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Abstract. We study a semilinear elliptic boundary value problem in an unbounded domain 
of IR" (n 2 3) which arises for example in electromagnetic wave propagation in fibres. The 
boundary condition is nonlinear and has the form ä,u = I u I' u. A Mountain Pass Lemma 
approach is used to construct a weak solution of this problem. 
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1. Introduction 
Let ci be an unbounded domain in 1R'(n 2 3) with smooth boundary r. In this paper 
we study the problem of finding solutions of the equation 

-Lu+a(x)u=g(x,u)	in ci, 

which satisfy the nonlinear boundary condition 

a0 u= (e, u )	on 

where an denotes the outer normal derivative on I'. It is assumed that g and W are of 
subcritical growth in the second variable. Problems of this kind arise for example in 
electromagnetic wave propagation in fibres (where ci = Q x JR is an infinite cylinder in 
1R3 ). In particular, we consider problems where 

g(x,u) = P(x )1-1'
-Iu
	and	p(e,u) = Q(e)IuI' u	(p> 1).	(1) 

For bounded domains such problems were considered previously for example in [7] and 
[10]. The present paper is a modified version of a part of the author's thesis [13]. 

To be more precise, weconsider the following 
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Problem 1. Let ciCiR" (n >_3) bean open domain, OE Il, and let g:cixiR-4 
JR and W : r x JR —* JR be Carathéodory functions, a be an L°°-function satisfying 
a(x) ? A > 0 for almost every x E Q. Then find a function u, lim 111 .,u(x) = 0, 
which is a solution of the equations 

	

—Au +au=g(x,u)	in ci	 (2) 

	

= ço(,u)	on 1'.	 (3) 
Equations (2) - (3) are the Euler-Lagrange equations of the functional 

F(u) 
= J ( 1 ( IVU1 2 +a(x)u2) — G(x,u))dx - f,u)dr,	 (4) 

where G and 1 are the primitive functions of g and W, respectively, i.e. G(x, u) = fu 

	

0 g(x, t) dt and	u) = j	t) dt. Let fl be the completion of the set 

	

{	°(Q) supp77 is compact in JEt", 1I7I1I,2 <co} 

in the H'(ci)-norm 11111,2 which will be simply denoted by V . 11 in the sequel. Obviously 
fl is a subspace of H'(ci), and a critical point of the functional (4) in fl is a weak 
solution to Problem 1. Here and everywhere in the paper c1(e, u) should be read as 
4'(yu), where -y is the trace operator y : H 1 (Q) - 

The critical Sobolev exponents for the embedding H'(cl) -4 LP(Q) and the trace 
operator H 1 (Q) - L(1') are denoted by n = and n = 2(n-I) respectively. 

Assumptions 1.1. The functions g and W are assumed to satisfy the following 
conditions: 

10 lim 
g(x,u) 

= 0 uniformly in x E ci and there exist an open, non-empty subset 
0 c ci and a number R> 0 such that G(x,u) > 0 for every u R and x E 0. 

2° There exists a constant C > 0 such that Ig(x,u)I < C(1 + j u i") for every (x, u) E 
Q  JR and g(x,u) >0 if u 0, where 1 <p < if —1 =nn 2 

30 There is a Carathéodory function and a non-negative function a E L°°(r) such 
that (,u) = (u) - c(e)u_ 

lim	u) 
= 0 uniformly in E F. 

50 There exists a constant C > 0 such that I(,u)I	C(1 + u) for every (e, u) E
F x JR and (,u) ^! 0 if u > 0, where 1< q <n —1 = 

6° For almost every xeci and Erwe have g(x,o)zrro and p(,o)o. 

Furthermore, we assume that there is a 9 E [0, -) such that 

70 (e) 9 (e, u )u for every e E F and u E lEt, where is the primitive of 
8° G(x,u)<9g(x,u)u for every xeci and uJR.
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Remark. It would be sufficient to assume that conditions 70 - 8° are satisfied for 
ui > R with some positive constant R, but for simplicity we take R = 0 here. 

In the course of the paper, these assumptions are completed by other conditions, 
which are needed in the different steps to obtain a solution of Problem 1. The reader 
should keep in mind that all conditions on the functions g and W which are formulated 
in this paper are satisfied by functions of the form (1). However, the results in Sections 
2 - 4 are valid for more general non-linearities. 

Conditions 2° and 50 now imply that the functional (4) is Fréchet differentiable and 
its derivative is given by the formula 

(F'(u), v) = J (VuVv + a(x)uv) dx - I g(x, u)v dx -/ , 	u)v dr.	(5) 

To prove the existence of critical points of F via the Mountain Pass Lemma, we have 
to investigate the following Palazs-Smale condition 

(PS) Any Palais-Smale sequence {uk}kEjV in 71 (i.e. a sequence satisfying J(uk)I 
M and	J'(uk) = 0 in 71' with some constant M) has a convergent
subsequence in 71. 

Since for unbounded domains ci the embedding H'(ci) -* LP(Q) is in general not 
compact for any p, we cannot expect the Palais-Smale condition to hold for the func-
tional (4) on R. Therefore in the next section, a sequence of solutions is constructed 
for bounded domains. In Section 3 the limit of this sequence is investigated and in 
Section 4 a comparison theorem is proved. This theorem is then used in Section 5 to 
prove the existence of a solution to Problem 1 for some special functions g and p; in 
particular the coefficient functions P and Q in (1) must satisfy a certain relation. The 
main results of this paper are Theorems 5.1 and 5.3. 

