)’ and Q = QL x (—%,+1). Set, for a fixed small € > 0, M, = (—¢,2m +¢)?
and let M, be M, minus the four points (0,0), (0,2x), (27,0) and (27,27). Let finally
M= M.N[0,27]%. By © = (©,,0,) we denote a typical point in M., calling © “generic”
if © € M. As before we set 2 = R? x (~3,+3) and Q=R?x -3, +3)

Next we need spaces. By C5(Q) we denote the set of f € CJ(f2) such that
f(z + 5L,y +kL,2) = @O N f(z,y,2) (21)

for j,k € Z, where H5(Q) now denotes the set of f € £2(Q) such that limy, ||fa —
fllz» = 0 holds for some sequence f, € C§(Q). By (2.1), f admits a unique extension
f € HP () such that lim, ||f = fa|lz#» = 0 holds on any bounded subdomain €' C Q2
and satisfying (2.1) in the a.e. sense; we identify f with fhenceforth. Clearly H}(Q) =
L£?(Q). The spaces HP(Q) are the usual Sobolev spaces on Q; for simplicity we denote
the scalar product on HP(Q) again by (-,-),. It is also convenient to introduce spaces
Cé, and C% as follows. Let f € Ch, if and only if f € C§(Q) and f(z,y,£3) = 0 for
all z,y € R. Further, let f € C3(Q) if and only if f € C3(Q) and 8, f(z,y,+%) = 0 for
all z,y € R.

In order to handle boundary conditions we use again the notion of trace. To this end,
let 9'Q be 0Q minus the edges, more precisely 8'Q = 0Q \ Upg where pg runs through
the closed edges connecting adjacent corners p and g of Q. We also set Iy =3+ N&Q,
I"=TN@&Q =TI, UT'_ with T and Ty as in Subsection 1.2.

Similarly one introduces boundary operators v; € L(H’*!(Q),£%*(8'Q)) (; =0,1)
which satisfy (a) and (b) in Subsection 1.2 (with @ in place of ). Gauss formula
(1.9) remains valid for v € H!(Q) and u € (H'(Q)). In case where v € H§(Q) and
u = (uy,uz,u3) € (H(Q))? it assumes the form

v olus - 0_17 ol U3 = vu vAu 13. .
/r;*ro()'r( ) du /r,_vuv( ) do /Q((V)+A)d (22)

The other boundary terms due to QN &' cancel since u is G:Periodic while the complex
conjugate T is (—©)-periodic. We now define Hg (Q) and H3(Q) according to

fe Hé,o(Q) = fe€ Hé(Q). and Y(f)=0 ae onI’ 23)
feHY(Q) < feHL(Q) and (f)=0 ae onI' '

The periodic case arises for © = (0,0), (0, 2x),(27,0) and (27,2r). We emphasize it by
writing H} (Q), Hpero(Q), ... instead of H}(Q), H{o(Q), ..., respectively; likewise
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with C2,,(Q), Cpero(Q), -... There is a simple connection between the periodic and
the ©-periodic case, expressed by the proposition below, in which we set

m(0, ) = e~ {(O12+62w)L7" (£ = (z,y)) - (24)

Proposition 2.1. The following assertions are true.
(i) f € H5(Q) if and only if m(©,)f € H}.(Q)
(ii) f € Hy , if and only if m(0,2)f € H},, o(Q)

(iii) Likewise with H3(Q), C&0(Q) etc.

We omit the straightforward proof. Proposition 2.1 permits us to reduce statements
on O-periodic functions to known statements on periodic functions. For simplicity we
write henceforth H3, HY ,, ... instead of H3(Q), H§ ,(Q),

2.2 Fourier series. Fourier series are again the most useful tool in connection with
pressure, divergence-free fields etc. In order to handle them in an economic way it is
advisable to use some space-saving notations. We fix some © = (0,,0,) € M, and let
a,f3,3,k,l range over Z. We then set

a=L""'2ra+0))  eap= L-1eioz+ify
~ and - , (2-5)
ﬁ = L_l(27l'ﬂ + 92) : gaﬂ = L—lexaz-Hﬂy‘

Here and below we suppress the dependence on © or z and y if no ambiguity arises;
in cases where this is not so we write more explicitely e,4(©®) and e,s(0, Z) or similar.
We also let £2(Q) and £%(Q) be the subspaces of those f in £3(Q) which are even and
odd, respectively, in z. Finally we recall the eigenfunctions ¢, ¥x, 0k, Tk, ... of (1.16).
Complete orthonormal systems in £?(Q) are given by {eqgp:i}i>0 and {eagti}i>1 and,
similarly, by {eag0o:}i>0 and {eaﬁﬂ}])o in £2 and C:, respectively. An f € £2(Q) thus
admits the Fourier series :

f= Zfoﬂleuﬂ‘Pl = Zﬁ,meang (2.6)

1>0 121
where fog1 = (f, eapt)o and i;rﬂl =(f, eap¥i)o. For use below and later we set

R (e 8) = {az PO fory =0 e
a?+p%+A; forj>1.
Proposition 2.2. Let f € £2(Q). Then the following assertions are true.
(i) f € HS if and only if ; Aj(e, )| fapjl? < 0
(if) f € Hy, if and only if 3, R ;(a, B)| fap; | < co.

The proof proceeds along similar lines as that of Proposition 1.2.
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Proposition 2.3. Let f € £L*(Q). Assume that ), Aj(a, B)?|fapil? < 00. Then
f € HY and -

Il <C (Z Ki(aaﬂ)zlfoﬂﬂz) (a,8€2)

j20
for some constant C > 0 independent of © € M,. Likewsse with ZJ'ZI Kj(q, ﬁ)lﬁﬂjp‘

Proof (sketch). Let Ly = 3_; fagjeapp; (lal,|B8,5 < N). By virtue of the
assumption, {Ly}n>1 then is a Cauchy sequence in H?, whence f € HE. This implies
that summation ) and differentiation d commute for any derivative d of order lesser
or equal 2. We thus can express || f||%,; in terms of Fourier series. The statement then
follows by observing that there is a positive consta.nt C mdependent ofa,f€Z,;2>0

and © € M, such that A;(a, 8) + Ioz|+|ﬂ|+/'\l/2 < CRAj(a,B)? N
] 2 J

2.3 The Stokes operator. Next we come to the ©-periodic version of the Stokes
operator. For simplicity we write Cz,E"g’,E?‘ instead of £2(Q),... . We then set L? =
LY(Q) = (£2)*, L2 = (L2)? x L2 and L% = (L2)? x L3. We recall the notations |luflcz,
(u,v) and ||u||m», (u,v), for vector fields u,v € L? and u,v € (HE)?, respectively. For
© € M, we define - .

Ee isthe L%-closure of all f € (Hg ,)® with divf =0. (2.8)

Clearly Ee = E§@EY; here EY is the L?-closure of all f € (Hg )*NL?Z such that divf =
0, and likewise with Eg. We also let P, P§ and P§ be the orthogonal projections onto
Fg¢,E{ and EY, respectively. Next we let Ag be the Laplacian A on domAe =
Hé N Hé,o- The operator Ag so defined is selfadjoint and Ag < —¢go for some &g

independent of @ € M,; the subspaces Eg and £? are easily recognized as invariant
under Ag. From (2.2) one infers

L (VoVa +vAT) dz® =0 (ve Hgo, u€ HB). (2.9)

Ae induces a selfadjoint operator A on L? according to dom Ag = dom A} and
(Aeu); = Aeuj for u = (uy,us,u3) € domAg. The Stokes operator AO(O) is then
defined as follows:

f€domAy(O) <<= fe€domAeganddivf=0 . (2.10)
and A¢(O)f = PeAef in this case. .

Ao(©) has the following four simple properties. The proof is easy and therefore omitted.

Proposition 2.4. A¢(0) is symmetric, densely defined (in Eg) and Ao(©) < —€3
for some ©-independent €, > 0. The spaces EY and EY reduce Ao(0), i.e.. P§A:(O) C
Ag(O)P§ for s € {g,u}.

Of importance is



796 B. Scarpellini

Definition 2.1. u = (uj,uz,u3) € (Hé,(,)3 with divu = 0 is called a weak solution
of equation Au = f, for f € Eeg, if

3
D (Vu;, Vo) +(f,v) =0 forall v € (H) ,)* with divy =0

=
where v = (v, vz, v3).

Given f € Ee there is at most one weak solution u of equation Au = f. By
Proposition 2.4 and Lax-Milgram theory there is a selfadjoint extension A4,(©) 2 A¢(©)
such that

' u € domA,(0) <= uis the weak solution of Au = f

for some f € Eg and A4,(©)u = f in this case.
From Proposition 2.4 and clause (2.9) we infer

Proposition 2.5. A,(©) < —¢1 with €, as in Proposition 2.4 and EY, EY reduce
As(0). If u € dom A¢(©) and A,(O)u = f, then Ay(O)u = f.

We now come to the ©-periodic counterpart of Theorem 1.1. In its simplest form
it states that dom 4,(©) C (H3)® what according to Proposition 2.5 yields 4,(©) =
Ao(©). However more is required for the needs of Section 4. In fact a more refined
version of Theorem 1.1 is available. It is stated below in two parts without proof; a
proof is given in [14].

First we fix some notations. With C the set of complex numbers we recall ¢ > 0 in
M, = (—¢&,27 + €)%. We then set
M, = {o € C?: dist (O, [0,21]?) < e}.

We also set :
S= {aaﬂj co,fEZ, j20, Zlaaﬁj|2 < 00}

S'= {aaﬂj ca,BEZ, j21, Y laagl < 00}-

These are Hilbert spaces under the norm ||a]|? = Y ; laag;|?, where a = {aap;}. We
adopt the following notations. If, e.g., a € [,3 and a = E,‘ aqgjeapT; is the expansion
with respect to the system {eqp7;}, then clearly {aqg;} € S; we then set @ = {aap;}.
Likewise in the case of expansions with respect to {eas0;}, {€asp;} etc. Finally, in
order to shorten expressions we set

F(z,y,p*,k < 3) = (2% + y*) ! («?p" + zyp?) + p°. (2.12)

_ Definition 2.2 (Property (P)).

(i) A family {Fapj}a,pez,j>0 of mappings M, x §% — C has property (P) if
(1) for fixed © € M., F,g; is linear in S°
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(2) there is C such such that for all @ € M, and g,b,c € S, 3 |Fagj(©,a,b,¢)|* <
Cllall® + 118l1* + liell®)
(3) for fixed a,b,c € S, F,g;(0,a,b,¢) is holomorphic in © € M.

(ii) A family {Fog;}a,sez,j>1 of mappings M, x (5')> x § — C has property (P) if
conditions (1), (2) and (3) above with (§”)? x S in place of $3 hold.

