On a Class of Nonlinear Elliptic Problems with Neumann Boundary Conditions Growing Like a Power

M. **Chipot and F. Voirol**

Abstract. One investigates the issue of existence and number of solutions for the problem

$$
\Delta u = au^p \quad \text{in} \quad \Omega
$$

$$
u = 0 \quad \text{on} \quad \Gamma_0, \qquad \frac{\partial u}{\partial n} = u^q \quad \text{on} \quad \Gamma_1.
$$

where Γ_0 and Γ_1 are two parts of the boundary of the open set Ω . In dimension one we are able to find all the solutions to the problem. In higher dimension we give for different solutions depending on p, q and Ω existence and non-existence results.

Keywords: *Neumann boundary conditions, nonlinear elliptic equations*

AMS subject classification: 34B15,35A15, 35JXX

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^n with boundary Γ . This paper is concerned with the problem of finding a positive solution *u* to the problem

et of Rⁿ with boundary
$$
\Gamma
$$
. This paper is concerned with
we solution *u* to the problem

$$
\Delta u = au^p \qquad \text{in} \quad \Omega
$$

$$
u = 0 \qquad \text{on} \quad \Gamma_0
$$

$$
\frac{\partial u}{\partial n} = u^q \qquad \text{on} \quad \Gamma_1
$$

$$
(1.1)
$$

where a and $p,~q$ are positive constants such that $p,q>1,~\Gamma_0$ and Γ_1 are two portions of the boundary Γ that we will assume to be disjoint and covering Γ , and *n* is the outward unit normal to Γ . Moreover, we will assume that Γ_0 has a positive superficial measure. where a and p, q are positive constants such that p, q
the boundary Γ that we will assume to be disjoint an
unit normal to Γ . Moreover, we will assume that Γ_0
We refer the reader to [1] for the case where $\Gamma_1 =$

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag

M. Chipot: Université de Metz, Centre d'Analyse Non Linéaire, URA-CNRS 399, Ile du Saulcy, 57045 Metz-Cedex 01, France

F. Voirol: Université de Metz, Centre d'Analyse Non Linéaire, URA-CNRS 399, Ile du Saulcy, 57045 Metz-Cedex 01, France

The above problem models the equilibrium of the temperature u in a domain Ω . It is assumed that cooling is provided at a rate proportional to *u'* inside the body and a flux of heat is entering the boundary through Γ_1 at a rate u^q . The other part of the boundary is maintained at a constant temperature. The question is then to determine if an equilibrium can be reached by the temperature inside the body.

2. The one-dimensional case

In this section we consider the problem of finding $u > 0$, $u \in C^2(0, L) \cap C^1([0, L])$, such that

boundary integral
$$
I_1
$$
 at a late u^2 . The other part of the a constant temperature. The question is then to determine the body.

\nOn all case

\nthe problem of finding $u > 0$, $u \in C^2(0, L) \cap C^1([0, L])$, such

\n
$$
u'' = au^p \quad \text{on } (0, L)
$$

\n
$$
u(0) = 0 \quad \text{and} \quad u'(L) = u^q(L)
$$

\n(2.1)

where $a > 0$ and $p, q > 1$. In this case the situation is complete and we have the following result.

Theorem 2.1. *The problem (2.1) can be described through the following cases.*

(1) If $2q > p + 1$, then the problem (2.1) has for any $L > 0$ a unique non-trivial *solution.*

(2) If 2q=p+1, then

for $a < q$ *the problem* (2.1) has for any $L > 0$ a unique non-trivial solution *for* $a \geq q$ *the problem* (2.1) has no non-trivial solution.

(3) If $2q < p+1$, then there exists $L^* > 0$ such that *for* $L < L^*$ *the problem* (2.1) has no non-trivial solution *for* $L = L^*$ *the problem* (2.1) has a unique non-trivial solution *for* $L > L^*$ *the problem* (2.1) has two non-trivial solutions. for any $L > 0$ a un
no non-trivial solution
e exists $L^* > 0$ such
no non-trivial solution
is a unique non-trivial so
is a unique non-trivial so
 (3) will be given if
 (1) Theorem 2.1. $u''_m = au^p_m$
 $(0) = 0$ and $u'_m(0)$

The proof of assertions (1) - (3) will be given in separate parts.

Proof of assertion (1) of Theorem 2.1. We introduce *Urn* the solution of the Cauchy problem

has two non-trivial solutions.
\n1) - (3) will be given in separate parts.
\n**of Theorem 2.1.** We introduce
$$
u_m
$$
 the solution of the
\n $u''_m = au^p_m$
\n $u_m(0) = 0$ and $u'_m(0) = m$
\n $u_m(0) = 0$ and $u'_m(0) = m$
\n $\frac{u(r)}{u(r)}$ for all $(m,r) \in (0, +\infty) \times (0, l_m)$.
\n**the function** $r \rightarrow b(m,r)$ is decreasing on $(0, l_m)$. Indeed,
\n**so** of (2.2) by u'_{m} we obtain

where m is a positive constant and we denote by $[0, l_m)$ the interval where the solution exists. Then we set

$$
u_m \n\begin{cases}\n & m \quad \text{if } m \quad \
$$

We claim that for any $m > 0$ the function $r \to b(m, r)$ is decreasing on $(0, l_m)$. Indeed, if we mutiply the first equation of (2.2) by u'_m we obtain