2. Approximation by bounded domains 

For k E EV let Bk C 1W' be the open ball of radius k, cik = ci fl B,, rk = ôci fl Bk, and 
= ôBk fl Q. The truncated problem reads as follows. 

Problem 2. Find a function u, which satisfies the equations 

	

—Au +.a(x)u = g(x,u)	in cik	 (6) 

	

= (,u)	on rk	 (7) 
u=0	on >k.	 (8) 

Let?ik be the closure of (77E COO(0)177 has compact support in Bk} in the H'(ci)-
norm. Obviously UkEJN 71k is dense in 71. The elements of 7Ik may be interpreted as 
functions u E H' (cik), which are continued by zero on ci \ ci,. The trace operator 

-i H(ci,) -.. Lq (rk U k)
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is continuous if 2 q n,, and compact if 2 <q <ne . Functions U E C°°(k) fl ?ik 
satisfy UIE = 0, thus the boundary condition (8) is contained in the definition of 71k• 
Let Fk be the corresponding functional on 

Fk( u ) :=f ( 1 ( IVU12 + a(x)u2) -G(x, u)) dx —J	, u) dr.	(9) 

Now we can prove the following 

Lemma 2.1. Every Palais-Smale sequence for the functional (4) in 7-t is bounded. 

Proof. Let { U j}jEJTJ be a Palais-Smale sequence for F (see (4)). Because of 
F'(Uk) - 0 there exists to every e > 0 a j such that, for every j > j and every 
v E 7, we have I(F '(u j), v /II v II)I	c. Inserting v = u 3 we get the inequality 

f (IVujI 2 +a(x)u, —g(x,u j )uj ) dx -	 euj.	(10) 

If we set e = 1, from (10) it follows that 

f(_Ivu j I 2 _ au+g(uj )uj)dx+f(Uj )uj dr_IIuj II!^0.	(11) 

Since IF(u)I is bounded by M, we get 

!(Iu12 _!Gj_!j<M.	 (12) 

Multiplying (11) by 9 E [o, ) (defined in Assumptions 1.1) and adding this to (12), it 
follows that

1 (- o) f (I V I 2 + au) dx - f (G(u) -
(13) 

- OIlujII - I (u)df + of ço(u j )u j ir M. 

Now Assumptions 1.1/7° - 8° imply ( - 9) fç, (IVujI2 + a l u , 1 2 ) dx - O II u.iII M and 
with S = inin{1,A} we get the estimate ( - 9) 6 II u jII 2 - O II u jII < M. Consequently, 
the sequence {tz,} is bounded in Il 

By standard arguments, the compact embeddings H' (f k) - L'(clk) and H' (cik) 
L(rk) can now be used to show the following 

Lemma 2.2. For every k E IV, the functional Fk in (9) satisfies the Palais-Smale 
condition (PS) on 

Now we shall prove the existence of a non-trivial critical point of Fk by using the 
Mountain Pass Lemma of Ambrosetti and Rabinowitz [3] in its "classical" form.
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Theorem 2.3. Let F : V - JR be a C' -functional satisfying the Palais-Smale 
condition (PS) on V. Assume that the following conditions hold: 

1 0 F(0) = 0. 
2° There are real numbers r,6 > 0 such that F(u) ^: 8 whenever II u IIv = r. 

3° There exists some v E V, j jvjj > r, satisfying F(v) < 5. 

Then 3 := infwE w max e F(u) is a critical value of F, where W := {w (0, 11 
V I w is continuous ,w(0) = 0, w(1) = v}. 

In order to apply this theorem to the functional (4) (resp. (9)), we have to show 
the validity of conditions 2° and 30 (observe that F(0) = 0 was assumed in Assumption 
1.1/6°). 

Condition 2° for F. By Assumptions 1.1/1° - 2 0 it follows that to every e > 0 
there is a C such that iG(x,u)I eu2 + Cu i" uniformly in x, and by Assumptions 
1.1/30 -50 it follows that toevery e >0 there is a C,', such that i4(e,u)l eu2+CIuI" 
uniformly in . This leads to 

F(u)>	(ivui + (a - E)u2)dx - C
E/ 

iuidx +f (( - )u2 - Ciui')dr 

min{l,A - E 111u11 2 - C ii u li	- cCriiu11 2 - CilulI 

where the constants Cr and C come from the trace and embedding operators, respec-
tively. Now we can choose e so small that 

F(u) ^! 5111112 - C il u iI" - CIiuiI' 

with some 5' > 0. Consequently, if r > 0 is small enough, we find some 5> 0 such that 
F(u) > S if huh = r. Clearly, this estimate is valid for every Fk (k E iN), and S and r 
are independent of k. 

Condition 3 0 for F. It is sufficient to choose some fixed, positive v E 7-1 with 
compact support in Q such that 1 1 v ii > 0 and the set {x E cu I G(x, v) > 0) has positive 
Lebesgue measure (such a v exists by Assumption 1.1/1 0). Let R > 0 be such that 
G(x,R) > 0. Assumption 1.1/8 0 for g implies G(x,y) Og(x,y)y = 9yG(x,y). 
With p = > 2 it follows for y > R> 0 that 

0 y -G(x,y) —pG(x,y) =	(yG(x,y)). 
dy 

Integration over [R, u] shows that 

0 I	(y P G(x, y)) dy = uG(x, u) - RG(x, R).
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Therefore, for every u > R we have G(x,u) ^! h(x)u P , where h(x) = RG(x,R) > 0. 
Consequently for real A > 0 we have 

F(Av) 
= J 0VvI2 +av2)dx_fG(x,Av)dx 

<A2J(IVvI2+av2)dx_AP f h(x)vdx— J G(x,Av)dx 

lI Av I^: R )	 {IAvI<R} 
< A2 max 11, II a IILoo } II v II — C(R) — A"C(h) IIvII,(), 

where the constant C(h) > 0 only depends on h, and C(R) does not depend on A. If 
A — oowe see that F( Av)<0<8 and IIAvII>r. 