In the theorem below, u = (A, B,C) is in dom A4,(©) N EY and satisfies A,(Q)u = f
for some f = (a,b,¢) € E§ and © € M,. The components A,...,c then have Fourier
expansions with respect to the complete orthonormal systems {eqg7;} in £2 and {eapo;}
in L2, i.e. ;

a= Zaagjeo,g'rj, b= Z bogjieasTi, c= angjeapoj,

A=) Aapicasts,  B=3 Bagjeasr;, €= Capjeapo;

where a, € Z and j > 0.

(2.12)

Theorem 2.1. There are families

{Abs;tasezszo, {Bogilasezizo (k=1,2,3)  and  {Capjlasez;zo

having property (P), as follows. Let u € dom A4(©) N E satisfy A,(O)u = f for some
f € EY and © € M,. The Fourier ezpansions of their components a,b,c and A,B,C in
(2.12) then satisfy

(1) X;Aap; = aap; + F(@,B, A% 5;(0,0,b,¢),k > 3)
(ii) X;Bagp; = bap; + F(B,& Bk ;(0,a,b,c),k > 3)
(iii) X;Capj = cap; + Caps(©,a,b,¢)
wherexj=82+ﬁz+/\j (e, E€Z,j>0). o
There is a variant for the case where f = (a,b,¢) and u = (.A,B;C) are in E§ and

dom A4,(0) N E, respectively. Recalling (1.16) we now have the expansions

a=) aapjeasn; b= basjeasm; €= Capi€asPi
, . . (2.13)
A = Z Aaﬂjeag‘rrj B = Z Baﬂjeagﬂ’j C = anﬁieaﬂpf:‘

Theorem 2.1°. There are families

{Aagjlapezi>1s {Bapjla,pezj>1 - and {Cagjta.pezizo

having property (P), as follows. Let u in domA,(©)NEY satisfy A,(O)u = f for f € E§
and some © € M,. The Fourier ezpansions of their components a,b,c and A,B,C in
(2.13) then satisfy ' : :
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(i) AjAag; = Aapi(©,2,b,c)
(i) 7jBap; = Bap;(0,a,b,¢)
(iii) (1 + k)Capt = Capr(©,2,b,c)
where @, € Z, j > 1, k'> 0 and fix = (82 + B2 + ps).
Corollary 2.1. The following assertions are true.

(i) There exists a positive constant C, as follows. If u € domA,(0©) N E? and
Ay(O)u = f for some © € M, and f € E;'), then u € (H3)? and ||ul|lg2 < Ci||f]lc2.

(ii) Likewise with u € dom A,(O) N E® and f € E®, and likewise with u €
dom A,(0©) and f € E®.

- Proof. We prove assertion (i) via Theorem 2; the first part of assertion (ii) follows
from Theorem 2* in the-same way, while the second then follows via Proposition 2.4.
First note that since © € M, we have that a2 + 32 > 0 whence & 252 + #2)71 < 1 and
|ag|(a® + ﬂz)‘l < 1. From Theorem 2/(i) and the definition of F in (2.11) we infer

|’\ |2|/‘1D’ﬂJ|2 < 2|a°ﬂ)|2 + 2 Z |Aaﬂ1 )é)g)lz'
k=1

By summing over o, € Z and j > 0 and then using (2) in Definition 2.2/(i) we infer

> 1% Pl Aagsl® < 2lial? +2C(llall? + 12117 + lell?)
o,B,j

with the O-independent constant C of Deﬁmtlon 2.2. Since ||f||2 2 = |la)l? + 18|12 + |icl|?
we infer

> R lAapsl” < CillfI1Z (2.14)

for some positive ©-independent constant C;. We now invoke Proposition 2.3 according
to which A = 3" A,gjeqapt; is in H3, satisfying

A% < C2 ) 1P| Aag;l® - (219
for some positive ©-independent constant C;. By (2.14) and (2.15) we have

I Alla= < Csllf||c= (2 16)

for some positive ©-independent constant Cj. By a similar reasoning we 1nfer B, C € H}
and find a positive O-independent constant Cy such that

I8l Clle < Cal e | (2.17)

proving assertion (i) and thus the corollax'y |
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Remark. The Afg;,. .. in Theorems 2 and 2* are constructed explicitely in [14].
We note the disparity between the E,-case (Theorem 2) and the E,-case (Theorem 2*).
In contrast to the second case, singular factors such as a?(&? + %)~} appear in the

first case, which force us to restrict © to M,. These singular factors are a source of
complications in the perturbation-theoretic Section 4.

For what follows we recall the operator Tp in (1.3) and the stipulation dom T, =
(H'(Q))®. We note the further

Corollary 2.2. Given § there is a positive constant K5 such that

(i) 1 Toullc2 < 6|l As(O)ullcz + Killullc2

(ii) | ToullZ. < 8l 4,(O)ullz: + KsllullZ
for any © € M, and u € dom AL (9).

Proof. It suffices to prove assertion (ii); assertion (i) then follows by rescaling K.
Thus fix © € M, and recall the operator Ap at the beginning of this subsection. Ag is
selfadjoint with pure point spectrum Aj(a, 8) (see (2.7)) and associated eigenfunctions
eap; (a,B €Z, j> 1) (see(1.16)) giving rise to the expansion

Cu= Z Gagj€ap¥; for u € L3(Q).

From the spectral theorems for selfadjoint operators we infer

|Au"C7 ZA |auB)
if u € domAg. Since —Ag > g¢ > 0 it follows from the theory of quadratic forms that
H} o = dom(—Ae)'/? and
IVullzs =3 Ajlaassl® (v € Ho o).
By elementary arguments we infer given é there is a positive constant. K5 such that
Aj(@,B) < R ;(e, B)" + K

for o, € Z, j > 1 and © € M,. From all these relations we infer that given é there is
a positive constant Ky such that

3 3

> IVusliz: <6 8w,z + Ksllullzs

i=1 j=1
for © € M, and u = (uy,uq,u3) € domA:’G. On the other hand there is a positive
©O-independent constant Cp such that

lav)iZ: < Collvlly: (v € H*(Q)).
According to the last corollary there i is a posmve O- mdependent constant C) such that
lulldz < CillA(O)ul2:  (u € dom A,(O), © € M.).
Finally we find a positive constant Cz depending only on Tp such that

. 3
I Toullzs < C2 | D NIVu;lizs + llullzs

=1

for u € (H'(Q))®. Assertion (ii) now follows from the last relations upon rescaling K5 il
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2.4 The projection operators. We now investigate the projection operators Pg and
Qe more closely. To this end we assume that © is generic, i.e. © € M,. Under this
assumption, essentially all relevant properties of Pg and Qg can be obtained via Fourier
series.

First we stress an alternative definition of Fg.
Lemma 2.1. Eg is the L-closure of all f in (HS)? x HY , such that div f = 0.

Proof. We proceed as in the proof of Propositon 1.6, i.e. for fixed j > 1 we consider
the field

f = (acappjsbeappj, A} "(i@a+ iBo)g;). (2.18)

+1/2

We then pick a sequence of functions @, € C§°(— 2 y+3 1) such that [~ 1/2

lim, ®, = 1; in L2 and define

®,ds =0 and

fn= (aemg@,,, beasg®n, —(ida + zﬂb)/ P, ds).

1/2

By arguing as in the proof of Proposition 1.6 we infer that lim, f, = f in £2 and
fn € (H§ o)* with div f, = 0, whence f € Eo. In case j = 0 we consider a field

f= (aeugcpo,beapcpo,O) (2.19)
with i@a + i8b = 0. As sequence of approximating fields we take
fa = (aeqp®n, beag®n,0)

where ®,, € C€°(—%,'+ ) and lim, ®, = po = 1 in £2. Again f, € (Heo)3 with
div f, = 0 and lim, f, = f in £2. Since the linear hull of fields of type (2.18) and (2.19)
is H'-dense in (H} )2 x H§ 4, the statement follows

Proposition 2.6. Ifp € H}, then VpLFe. .

Proof. It suffices to prove the statement for p’s of the form p = enpp; since the
linear hull of such p’s is H!-dense in H}. For such a p we have

o " [ (i@eappo,iBeaspo,0) if7=0
p= . ‘
(i&eampj,iﬂeaﬁcpj,A;neam/;j) ifj>1.

It now suffices to show that a.nyi of these fields is orthogonal to any of the fields (2.18)
and (2.19). But this follows immediately by computation B

Next we introduce the Neumann operator Ae which acts like A on dom Ag = He,
with He as in (2.3). It is easy to see that Ag is selfadjoint with pure point spectrum
consisting of the eigenvalues Aj(a, 8) (7 > 0; a, 8 € Z) where

R =Ki(a,8) = —(@ + B* + A;) (2.20)
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with associated normalized eigenfunctions eqgp;j. Note that Xj < —¢g for someeg > 0

due to our assumption © € M,. By familiar spectral theorems we have that an f € £2
is in H} if and only if

Z K?Iaaﬂﬂ? < 00 where f = Zaaﬂjeaﬂ‘/’j~ (2.21)

Since —59 > ¢g it follows that given g € L2, there is a unique solution p € I?é of
Dep = g. With p = 3 pagjeagp; and with the series subject to (2.21) one infers by
termwise differentiation that Vp € (H§)? x Hg 5. Now fix f € (H§)? x Hg , and let

pPE ﬁé be the solution of Bep = divf. By Lemma 2.1, Proposition 2.6 and the above
remarks we have that f — Vp and Vp are in (Hg)? x Hg ,, that div(f — Vp) = 0 and
VplEg, whence

Qef=Vp and Pef=f—-Vp.

It is usefull to express Vp in terms of Fourier series. Thus let f = (a,b,¢) with

a=) dapicappj, b= bapicappi, €= D Capjeap;

i>0 i>0 21

with «a, 8 ranging over Z. Set also

i@aapgo + iBbago for j =0
Yapi ={ .A e . (2.22)
1Qaqg; + tPbag; — /\j Cap; forj >1.
Then div f = ) vyagjeapp; and with p above,
p=3 Aj(a,8)  vapicas. (2.23)
The gradient Vp is now given by: .
0ep =Y iGA; Yapjeapp;
j20
dyp =) iBA; vapseanp; (a, € Z) (2.24)
j20
T_1a1/2
azP = Z A,’ lA,'/ 7aﬂjﬁaﬂ¢i-
j21

A simple approximation argument shows that (2.24) remains valid for arbitrary f =
(a,b,c) € L?, ie. if Qof = (u,v,w), then the Fourier expansions of u,v and w are
given by those for 9;p,dyp and 8,p above. From this remark one reads off from (2.24)
that the subspaces Lg and L? are invariant under Qg.

In order to stress a further invariance, let f € £? if and only if f € £2? and

_+11//22 fpods = 0; let £2 = £2 6 L? and denote by {0} the null space. According to the

formulas (2.24) we read off that L? = (£2)? x £2 and [? = (£2)? x {0} are invariant
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under Qo. On L?, Qe acts as follows. With f =1(a,b,0) in L? and a = Zaameagcpo
and b= 3" baﬂ]eaﬂcpo we have that Qe f = (u,v,0) where

U= — Z (&Zaog + aﬁbaﬂ) Xq(a,ﬂ)_leoﬂvo

~ ~ _ (2.25)
v=-3 (aﬂ%ﬂ + ﬁzbaﬂ) Ao(a, B) ™ eapypo.

