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Semilinear Elliptic Problems
with Nonlinear Boundary Conditions
in Unbounded Domains

K. Pfliger

Abstract. We study a semilinear elliptic boundary value problem in an unbounded domain
of R® (n > 3) which arises for example in electromagnetic wave propagation in fibres. The
boundary condition is nonlinear and has the form Jau = [u|’~'u. A Mountain Pass Lemma
approach is used to construct a weak solution of this problem.
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1. Introduction

Let Q be an unbounded domain in IR™ (n > 3) with smooth boundary I'. In this paper
we study the problem of finding solutions of the equation

ot

—Au + a(z)u = g(z,u) in 9,
which satisfy the nonlinear boundary condition
Onu = (€, u) on T,

where 0, denotes the outer normal derivative on I'. It is assumed that g and ¢ are of
subcritical growth in the second variable. Problems of this kind arise for example in
electromagnetic wave propagation in fibres (where 2 = Q x IR is an infinite cylinder in
IR®). In particular, we consider problems where

g(z,u) = P(z)|ulP~'u Coand o p(Gu) = Q(Ejlul”"u (r>1). (@)

For bounded domains such problems were considered previously for example in [7) and
{10). The present paper is a modified version of a part of the author’s thesis [13].

To be more precise, we consider the following
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Problem 1. Let @ C R" (n > 3) be an open domain, 0 € Q, and let g : Q x R —
IR and ¢ : T x R — IR be Carathéodory functions, a be an L™®-function satisfying
a(z) > A > 0 for almost every z € Q. Then find a function u, lim; o u(z) = 0,
which 13 a solution of the equations

—Au+ au = g(z,u) in (2)
Onu = ¢(&,u) on T 3)
Equations (2) - (3) are the Euler-Lagrange equations of the functional
1 :
F(u) = / (E(IV‘ul2 + a(z)u?) - G(z,u))dm - /(I)({,u)dl", (4)
Q r

where G and @ are the primitive functions of ¢ and ¢, respectively, i.e. G(z,u) =
fo g(z,t)dt and ®(&,u) fo @(€,t)dt. Let H be the completion of the set

{7) € C’°°(Q)‘ suppn is compact in IR", ||n|1,2 < oo}

in the H'(Q)-norm |- ||1,2 which will be simply denoted by || - || in the sequel. Obviously
H is a subspace of H'(R2), and a critical point of the functional (4) in H is a weak
solution to Problem 1. Here and everywhere in the paper ®(¢,u) should be read as
®(&,yu), where v is the trace operator v : H!(Q) — LI(T).

The critical Sobolev exponents for the embedding H'(Q) — LP(f) and the trace

operator H!(Q) — LI(T) are denoted by n* = % and n, = % , respectively.

Assumptions 1.1. The functions g and ¢ are assumed to satisfy the following
conditions:
10 lim 92:%)

u—~0

oceq a.nda.numberR> 0 such that G(z,u) > 0 for every u > R and z € O.

= 0 uniformly in z € Q and there exist an open, non-empty subset

2° There exists a constant C > 0 such that |g(z,u)| < C(1 + |u|”) for every (z,u) €

2 x R and g(z,u) >0if u>0, wherel <p<n*® - 1= 242 2.

3° There is a Carathéodory function ¢ and a non-negative function @ € L%(T) such
that o({,u) = e(€,u) — a(E)u.
ity BE)

u—00

5° There exists a constant C > 0 such that |p(¢,u)| < C(1 + |u|?) for every (€,u) €
I'x Rand ¢(£,u) >0ifu>0,wherel <g<n,—1= =2

= 0 uniformly in £ € T.

e

6° For almost every z € 2 and £ € T we have ¢(z,0) = 0 and ¢(£,0) = 0.
Furthermore, we assume that there isa 8 € [O, %) such that

7° ;I;(f,u) < 0¢(&,u)u for every £ € T and u € IR, where & is the primitive of ¢.
8° G(z,u) < 0g(z,u)u for every z € Q and u € R.
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- Remark. It would be sufficient to assume that conditions 7° — 8° are satisfied for
|u] > R with some positive constant R, but for simplicity we take R = 0 here.

In the course of the paper, these assumptions are completed by other conditions,
which are needed in the different steps to obtain a solution of Problem 1. The reader
should keep in mind that all conditions on the functions ¢ and ¢ which are formulated
in this paper are satisfied by functions of the form (1). However, the results in Sections
2 - 4 are valid for more general non-linearities.

Conditions 2° and 5° now imply that the functional (4) is Fréchet differentiable and
its derivative is given by the formula A

(F'(u),v) = / (VuVo + a(z)uv) dz — / o(z, u)v dz — / o€, uwdl.  (5)

Q Y] r

To prove the existence of critical points of F' via the Mountain Pass Lemma, we have
to investigate the following Palais-Smale condition

(PS) Any Palais-Smale sequence {ux}remnyv in H (i.e. a sequence satisfying |J(ug)| <
M and limg—oo J'(ux) = 0 in H' with some constant M) has a convergent
subsequence in H.

Since for unbounded domains 2 the embedding H'(Q) — LP() is in general not
compact for any p, we cannot expect the Palais-Smale condition to hold for the func-
tional (4) on H. Therefore in the next section, a sequence of solutions is constructed
for bounded domains. In Section 3 the limit of this sequence is investigated and in
Section 4 a comparison theorem is proved. This theorem is then used in Section 5 to
prove the existence of a solution to Problem 1 for some special functions ¢ and ¢; in
particular the coefficient functions P and @ in (1) must satisfy a certain relation. The
main results of this paper are Theorems 5.1 and 5.3.

2. Approximation by bounded domains

For k € IN let By C IR™ be the open ball of radius k, Qx = QN By, T’y = 302 N B, and
Ty = 8B, N Q. The truncated problem reads as follows.