Without loss of generality we may assume that v chosen above, lies in R, and 
F(tv) < 0 is valid for every t > 1. Furthermore the conditions 2° and 30 of Theorem 
2.3 are obviously satisfied by the truncated functionals Fk on flk for every k E iN. 
Therefore we have proved the following 

Theorem 2.4. For every k E iN there exists a critical point Uk of the functional 
Fk (see (9)) in flk, corresponding to the critical value 

Ok := inf maxFk(u)
WEWk nEw 

where Wk	{w [0,1] —* 1-I k Iw is continuous ,w(0) = 0, w(1) = v}. 

3. Passage to the limit 

Corresponding to 13k define /3	inf€w max0e F(u). For 1 jull = r we always have
F(u)>ö>Oand WkCWk+Ic ... cW,so that 

Ok ^! /3k-FI 2 ... 2 0 2 6 > 0	for every k E iN. 

In the sequel let II lIE denote the norm 1 1U11E = (J(IVu I 2 + au 2 )dx)' l' 2 , which is 
equivalent to the norm 11 . . Let Uk E lik be a critical point corresponding to the value 
/3k, i.e. Fk(uk) = /3k and F,(u k ) = 0. We have 

	

(F(uk),u k ) = ll U kll — / u k g(x,u k )dx — / ( uk)ukdr = 0	(14) 

Fk(uk) = lI h1 k11 — / G(x,uk)dx — /	, u k)dr = /3k•	 (15)
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Using Assumptions 1.1/7° - 8°, we see from (14) that 

	

9 II u kII 2E = 8 fukg(x,tLk )dx + o f	uk)uk d[' 

2 fccxucix - 0 foudr+fe((euk)ukdr 

2 JGCXUI.IX - 0 f	df + /
	

, u)dI'. 

Inserting the last estimate into (15), it follows that 

( - 
e) I u kII = Ok +fG(xuk)dx -

	
u	+f(.u t )dr - 9 II u k 

!
II 

/3k (o_)faucir 

This implies
/3k	_____ IIukIl2E	

(-oy 

Because of the equivalence of the norms 11 . 11E and 11 . 11, the sequence of critical points 
{ uk}k in ?-i is bounded and there is a subsequence (again denoted by {uk}k), weakly 
converging to a limit ü = w lim_ Uk and ü is a critical point of F. However, it is not 
clear whether t 54 0. This question is treated in the next two sections, but first we shall 
prove the following 

Lemma 3.1. The sequence of critical values /3k of the functional (9) satisfies 
limk	/9k = /3. 

Proof. Since 0 = infWE w maxUEW F(u), for every 6 > 0 there is a path iii in 

= {w: [0,1] -	w(0) = 0 and w(1) = 

such that
c= max F(u)	 und	k-i31< -.	 (16) 

uEw	 2 

Since ii is compact, there is a ii E t such that F(ii) = 

If E > 0 is arbitrary, we find for every u E	a ke,u E iN such that for the open 
66ball B(,u) C 11 we have B(,u) fl 71k	0 for every k >	since UkEIN 7 Ik is

dense in R. The set of all these balls {B(,u)}UE-. forms an open cover of @, which 
possesses a finite subcover {B(, u,) }	because i is compact. Therefore there exists
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k0 = max E(I u .., no) ke,uj such that to every u E	there is a U k 0 E flk 0 satisfying
Iu. — uk o II < 

Now we can construct a path w E Wk ,, such that dist (we, z) <e. For that purpose 
let B, = B(,u j ) be chosen in such away that B, nB, 1 0 (j = 1,... ,rn —1). In 
each B, choose some U k0 ,, E flk 0 , and set U k 0 ,o = 0 and U ko,m+I = v. By 

w,,(t) = tL k0 ,j + t (uk 0 ,j+1 - u k 0 ,,)	(0 < t	1; j = 0,... , m) 

a path w E Wk,, is defined piecewise. Further, since to every j there is a v, E 11, v3 E 
B, fl B, 1 , satisfying the inequalities 

II u ko,j - viii < E
	and	iIkoi+1 - Viii < C 

it follows for every u E we,,, u = U k0 j + t (u k 0 ,+1 - u k 0 ,) (with some t E [0, 1]) the 
estimate

Ilu -	- Uko,jIi + J j Uk.j - Vill 

=t ikLko,i+ 1 - U ko,jli + Ii Uko,i - Viii 

II uko,j+1 - Viii + II uk0,, - viii + iNLko,i - Vi 

<C, 

which shows dist(w,i) <C. 
In this way, for any sequence e 1 - 0, a sequence of paths w, E Wk can be con-

structed, such that dist(w,) < e,. Let r i be the corresponding maximum of the 
functional F on w, attained at the point u 1 , i.e. tc = max,,€ F(u) = F(u 1 ). Clearly, 
k1

Now we prove that there is a subsequence of {u1}1 E Loj converging strongly to some 
fl E . For, suppose this is not true. Then to every u E ti we could find a 6,, > 0 such 
that the ball B(6,,, u) contains at most a finite number of these u 1 's. By compactness 
there is a finite number of such balls, denoted by B, (j= ... , m), covering and 
containing at most a finite number of points u 1 . Let (5 = min {6,, ii = 1,... ,rn}. 
Then for almost every u 1 it follows dist(u 1 ,z) > 6 > 0 which is a contradiction to the 
construction of the sequence {w,}. 