That is, the same smgular factors as in Theorem 2 reappear, a source of concern in
Section 4.

3. Direct integrals

3.1 The language of direct integrals. Below we describe the method of direct
integrals which connects the A, P + PT, P and A,(0©)Pe + PeTyPo. The description is
selfcontained but as to results we rely on (2, 8, 12, 13].

Let H' be a separable Hilbert space with scalar product (-, )3 and norm || - ||3.
Recall M = [0,27]? and Lebesguc measure u on M. A mapping ® : M — H' is
measurable if it is defined for a.e. © € M and if (g, ®(-)) is measurable for all ¢ € H';
[®(-)ll= is then also measurable. A Hilbert space H = [,, H'dy is then defined as
follows. It consists of the set of (equivalence classes) of measurable mappings ® such
that

[ 18(@)fedu < oo
M ' (3.1)
/M (<I>1(®),d>2(9))wdy = (Ql,q)g)'}-( fOI‘ q>],(p2 € H

The basic example is given by H' = £2(Q) and H = L*(M x Q). Given ® € H we have
by the Fubini theorem that $(0,-) € H' for a.e. © € M and

/||¢(e,.)||§,dp=/ |8(0, z, y, 2)|2dO%dzdyd:. (3.2)
M MxQ -

The measurability is evident. Next we describe a unitary mapping V from £%(f) onto
H. Thus set z = (z,y), n = (n1,n2), |n| = max(|ny], |n2|) and let On = O1n, + O2n,
for © = (0,,02) € M. Now pick f € CJ(). Since suppf C Q is compact, there is for
every z' € R? a neighbourhood U, 5 z' and an N > 0 such that

f(z +nL,z2) = f(=z + mL,y+ "2._1{’2) =A0‘

forz € Uy, In| > N and |2| < % We then have that

¥5(0,2,2) = 2%2 e f(z +nl,z) = — Z "'?f(z+nL D (33)

|n|<N
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for all z € U. and |z| < . From (3.3) we read off that ,(0,-) € C5(f). By the Heine-
Borel theorem and the above rema.rks there is an N > 0 such that f(z + nL,z) = 0 for
z€Q,=[0,L)? |n| > N and |z| < L. We thus have that

/ |1[);|2d9dg'dz = / |f(z + nL,z2)|*dzdz (3.4)
MxQ

In|<N

for z € Q and |2| < §. But due to our choice of N the rlght -hand side of (3.4) is just
||f[|c,(m. Thus the mappmg Vf = 9j given by (3.3) for f.€ C}(Q) is a Hilbert space

isometry from CH(2) C £%() into L2(M x Q), which extends into a Hilbert space
isometry from £2(f2) into L2(M x Q). In order to recognize V as unitary, i.e. as “onto”,
we let V' be the isometry from £2(R?) into- £L2(M x Q) which we obtain if we restrict
(3.3) to functions f € C§() which do not depend on 2. It is shown in [12] (see also [8])
that V' is onto L2(M XQL) i e unitary. Now.it is easily established that if f = ¢& with
9 € L(R?) and ® € L*(—1,+3), then Vf = (V'g)®, whence V(3 ¢;®;) = S3(V'9;)®;
for any finite sum 3 ¢; %, such that g; € £?(R?) and <I>,' € L*(-13, +%) Since the finite
sums y_  h;®; with h; € L2 (M x Q) and ®; € L*(—},+3) are L2-dense in L2(M x Q),
the unitarity of | % follows from that of V'.

In the lemma below, z;, = z, 2, = y, z3 = z and 9, = 0;;, Oj 0,)“

Lemma 3.1. The following assertions are true.
(i) Let f in 1?2(9) or in H*(Q). Then there ezists E C M with u(E) = u(M)
such that' © € E implies:
(1) (Vf)O,-) is in I?é or HY, respectively.
(2) (V8;£)(©,") € Hy and (VB;£)(O,") = 6;(Vf)(O,").
(3) (V0 f)(©,°) € LX(Q) and (VIjx f)(O,-) = 05(V£)(©,") (5,k =1,2,3).

(ii) Let f in H{(Q) or H}(Q). Then there is E C M with u(E) = y(M) such that
O € E implies:

(1) (V£(©,) is in Hg o or H, repectively.
(2) (V3;£)(©,) € L*(Q) and (V3;1)(®,") = 8;(Vf)(O, ).

Proof. Since it is essentla.lly the same as that of Lemma 1 in (12} we only stress
the main points. First note that by virtue of (3.3) we have that

9(VE)(O,) = (VOud)(©,) or  (VE)(®,)=(V5;e)®,),
respectively, for j,k =1,2,3 and any ® € Cg(Q) and
(V@)(G )€ CG(Q) if ®¢€ CQ(Q)
Now let f € I?z(Q) Based on our remarks concerning the Neumann operator 4 in

Subsection 1.5 and on Proposition 1.8 one infers that the Fourier series Y fjp; of
f satisfies the assumptions of Proposition 1.3, whence limy ||f — Ly||ng2 = 0 where
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Ln = Z,N:o fiw;. Since Ly € fIZ(Q), and by a simple approximation argument one
finds ®, € CZ(R) such that lim||f — ®,||z2 = 0. By the unitarity of V and (3.3) we
then have that

IWVf—V®nllc, Vg —0;V&alle2,  IVhjx — 8V allce

all tend to zero as n T oo where || - ||z2 is the norm in £L2(M x Q) and where g; = 9, f
and hjx = 0;x f. Via the Fubini theorem one then finds a set E C M with u(E) = u(M)
and a subsequence {®,,} such that ©® € E implies that

(VIN©,),  (V§;f)O,),  (Vouf)e,)
are all in £2(Q) and such that

WV O, ) = (VEn)(O,")llc
I(Vg;)(0,-) = 8;(Ven, (O, )l
I(VR;x)(©, ) = 0ix(VEa )(O, )l

all tend to zero as k T oo, where now || |2 is the norm in £2(Q). But this is exactly
what is claimed in assertion (1).

If merely f € H%(R), then the sequence ®, € CZ(R) exists by definition of H2(Q).
The proof of assertion (ii) is quite the same and omitted B

Corollary. For f € H*(Q) N H{(Q) there is E C M with u(E) = u(M) such that
© € E implies that (V)(©,-) € H3 N H§  and that assertions (2) and (3) of Lemma
3.1/(3) hold.

Lemma 3.2. Let h € C°(Q) be L-periodic in = and y, and let f € L%(Q). Then
there is E C M with u(E) = u(M) such that © € E implies that (V f)(0, "), (Vhf)(@ -)
€ L*(Q) and that R(V )(©,") = (V'Rf)(O,").

Proof. It is based on (V®h) = h(V®) for € CF() and similar to the above but
simpler and omitted B

The above setting extends straightforwardly to the vector-valued case. As “fiber”
space we take N = (£?(Q))%. The direct integral H* = f, H"dy is now the set of
measurable mappings ® = (®;,®2,$3) which map M into H" according to $(0) =
(®1(0), 2(0), ®3(0)) € H" for a.e. © € M such that

3
/ 12(O)3erdu = 3 / 125(0) | du < oo
M oM

and with the scalar product (-, -)%- defined in terms of {,-)n~ in the obvious way. A
unitary mapping U from (£2(Q2))* onto H* is then given by

Ud =(V®,,Vd,, Vds) (3.5)

with V' as above. There are obvious extensions of Lemmas 3 and 4 and the Corollary to
the vector-valued case, the most important being the lemma below in which A, Ty and
Ae are the operators in Subsections 1.4 and 2.3, respectively.
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Lemma 3.3. Let f in (H*(Q) N HY(R))® or in (HY(N))®. Then there is EC M
with w(E) = u(M) such that © € E implies:

(1) (UF)(®,-) € (HE NHY )
(UAf)(©,) € (£X(Q))° and (UAS)(O,-) = Ae(Uf)(O,").

(i) (UTo£)(0,") € (£*(Q))* and To(Uf)(O,-) = (UT£)(O,").
Proof. It follows immediately from Lemmas 3 and 4 and the Corollary B

Next we come to the direct integrals of bounded and unbounded operators, notions
discussed at length in [2] for the bounded selfadjoint case, in [8] for the unbounded case
and in (12, 13] for semigroup generators. Here we stress the definitions, but rely on (2,8,
12, 13] as for as results are concerned. A family {B(©)}eem C L(H",H") of bounded
operators is measurable, if (g, B(-)f)» is measurable for all f,g € H". If we have that
[|B(9)||30 < C for a.e. © € M for some positive constant C, then a bounded operator
Be L(H*,H*) exists according to

(B¢)(©) = B(O)p(©) forae®€c M and o€ H*. (3.6)

That By € H* is shown in [2, 8]. We write B = Sy B(©)dy (for details see [8: p. 281]
and {2: Subsection II.2]). Next let {A(©)}eecm be a family of linear operators on H".
An unbounded operator A = f,, A(©)du on H* is defined according to

Definition 3.1. ¢ € dom 4 if and only if:
(i) ¢(©) € dom A(O) for a.e. @ € M
(ii) © — A(O)p(O) is measurable
(iii) [y, 14(©)p(O)|5dps < co.
For such ¢ we set (Ap)(©) = A(O)p(O) for a.e. O.

Remarks. There are cases in which in Definition 3.1 condition (ii) is a consequence
of condition (i). Operator families for which this is the case will be said to have property
(M). Such is, e.g., the case if the A(©) are semigroup generators such that (A, 00) C
P(A(©®)) (© € M) for some Ag and if there are A € (A\g,00) and a positive constant C
such that .

(i) (A(-) — A)™" is measurable on M

(i) ||(A(®) - A) oo £ C for all @ € M.

For a proof see [12: Lemma 4] and [13: Appendix]. If in addition the A(©) are selfad-
joint, then A is selfadjoint (see [8: Theorem XIII.85]). It may be usefull to take parity
into account by setting

My = (£5(Q) x L3(Q),  Hy=(Li(Q)? x L3(Q)

3.7
H;:/ Hdy, ’H;:/ H'dp. (37
M M
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One then has the decomposition H = Hg @ M. Recalling L*(Q)* = L2 @ L? i
Subsection 1.4 one then has that U maps L2 and L2 -unitarily onto H; and ’H‘ respec-

tively. Likewise, recalling C (Q) and LZ(Q) in Subsection 1.5, and EZ(Q) and £%(Q) in
Subsection 2.4 we set

H' = (LX(Q)) x £L2(Q),  H" = (£X(Q))* x {0}
e _ Ju : e v (38)
H —/MH d.p, ‘H.—/M’Hd,u.