Problem 2. Find a function u, which satisfies the equations

—-Au +.a(z)u = g(z,u) in Q- : (6)
Onu = p(€,u) on T (7)
u=0 on Tpg. (8)

Let H, be the closure of {n € C*(Q)|n has compact support in B} in the H!(Q)-
norm. Obviously [J; ¢y Mk is dense in ‘H. The elements of Hx may be interpreted as
functions u € H!(§2), which are continued by zero on € \ x. The trace operator

He — H'(Q) — LI(Tx USk)
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is continuous if 2 < ¢ < n,, and compact if 2 < ¢ < n.. Functions u € C°°(Qk) N Hx
satisfy uI = 0, thus the boundary condition (8) is contained in the definition of Hx.
Let F} be the corresponding functional on H:

Fi(u) :=_/(%(|vu|’+a(z)u2) —G(z,u))dx~/¢>(§,u)dI‘. )

Qe T
Now we can prove the following
Lemma 2.1. Every Palais-Smale sequence for the functional (4) in H is bounded.

Proof. Let {u;}jen be a Palais-Smale sequence for F' (see (4)). Because of
F'(ux) — 0 there exists to every € > 0 a j, such that, for every j > j. and every
v € H, we have |(F'(u;),v/||v||)| < e. Inserting v = u; we get the inequality

[ (90l + ate)ud = d(aupw) do = [ oleupusdr| el (10)
Q

r

If we set € = 1, from (10) it follows that

[ (=193 = aud + gtu)u;)do + [ (s ar = sl <o. (11)

@ ‘ r

Since |F(u;)| is bounded by M, we get

%/(|VVUJ'|2 +au?)dz—/G(uj)d:t—/(I>(uj)aT <M. (12)

Q Q A r

Multiplying (11) by 6 € [0, }) (defined in Assumptions 1.1) and adding this to (12), it
follows that

1

(5 - 9) /([Vuj|2 + au?) dz — / (G(uj) — 6g(uj)uj)dz

Q Q (13)
~ sl = [ @(u)dr +0 [ olu;yu; ar < M.

r T

Now Assumptions 1.1/7° — 8° imply (3 —6) [, (IVu;|* + alu;|?)dz — 8|juj|| < M and
with 6 = min{1, A} we get the estimate (} — 8)6||u,||> — 6||u,|| < M. Consequently,
the sequence {u;} is bounded in H i

By standard arguments, the compact embeddings H!(Qx) — L"(Qk) and H!'(Q) —
L"(F k) can now be used to show the following

Lemma 2.2. For every k € IN, the functional Fi in (9) satisfies the Palais-Smale
condition (PS) on H;.

Now we shall prove the existence of a non-trivial critical point of Fx by using the
Mountain Pass Lemma of Ambrosetti and Rabinowitz [3] in its “classical” form.



Semilinear Elliptic Problems 833

Theorem 2.3. Let F: V — R be a C'-functional satisfying the Palais-Smale
condition (PS) on V. Assume that the following conditions hold:

1° F(0) = 0.

2° There are real numbers r,§ > 0 such that F(u) > § whenever ||ully = r.

3° There ezists some v € V, ||v|| > r, satisfying F(v) < 6.
Then B := infuew maxuew F(u) is a critical value of F, where W := {w : (0,1] —
V|w is continuous ,w(0) = 0, w(l) = v}.

In order to apply this theorem to the functional (4) (resp. (9)), we have to show
the validity of conditions 2° and 3° (observe that F(0) = 0 was assumed in Assumption
1.1/6°). :

Condition 2° for F. By Assumptions 1.1/1° — 2° it follows that to every € > 0
there is a C, such that |G(z,u)| < eu? 4 C,|u|™ uniformly in z, and by Assumptions
1.1/3° - 5° it follows that to every € > 0 there is a C!, such that |®(¢, u)| < eu?+C!|u|"
uniformly in €. This leads to

Fu) > 9/ (19uP + (a - ep?)dz - C. n/ o] dz + r/ ((a = ea? = Clul™)ar

ne

> 5 min{1, A - e}|[ull’ - Cllu|™ - eCrlu|l® - C|lu

N | =

where the constants Cr and C come from the trace and embedding operators, respec-
tively. Now we can choose € so small that

F(u) 2 8'l|u|* ~ Cllull™ ~ Cllull™

with some §' > 0. Consequently, if # > 0 is small enough, we find some § > 0 such that
F(u) > 6 if ||u|| = r. Clearly, this estimate is valid for every Fx (k € IN), and § and r
are independent of k.

Condition 3° for F. It is sufficient to choose some fixed, positive v € H with
compact support in § such that ||v|| > 0 and the set {z € | G(z,v) > 0} has positive
Lebesgue measure (such a v exists by Assumption 1.1/1°). Let R > 0 be such that
G(z,R) > 0. Assumption 1.1/8° for g implies G(z,y) < 8g(z,y)y = Byz";G(z,y).
With p = § > 2 it follows for y > R > 0 that

d d , _
0 <y £-G(ey) ~pGley) =¥ L (177Gl )

Integration over [R,u] shows that

0< [ £ (776() dy = u7G(z,u) - R7G(, R)
R
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Therefore, for every u > R we have G(z,u) > h(z)uP, where h(z) = R7?G(z,R) > 0.
Consequently for real A > 0 we have

F(aw) = %/ (IVv]* + av?®) dz — /G(:c,Av) dz
Q Q

<g¥ [l ratyde-x [ w@ra- [ G
2 {Ixvl2R) {Ixvl<R)

< M max {1, |lall.= }|[v]|* — C(R) = AP C(h) |||

1
2
P

Lr (@)

where the constant C(h) > 0 only depends on h, and C(R) does not depend on A. If
A — oo we see that F(Av) <0< § and ||Av]| > r.