Therefore there exists a subsequence (again denoted by {u 1 }), satisfying lim_. u 1 = 
fl E iii. Since F is continuous we have F(ü) =	F(u1) = lim i.00 r, Consequently 
there is a t E W such that iF(u) - t	for every i ? 

If 0 < Ok i < K (r. from (16)), then 113 - /3k,i < . Otherwise, if /3 < c < /3k, then 
the inequalities F(ü)	Oki	,, lead to the estimate 

ifi - i3 ,i 113 K  + K — flkj ifi— n i + IF(fl) - cI <6 

for every i t. Since {/3k}kEj was monotone decreasing and bounded from below, it 
follows that limk.. 13k = 0 I
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4. A comparison argument 

In this section a comparison functional will be defined and a necessary condition for 
u 0 will be proved. This condition will be used in the next section to prove that for 
some special functions g and there exists a solution ü 0 of Problem 1. The methods 
of proof used in these sections are based in part on ideas of W.-Y. Ding and W.-M. Ni 
[6].

For 0	E L'(r)

1/2 

HIL = / ( I Vu I 2 + a(x)u 2 )dx + I e)u2dr) 
S1	 r 

defines a norm on R, equivalent to	und 11 . k . With (u) = (E,u) - a()u (see
Assumption 1.1/3°) we have the representations 

(F'(u),u) = Iu - J g(x,u)udx - fu)udr 

F(u)	IIuIIL - J C(x,u)dx - f(eu)dr. 

We require some additional conditions for the functions g and . 

Assumptions 4.1. The functions g and are assumed to satisfy the following 
conditions: 

10 g and are assumed to be odd functions in u, i.e. g( . , —u) = .g( . , u) and ,7(., —u) = 
. u). 

g(x u)	(u) 2°	and	are non-decreasing in u > 0 for all x E Q and E r, respectively. 
U	 U 

From Assumption 4.1/1° and Assumptions 1.1/2°,5 0 it follows that (for u 54 0) the 
functions

g(x,u) 
g(x,u)u,	 ,	ço(,u)u, 

are positive for all x E Q and E r, respectively. 

Under these conditions we can prove for the functionals F in (4) and Fk in (9) the 
following 

Lemma 4.2. For u E fl set A. {tu0 t E lil}. The the following statements 
are true. 

(i) If ü is a critical point of F, then F(ü) is the absolute maximum of F in A. 

(ii) If Uk is a critical point of Fk, then F(uk) is the absolute maximum of  in Auk.
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Proof. Let ü be a critical point of F, i.e. (F'(ü), u) = 0. Consequently 

II u II = J ug(x, ft) dx + fuu)dr	 (17) 

F(ü) 
= J (_iig(x,u)-G(x,fi)) dx +/ (uc,i) -	dr.	(18) 

Analogously we have for the critical points ug of Fk 

F(uk) 
= J G 

U kg( X , U k) - G(xuk)) dx +/ G 
1 

U k^;(C U k) - 3(uk)) dr. (19) 

For t ? 0 we set 

p(i) = F(ti) = t 2 IIuII - J G(x,tü)dx - J(e tu)dr .	(20) 

Since F is differentiable, it can be differentiated with respect to t and with (17) we 
obtain

= ti - f ig(x,tu)dx - Ji,iu)d1' 
ci	 r 

= f (tug(x,u) - ig(x,tü))dx + J (tue,u - 

ci	 I, 

= Jtu2 (9(x") - (xtu)) 
dx + 

Jti2 (u) - (t)) 

ci	 r 

Since g und are odd in u and	and	are non-decreasing in u > 0 (by
Assumption 4.1/2 0 ), it follows that 

p'(t)?O if 0<t<1	and	p'(t)0 if t>1. 

Therefore p(l) F(ü) is the absolute maximum of F in A. The same arguments can 
be repeated for Uk and the proof is complete I 

To define a comparison functional, let h be a Carathéodory function, differentiable 
in the second variable, and satisfying the following conditions (such a function will be 
defined explicitely in the next section): 

(Hi) For every x e Q and u 0 we have h(x,u) ^! 0 and h is odd in u. Furthermore 
there is an R > 0 such that 

h(x,u)>0	for every xEl,u>R.
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dh 
u—(x,u) ^! (1 +e)h(x,u) 

du 

(H2) There is an e > 0 such that 

(H3) For every x E Q and u E IR, 

Ih(x,u)j 5 C(i + IuI)

	

for every x E 0, U 0.	(21) 

\

	

(1<P<n*_1= n + 2).	(22) 

The corresponding primitive function is H(x, u) = f° h(x, y) dy. The comparison func-
tional is now defined as 

	

Fh(u)	IJuII - f H(x,u)dx - I ;D(x, u) dr. 

From Assumption (H2) it follows in particular that, for u 0, 

	

U	 U 
I dh j y–(x,y)dy ^! (1 +e)fh(x,)dy. 

	

0	 0 

Integration by parts shows that uh(x, u) ^! (2 + E)H(x, u). Since h is odd, this is true 
for all u, i.e. h satisfies the Assumption 1.1/8 0 . Together with Assumptions (Hi) and 
(H3) it can now be proved, just as in the verification of condition 30 of the Mountain 
Pass Lemma for the functional F in (4), that there exists a € E 'H 1 which satisfies 
Fh( tI ) < 0 for I > 1. Without loss of generality it can be assumed that v, fixed in 
Section 2, satisfies the inequalities F(tv) <0 and Fh( tv ) <0 for every I > 1. 