We then have the decomposition H* = H* & H*, and U maps L? and L2 unitarily onto
H* and A respectlvely

Now we come to the main result of this section, whlch serves as basis for the next
section, but which has independent interest. First we note that every linear operator L
on (£%())® has a unitary transplant L = ULU™! on H*.: Next we recall the operators
A, Ty and P in Subsections 1.4 and 1.5, and Ae, Pe in Subsections 2.3 and 2.4. Let
{Te}e be the family of unbounded operators on (£?(Q))?, which are formally given by
(1.3) but supplied with the stipulation dom Te = (H§)3. The result in question then is

Theorem 3.1. The equation P(A + Ty)P = [,, Po(Ae + To)Po dy holds.

The proof of this theorem will be given in Subsection 3.2, assuming the following
lemma, whoose proof is relegated to Subsection 3.3.

Lemma 3.4. The equations P=P= fM Pg du are valid.

3.2 Proof of Theorem 3.1. For simplicity we write (-,-) and || - || for {-,-)2¢ and
|| - 2=, respectively, if it is clear to which space the symbols refer; likewise with [
instead of [,,. Next we stress that the operators A(©) and B(Q) above need only be
defined for a.e. © € M. In fact all families below are defined at least on M, i.e. M
minus the corners. For © a corner we might set, e.g., A(©) = 0 or A(0) = 1 we leave
this open

We start w1th some remarks and consider a family {A(e)}eeM of operators on H"
which in all cases of interest has property (M), although .the statements below hold
without this property. The operator A= J A(©)dp is then defined via Definition
3.1. We also let {B(©)}eem and {C(O)}eem be two measurable families of bounded
operators on H" such that, for some constant ¢, |B(©)]loo < cand ||C(O)]oc < ¢ for a.e.
O, giving rise to the bounded operators B= J B(©)du and C = J C(©) du; property
(M) is then automatically satisfied (see (12, 13]). We also set

G= /A(@)B(e)d,;, A= / B(©)A(®)dp, L= / C(0)A(©)B(©) du.

Straightforwardly from the definitions we infer

~ ~

ABCG, ‘“HcBA' CABcI. ' (3.9)
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We also note the implication

-~

A(©) are symmetric ==>. A is symmetric. - (3.10)

Next let A be a semlgroup generator on a Banach space X and T an opera.tor which is
A-bounded with relative bound zero (see [3: p. 190]). Then

A+T is a semigroup generator on X

(see [7: p. 80] and [3: p. 190]). We also have the following maximality property.

Proposition 3.1. Let A and B be sengroup generators such that A C B. Then
A=B.

Proof. We have to prove dom B C dom A. Fix A € p(A4) N p(B), pick z € dom B
and set (B — M)z = y. Then there is z € dom B with (A—- Az =y. Since A C B,
(B — A)z = y holds. By unicity z = z € dom 4, proving the claim il

Similarly, if A is selfadjoint and B D A a symmetric extension, then A = B since A
is maximal, i.e. has no proper symmetric extension. We now apply these remarks to the
“Dirichlet”-operators A and Ag. First fix f € H”. Then Ag'f can be expressed compo-
nentwise by Fourier series with respect to the eigenfunctions e,gv; of Ag, from which
the measurability of Ag' for © € M is easily deduced. Since o0(Ag) C (—00,0] (© € M)
we have that the family {Ae}eeam has property (M) by the remarks in Subsection 3.1.
Also, since the Ag are selfadjoint, A= J Ae dp is symmetric by (3.10).

Next pick ¢ € dom 4, i.e. ¢ = Uf for some f € dom A, and set 4 = UAS. By
Lemma 3.3, Aecp(O) ©4(©) for a.e. © whence ¢ € dom A and Acp = Agp. That is,
A CA and thus by (3.10)

Y

A= / Ae du is selfadjoint and A=A ' (3.11)

Similar remarks apply to Ty (see Subsection 1.4) and Te, given by (1.3) but with
domTe = (H})?. Property (M) of the family {To}oem reduces via components to
property (M) of the families {9;(©)}e on H' = L?(Q), where 9;(®) = 8; on its domain
H{. This in turn is easily proved by Fourier series arguments. Next, let ¢ € dom fo,
i.e. ¢ =Uf for some f € domTp = (H'())* and put o7 = U(To f). By Lemma 5 we
have that ¢7(0) = Teyp(O) for-a.e. ©, whence ¢ € domT and Ty = Ty, i.e.

T5 C ’fo, - where T = /Te du. (3.12)

The last remark is provided by -
Propoéition 3.2. The following assertions are true. -
() If fe (H'(R)? x H() and f € E, then divf = 0.
(i) If f € (HY)? x HY  and f-€ Eo, then divf =0, 0 € M.
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Proof. In case of (ii), f = Pof = f — Vp for p € H% with Ap = divf, whence
divf = 0. In case of (i), we have that f = (a,b,¢), witha = 220 Ajpj, b= Ejzo Bj;
and ¢ = ZjZI C;%; subject to Proposition 1.2. By Proposition 1.7, (f, Vp) = 0 for all
p € H' (). Testing this relation for all p’s of the form p;p; with p; € H!(R?) (; > 0)
we infer straightforwardly via Fourier transforms that 0, 4; +8,B;— A;/ZC,- =0(G>1)
and d; Ao + 6,,30 =0,ie divf=0 [ ]

As a consequence we have that dom A, = domANE and domA,(©) = domAe N Ee
whence

A,P = PAP and A,(@)Pe = PeAePe.
We now come to the proof of Theorem 3.1 proper which splits into propositions.
Proposition 3.3. The equation PAP = J PoAe Pe dy s valid.

Proof. The operator PAP is selfadjoint: PAP = A, on E and PAP =0on E;.
By the same reason, PgAePe is selfadjoint. From Lemma 3.4 and clauses (3.9) and
(3.11) we infer

PAP=PAPC / Po Ao Po dy.
Since PgAe Po is selfadjoint and by a remark above, fPeAePe dyp is a symmetric
extension of the selfadjoint PAP, whence by maximality they coincide il

We now combine Proposition 3.3 with Lemma 3.4, and clauses (3.9) and (3.12) in
order to infer

PAP + PT,P C /PeAePe dp + / PeToPo dps. (3.13)

We can replace "C” by "=" if we recognize the right-hand side of (3.13) as a semigroup
generator. In fact

Proposition 3.4. [ PoTePedy is ([ PoAePe du)-bounded with relative bound
zero.

Proof. Set provisionally
Le = PeAePe, Hg = PgTePo

L= /Ledp, H= /Hedp.
Pick ¢ € dom L. By this assumption we have that )
Pop(©) € (H3 N HE ,)* for ae. © and /||Le<p(@)||2dp < co. (3.14)

Next recall the second corollary to Theorems 2 and 2* and fix € > 0. By assertion (ii)
in this corollary and clause (3.14) we have for a.e. ©

IHop(O)II” < ellLow(O)II” + Kellp(O)]I* (3.15)
for a positive ©-independent constant K.. By integrating (3.15) we get

IHel* < elZg|* + K. 8II°
with dom L C dom H included by virtue of (3.14)
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By this proposition and the remarks prior to Proposition 3.1 we have that L+Hisa
semigroup generator. By the second corollary to Theorem 1.1 1 we recognize PAP+PTyP
and hence PAP + PT,P as a semigroup generator having L + H as an extension. By
Proposition 3.1 they coincide:

PAP + PTo /PeAePe dp + / PeTg Pe du. (3.16)

Thus Theorem 3.1 reduces to

Proposition 3.5. The equation

/PeAePe du+/PeTePe du = /Pe(Ae+Te)Pe du

holds.

Proof. We retain the notations Le, He and E,ﬁ in the proof of Proposition 3.3
and set also

Be = Pe(Ae + Te)Pe and E = /Bed/.t.
In a first step one shows the implication
¢ €domLNdomB = (E-}-I?)cp:E(p.

The proof of this amounts to evaluate the _definitions straightforwardly; we may safely
omit it. It remains to show dom L = dom B. One half of this is provided by

dom L - dom B.

But this is settled by (3.15) which permits us to infer ¢ € dom B from ¢ € domL. It
remains to prove

dom B C dom L. (3.17)

Thus fix € > 0 small and let K, be such that (ii) in Corollary 2.2 holds. Next let
¢ € dom B, whence Pgy(0) € dom Ag for a.e. © and

1Bl = [ 1Pe(4e +To)Por(®)]d < oo (3.18)
By elementary reasons we have that

ILew(©)I1” < 2l Bew(0)II* + 2| How(O)|- (3.19)

By our choice of ¢ and K., inequality (3.15) is available. Thus we can insert the right-
hand side of this inequality for |He@(®)||? into (3.19). Since € > 0 is small, we get
after a rearrangement of terms

(1 - 2¢)ILew(O)I” < 2| Bew(O)|” + 2K.[|4(0)]1*. (3.20)

By (3.18), the integral over the right- -hand side of (3.20) is finite, and so is the integral

over the left-hand side, proving ¢ € domL. Thus (3.17) holds whence the proposition
follows
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Theorem 3.1 has a variant, whose proof is virtually the same. We now assume that
the equilibrium solution (u;,u2,u3) which determines Ty formally via (1.3) satisfies

u),us are evenin z and uz is oddin z. (3.21)

Next recall the spaces Hy = (£3(Q))* x £3(Q) and M} = (L1(Q))? x L1(Q), giving
rise to the direct integrals H; = [H; du and M = [H; du. As noted earlier, 4, 4,
and P leave L? and L2 invariant while Ae, A,(©) and Pe leave H; and M}, invariant.
Based on (3.21) it is easily checked that Ty (with domTp = (H'(Q))%) leaves L? and
L? invariant, while Te (with domTe = (H})?) leaves H}, and H,, invariant. Since the
unitary U maps L2 onto H; and L% onto H; we can restrict the arguments leading to
Theorem 3.1 to the pairs L2 H; and L2 H:, respectively. In order to state the variant

let DY be the restriction of the linear operator D to L2 or M according to the case;
likewise with D*®.

Theorem 3.1°. The equation UIPI(AS + T3 )PI(U?)! = [PE(AY + T§)PS du
holds, likewnse with u for g.

Remark. Another way to express Theorem 3.1* is
(P(A + To)P)’ = / (Po(Ae + To)Po) du. : (3.22)

The relationship expressed by Theorems 3.1 and 3.1* is in our view fundamental in that
they relate, via unitarity U, the physical operator P(A + To)P on (£2(R2))® with the
©-periodic objects Po(Ae + Te)Pe via the concept of direct integral. How to exploit
this relationship will be seen in the next subsection.

Since the equations in Theorems 3.1 and 3.1* remain invariant under multiplication
with a scalar v > 0, we can replace A by v A, since the factor v may be put into the
equilibrium solution (uy, uz,u3) defining Tp.