Without loss of generality we may assume that v chosen above, lies in H; and
F(tv) < 0 is valid for every t > 1. Furthermore the conditions 2° and 3° of Theorem
2.3 are obviously satisfied by the truncated functionals Fx on My for every k € IN.
Therefore we have proved the following

Theorem 2.4. For every k € IN there exists a critical point uy of the functional
Fi (see (9)) in Mk, corresponding to the critical value

Br = wlentt;’h r'pea.‘f Fy(u)

where Wi := {w: [0,1] — Hi|w is continuvous ,w(0) = 0, w(1) = v}.

3. Passage to the limit

Corresponding to f; define B := infy,ew maxyeyw F(u). For |lu|| = r we always have
F(u)>6>0and Wy, C Wiy, C ... C W, so that

Bk 2 Bks12 ... 2B26>0  forevery ke IN.

In the sequel let || - ||g denote the norm |ullg = ( [(IVu|® + auz)d:c)l/z, which is
equivalent to the norm || -||. Let ux € Hi be a critical point corresponding to the value
Bk, i.e. Fr(ug) = Bx and Fi(ux) = 0. We have

(H@de=Mm%—/wd%wﬂr—/%&wwwf=0 (14)
0 r

Fk(uk) = %”uk”% - /G(z,uk)dz - / q’({,uk)dF = ﬂk. (15)
1] r
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Using Assumptions 1.1/7° — 8°, we see from (14) that
Olluslly = 0 / ut o(z,u)ds +0 / (€, uryup dT
/G (z,ux)dz — /aukdI‘-i-/th({,uk)ukdI‘
/G(:z wi)de —B/aukdr‘+ /@({,uk)dl‘
Inserting the last estimate into (15), it follows that

1 ~
(5-) Muallp = e+ [ Glounyds ~ [ Zugar+ [ 36 unar - ol
Q r

r
1
< Bk (8 - —) auidl‘
2 r/
< Bk

This implies
: B B
llulf < < ~
FTG-97G-9)

2

Because of the equivalence of the norms || - ||g and || - ||, the sequence of critical points
{ur}x in H is bounded and there is a subsequence (again denoted by {ux}s), weakly
converging to a limit # = w limg o, ux and @ is a critical point of F. However, it is not
clear whether @ # 0. This question is treated in the next two sections, but first we shall
prove the following

Lemma 3.1. The sequence of critical values Bi of the functional (9) satisfies
limg—oo Bk = B.

Proof. Since § = inf,ew maxyeyw F(u), for every § > 0 there is a path @ in
W= {w: [0,1] - H w(0)=0a.ndw(1)=v}

such that 5
& := max F(u) > und k- Bl < 3 (16)

u€w
Since @ is compact, there is a & € W such that F(2) = «.
If € > 0 is arbitrary, we find for every u € @ a k., € IN such that for the open
ball B(%,u) C H we have B(%,u) N He # 0 for every k > k., since Urenw He is
dense in H. The set of all these balls {B(‘ )} GA forms an open cover of w, which

possesses a finite subcover { B(£,u;) }] because @ is compact. Therefore there exists
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ko = max;e(1,...,m} keu; such that to every u € @ there is a ug, € Hi, satisfying
£
”u - uko" <%
Now we can construct a path w, € Wy, such that dist (w,,®) < €. For that purpose
let B; = B(%,u;) be chosen in such a way that B; N Bj4; #0 (j=1,...,m—1). In
each Bj choose some ug,,;j € Hg,, and set ug, 0 =0 and ugy,m41 = v. By

We,j(t) = Uko,j + tUko,j41 — Uko,j;)  (0<E<155=0,...,m)

a path w, € Wy, is defined piecewise. Further, since to every j thereis a v; € W, v; €
Bj N Bj,, satisfying the inequalities

£ £
luko,; — vjll < 3 and ko i41 — vjll < 3

it follows for every u € we,j, u = ug,,; + t(uro,j41 — Uk,,;) (With some t € [0,1]) the
estimate
lw = vill < flu — ko il + Neko,i — ;]

=t || uko, 41 — Uko Il + llukg,i — o5l
< uko,jtr = vjll + kg, — vsll + llteks,; — vjll
<e,

which shows dist (w,, @) < e.

In this way, for any sequence ¢; — 0, a sequence of paths w; € W;, can be con-
structed, such that dist (w;, @) < €,;. Let «; be the corresponding maximum of the
functlonal F on w;, attained at the point u,, le. K = MaXyew; F(u) = F(u;). Clearly,
Ki 2> ﬂk

Now we prove that there is a subsequence of {u;}ien converging strongly to some
2 € w. For, suppose this is not true. Then to every u € @ we could find a 6, > 0 such
that the ball B(64,u) contains at most a finite number of these u;’s. By compactness
there is a finite number of such balls, denoted by B; (j = 1,...,m), covering & and
containing at most a finite number of points u;. Let § = min {8u;17 = 1,...,m}.
Then for almost every u; it follows dist (u;, @) > 6 > 0 which is a contradiction to the
construction of the sequence {w;}.

Therefore there exists a subsequence (again denoted by {u;}), satisfying lim; .o u; =
% € w. Since F is continuous we have F(ﬁ) = lim; oo F(u;) = lim;_ o k,. Consequently
there is a « € IN such that |F(@) — k] < £ for every 120

If B < B, £k (x from (16)), then |,8 B, | < 5. Otherwise, if § < & < f,, then
the inequalities F'(2) < & < B, < k; lead to the estimate

18 =Bl <18 — sl + |k = Bi| < 1B — sl + |[F(@) — ri] < 6

for every 7 > ¢. Since {Bk}remn was monotone decrcasmg and bounded from below, it
follows that limy_.o. Bk = 5



Semilinear Elliptic Problems 837

4. A comparison argument

In this section a comparison functional will be defined and a necessary condition for
@ = 0 will be proved. This condition will be used in the next section to prove that for
some special functions g and ¢ there exists a solution i # 0 of Problem 1. The methods
of proof used in these sections are based in part on ideas of W.-Y. Ding and W.-M. Ni

(6].
For 0 < a € L*(T)

' 1/2
lulle = (/(lvul2 + a(z)u?)dz +/a(§)u2d1‘)

Q r

defines a norm on M, equivalent to || - || und || - ||g. With @(&,u) = $(€,u) — a(€)u (see
Assumption 1.1/3°) we have the representations

(F(w), ) = [[ull? — / oz, u)udz — / (€, u)u dT
N

r
F(w = 3} - [ Gau)dz - [3Ewar.
Q r

We require some additional conditions for the functions g and @.