Corresponding to /3 = infWE w max UEW F(u) we define 

13h = inf maxFh(u). 
wEW uEw 

Furthermore set 

M9 = uEN\{0} IIuII	f g(x, u)u dx + / 	uu 
r I 

Mh= uEl-1\{0} IIuII 
= f h(x, u)u dx + /	, u)u d I 

Lemma 4.3. Let u E H \ {0}. Then there is a real number r > 0 such that 
ru E Mh, i.e. A u intersects Mh at one point. 

Proof. As in the verification of conditions 2° and 3° of the Mountain Pass Lemma 
for the functional F in (4) (see Section 2) it can be shown that there exist S > 0 and 
r > 0 such that 

z1(rö) := II r6 u Ift - / h(x,rôu)rôudx - / (e, r6 u )roudr ^ 6>0
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(observe that h( . , u)u and (, u)u are both positive and satisfy the same growth condi-
tions in u as G( . , u) and 1( . , u), respectively.) On the other hand there is a r > 0 with 
ti(r) <0. A comparison with the arguments in Section 2 (verification of condition 30) 

shows that the existence of such a r x, requires that {x e Q1 H(x, u) > 01 is not a zero 
set. Since in Section 2 only one v satisfying F(v) :5 0 had to be found, Assumption 
1.1/1 1 on g was sufficient. In the present case the existence of a T is needed for every 
u 0 0, which is guaranteed by the stronger condition (Hi) for h. Since v is continuous 
it follows that there is a T such that v(T) = 0 I 

Lemma 4.4. Set	infuEM9 F(u) and /3, = infuE Mh Fh(u ) . Then /3 < 3 and 
13h

Proof. To show 0 fl it suffices to construct to every ü E M. a path w E W 
such that F(ü) = maxuEw F(u). Because of the definition of 0 it then follows at once 
that infue M9 F(ü) 2 /9. 

Let ü E M9 be arbitrary. Using the same arguments as in the proof of Lemma 4.2, 
it follows that F(ü) is the absolute maximum of F in Au = {tul t 2 01. Namely, for the 
function u defined as in (20) we have again p'(t) 2 0 for 0 < t < 1 and /2'(t) < 0 for 
t>1. 

Now let v E N from the proof of condition 3° of Theorem 2.4 be fixed, i.e. F(tv) 0 
for all t > 1. As in the verification of condition 3° of the Mountain Pass Lemma in 
Section 2 it follows again that F(Iii) 0 if I > 1 is large enough. Let V denote the 
two-dimensional subspace of 7-1, spanned by {v,ü}, and let R > max {II Iu Il,II v II} be 
so large that for SR, the sphere of radius R in N, we have Fi VnSR :^ 0. Such an 

R exists, since for fixed .R0 the functional II attains its maximum (in Umax) and 
ff, G(x,.) + fr, cI(,.) attains its minimum (in Umin) on the (compact) set S ft0 fl V. For 
A > 1 we have F(Au) < A2 II UmaxII - 'CIIU min IIp (compare with Section 2). If .\ is 
large enough, it follows that F(u) 0 for every u E SAJ 0 fl V. 

Let U k = Au fl SR, yR A fl SR and w be a path connecting 0, U, Uji, VR and v 
and lying in Au U (SR fl V) U A. Obviously w E W and F(U) = maxuEw F(u). 

The same arguments show likewise 13h Ph I 
Now the following theorem can be proved. 

Theorem 4.5. Let h satisfy Assumptions (Hi) - (H3) and assume that satisfies 

tu) 2 t 1 (,u)	for every t 2 1, u 20.	 (23) 

For an open domain D cc Q with compact closure assume that g(x,u) h(x,u) for all 
X E l \ D and all u 2 0. Let ü be the weak limit of the sequence of critical points Uk of 
the functional Fk in (9). Then i 0 implies 0 2 /9. 

Proof. Assume u 0. According to Lemma 3.1, 0 = limk ....,flk. Let Uk be a 
critical point of Fk and Fk(uk) = /3k- By standard regularity arguments it can be 
shown that Uk E C"'(D) for every domain D with compact closure in Q and that there 
is a subsequence of {u k }, converging to 0 uniformly in D. For this subsequence we have 

0 <_ ek	
I 

U k9(X ' Uk) dx - 0	as k - .



Semilinear Elliptic Problems	841 

To every Uk there exists tk > 0 with i k uk E Mh (Lemma 4.3), i.e. 

d II u kII = tk J h(x,tkuk)uk dx + tk J (,tkuk)uk d'
	

(24) 

Since Uk is a critical point, we also have 

ukII = f g(x,u k )u k dx +J(euk)ukdf 

= Ek 
+L 

g(x, uk)uk dx + /	[' uk)uk d 
c  

^ C	h(x,uk)ukdx +J(euk)ukdr. 

In the last inequality the fact was used that from g(x,u) <h(x,u) for all u 0, g and 
h odd, it follows that g(x,u)u < h(x,u)u for all u. 