3.3 Proof of Lemma 3.4. The proof of Lemma 3.4 is based on Lemma 3.1 and three
remarks. First, since P + @ =1d and Pg + Qe = Id it suffices to prove

Q=Q= /Qe dp. ‘ (3.23)

The measurability of the family {Qe }oecm is an easy consequence of the Fourier series
representation in Subsection 2.4, but it is also contained in the arguments below and is
not further discussed. The thlrd remark is given by

Proposition 3.6. There is a set S C (H'(Q))2 x H}(Q)) which is dense in (L3(Q))?
and such that f € S implies

Ap=divf and Qf=Vp for some pe€ ﬁZ(Q)

Proof. By the arguments in Subsection 1.5 § may be taken as the union S; U S,
where

(2) & S (HY (@) N 2XQ))* x HY(®)
(b) Sz is the set of f = (Ao, Byo,0) with A, B € H*(R?)

whose Fourier transforms A and B have compact support in R? \{o}m
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By Proposition 3.6, é = Q if they coincide on the set US. Thus the proof of (3.23)
and hence of Lemma 3.4 reduces to

Proposition 3.7. If f € S, then QUf = QUY.

Proof. Let f € S. By Proposition 3.6, f is in (H'(Q))? x H}(Q), and there is
p € H%(Q) such that
Ap=divf and Qf = Vp. (3.24)

By (3.5) and a repeated application of Lemma 3.1 we find a set E C M with p(E) =
p(M) such that © € E implies

(UF)O, e (Hé)z x Hé,o (Vdiv f)(©,-) = div Urxe,)
) wd  V(VR(O,)=U(VRO) (329
VPO.) € o A(VP©,) = V(ap)©, ).

Exploiting the commutativity expressed by the right three equations one finds by
straightforward computation for © € E that

div (UF)O,) = AVPY®, ). (3.26)
By the first and second relation in (3.25), by (3.26) and Subsection 2.5 we infer
Qe(Uf)O,) = V(Vp)O,). (3.27)

On the other hand, since QUf = UQf, and by exploiting once more the commutai:ivity
in (3.25) we find

(QUS)®, ) = U(Vp)(O,-) = V(Vp)(O,-). (3.28)
Thus by (3.27) and (3.28)

Qo(Uf)O,) = (QUS)O,) (O €E)

whence éUf = @Uf by definition il

4. Spectral relations

4.1 Holomorphic considerations. If we would be generous we would claim that,
with Theorems 3.1 and 3.1* at disposal, we can proceed as in [12] in order to infer the
validity of (B) and (C) in Section 1. While the situation is not so simple, we intend to
restore it such that the results in {12] become applicable.

In order to simplify the presentation we assume that the equilibrium solution which
defines Ty via (1.3) is in L}, i.e. satisfies (3.21). In this case, the spaces L? and L2 are
invariant under Po(A,(©) + Ty)Pe, what allows us to treat them seperately, allowing
some simplifications. We treat the difficult case L"g', contenting us with some remarks
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as to LZ. Our first aim is to extend Pg and A,(©)~!Ps into the complex. To this
end we set henceforth v = v(a, ) = @* + #? and replace the complex domain M, (see

Subsection 2.3) by a smaller one as follows. With ©g € M, we associate a complex
spherical neighbourhood Ug, so small that

(i) ueo g Me.
(ii) [a%v7Y), [@Bv=1, |B?v ™| < £ for © € U, and a, B € Z.
Note that in case of (ii), only a, 8 € {0,—1} have to be considered. We then set

M. =Uelle (O € M,). (4.1)

The purpose of the shrinking M, — M, is to keep the factor v~} under control.

Lemma 4.1. There are holomorphic families {Re}ee/ﬁ and {Pé}eeﬁ of boun-
ded linear operators on L such that Py = P§ and Re = A,(©)~'PS if @ € M,.

Remark. As to holomorphy we refer to [3: pp. 365 - 366] and the remarks in [12).
Since weak, strong and uniform holomorphy coincide, we simply speak of holomorphy.
The proof, which yields more information than provided by the lemma, is routine but
tedious in detail and may be skipped in first reading. We do not formalize every step
but content us with an outline.

We first aim at Pg and recall the factor m(©, ) (see (2.4)), the €ap (see (2.5)) and

S,S' (see Subsection 2.3). Next we fix f € £2 and © € M,. The Fourier coefficients
with respect to e,g7; are given by

fapi = (€apTj, flo = (€apTiym(O,-)fo. (4.2)

If we allow © € M., then (4.2) still makes sense and it follows that the family of
mappings {M}eem, such that M f = {fap;} is a holomorphic family of bounded
operators from £2 onto S, which has a bounded holomorphic inverse (M§)~!. Likewise
we introduce holomorphic families {N§ }oem., {M&}oem. and {NS}oem, which per-
form analoguous tasks but: N§ with respect to eqagp;, and for f € £2, Mg with respect
to eqgo; and N§ with respect to eqg7;. These mappings extend to the vector case, i.e.
for f = (a,b,c) in L: we set

Mof = (Mga, M3, M) € °
(43)
Nof = (N3a, Ngb, Ngc) € 57 x .

{Me}eem, and {Ne}eem, are holomorphic families of operators from Lg onto S% and

5% x ', respectively, having holomorphic inverses Mg! and Ng'. We note that there
is a ©-independent unitary map W from $? x.S' onto S® such that

WNe = Me (© e M,). (4.4)

Next we consider the projections Pg and Qe = 1 — Pg described by (2.24). The
restrictions P§ and Q3 to L? are obtained by omitting the ¢4 in the first two, and
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the ¥;;41 in the last of the series in (2.24), resulting in expansions in terms of esgp;
and eqpm;, respectively. From this remark and an analysis of (2.24) we extract sets of
functionals P4, and Q.g; (1 20,i=1,23)and Sap; (j > 1) for a,B € Z having
property (P) of Definition 2.2, which describe P§ as follows. Given f = (a,b,c) in L2
and © € M,, let
with

{Aagi} = N§A,  {Bapj} = N&B,  {Cag;} = N&C.

Let also @ = Nda, b= Ndb and ¢ = N&c. Then

=2
a
Aa,gj—y P.si(©,a,b,c)+ — ﬂ B,(@_,_,c)+ ﬂ)(G) a,b,c) (4.5)

and likewise with Bagj, Q;ﬂj and Cog; = Sap;(0,a,b,¢). That is we have a description
of P§ in terms of functionals similar to that of A (O) ! via Theorem 2. If we drop the

condition © € M., i.e. admit © € M, and let a,b and ¢ range over 5% x §', then we see
that the right-hand side of (4.5) defines a holomorphic family {Pe}e of bounded linear
operators from 52 x §’ into $% x S’ which in case that © € M, is tied to P§ via

Pi{Nef=NePsf (©0€M., felL?) (4.6)

from which we extract the holomorphy family {P§}e of Lemma 4.1 according to
Py =Ng'PNe (0 € M.). (4.7)
Next we come to A,(©)~! on E{, i.e. to its description in Theorem 2.1. Here too

we can look at the systems (i) - (3ii) and of Theorem 2 as describing a holomorphic
family {Re}q¢ 57, of bounded operators from S3® to S3, which is tied to A,(©)7!

follows: if © € M, and f = (a,b,c) € E}, then
) A,(©)7'f = M3g'ReMof. - (4.8)
The holomorphic extension from M, to /’\;L of A,i@)_ng is then given by
Ro = M3'ReWE{Ne (O € M,) (4.9)

where (4.4) and (4.7) has been used.

Next we discuss formal properties of the extensions Re and Pg, refraining thereby
from an analysis into elementary steps. An examination of (1) - (ii1) in Theorem 2.1 on

the basis of Definition 2.2 shows that given f € Lg, Me'lﬁeMef is in (H?(Q))?® for
O¢ /We, and that N v :
IMg' RoMe fll 1z < Clifllca ©(410)
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for some positive ©-independent constant C. The procedure in this connection is to
look at the appearing Fourier series, e.g. Y AsgjeqsTj, not as an expansion eqg7;,
which for complex © € H, is not an orthonormal system, but rather as an ordinary
Fourier expansion in €,47;, i.e. of the form # Y Aspj€apT), and to apply to this series
the arguments in Proposition 2.3 and the Corollaries to Theorems 2.1 and 2.1*, treating

thereby m and —'1; as a smooth bounded multiplier. This remark also applies to the
situations below.

Let I be the 3 x 3 unit matrix and IA the operator acting on its domain (H?(Q))?
componentwise like A. By termwise differentiation of the appearing Fourier series, one
recognizes that {IAMélReMe}eG/q‘ is a holomorphic family of bounded operators
on L:. Since a product of holomorphic factors is again holomorphic, we have that
{PéARe}eeﬁ, is a holomorphic family.

Proposition 4.1. The equalities
(i) (Pe)* = Pg
(ii) P5ARe = P§

are true.

Proof. We note that a scalar holomorphic function f on ﬂ, which vanishes on M,,
vanishes on all of H,. This property is inherited by holomorphic families of bounded
linear operators {Be}ee/\?,' Now assume © € M,. According to Lemma 4.1, Rg =
A,(©)~1P§, while P = P§. The range of A,(0)7'P§ is dom A,(©)N L%, ie. (H3 N
Héyo)a, div = 0 intersected with Lg. But PA, restricted to dom A,(©), coincides with
A,(©), whence

P5ARe = A,(0)A,(0)'P§ =P =P (©€ M) (4.11)

By the preliminary remarks, this extends to all of He, proving assertion (i1). Assertion
(1) is treated likewise ll

Next we consider the operator Ty, given by (1.3), supplied with dom Ty = (H%(Q))3.
We recall assumption (3.21), according to which T leaves L"; invariant. By decomposing
the action of Ty into elementary steps, one is ultimately led to recognize {I8;Re}e,
{IoyRe}e and {I8,Re}e as holomorphic families of bounded linear operators on Lg,
with values in Lg in the first two cases, and in L2 in the third one. The procedure is
again by termwise differentiation of the Fourier series in Theorem 2.1. Since smooth,
©-independent factors preserve holomorphy, we obtain

Proposition 4.2. {TyRe}ecm, and {PéT"Re}eeﬂ are holomorphic families of
bounded operators on Lz.

4.2 Resolvents. In [12], the notion of a strongly holomorphic family of unbounded
operators (see Rellich [9]) was used in the proofs of the basic theorems. This notion
requires that all operators have the same domain of definition. This is definitely not
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so in the present case, what forces us to use the more general notion of a holomorphic
family in [3: p. 366).

In order to study resolvents from this point of view we first note that by Lemma
4.1,

Qo=(1-P5) (O0eM.) (4.12)

is a holomorphic extension of Q% into /‘AV,. We now fix 0 # 7 € R arbitrarily for the
moment and consider the holomorphic family

Vo = Po+ P5ToRo + Qs  (© € M,). (4.13)
The operators, in whose resolvents we are primarily interested are
Ho = P5(As(©) + To)P§ (@€ M,) (4.14)
but it is advantageous to study instead the resolvents of
Ho = Ho +7Q% (0 € M.). (4.15)
For simplicity of notation we have suppressed the 7 in I?e, Hg and Ve. Note also that
0= P5Q6o = QoPb = ReQo =QoRe (0 € M,) (4.16)

holds by holomorphic extension from © € M., by virtue of Lemma 4.1. By Lemma 4.1,
Proposition 4.1 and the relations (4. 16) a simple computation shows that for © € M.,
Ve admits the factorization

Vo = Ho(Re + Qo) (0 € M,). (4.17)

Note that no holomorphic extension of Hg into /;4_‘, is defined, since no such extension
is defined for A,(©). We also note that for © € M, we have the implication

AT = {/\ € I’Ee(ﬁe) & Ae pL:(Hé)}. (4.18)

Lemma 4.2. Let O € M,, Ao € pge(ﬁe) and A\g # 7. Then there are complez
neighbourhoods U and V of Oy and Xg, respectively, with U C M, such that (Vo —

A(Re + Q'G))_] ezists on ng for © € U and A € V, and depends holomorphically on ©
and A.