Assumptions 4.1. The functions g and @ are assumed to satisfy the following
conditions:

1° g and ¢ are assumed to be odd functions in u, i.e. g(-, —u) = —g(-,u) and @(-, —u) =
—5(',11)
po 9E0) _ B(Ew)
u u

are non-decreasing in u > 0 for all z € Q2 and £ € T, respectively.

From Assumption 4.1/1° and Assumptions 1.1/2°,5° it follows that (for u # 0) the
functions ) (6. u)
z,u - .7
g(z,u)u, g(—a ‘p(f;u)ua ﬁé—
u u

are positive for all z € Q and € € T, respectively.

Under these conditions we can prove for the functionals F in (4) and Fi in (9) the
following

Lemma 4.2. For u € H set A, = {tu|0 <t € R}. The the following statements
are true.

(i) If u is a critical point of F, then F(u) is the absolute mazimum of F in Ag.

(id) If ug 1s a critical point of Fi, then F(uy) is the absolute mazimum of F in A,,.
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Proof. Let @ be a critical point of F, i.e. (F'(2),a) = 0. Consequently

lal2 = / ag(z,)dz + / a(¢, @) dT (7

2 r
F(a) = / (%ﬁg(m,ﬁ) - G'(:c,ﬁ)) dz + / (%a&(g,a) - 6({,&)) ar.  (18)
Q r
Analogously we have for the critical points ux of Fx
Fu) = [ (%ukg(m,uk) - G’(:r.,uk)) ds+ [ (%uk(ﬁ({,uk) - &S(g,uk)) dr.  (19)
8 ;
For t > 0 we set
u(®) = F(ta) = 3e%all, — [ Glati)da - [Femar. (20)
4

r

Since F is differentiable, u can be differentiated with respect to t and with (17) we
obtain

(o) =tlall, - [ ag(e s - [ ai(e, ta)ar
Q r
= / (tﬁg(z,ﬁ)—ﬁg(z,tﬁ))dz+ / (zaa(g,a)—aa(g,ta))dr

4] r

_ /tﬁz (g(za,ﬁ) _ g(xt,u_tﬁ)> dx+/tﬁ2 (6(5{;17) _ @(&M) dT.
Q r

tu

Since ¢ und @ are odd in u and %2 and #&%) are non-decreasing in u > 0 (b
u u g Yy
Assumption 4.1/2°), it follows that

pt)>0 if 0<t<l and @) <o if t>1.
Therefore 1(1) = F(a) is the absolute maximum of F in Ag. The same arguments can

be repeated for ux and the proof is complete il

To define a comparison functional, let h be a Carathéodory function, differentiable
in the second variable, and satisfying the following conditions (such a function will be
defined explicitely in the next section): :

(H1) For every z €  and u > 0 we have A(z,u) > 0 and k is odd in ». Furthermore
there is an R > 0 such that

h(z,u) >0 for every z € 2, u > R.
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(H2) There is an € > 0 such that

dh
ua-(:t,u) > (1+¢)h(z,u) for every z € Q,u>0. (21)
(H3) For every z € Q and u € R,
2
[h(z,u)] < C(1 + |ul?) <1<p<n'—1= n+2)' (22)
n—

The corresponding primitive function is H(z,u) = Js h(z,y)dy. The comparison func-
tional is now defined as

Fa(u) = %uuni —/H(:z,u)d:z: - /i(x,u)dr.
Q r

From Assumption (H2) it follows in particular that, for u > 0,
u dh u
y@(z,y) dy 2 (1+¢) [ h(z,y)dy.
0 0

Integration by parts shows that uh(z,u) > (2 + €)H(z,u). Since h is odd, this is true
for all u, i.e. h satisfies the Assumption 1.1/8°. Together with Assumptions (H1) and
(H3) it can now be proved, just as in the verification of condition 3° of the Mountain
Pass Lemma for the functional F in (4), that there exists a & € M, which satisfies
F(tv) < 0 for t > 1. Without loss of generality it can be assumed that v, fixed in
Section 2, satisfies the inequalities F(tv) < 0 and Fy(tv) < 0 for every t > 1.

Corresponding to f = infwew maxyew F(u) we define
O = Jel s Falw)

Furthermore set

r

M, = {u € H\ {0} ||lul} = /g(z,u)u dz + /c}'(ﬁ,u)udr}
N

My, = {uen\m} uuui=/h(x,u)udx+/¢(c,u)udr}
0

r

Lemma 4.3. Let u € H \ {0}. Then there is a real number v > 0 such that
Tu € My, t.e. Ay intersects My, at one point. .

Proof. As in the verification of conditions 2° and 3° of the Mountain Pass Lemma
for the functional F in (4) (see Section 2) it can be shown that there exist § > 0 and
7§ > 0 such that

v(rs) = ||Tsul|? — /h(z,rgu)réu dr — /(Z({,rgu)‘r.;u dr >6>0
Q r
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(observe that h(-,u)u ang @(-,u)u are both positive and satisfy the same growth condi-
tions in u as G(-,u) and ®(-, u), respectively.) On the other hand there is a 7o > 0 with
v(Teo) < 0. A comparison with the arguments in Section 2 (verification of condition 3°)
shows that the existence of such a 7., requires that {z € Q| H(z,u) > 0} is not a zero
set. Since in Section 2 only one v satisfying F(v) < 0 had to be found, Assumption
1.1/1° on g was sufficient. In the present case the existence of a 7 is needed for every
u # 0, which is guaranteed by the stronger condition (H1) for h. Since v is continuous
it follows that there is a 7 such that v(7) =0

Lemma 4.4. Set f* = infuem, F(u) and B; = infuem, Fr(u). Then B < B* and
Bn < B;.