First of all it will be shown now that the sequence {tk} is bounded. Therefore 
assume tk > 1 for a subsequence (if there is no such subsequence, then tk < 1 for 
almost all k E W and the boundedness follows at once). If tk > 1, we see from the last 
inequality and (24) 

tEk + tJ h(x,uk)uk dx + t / c, U)U I' d 

^ tU/fl 

= J t k h (X , t k ti k)U k dx + 
f 

t k (7(^, t k U k)U k dr 

>J
 t2	t2+e k+ 'h(x, uk)uk dx + /	Uk)Uk 

In the last line the estimates 

(tu)	i'(,u)u	(t > 1)
	

(25) 

h(x,tu)	t'h(x,u)u	(i > 1)
	

(26) 

were used for arbitrary u. Inequality (25) follows directly from (23) and the fact that c 
is odd. On the other hand, (26) follows from condition (112) if this is again (for tz resp. 
y > 0) reformulated as a differential inequality:	 - 

A2+e d (y'h(x,y)) = y—(x,y)—(1 +e)h(x,y) ^ 0.
dy
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Integration over lu, tu] shows that (tu) ) h(x, tu) - u—() h(x, u) 2 0 which implies 
h(x,tu) > t l + e h(x , u) for every u 0. Since h is odd in u, now (26) follows for every 
u. Therefore we get 

	

tEk 2 (t	-	h(x, Uk)Uk dx + (t	- 
t 2 k) /	, u k)u k d 

	

2 (t	- t) (I g(x, tL k)u k dX — 6k) + (i 2 — t) J ^;(6 r , u k)u k d. 

Since Uk is a critical point of Fk, we have further 

2

	

tEk 2 (t	- t) (I u kIIL - J(e 5 uk)ukdr 6k) 

+ (i	- t)Juk)ukdr	
(27) 

I, 

	

= (t	- t) (II ukII. — 6k) 

Since g and are odd, and positive for u 2 0, C and 'II' are positive for all u and it 
follows for every k that

II ukII. 2 2Fk(uk) 2 2 13k 2 29. 

Now 6k - 0, so that we can choose kfl such that 6k < /9 for every k 2 k fl , therefore 
(II ukII - 6 k) 2 (2/3 -,3) = 8. Using this in (27) we get 6k 2 (t - 1)/I. This shows 
limk... tk = 1. In particular	tktL/ç = 0. 

According to Lemma 4.2, F(uk) = maxvEA F(v) = maxj>o F(tUk), which shows 
that

13k = F(uk) 

2 F(t,u,) 

= IIkII G(x,tkuk)dx - JG(xtkuk)dx - 

2
	t2	2 
2	k1jUk11 - JH(x,tkuk)dx - (t,tkuk )dI' - f G(x, tkUk) dx 

= Fh(tkuk) - G(x, tkuk)dx

2 /3 -JG(xtkuk)dx. 

The last inequality follows directly from the definition of /3 and the fact that t  was cho-
sen in such a way that tu E Mh . Fromtkuk —* Oit follows again fQ(x,tkuk)dx —*0, 
i.e. 0 =	/3k 2 3 which proves the theorem I 
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From this theorem we have immediately the following 

Corollary 4.6. If 8 < /3, then i is a non-trivial solution to Problem 1. 

According to the inequality 6 :5 0, proved in Lemma 4.4, it follows now 

Corollary 4.7. If 3* < /3, then ü is a non-trivial solution to Problem 1. 

This corollary will be used in the next section to prove the existence of non-trivial 
solutions to some special cases of Problem 1. 

5. Existence theorems for some special cases 

In this section we consider as special cases non-linearities of the form 

g(x,u) = P(x)1-1'u,	h(x,u) = K(x)IuI1u 
p(, u) = —cx(e)u + Q(e)IuI'u, 

where 1 < p < n. - 1 and F, c, Q, K are positive L°°-functions, P not a constant, 
P(x) > 0 everywhere and K(x) = P(x) outside some bounded subdomain of ci (for the 
precise definition see below). 

The methods we use here to show the existence of a non-trivial solution to Problem 
1 require the same exponent p in the non-linearities g and W. As was shown in [13], 
this is quite natural from a physical point of view. However, this leads to a stronger 
restriction on p, since the critical Sobolev exponent n for the trace operator is smaller 
than n. In the three-dimensional case, we have n = 4, and consequently 1 <p < 3. 

Clearly Assumptions 1.1 and 4. 1, those required in Theorem 4.5 and conditions (Hi) 
- (H3) from Section 4 are satisfied for these functions g, ço and h. 

The functional F now has the form 

F(u) = IIuII - -:b I P(x)IuI'dx - 	j Q(^ )JuIP+1 dr.  
r 

Correspondingly we define 

M9 = { u E H \ {0} IluII = J P(x)IuI'dx 
+ / 

Q(e)IuI' } 

Mh 
= I u E fl \ {0} IIuII = J K(x)IuI1dx + I Q(e)jujP+ 1 dT 

In Lemma 4.3 it was shown that for every u E fl \ {0} there exists a r > 0 such 
that ru E Mh . In the proof condition (Hi) was used, which is slightly stronger than 
Assumption 1.1/1°. Because of the special choice of the function g in this section, we 
see that g also satisfies condition (Hi). Therefore the same arguments used in the proof
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of Lemma 4.3 can now be applied to the set M9 to show that for every u e 7-1 \ {O} 
there exists a I > 0 such that in E M9. 

Consequently we get the following representations for /3* and $: 

= inf F(u) 
u EM, 

={ (1 - fl jp+i ( P(x)IuI'dx 
+ f 

Q()IuIP+ 1dr) } .360 \2	p+lj 

= inf Fh(u) 
U € M, 

= inf IG' -
(I K(x)IuJ'dx + f Q(e)IuI'dr)^o 	pTi) 

In view of Corollary 4.7, to prove the existence of a non-trivial solution ü of Problem 
1, it must be shown that /3* </3 for an appropriate comparison function h (resp. K). 