Proof. We recall the relations (4.16) according to which
(Ps +Q6)(Ro +Q6) = (Ro +Q6) (0 € M,). (4.19)
Using the factorization (4.17) and (4.19), we get the identity

Vo — M(Re + Qo) = (He — A(Po + Q5))(Re + Qb) (4.20)
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for © € M,. For © € M, we have Re = A,(©)"!'P§ by Lemma 4.1 what implies that
Re, restricted to E§, maps E§ one-to-one onto dom A,(©)NLZ, ie. domA,(O)N EY.
This in turn implies that Reg + Qg maps L2 one-to-one onto 1ts range

(dom A,(©) N EY) x (L} © EY). (4.21)
On the other hand it follows from the definitions (4.14) and (4.15) that dom He and
dom (He — A) are given by (4.21). From our assumptions on @, Ag and 7 and according
to (4.18) we also have that He, — Ao maps its domain (i.e. (4.21)) one-to-one onto L.
This, together with the remark previous to (4.21) and by clause (4.20) implies that
Ve, — do(Re, + Qp,) maps L} one-to-one onto itself. We now invoke [3: Theorem
1.3/p. 367) accordmg to which there are complex neighbourhoods & and V of Qg and

Ao, respectively, with & C H,, such that the inverse of Vo — A\(Re + Qb)) exists for
© € Y and A € V, and depends holomorphically on © and A Nl

Corollary. Let Ao, Q¢ and 7 satisfy the assumptions of Lemma 8. Then there is a
real nesghbourhood U' 5 Oy with U' C M., and a complez neighbourhood V > A\¢ such
that (He — \)™! ezists (i.e. A€ pr:(He)) onU' x V and is simultaneously real analytic
in © and complez analytic in A.

Proof. By the assumptions, Lemma 4.1 is applicable, giving rise to complex neigh-
bourhoods Uy 3 ©¢ and Vg 3 Ap having the properties of the lemma. Set U’ = Uy N M.,
and let © € U’ and A € Vy. From the lemma, the factorization (4.20) and the remark
prior to (4.21) we infer that (He — A)™! exists as a bounded linear operator on L? and
is given by

(He = A\)™! = (Re + Qo) (Vo - f\(Re +Q6)) ™ (4.22)

The statement then follows from Lemma 4.1 i

Remark. The invoked Theorem 1.3 in [3: p. 367] is expressed for one complex
variable only, but a technical check shows that it extends straightforwardly to several
variables. We conclude with a statement on compactness.

Proposntlon 4.3. Let © € M,. Then A,(©)+ PoTy has compact resolvents on Ed

Proof. We consider E}. By Theorem 2.1 we have
14:(©) flluz < Cliflle:  (f € E§)

for a positive ©-independent constant C. Since Q, i.e. (0, L)? x (—— +3) has dimension
n = 3, compact embeddings (see [1: p. 144]) imply that 4,(©)7! is compact on E§.
It then follows from the resolvent formula that all resolvents of A,(®) (on E}) are
compact. Next we recall the Corollary to Theorems 2.1 and 2.1* according to which
PTy, restricted to EJ, is bounded relative to A,(©) with relative bound zero. By [7:
p. 80] we have that A G R sufficiently large is in the resolvent set of A,(©) + P§To and
that its resolvent has the form

(A:(©) + P§To - 2)™" = (4,(0) - ) ' B(1,0) (4.23)
with B(A, ©) bounded on E}. Since 4,(®) has compact resolvents on E}, the com-
pactness of the left-hand side of (4.23) follows. For arbitrary A’s in the resolvent set of
As(©) + PST, (on EY) the claim now follows from the resolvent formula. The proof for
Eg via Theorem 2* is the same ll
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Remark. Formula (4.23), given explicitely by [7: Formula (2.3)], and the ©-
independence of the constants C and K, in Theorems 2.1 and 2.1* and their Corollaries
imply the existence of constants v and C’' > 0 such that :

[(As(®) + PETo - \) ||, <C' (O €M, A2 7). (4.24)

4.3 Local spectral relations. We now come to a first result relating the spectrum of
As(©) + P§T, (on Ed) with that of A, + P9Tp (on E,); we thereby use material from
[12].

We recall that M is M = [0, 27]? minus the corners, He and He are as in (4.14) and
(4.15). By fM -dp we always denote a direct integral with fibre space Hg and values in
M, (see Remarks prior to Theorem 3.1%).

Theorem 4.1. Let 0 # v # A. If A is in the spectrum of Heg, for some Q¢ € M,
then A i3 in the spectrum of fM Heg du. )

!
Corollary. Let, for some ©g € M, X be in the spectrum of I?e,, (on Ego). Then
A 13 in the spectrum of As + P9T, (on Ey).

Proof. Fix 0 # 7 # A. By our assumption and (4.18), A is in the spectrum of He,
and that of

| (P(A©) + To)P8 +7Q8) dis = [ Hod (425)
M M
by Theorem 4.1. By Theorem 3.1* and (4.25), fM Hg du is unitarily equivalent to

P (A, +To)P? + 7Q* (4.26)

and hence A is in the spectrum of the last operator. Since A # 7, we have by a remark
similar to (4.18) that A is in the spectrum of P9(A, + To)P? (on E,), proving the
corollary Il

Theorem 4.1 is a consequence of two facts, the first of which follows directly from
(4.24): Given 7 # 0 there are positive constants C and <o with 7y # 7 such that

(Ho =)'l <C  for A>7, ©€ M. (4.27)
Below, a set U C M is relative openif U =U'N M for some open set U'. The other fact

18

Lemma 4.3. Let 0 # 7 # Ay and assume that, for some Qg € M, Ao 38 in the
spectrum of He,. Then there is a relatively open neighbourhood Uy of ©p, a mapping A
from Uy into C and a measurable mapping o, mapping © € Uy into dom He such that:

(i) A(©¢) = Ao, and X is continuous at O
(il) Hop(©) = A(©)p(©) (O € Up)
(iii) There are constants a,b > 0 such that a < ||(O)]| < b for all © € Uy.
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The proof of Theorem 4.1 via (4.27) and Lemma 4.3 is by purely measure-theoretic
reasoning and is given in [12: Proof of Theorem 1]. We now rephrase Lemma 4.3. First
we note that by Lemma 4.2, its Corollary and (4.27) there is a complex neighbourhood

Uy of O, (U C HE) and a holomorphic family of bounded operators { Fg}oeu, such
that
Fo =(He —7%)™' for @€y N M, (4.28)

with 7 as in (4.27) and Op as in Lemma 4.3; we denote the complex extension Fg also
by (He — 740)~'. Lemma 4.3 is easily seen to be equivalent to

Lemma 4.3%. Let the assumptions of Lemma 4.3 hold and set po = (Mg — 7o)~ ".
There 1s a relatively open neighbourhood Uy of Og, a mapping § from Uy into C and a
measurable mapping ¢ from Uy into Lg, defined for all © € Uy, such that:

(i) (Ho —10)7'¢(0) = (1o + 8(0))¢(©) (© € Up)
(ii) 6(©¢) =0 and § is continuous at Oy
(iii) a < ||p(O®)]| £ b (O € Up) for some constants a,b'> 0.

In order to investigate Lemma 4.3* we note that according to (4.13) and (4.14) we
have

(Ho, — 710)™" = (Ho, — 70) ' P&, + (T — %)~ Q%, O (4.29)

where (He, —70)~"! is compact on E§,. Now pg is in the spectrum of (He, —70)~"; since

po # (T—70)~! and by (4.29), o is an eigenvalue of the compact operator (ﬁe —v)7t,
which we denote temporarily by T. By the spectral theory for compact operators there
are closed subspaces £ and N of E'g with dim£ = N < o0, a basis {ej}j=;,. n of £
and functionals e] € (E§ )" (j < N) such that:

() LON = E},
(ii) £ and A are invariant under T — pq
(i1i) The restriction of T — o to £ is idempotent (i.e. (T — po)" = 0 for some n)

(iv) The restriction of T — po to N is boundedly invertible, i.e. maps A surjectively
onto N

v) IffEEé , then f € A if and only if(e;,f) =0 (=1,...,N).

Now (He, —70)~! (denoted temporarily by T) 1s not compact but due to (4 29) inherits
the above structure. That is, closed subspaces L and N of L2 with dim £ = N, a basis

{€;};<~n C L and functionals & T € (L3)" are defined by:
(@)L=
(BYN =Neo(L2oE)
(Mej=¢ (G<N)
(B z=z+ywithz€ B andye L}O EY, then €}(2) = €}(z) = €}(z).
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The objects E,/V and €j, €} then satisfy properties (i) - (v) above with respect to To - po
and L:. An inspection of the proof of Lemma 8 (i.e. Proposition 4) in [12]) shows that
this proof requires only the above structure plus the analytic extension property (4.28)
in order to carry out the perturbation theoretic arguments. This proof therefore carries
over to the present situation in a verbatim way and provides, as it stands, a proof of
Lemma 4.3* and hence of Theorem 4.1 and its Corollary il

4.4 The corners. While Theorem 4.1 has to do with ©’s in M, the corners of M need
special consideration. It follows from Theorem 2.1 in case of A,(©)~! and from (4.5) in
the case of pressure that if the integers @, 8 and j which label the Fourier coefficients,
assume certain specific values, i.e. j = 0 and «,8 € {0,—1}, then the corresponding
Fourier coeflicients are affected by singular factors, which in case of a = 0 and B = 0
are of the form

@?u_', . G)%u_l, 0,007} where v = ©? +€)§ (4.30)

and with similar factors in the other cases. It suffices to investigatc the case a = =0
since A,(Q) and Pe,Pé are easily seen to be 2w-periodic in M,, ie. if ©9,0, € M.
and, e.g., ©; = Qg + (27,0), then A,(Op) = 4,(0,), Pe, = Pe,, etc. In order to get
rid of the singularities in (4.30), we make the substitution @, = r cos 8 and ©, = rsiné,
where 8 is in a small complex neighbourhood W of [0, 27] while the complex r satisfies
7| < €o for some small €9. The real case is r € [0,€0) and 8 € [0, 27], and we are in M,
if also r # 0. An inspection of Definition 2.2, the representation of 4,(©)~! in Theorem
2.1 and of P§ in (4.5) shows that by this substitution holomorphic families { R(r,8)},,s
and {P!y}, ¢ are defined for |r| < €0 and § € W such that

R(r,0) = A,(0)"'P§  and ' = Pg (4.31)

for r € (0,&0), 8 € [0,27] and © = (r cos 8,7 sinf). In order to study the limiting case
R(0,0) and P;, we fix § € [0,27] and consider {R(r,60)} and {P/,} as a holomorphic
families of bounded operators in one complex variable r, |r| < &g.