Proof. To show # < f* it suffices to construct to every 4 € M, a path w € W
such that F(i#) = maxuew F(u). Because of the definition of 8 it then follows at once
that infaem, F(2) > B.

Let i € M, be arbitrary. Using the same arguments as in the proof of Lemma 4.2,
it follows that F(i) is the absolute maximum of F in Az = {té|t > 0}. Namely, for the
function p defined as in (20) we have again p'(t) > 0for 0 < t < 1 and '(t) < 0 for
t>1.

Now let v € H from the proof of condition 3° of Theorem 2.4 be fixed, i.e. F(tv) <0
for all £ > 1. As in the verification of condition 3° of the Mountain Pass Lemma in
Section 2 it follows again that F(fd) < 0 if £ > 1 is large enough. Let V denote the
two-dimensional subspace of H, spanned by {v,%}, and let R > max{||{@||,|lv||} be
so large that for Sg, the sphere of radius R in H, we have FIVnSR < 0. Such an
R exists, since for fixed Ry the functional || - ||3 attains its maximum (in %max) and
oGz, )+ J; ®(¢,-) attains its minimum (in umin) on the (compact) set Sg, N V. For
A > 1 we have F(Au) < A?||lumax||3 — APCllumin]|}, (compare with Section 2). If A is
large enough, it follows that F(u) < 0 for every u € Sxg, NV

Let ig = Az N SR, vr = A, N Sg and w be a path connecting 0, 4, ig, vg and v
- and lying in Az U(SRNV)UA,. Obviously w € W and F(ii) = maxuew F(u).

The same arguments show likewise A < G5 i1

Now the following theorem can be proved.

Theorem 4.5. Let h satisfy Assumptions (H1) - (H3) and assume that ¢ satisfies
P&, tu) > t'HG(&,u)  for every t21,u>0. (23)

For an open domain D CC § with compact closure assume that g(z,u) < h(z,u) for all
€ Q\D and allu > 0. Let @ be the weak limit of the sequence of critical points ux of
the functional Fi in (9). Then @ = 0 implies 8 > B}.

Proof. Assume # = 0. According to Lemma 3.1, 8 = limg—oco k- Let ux be a
critical point of Fx and Fix(ux) = Bx. By standard regularity arguments it can be
shown that u; € C""(E) for every domain D with compact closure in 2 and that there
is a subsequence of {ux}, converging to 0 uniformly in D. For this subsequence we have

0<eé¢x :=/ukg(z,uk)dz—-»0 as k — oo.
D
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To every uj there exists tx > 0 with txux € M, (Lemma 4.3), i.e.

ti ||uk|[2 =t / h(:l:,tkuk)uk dz + ty /(Z(E,tkuk)uk dl'. (24)
1] r

Since uy is a critical point, we also have

lurll2 = / oz, uk)ur dz + / (€, ur)ur dT

Q r

=¢ep + / 9(z, up)ux d2+/¢(fv“k)“*dr

Q\D r

<+ [ h@udunds+ [FEuudr.
a\D r

In the last inequality the fact was used that from g(z,u) < h(z,u) for all u > 0, ¢ and
h odd, it follows that g(z,u)u < h(z,u)u for all u.

First of all it will be shown now that the sequence {tx} is bounded. Therefore
assume tx > 1 for a subsequence (if there is no such subsequence, then t; < 1 for
almost all k € IV and the boundedness follows at once). If tx > 1, we see from the last
inequality and (24)

tlep + 82 / h(z,ug)ux dz+ti/(5(£,uk)uk dr
2\D r

> tillulll

= /tkh(z,tkuk)uk d:z:+/tk§5(§,tkuk)ukdr

Q r
> / ti+‘h(z,uk)uk dz +/ti+‘¢(£,uk)uk dl’.
O\D r

In the last line the estimates

G tu) 2 PG uu (21) (25)
h(z,tu) > t'*h(z,u)u (t=21) (26)
were used for arbitrary u. Inequality (25) follows directly from (23) and the fact that ¢

is odd. On the other hand, (26) follows from condition (H2) if this is again (for u resp.
y > 0) reformulated as a differential inequality: -

d dh
2+¢ —(1+e) = y— -1 4
Yy dy (y s h(z, y)) ydy (z,y) (1 5)h(31 '!!) > 0.
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Integration over [u,tu] shows that (tu)~(+)h(z, ty) — u=(+)h(z,u) > 0 which implies
h(z,tu) > t'*<h(z,u) for every u > 0. Since k is odd in u, now (26) follows for every
u. Therefore we get

Gee 2 (34 - 4) [ Mo uuedz + (@35 - ) [ f6 mnunar
a\D T

> (tite —2) (/ g(z,ux)urdz — ek) + (t3+e - ti)/(ﬁ({,uk)uk dr.
Q r

Since uy is a critical point of Fi, we have further

tiex 2 (17 - £3) (Iluklli - /?’(&uk)u& dI' - Ek)
r
. _ 27)
(5 =) [ 36 wusdr
r

= (14 = t2) (el —ex).

Since g and @ are odd, and positive for u > 0, G and & are positive for all v and it
follows for every k that

Nukll? > 2F(ur) > 28x > 28.

Now ex — 0, so that we can choose kg such that ex < B for every k > kg, therefore
(Iluel} —ex) > (28 — B) = B. Using this in (27) we get ex > (¢ — 1)B. This shows
limg oo tx = 1. In particular limg_ oo trux = 0.