Let {Dj}jE JN be a sequence of open subdomains in Q, D 1 C D2 c ..., such that 
the closure of each D3 is compact in I?", U,€IN D, = S1 and 

dist(D3 , IF) =	inf	{Ix—I}>0. zE D2 , t Er 

Theorem 5.1. Let P 0 const, inf EçP(x) = m > 0 and assume that there is 
a sequence of open subdomains {D,} of Q with the properties described above and a 
sequence of positive real numbers c —* 0 such that P(x) ni + E j for almost every 
x E Q \ D. Furthermore let 1 <p < n — 1 and assume that the inequality 

a	sup U P(x)IuI'dx + / Q(e)IuI1dr} 
lu IlL =1 

> sup

(28) 

{i m I u I 1dx + 
I 

Q()Iu I 1d F } =: Urn 
IIUIIL=1 

holds. Then there exists a non-trivial weak solution to Problem 1. 
Remark. A sufficient condition on the function P such that inequality (28) holds 

is given below, see Corollary 5.2. 

Proof of Theorem 5.1. For some fixed jo E W set 

( P(x) for xE\D0
(29)  

(rn	for xED30. 

Then the function h(x, u) = K (x )I u I Pu satisfies the condition g(x, u) h(x, u) outside 
the subset D 0 of S1, i.e. Theorem 4.5 applies to this function.
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Now we have to show J3 </3. Let 

	

19	inf (I 
P ( x )I u I"' dx + / Q()IuI"dr) } upkO 

EM9 

	

Ah	in	(fK(x)IuP+1dx+JQ()uu+1)}. 
E Mh 

From the definition of the positive real numbers t and r it follows that 

t 2 u	= t'' J P(x ) I ul'' dx + t"' f Q(C)jujP+'dT 

T2 II u lI =	J K ( x ) I u I' dx + T' / Q()uI'dF. 

Consequently we have 

- (

) 

p+'/p-i 
JIU112 

- f P(x ) I u I P+ ' dx + fQ(e)IuIP+'dr 
r

(p+i)/(p-I) 
7 P+1-

 
(0*	

IIuII.	

) 
- f K( x )l u I l' + ' dx + fQ()IuI'dr 

r 

Inserting this into the definition of /9 one gets 

(IIuII)'' (( P(x)u'dx + ji Q()IuV+'dF) 1 

	

inf J	 S 
(p+1)/(p-1)	I U340

P(x)uIP+1.dx+fQ()IuIP+1dr)

2(p+1)/(p-1) \ 

infJ( IIUIIL	 I =	 I 
1/(p+1)	 I U960

P(x)IuIP+1dx+fQ(e)IuIP+1dr)	I	J 
Correspondingly

{(	 I

2(p+1)/(p-I) 

h=inf	

' 

II U IIL	 "I	I 

	

uOO	

GfK(x)IuIP+'dx +fQ()IuIP+1dr))
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Now 3* < fl if and only if /3 < /3h, and in order to apply Corollary 4.7 it must be 
shown that

IkLIIL	 1 infJ 
ui4o	

P(x)IuIP+'dx + f Q(e)iUiP+') 

'/(p+1) 

J
(30) 

<inf	 IIUIIL	
i/(p+I) I 

1 J 
uO 

CfK(x)IuIP+1dx+fQ(e)IuIP+1)	
J 

For that purpose the following inequality will be proved first: 

= SUP Q(^ ) J u I P+' dr  
lu IlL =1 

> urn (sup	
f 

P(x)IuIP+1dx+ImluIdx+JQ(e)IuIPdr}) 
(31) 

.7	00	
11 U 11L 1 1 

ICl\D1 	 r 
lirn o. 

•700 

Let

:= sup 
llullL=1 

{JmIuI'dx}. 

By assumption, there is a sequence e 3 - 0 such that 

Cj	SUP	J P(x)IuI'dx+JmIuI1''dx 
IlllL1 

sup (m+c) f uI'dx+mfIuI'dx 
11 U 11L 1 I D 

This inequality remains true if the boundary integral is added on both sides. It follows
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that

	

aj = sup	f P(x)IuIdx+JmIuIP+Idx+IQ()IuIP+1 
II u tIL =1 I

	

 

< sup	(m+ej)fIuI1dx+JQ()IuIP+ 
II u IIL =I I ci	 r 

< m +ej sup fm I u ' dx + JQ()IuI 

	

M	IIuIIL=I i

	

UI	 F 

m + =	am. 
712 

	

Using (28) we get (because of c, - 0) in the limit	aj am <a, which proves 
(31). Consequently it follows that 

IIu=1 I f P ( x )I u I P+ ' dx + f Q()IuIP+'	
} 

< lim inf 11U=1
 

	

I f P(x)IuIP+Idx+ f	 Q(C)IuIP+ IaT  
r 

If  > 0, we have IP u IIL = AIJUJIL and i/(p+i) 
(I P(x)IAuI'dx + / Q(x)IAuI1dr) 

=A (JP(x)uI'dx +
/ 

Q(x)IuI) 

so that 

• f J	 IIuIIt 
o '	 i/(p+i) 

t LfP(x)IuIP+Idx +fQ()IuIP+1dr) 