Notation. We write © = (r,6) if © = (0,,0,) and ©, =rcosf, O = rsinf. We
also label operators and spaces by r and 8 rather than by ©; e.g. we write PJ, instead
of P§ and R(r,8) instead of R(O).

Next we recall the two equivalent definitions of Eg and EJ, one given by (2.8),
the other provided by Lemma 2.1. We rephrase the version in Lemma 2.1 slightly in
terms of r and 8 (r € [0,€0), 8 € [0,27]). Let, to this end, E?, be the space of fields
(aeoopo, beoo po,0) (recalling po and =5 in (1.16)) such that

acosf + bsin§ = 0. (4.32)
Let also Elo be the £2-closure of the linear hull of all fields

(acagpj,beappj,ceapm;), o+ B2+31>0

. e (4.33)
where vog; = itaa + i8b — ¢\/u; = 0.



820 B. Scarpellini
Then E%LE}, and E%) = E!, @ EY%. From this representation one easily obtains a
mild variant of definition (2.8) of Ef,, namely:

E}y is the L2-closure of all f = (A,B,C) in L%, which are in (Hs0)® (© = (r,0)),
satisfy div f = 0 and (4.32), where

a= (A, eoopo) and b= (B, eoopo)‘ (434)
In the periodic case r = 0, eqp and Hé,o become €445 and H;e,,o, respectively. The

spaces EYy, E%; and E}; have orthogonal projections PY, P% and P}, where P3, (=
P§,0 = (r,0)) has the holomorphic extension P!, into the complex |r] < €0, mentioned
at the beginning of this subsection; evidently P9, = P% + P);. For reference below we
briefly describe P%. Given f = (A,B,C) in Lg, P% f has the form (Aegopo, Begopo,0)
where

A =asin’@ — bcosfsinb and B = —acosfsinf + bcos2 8

with a and b given by (4.34).

For the use below we emphasize the dense set in the above definition of E?,

D,y = {feLZ

We note in this connection (© = (r,8)) the implication

fe(Hgo) (©0=(r6), divf=0
f satisfy (4.32) with ¢, b as in (4.34)

} (r€[0,e0)). (4.35)

r€(0,e0) = dom A,(r,8) =rgR(r,8) = (HE)* N D,y. (4.36)

Proposition 4.4. The relation rg R(0,8) C (H},,)* N Dog holds.

Proof. The substitution ©, = rcosf, ©; = rsinf eliminates the singularities
(4.30) which appear in the assertions (i) - (iii) of Theorem 2:1. An inspection based on
Proposition 2.3 then shows that, after this substitution, the Fourier series given by (i) -
(iii) define elements in (H3)® (© = (,8)) for all |r| < 9. Next, it is easily established
that an f € Hg is in H} 4 if and only if

/ (fO. + 0. f)dzdz* = 0 for all ¢ € H(Q). -
Q A
By this characterization, f € (Hg)® is in (Hg 4)* if and only if
(0:9,f) +(9,0:£/) =0 forall g€ (H'(Q))’
where 9,(u,v,w) = (8;u,9,v,3,w). By (4.35) and (4.36) we have that

(0:9, R(r,6)f) + (9, 0: R(r,6)f) =0 (r € (0,€0)) (4.37)

for f € Lg and g € (H'(Q))*. By the arguments in Subsection 4.1 and the remarks
at the beginning of this subsection, the family {0:R(r,6)}|r|<e, is holomorphic with
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values in L}, whence it follows that each term in (4.37) is holomorphic in |r| < €o. The
left-hand side of (4.37) is thus a holomorphic function which vanishes on r € (0,&0) and
hence on all of |r| < €y, in particular at » = 0. Since f € L? and g € (H'(Q))? are
arbitrary, this proves the first of three conditions.

The other two conditions involved in the definition of Dy, i.e. divR(r,8)f =0
for all f € Lg and the validity of (4.32), with a and b defined by (4.34) in terms of
R(r,0)f, can be characterized in a similar way by expressions which are holomorphic
on |r| < €0 and vanish on r € (0,60). The expressions then vanish at r = 0 implying
that the conditions in question hold for R(0,6)f for all f € L2 W

We now define the “limit” of A,(r,8) asr | 0:
As(0,6) = PJ;A  on dom A,(0,6) = (H2,,)* N Dys, (4.38)

i.e. A4(0,0) is the restriction of P3,A to (HZ,,)® N Dgg. Next recall that Proposition

per
4.1/(ii) rewritten in terms of r and 8 yields

PgAR(r,6) =Py (Ir] <eo) (4.39)

In fact, both sides of (4.39) are holomorphic in |r| < €9 and (4.39) holds for r € (0,¢0)
by virtue of Proposition 4.1, whence it holds for |r| < g9 by analytic continuation, and
thus for r = 0. This fact, combined with (4.38) and Proposition 4.4 yields

A,(0,8)R(0,8) = PZ,. (4.40)

On the other hand, it is easily seen that As(0,8) is symmetric, densely defined on EJ,
and A,(0,8) < —¢ for some € > 0. By (4.40) we now also have that rg 4,(0,68) = EJ,
whence

A4(0,0) is selfadjoint and A,(0,6)"' P$, = R(0,6). (4.41)

Now R(r,8) = A,(r,6)"! P%, r € (0,¢0), is compact by Proposition 24 and R(0,6) as
the uniform limit lim, o R(r,#) of compact operators is compact, whence by (4.41)

A,(0,0)7! is compact. | (4.42)

It remains to show that A,(0,8) + Pg,To has compact resolvents. First note that by the
same arguments in Subsection 4.3 we have that

{ToR(r,0)}ir1<eo is a holomorphic family. o (443)
Next we recall that by Corollary 2.2 we have
IToR(r,6)f|| < el PY Il + K| R(r,0)f|l (4.44)

for r € (0,¢0), f € Lg and a positive r-independent constant K,. Since the expressions
between the norm signs are holomorphic in |r| < g9, we may let r | 0 in order to infer

IToR(0;0)f1I-< ell Po fIl + Ke | R(0, 6)f1I. - (449)
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Now pick U € dom A,(0,8)) and set f = A,(0,8)U in (4.45). We then get
ITod|| < €]l A0, 0)U|| + K |U|l (U € dom A,(0,6)). (4.46)

With this crucial inequality at hand, we can repeat the arguments in the proof of
Proposition 4.3 in order to infer that

A,(0,6) + P§,T,  has compact resolvents. (4.47)

We now have reached a point where we are precisely in the same situation as in
Subsections 4.2 and 4.3 with the only difference that here we have holomorphic functions
R(r,6) and P/y, Q. in one complex variable |r| < o (8 € [0,27] has been kept fixed)
while in Subsections 4.2 and 4.3 one has holomorphic families { R(©)} and {P§}, {Q}

in the complex variables © = (0;,0,), in the complex neighbourhood of some O, € M,.
In all other respects the situation is the same and so we are entitled to draw the same
conclusions.

In particular, Lemma 4.3 holds in the present setting. We recall 1?9 and He in
(4.15) which in terms of r € [0,&0) and 8 are

H.o = P5(A(r,0) + To)P%  and  H,o=H,o+7Q% (4.48)
with 7 € R to be fixed suitably.

Lemma 4.4. Assume 0 # 7 # Ao and A¢ in the spectrum of Hog. Then there
13 o relative neighbourhood U C [0,e0) of 7 = 0, @ mapping ) from U into C and a
measurable mapping ¢ which maps r € Up snto o(r) € dom H,y such that:

(i) A(0) = Ao, and XA is continvous atr =0
(i) Hrop(r) = A(r)p(r) (r € Up)
(iii) a < Jlp(r)ll b (r € Up) for some positive constants a and b.

The proof is again via a variant Lemma 4.4* in resolvent form, whose proof follows
by precisely the same arguments that succeed Lemma 4.3*. The basic conclusion is

Theorem 4.2. Let Ao be in the spectrum of A,(0,0) + PgTo for some 6 € [0,27].
Then Ag 13 tn the spectrum of A, + P9T;.

Proof. Let first § € [0, 7). Fix 0 # 7 € R with 7 # \o. By assumption, Ao is in the
spectrum of Hoe and thus in the spectrum of Hyg since A9 # 7. By Lemma 4.4 there
is a neighbourhood U € [0,£¢) of r = 0 and a mapping A from U into C, continuous
at r = 0 such that A(r) is in the spectrum of H,g for r € U, and A(0) = Ag. We may
assume that A(r) # 7 forr e U.

If0#r €U, then © = (r,6) is in M and A(r) is also in the spectrum of I?,-g,
since A(r) # 7. By the Corollary to Theorem 4.1, A() is then also in the spectrum of
A, + P9T and sincé Ag = lim, g A(r), Ap too is in the spectrum of A, + P9Tp.

In case where, e.g., 8 € [, 37"], let @ =(r,0) and © = O + (2n,27); for 0 #r € U,
©' is a point in M. With ) as above and the periodicity properties mentioned at the
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beginning of this subsection, A(r) is then also in the spectrum of Her, if 0 #Freu.
By the Corollary to Theorem 4, A(r) is then in the spectrum of A, + P9Tp, and so is
/\0 = llmrlo /\(T)

The cases § € [, 7] and 6 € [3F, ] are handled similarly via translations (2,0)
and (0,2~) 0l

Corollary Assume that Ao is in the spectrum of A,(©)+ P§Ty (on EY) for some

© € M or in the spectrum of A,(0,8) + P§To (on EJ,) for some 8 € [0,27]. Then Ao
18 in the spectrum of A, + P9Ty (on E,).

Proof. Via Theorem 4.2 and Corollary to Theorem 4.1 11

The question is if there is more in the spectrum of A, + P97, than provided by
the corollary. The answer is “no”. In order to see this, we let now range 8 over
the whole complex neighbourhood W of [0,27] introduced at the beginning of this
subsection. {R(r,8)},¢ and {P "0}r.6, {Qg ) r,6 are now holomorphic families of bounded
operators on L2 for |r| < €0 and 8 € W. Likewise, by termwise differentiation of the
appearing Fourier series it is easily recognized that {IAR(r,8)},¢ and {ToR(r,0)},6
are holomorphic families on |r| < €9 and § € W. The relevant identities such as (4.39)
above then hold for {P OAR(T 6)},6 in the complex neighbourhood |r| < €9 and § € W
by analytic continuation since they hold for r € [0,£9) and 8 € [0,27] (Proposition 4.1
and (4.39) for r = 0). With {R(r,0)},¢ and {P5,Q\p}r6 on |r| < €g and § € W we
are precisely in the same situation as with {R(©)}e and {P§}e,{Qg}e on O € M.,
what allows us to handle them in the same way and to draw the same conclusions. In
particular we may set

Vie = Plg + PyToR(r,0) + 7Q}4 (Ir] < €0, 8 €W)
H,9 = P%(A,(r,8) + To) PS, (r € [0,&0), 6 € [0,27]) (4.49)
Heo=H, o+ 7Q% (0#7€R)

with 7 a free parameter to be fixed later. We now repeat the proof of Lemma 4.2 as it
stands, obtaining a variant of Lemma 4.2 in terms of V.4, H,s and H,s. We content us
to state a corollary of this variant, which is an immediate consequence of it.