According to Lemma 4.2, F(ux) = max,ea,, F(v) = max,»o F(tux), which shows
that

Brx = F(ux)
> F(trux)

1 B )
§ti ||uk||i - / G(z,trux)dz —/G(m,tkuk)dz —/Q(E,tkuk)df‘
a\D D r

1 : ~
Eti”uk"% —/H(J:,tkuk)d:z —/@({,tkuk)dr—/G(I,tkuk)d:t
Q r D

v

= Fh(tkuk) - /G(I,tkuk)d.‘l:
D

> Br —/G(z,tkuk)dx.

’ D

The last inequality follows directly from the definition of B and the fact that ¢x was cho-
sen in such a way that tyux € Mj. From txug — 0 it follows again fD G(z,tyug)dz — 0,
i.e. B =limg—o B > B4 which proves the theorem il
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From this theorem we have immediately the following

Corollary 4.6. If 8 < 8}, then 4 is a non-trivial solution to Problem 1.
According to the inequality 8 < 8°, proved in Lemma 4.4, it follows now
Corollary 4.7. If 8* < B;, then i is a non-trivial solution to Problem 1.

This corollary will be used in the next section to prove the existence of non-trivial
solutions to some special cases of Problem 1.

5. Existence theorems for some special cases

In this section we consider as special cases non-linearities of the form

g9(z,u) = P(e)lul"'u,  h(z,u) = K(z)jul"'u
e(&,u) = —a(§)u + Q(O)ul v,

where 1 < p < n, — 1 and P,a,@, K are positive L>®-functions, P not a constant,
P(z) > 0 everywhere and K(z) = P(z) outside some bounded subdomain of § (for the
precise definition see below).

The methods we use here to show the existence of a non-trivial solution to Problem
1 require the same exponent p in the non-linearities ¢ and . As was shown in [13],
this is quite natural from a physical point of view. However, this leads to a stronger
restriction on p, since the critical Sobolev exponent n, for the trace operator is smaller
than n*. In the three-dimensional case, we have n, =4, and consequently 1 < p < 3.

Clearly Assumptions 1.1 and 4.1, those required in Theorem 4.5 and conditions (H1)
- (H3) from Section 4 are satisfied for these functions g, and h.

The functional F' now has the form

1

Fw = 5lult - — [ P@lrds - — [Q@p+ar.
r

p+
!

Correspondingly we define

My = {ue MA{0) |1l = [ P@uP+ids + [ Qefup+iar
Q r

My = w0}l = [ K@lP*de + [ Qelup+iar
11 r

In Lemma 4.3 it was shown that for every u € H \ {0} there exists a 7 > 0 such
that 7u € M. In the proof condition (H1) was used, which is slightly stronger than
Assumption 1.1/1°. Because of the special choice of the function g in this section, we
see that g also satisfies condition (H1). Therefore the same arguments used in the proof
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of Lemma 4.3 can now be applied to the set M, to show that for every u € H \ {0}
there exists a ¢ > 0 such that tu € M,.

Consequently we get the following representations for 8* and Bh:

B = ulennf;' F(u)

2, {(; 1) ( n/ Pl)lul**'dz + r/ Q(€)|u|’°+‘dl") }
% { (% P i 1) TW (/K(x)lul’“dx + /Q(ﬁ)lul"“dr)} ,
2 / r

In view of Corollary 4.7, to prove the existence of a non-trivial solution # of Problem
1, it must be shown that 8* < B; for an appropriate comparison function A (resp. K).

Let {D;};emn be a sequence of open subdomains in 2, D; C D; C ..., such that
the closure of each D; is compact in R, Ujen D; = 2 and

I
5
-~

=
s
il
=)
(e}
e
—_~
4
p

i
5
-

dist (D;,T) = seinf Az =gl >0

Theorem 5.1. Let P # const, inf,eq P(z) = m > 0 and assume that there is
a sequence of open subdomains {D;} of Q with the properties described above and a
sequence of positive real numbers €; — 0 such that P(z) < m + ¢; for almost every
z € 2\ D;. Furthermore let 1 < p < n, — 1 and assume that the inequality

= T + : +1
7 ufuﬁ‘il{n/ P(z)u"™ dz + r] QOlul dF}

> sup {/m|u|”+ld:c + /Q({)]u|”+ld1‘} =om
lulle=1 .
Q r

holds. Then there ezists a non-trivial weak solution to Problem 1.

(28)

Remark. A sufficient condition on the function P such that inequality (28) holds
is given below, see Corollary 5.2.

Proof of Theorem 5.1. For some fixed jo € IN set

P(z) forz €\ Dj,
K(a‘:):{ (2) \

(29)
m for z € Dj,.

Then the function h(z,u) = K(z)|u|P~u satisfies the condition g(z,u) < h(z,u) outside
the subset Dj, of Q, i.e. Theorem 4.5 applies to this function:
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Now we have to show * < ;. Let

= int {1 | [PE@)rtiaz + [ Qe)uliar
tu“:b‘:, { (/ : i i/ )}

Q

B = inf {r"“( K(z)lul"*'dz + Q({)lul"“)}.
o]

From the definition of the positive real numbers ¢ and 7 it follows that

t2|ju|2 = t?*! [ P(z ulPtldz 4 tPH! qupldl"
L
N r

Pl = [ K@l ds + 0 [ Qeetar.
r

Q

Consequently we have’

(p+1)/(p-1)
P flully
J P(@)lulp+dz + [ Q(€)lulp+!dD :
Q r

(p+1)/(p-1)

FPH1 _ [
JE(@)lulPtidz + [ Q(€)[ulr+}dT '

Q r

Inserting this into the definition of 8 one gets

- (i) > 707 (PP ds + £ QENulrar)
B = inf { a2 r
u#0 (p+1/(p=1)
(‘{P(:I:)|u|}’+l'd1: + fQ({)|u|P+ldI‘)
r
' 2p+1)/(p-1)
=i [l .
) Py
(r{P(:c)lu|P+ld:z + fQ(§)|u|p+1dp)
r
Correspondingly
2(p+1)/(p-1)
Ih = inf llullz

1/(p+1)
(f K(@)lul+dz + fQ(é)IuI"“dI‘) |
Q r .