<liminf	 IIUIIL 
j-OO tLO/	 i/(p+l) 

f P(x)IUIP+'dx+ f mIuIP"dx+fQ()IuIP4dr 
Dj	 F 

Now in (29), the definition of K, we can choose some jo large enough to conclude from 
the last inequality the inequality (30), i.e. 0 < 3I
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For arbitrary given functions P and Q it is not easy to decide, wether condition (28) 
is satisfied, since the suprema are in general not attained by some function in H'(9). 
Of course, if P is assumed to be "large enough" (in some compact region) compared to 
Q and m, estimate (28) can be shown. First of all observe that 

sup
11U11L1 

{f m I uI' dx + / Q()IuIP dr} = 

p+, l sup	p+1 + IIQIIL IIUIILP+1(r)J 
IIUUL=I 

<mC1 + IIQIIL'C2 
Cm,Q, 

where, once again, the Sobolev imbedding resp. trace theorem was used and the constant 
Cm, Q only depends on in, Q and the Sobolev constants (with respect to the norm II . 11 L) 

Now, given u E H'(cl) with support in some D3, Il u liL = 1 and an arbitrary 
constant C > 0, one can easily find a function P such that 

infP(x)=m	and	f XEQ  

This observation leads to the following 
Corollary 5.2. Let P 54 const, infZE P(x) = m > 0 and assume that there is a 

sequence e - 0 such that P(x) m+,-, for almost every x E Q\D. Let 1 <p < n —1 
and assume that there exists a subdomain B C D1 for some j, 0 < measB < 1, such 
that

P(x)> m,Q	for every x E B. 
measB 

Then there exists a non-trivial solution to Problem 1. 
Proof. Choose uc E R, Il ucilL = 1, such that u > 1 in B. Then 

or 

=
sup {JPIuI'dx+/QIuI'r} 
IIUIIL=  

2 f P(X)lu,,IP+ldx 

> Cm, Q 

^ sup {JmIuI'dx+JQ()Iul'dr} 
11U11L1 

= am. 

So (28) is valid and Theorem 5.1 can be applied U
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The condition inf1Efl P(x) = m > 0 is not essential for the existence of solutions 
of Problem 1, but was needed only for technical reasons. The case m = 0 will be 
considered now, where the arguments are somewhat different - due to the fact that 
h(x, u) = K(x)IuIPl u does not satisfy condition (Hi) if in (29), the definition of K, we 
set m = 0. 

Theorem 5.3. With the same notations as in Theorem 5.1 let inf€c P(x) = 
0,P 0 const and P(x)< efor almost every x E fl\D. Let  <p<n.—i 
and assume that the inequality 

or := sup {/ P(x)u
'dx + / 

Q()IuIP+1dr} 
11U11L1 

> sup {JQIuIP+1 } =: uo 
11U11L1 

holds. Then there exists a non-trivial weak solution to Problem 1. 

Proof. As in (29) let 

f P(x) ifEcl\D0 
K(x):=	

if ED,0	
for some joE IN. 

Since for functions u E 'H with suppu C Di,, we have h(x,u) = K ( x ) I uI' u = 0 for 
every x E ci, h does not satisfy condition (Hi). Consequently, given a critical point Uk 
of Fk, it is a priori not clear whether there is a t k > 0 such that t k u k E Mh . But this 
fact was used to prove > 6 (in Theorem 4.5) if the weak limit of {uk} were zero. 

Now we have to distinguish two cases. For {u k }, the sequence of critical points of 
Fk

(i) there exists k0 E IN such that for every k > k0 , suppu k fl suppK is a set of 
measure zero; or 

(ii) there is a subsequence of {u k } such that supp Uk fl supp K has non-vanishing 
Lebesgue measure for every k E I for some infinite index set I C iN. 

Assume (i). According to the definition of K there is a jo E IN such that suppu, C 
D 0 for every k > k0 . Since {u k } is bounded in H'-norm, there is a subsequence (again 
denoted {u k }) converging in LP (D 0 )-norm to some function i. Since Uk and i are 
critical points we know that 

F(uk) = J ( -	
P(x)u'dx 

F(ü) = J ( -	
P(x)udx.	

(32) 

Djo
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(The boundary integral is zero because supp Uk lies in the interior of ft) Since the 
functionals in (32) are continuous on LP+(D0), we get 

0 = urn 13k = urn F(uk) = F(ü), 
k—.00	k—.00 

and therefore ü 0. 
Assume (ii). For each Uk of this subsequence there is a t k > 0 such that t k u k e Mh. 

Now the arguments in the proof of Theorem 4.5 can be repeated to show that, if the 
weak limit of {uk} is zero, then /3 ^! /9. To prove /3 s < /3 the assumption a > ao is 
used. Since P(z) e, in Q \ D, we have 

orj := sup	f P(x)IUIP+ldx+JQ(e)IuIP+1dr 
11U11L1 r 

sup I j EiIuI'dx+JQ(e)IuIP+'dr 
11U11L1 r 

,-C+ sup	fQ()IuI'dr 
11U11L1 

= e 3 C + oo 

where the constant is due to the Sobolev embedding. Now E j	0 and therefore 
or j	a <, i.e. 

sup If P(x)lu I P+ 'dx + Q(C)IuIP 
11u11t1 

> urn sup j.f  P(x )I uI' dx + JQ()IuIdF )°°
11U11L1 r 

If we now choose jo in the definition of K large enough we get 

inf	 IkLIIL
i/(p+i) 

LfP(x)IuIP+'dx + I Q()IuIP+1dI') 

	

< inf	 IIUIIL 

	

u30	 1/(p+1) 

U K( x )I u I P+1dx + f Q()IuIP+1dr) 

and consequently /3 <flI
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