. Lemma 4.5. Let 0 # 7 # Ao and assume that Ao is in the resolvent set of H, g,
for some ro € [0,€0) and 6y € [0,27). Then there are positive 8y and 6, such that:

(i) If |[r —ro| < 6o for v € [0,€0 and |8 — 6| < &, for § € [0,27], then Ag is in the
resolvent set of H,q.

(ii) (Hre — Ao)7! is continuous on |r — ro| < & and |6 — 8y| < &, in the uniform
topology.

Theorem 4.3. Let Ao be in the resolvent set of A,(0,0) + Pj,Ty (on EJ,) for all

6 € [0,27] and in the resolvent set of A,(©) + P§To (on EE) for all © € M. Then Ao
1s in the resolvent set of A, + P9T, (on E,).

Proof. We fix 0 # 7 € R with 7 # A and proceed in two steps.
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Step (S1). Since 7 # Ao and by our assumption we have by clause (4.18), which
holds in the present setting, that Ao € p(Hyy) for all 8 € [0,27]. We now apply Lemma
4.5 with ¢ = 0 in order to find via continuity for each 8, € [0,27] positive constants
8(00) and p(Op) with the property: if r € (0, u(6)) and |6 — 6| < 6(65) for 8 € [0,27],
then A¢ € p(H,g) and

I(Hr = 30) oo < l(Hoss — A0) " loo + 1. (4.50)
By the Heine-Borel theorem there are finitely many 6,,...,8y5 € [0,27] such that 8 €

[0,27] implies |6 — 6;| < §; for some j, where we set §; = §(;) and p; = u(8;). Let also
p* = 3 minj p;. By (4.50) we have

I(Hre = X0)™H oo < max ||(Hos; ~ 20) Mlw+1=C" (4.51)

for r € [0,p%] and 6 € [0,27]. We now label the corners (0,0), (27,0), (0,27) and
(27,2m) by €1, e2, €3 and ey, respectively, and let S; = {© : |© —¢;| < u*}, with S; the
closure. By (4.51) we have ‘ _

l(Ho — X)) 'low<C* for 0#£0€5,. (4.52)
By the periodicity property stressed at the beginning of this subsection we have

(Ho — X0) oo < C* " for e; #0 €5, (j =1,2,3,4). (4.53)

Step (S2). Next note that if © € M\ U;S;, then Ao € p(He) by our assumptions.

Since M \ U;§; is closed, and by the Corollary to Lemma 4.2 we may use a covering

argument similarly to that above, i.e. exactly the same as in the proof of Theorem 2 in
[12], in order to find a positive constant C' such that

I(Ho - %) lw < C'  if @€ M\U;5;. (4.54)
To sum up we have

I(Ho — X0) !loo < max(C',C*)=C  for @ € M. (4.55)

By exactly the same measure-theoretic arguments as in the proof of Theorem 2 in [12]
we then infer

Ao is in the resolvent set of P9(A, + To)P% + v Q9. (4.56)
Since 7 # Ao and again by (4.18) adopted to the present situation we conclude
Ao is in the resolvent set of A, + P’Ty on E, (4.57)

and the theorem is proved B
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Corollary. )¢ is in the spectrum of A, + PgTo‘(on E,) if and only if it is in the
spectrum of Ay(O) + P{To (on E) for some © € M or in the spectrum of A,(0,6) +
P3,To (on Ej,) for some 6 € [0,2n].

Proof. Via corollaries to Theorems 4.2 and 4.3 8

4.5 Comments. Theorems 4.2 and 4.3 give a complete description of the spectrum of
A, + PTj as an unbounded operator on the invariant subspace E, in terms of the spectra
of the ©-periodic constituents A,(@) + PoT on the invariant subspaces E under the
assumption that the L-periodic equilibrium solution ug = (u1,u2,u3) of Navier-Stokes
which defines Ty via (1.3) satisfies

u),uy areevenin 2z and uz isoddin =z. (4.58)

This assumption simplifies the presentation, gives nicer re;ults and admits a more precise
analysis of what happens at the corners of M. However, it has to be stressed that only
minor modifications are needed in order to extend the theory to the case of an arbitrary
L-periodic equilibrium solution. The extension to the arbitrary rectangular case (L;-
periodicity in z and Ly-periodicity in y) is completely straightforward. This might be
true to a lesser extent for lattice cells other than rectangular, since the corners might
cause caution. Below, however, we base our discussion on (4.58). In Subsections (4.1)
- (4.4) we have concentrated on the restriction of A, + PTy to E,, (i.e. A, + P9Ty)
and neglected the other case A, + P*Ty on E,. This neglect is justified since the
case of A; + P"T,y on E, is considerably simpler, in fact much closer to the reaction-
diffusion case in [12]. The reason for this is that all difficulties related to the corners of
M = [0,27]? are absent in this case. A glance at Theorem 2.1* and the formulas (2.24)
which define Qe and hence Pe, P§ and P& shows that the denominators v = @* + B? do
not appear, what makes the considerations in Subsection 4.4 superfluous. For reasons
of space we just state the relevant result

Theorem 4.4. )¢ is in the spectrum of A, + P*Ty on E, if and only if it is in the
spectrum of A,(©) + P4T, on E§ for some © € M = [0,2n]2.

Note that in Theorem 7 the corners of M appear on an even footing with all points
of M. We come back to this point after a brief digression into the periodic case which
was the starting point but retired into the background in Subsections 4.1 - 4.4. In case
of reaction-diffusion systems (see [12]) a simple relationship between the periodic and
the £2-case emerges: a point in the periodic spectrum is a point in the £?-spectrum.
Here, the situation is not so simple. In order to digress on this we briefly recall the
periodic case. With L? = (£2(Q))* and L2, L? as before, we let Epr be the L?-closure
of f € (H:m’o)a such that divf = 0. Then E},, = Epe: N LZ is the L£2%-closure of all
fin L2 N (H}e )® such that div f = 0; likewise with L and Ep,,. Then Epe is the
orthogonal sum of EJ,, and EJ,,. The orthogonal projections onto Egper, E3,, and E}.,
are denoted by PpenPger and P;u, respectively. The Stokes operator Aper now acts
like Pye;A on its domain (HZ., N H},., o) with div = 0. It is well known that Aper
is selfadjoint, Apey < —¢ for some € and that Ap., leaves EJ,, and E¥,, invariant, i.e.

per
reduces to Pf,,A and Py, A on dom Aper N ES,, and dom Aper N EY,,, respectively. The
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“perturbation” Aper + Ppe;Tp is then recognized as a holomorphic semigroup generator
on Epe, which, by virtue of (4.58), leaves Ef; invariant, i.e. coincides with 4, + PS, T,
on Eger, and likewise with EJ.;- A straightforward analysis then shows that if © is one
of the corners (e.g. © = (0,0)), then the periodic case arises, i.e. A,(©)+ PST, on EY

becomes Aper + Ppe,Tp on EQ.,.

Corollary. If Aq is in the spectrum of Aper + P2 .To on EY, . then it is in the

per per?
spectrum of A, + P*Ty on E,.

The case of Aper + P, To on Ef,, is more delicate. Recall that A4,(0,8) on Ef,is
Pj,A restricted to (H;‘:er)3 N Dog with Dyg as in (4.35). Thus A,(0,6) on Eg,o is simply
the restriction of PogAper to dom A,(0,6) N E39~ Moreover Ego is a closed subspace of
E§.., whence PJyP§,, = Pj,. The relevant statement is

Lemma 4.6. Let Ao be real and in the spectrum of Aper + P To on ES,,. Then
Ag ‘i3 in the spectrum of A, + P9T, on E,.

Proof. Since A, + Pge,Tg has compact resolvents, Ag is necessarily an eigenvalue
of it. Thus there is a real eigenfunction 0 # o € dom Ape; N L"g’:

(Aper + PpgerTo)(po = /\ocpo, (459)

With oo real, the two numbers a and b associated with o via (4.34) are real and
hence there is a 6 € [0, 27] such that (4.32) holds. Thus ¢y is in (ngr)3 N Dyg, i.e. in

dom A,(O,G) n Ego, whence Poge(po = o- Applymg Poge to (459) ylelds
Pogg(PPgel'A + PpgerTO)‘po = AO(PO

that is
(A,(O,G) + PoggTO)<PO = ’\O‘PO- (460)

By (4.60) and Theorem 4.2 we have that A is in the spectrum of A, + P97, on E, i

Remarks. The basic open problem is if there may exist complex eigenvalues of
Aper + Pf;’e,To on Ege, which are not in the spectrum of A, + P97, on E;. This would
allow for the possibility of periodic equilibrium solutions which are periodically unstable
but L2-stable, a situation that cannot arise in the diffusion case. Among the open
problems there is of course the difficult task to determine quantitatively or qualitatively
the spectrum of the operators A4,(0, §) + PjyTo and A,(©)+P§T, (© € M) and A, (0)+
PgTo (O € M), and to determine eventually classes of periodic equilibrium solutions for
which this problem is solvable. This task is important for the stability analysis of the
periodic equilibrium solution against £2-perturbations, a direction which might reveal
new phenomena.

That the L}-case is more difficult that the L2-case can be seen as follows. ES,,
contains a two-dimensional subspace, the set of

(@€o0p0, b€oopo, 0) (a,6€C),
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call it Ege,, on which the divergence condition is trivially satisfied since €go and pg are
constant. The corresponding space in case of generic © € M is given by

(aeoopo, beaopo,0)  with ad + b =0,

call it EY. Since ® € M, a2 + % > 0 whence dimE3 = 1. As © — 0, ego — o0,
but the one-dimensional space EQ cannot converge toward the two-dimensional space
Ege,. This is the major source of the difficulties in the L2-case, absent in the L2-case.
All results and proofs obtained so far for a solution pair up = (u1,u2,u3) and pp which
is L-periodic in z and y carry over to the case where ug,pp are L;-periodic in z and
L,-periodic in y. The only exception is condition (4.32) which has to be replaced by
the more general one

aLl'l cos@ + bL{] sin8 = 0.

In view of its relation to stability it is a question of great interest to extend the above
methods to domains such as half-planes or cylinders and to investigate whether the
problem with the singularities persists. The infinite strip, a special case of the plate,
has been studied in detail (© € [0,27] and u = (u1,u2)). Here, the difficulties caused
by the singularities disappear, but a little rest of the above paradox remains.
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