845
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Now B* < f; if and only if B < ﬂh, and in order to apply Corollary 4.7 it must be
shown that

llule

1/(p+1)
QP(z)wwz . er(E)IuI”“‘dF)

inf

(30)
ulle

1/(p+1)
(“f K(@hup1ds + | Q(é)lul"“«ﬂ‘)

< inf
u#0

For that purpose the following inequality will be proved first:

o= su | P(z)|u|Ptd ulPtidl
"""Lp='{9/ @l z+F/Q(£)II }

(31)
> lim sup / P(x)|u|”+lda:+/m|u|"+ld:c+/Q(£)|u|”+ldI‘
D; r

1700 L ullz=1
j
=: lim oj.

J—=oo

Let

ol = sup /m|u|”+ldx
ltelte =1

By assumption, there is a sequence ¢; — 0 such that

0} = s,up_l / P(z)|u|”+ldz+/m|u|’+ldz
flullz= \D; b

< sup {(m+eg;) / |u|”+1dz:+m/|u|p+ldz
llulle=1 oD D;
. i i
!

< (m+6j)a;m.

This inequality remains true if the boundary integral is added on both sides. It follows
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that
oj= sup / P(2)ul*dz + / mlul*dz + / QO+ dT
halie=1 | S 5 J

’

< sup {(m+e ulPtldz ulPtdr
II“hx;{( +e,)9/|| +F/Q(§)II }

e cup / mlulP*dz + / QO)lul* dT
m lulle =1 a 4

m+¢€;
= Om.
m

Using (28) we get (because of £; — 0) in the limit limj_. 0; < om < o, which proves
(31). Consequently it follows that

IN

. 1
et { [PE@ulr*idz+ ] Q(é)lul"“dl“}
2 r

1
< li inf
oo luli=1 ] J P(@)ultidz + | mluptidz + | Q(€)[u[PH dT
Q\D; D; r

If A >0, we have ||Au||L = Alu|L and

| 1/(p+1)
(/ P(z)|ulPdz + /Q(z)uur’“dr)
Q r
: 1/(p+1)
= [ P(z)luf*'dz + Q(x)lul”“dl“) )
=/ /

so that

- el

u#0 1/(p+1)
(an(z)luv“dx +J Q(E)Iul"“dl‘)
r

< lim inf llulle

je00 u#0 1/(p+1)
( [ P(@)ulpttdz + [ mlulp+idz + [ Q(€)|ulr+!dT
2\ D; D; r

Now in (29), the definition of K, we can choose some jo large enough to conclude from
the last inequality the inequality (30), i.e. 8* < ;1
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For arbitrary given functions P and Q it is not easy to decide, wether condition (28)
is satisfied, since the suprema are in general not attained by some function in H ).
Of course, if P is assumed to be “large enough” (in some compact region) compared to
Q and m, estimate (28) can be shown. First of all observe that

llulle =1

Om = Ssup /mlulp-Hdz+/Q(€)Iu|p+ldr.
Q r

+1
< sup {mlullZL + QU= Nullzs )}

elle=1

SmCy +[|QllLeCo

=:Cm,Q,
where, once again, the Sobolev imbedding resp. trace theorem was used and the constant
Cm,q only depends on m, @ and the Sobolev constants (with respect to the norm ||-||1.).

Now, given u € H'(Q) with support in some Dj, ||u||; = 1 and an arbitrary
constant C' > 0, one can easily find a function P such that

inf P(z) =m and / P(z)ulP*dz > C.
. zeQ . n

This observation lea&s to the following

Corollary 5.2. Let P # const, inf,eq P(z) = m > 0 and assume that there is o
sequence €; — 0 such that P(z) < m+¢; for almost everyz € Q\D;. Letl < p < n,—1
and assume that there ezists a subdomain B C D; for some j, 0 < meas B < 1, such
that

Cm,0
P(:B) > m fOT eVErYy T € B.

Then there exists a non-trivial solution to Problem 1.

Proof. Choose u. € H, |luc]|lr = 1, such that u; > 1 in B. Then

o= sup P(z)|ulP*dz + Q({)|u|”+ldF
[ /

lfulle =1

> /P(z)|uc|”+ld:c
B
> Cm,Q

llulle =1

> sup / mlulP*dz + / Q(O)ul*dT
Q T

=0Om.

So (28) is valid and Theorem 5.1 can be applied i
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The condition inf,eq P(z) = m > 0 is not essential for the existence of solutions
of Problem 1, but was needed only for technical reasons. The case m = 0 will be
considered now, where the arguments are somewhat different - due to the fact that
h(z,u) = K(z)|u|P~'u does not satisfy condition (H1) if in (29), the definition of K, we
set m = 0.

Theorem 5.3. With the same notations as in Theorem 5.1 let inf eq P(z) =
0,P # const and P(z) < €; for almost every z € Q\ Dj. Let1 < p < n, -1
and assume that the inequality

o:= sup P(z)lulP*'dz + [ Q(€)|uf"*'dT
[rerene]

llelle=1

llellz=1

> sup { [ QO = oo
r

holds. Then there ezists a non-trivial weak solution to Problem 1.

Proof. Asin (29) let

P(z) ifze€Q\D;
K(z) :={ ( " for some jo € IV.

0 ifze Dy,

Since for functions u € H with suppu C Dj, we have h(z,u) = K(z)|u|?"'u = 0 for
every z € 2, h does not satisfy condition (H1). Consequently, given a critical point ug
of Fy, it is a priori not clear whether there is a ¢4 > 0 such that tyu; € Mj. But this
fact was used to prove 8 > B (in Theorem 4.5) if the weak limit of {ux} were zero.

Now we have to distinguish two cases. For {ux}, the sequence of critical points of
Fy

(i) there exists kg € IN such that for every k > ko, suppug N supp K is a set of
measure Zero; or

(i1) there is a subsequence of {ux} such that suppux N supp K has non-vanishing
Lebesgue measure for every k € I for some infinite index set I C IV.

Assume (1). According to the definition of K there is a jo € IV such that suppuz C
Dj, for every k > ko. Since {ux} is bounded in H'-norm, there is a subsequence (again
denoted {ux}) converging in L?*!(D;,)-norm to some function @. Since ux and @ are
critical points we know that

F(ug) = / (% - ;ﬁ) P(z)[us|P*'dz

Jo (32)

Fa) = / (% - p—i—l) P(z)[al"*' dz.

jo
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(The boundary integral is zero because suppu lies in the interior of £2.) Since the
functionals in (32) are continuous on LP*!(Dj,), we get

B = klim Br = klim F(uk) = F(a),
and therefore u # 0.

Assume (ii). For each uj of this subsequence there is a tx > 0 such that txux € M.
Now the arguments in the proof of Theorem 4.5 can be repeated to show that, if the
weak limit of {uy} is zero, then B > B;. To prove B* < B; the assumption ¢ > oq is
used. Since P(z) < ¢; in 2\ Dj, we have

Hullz=1

oji= sup / P@ul*dz + [ Qlup+ar
r

]

Hulle=1

< sup / e:j|'u|”+ld:l:+/(‘?({)|u|”+ldl1
r

J

<€C+ sup {/Q(E)Iul”“dl“}
hllz=1 | J

=EjC+0'0

where the constant is due to the Sobolev embedding. Now e; — 0 and therefore
lim; 0 <09 <o, ie

su P(z)|ulPt'dz u|Ptdr
"u..f;l{Q/ @l +F/Q(E)Il | }

> lim sup / P(x)lulpHdI+/Q(f)|“|p+ldr
r

I lullr=1

]

If we now choose jo in the definition of K large enough we get

o lulle

wto : 17+
Qp(z)|u|»+ldz +f Q(£)|u|P+1d1‘)
r

< inf el

u#0 1/(p+1)
Q K(z)lulrtdz + | Q(ﬁ)lul"“dl“)
r

and consequently 5* < 8 il



Semilinear Elliptic Problems 851

Acknowledgement. The author would like to express his gratitude to Prof. K.
Doppel for his encouragement and many fruitful discussions and to Prof. G. Warnecke
for his helpful comments on the paper.

References

[1] Adams, R. A.: Sobolev spaces. New York et al: Academic Press 1975.

[2] Agmon, S., Douglis, A. and L. Nirenberg: Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions. Part I.
Commun. Pure Appl. Math. 12 (1959), 623 - 727.

(3] Ambrosetti, A. and P. H. Rabinowitz: Dual variational methods in critical point theory
and applications. J. Funct. Anal. 14 (1973), 349 - 381.

Berestycki, H. and P. L. Lions: Nonlinear scalar field equations. Parts I and II. Arch.
Ration. Mech. Anal. 82 (1983), 313 - 375.

[5) Bonnet, A. S. and A. Bamberger: Mathematical analysis of the guided modes of an optical
fiber. SIAM J. Math. Anal. 21 (1990), 1487 - 1510.

[6] Ding, W.-Y. and W.-M. Ni: On the ezistence of positive entire solutions of a semilinear
elliptic equation. Arch. Ration. Mech. Anal. 91 (1986), 283 - 308.

(7) Deng, Y., Wang, X. and S. Wu: Neurnann problem of elliptic equations with limit nonlin-
earity in boundary condition. Chin. Ann. Math. 15B (1994), 299 - 310.
(8] Kufner, A., John, O. and S. Fuéik: Function Spaces. Leyden: Noordhoff Int. Publ. 1977.
(9] Marcuse, D.: Light Transmission Optics. 2nd ed. New York: Van Nostrand 1982.
(10] Michalek, R.: Ezistence of a positive solution of a general quasilinear elliptic equation with
a nonlinear boundary condition of mized type. Nonlinear Anal. Theor. Methods Appl. 13
(1990), 871 ~ 882.

[11] Negas, J.: Les méthodes directes en théorie des équations elliptiques. Prague: Academia
1967.

(12] Nirenberg, L.: Variational and topological methods in nonlinear problems. Bull. Amer.
Math. Soc. 4 (1981), 267 - 302.

(13] Pfliger, K.: Ezistence theorems for nonlinear elliptic differential equations with transmis-
sion (Dissertation FU Berlin 1994). Aachen: Verlag Shaker 1995.

(14] Rabinowitz, P. H.: Variational methods for nonlinear eigenvalue problems. In: Eigenval-
ues of Nonlinear Problems (ed.: G. Prodi).. Roma: Edizioni Cremonese 1975, pp. 141 -
195.

[15) Rabinowitz, P. H.: Minimaz methods in critical point theory with applications to differen-
tial equations (CBMS Reg. Conf. Ser. Math.: Vol. 65). Providence (R.I.): Amer. Math.
Soc. 1986.

(16] Strauss, W. A.: Ezistence of solitary waves in higher dimensions. Commun. Math. Phys.
55 (1977), 149 - 162.

(17] Struwe, M.: Variational Methods. Berlin et al: Springer-Verlag 1990.

(18] Vainberg, M. M.: Variational Methods for the Study of Nonlinear Operators. San Fran-
cisco: Holden Day 1964.

[19] Warnecke, G.: Uber das homogene Dirichlet- Problem bei nichtlinearen partiellen Differen-

tialgleichungen vom Typ der Boussinesq-Gleichung. Math. Methods Appl. Sci. 9 (1987),
493-519.

(4

Received 13.03.1995