$$
\frac{1}{2}(u_m'^2)'=\frac{a}{p+1}(u_m^{p+1})'.
$$

Integrating between 0 and *r* we get

$$
\frac{1}{2}u_m'^2(r)-\frac{1}{2}m^2=\frac{a}{p+1}u_m^{p+1}(r)
$$

hence

On a Class of Nonlinear Elliptic Problems 855
\nwe get\n
$$
\frac{1}{2}u_m'^2(r) - \frac{1}{2}m^2 = \frac{a}{p+1}u_m^{p+1}(r)
$$
\n
$$
u'_m(r) = \sqrt{m^2 + \frac{2a}{p+1}u_m^{p+1}(r)}.
$$
\n(2.4)

So, we deduce

On a Class of Nonlinear Elliptic Problems 855
\n
$$
\lim_{2} u_{m}^{2}(r) - \frac{1}{2}m^{2} = \frac{a}{p+1}u_{m}^{p+1}(r)
$$
\n
$$
u_{m}'(r) = \sqrt{m^{2} + \frac{2a}{p+1}u_{m}^{p+1}(r)}.
$$
\n
$$
b(m,r) = \frac{u_{m}'(r)}{u_{m}^{2}(r)} = \sqrt{m^{2}u_{m}^{-2q}(r) + \frac{2a}{p+1}u_{m}^{p+1-2q}(r)}.
$$
\n
$$
b(m,r) = \frac{u_{m}'(r)}{u_{m}^{2}(r)} = \sqrt{m^{2}u_{m}^{-2q}(r) + \frac{2a}{p+1}u_{m}^{p+1-2q}(r)}.
$$
\n
$$
c(2.5)
$$
\n
$$
c(2.5)
$$
\n
$$
c(2.6)
$$
\n
$$
c(2.7)
$$
\n
$$
c(2.7)
$$
\n
$$
c(2.7)
$$
\n
$$
c(2.8)
$$
\n
$$
c(2.9)
$$
\n
$$
c(2.9)
$$
\n
$$
c(2.1)
$$
\n
$$
c(2.1)
$$
\n
$$
c(2.2)
$$
\n
$$
c(2.3)
$$
\n
$$
c(2.4)
$$
\n
$$
c(2.5)
$$
\n
$$
c(2.6)
$$
\n
$$
c(2.7)
$$
\n
$$
c(2.6)
$$
\n
$$
c(2.7)
$$
\n
$$
c(2.8)
$$
\n
$$
c(2.9)
$$
\n
$$
c(2.9)
$$
\n
$$
c(2.1)
$$
\n
$$
c(2.1)
$$
\n
$$
c(2.2)
$$

From u_m being clearly increasing on $(0, l_m)$ there follows since $p + 1 - 2q < 0$ that $r \rightarrow b(m, r)$ is decreasing on $(0, l_m)$. Next, let us establish the following $\frac{S}{s} = \sqrt{m^2 u_m^{-2q}}(r) + \frac{1}{p+1} u_m^{p+1-2q}(r).$ (2.5)

ng on $(0, l_m)$ there follows since $p + 1 - 2q < 0$ that
 l_m). Next, let us establish the following
 $d(m,r) \in (0, +\infty) \times (0, l_m)$. Then
 $x^{-(p-1)/2} \in (0, +\infty) \times (0, l_{m\alpha^{(p+$

Lemma 2.1. *Let* $\alpha > 0$ *and* $(m, r) \in (0, +\infty) \times (0, l_m)$ *. Then* Next, let us establis
 a, *r*) $\in (0, +\infty) \times (0, 0, 0)$
 $\in (1, +\infty) \times (0, 0)$
 $\in (1, +\infty) \times (0, 0)$
 $\in (1, +\infty)$
 $\in (1, +$

$$
(m\alpha^{(p+1)/2}, r\alpha^{-(p-1)/2}) \in (0, +\infty) \times (0, l_{m\alpha^{(p+1)/2}})
$$

\n
$$
b(m\alpha^{(p+1)/2}, r\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m, r).
$$

\nder
\n
$$
s(t) = \alpha u_m(\alpha^{(p-1)/2}t).
$$

\n
$$
s'(t) = \alpha^{(p+1)/2}u'_m(\alpha^{(p-1)/2}t)
$$

\n
$$
s'(t) = \alpha^p u''_m(\alpha^{(p-1)/2}t) = \alpha^p a u''_m(\alpha^{(p-1)/2}t) = a s(t)
$$

and one has

$$
o(m\alpha^{(p+1)/2},r\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m,r).
$$
 (2.6)

Proof. Consider

$$
s(t) = \alpha u_m(\alpha^{(p-1)/2}t). \tag{2.7}
$$

One has

k,

sider
\n
$$
s(t) = \alpha u_m(\alpha^{(p-1)/2}t).
$$
\n(2.7)
\n
$$
s'(t) = \alpha^{(p+1)/2} u'_m(\alpha^{(p-1)/2}t)
$$
\n(2.8)

$$
tan(\pi, t) = (0, +\infty) \times (0, t_m). Then
$$

\n
$$
(m\alpha^{(p+1)/2}, r\alpha^{-(p-1)/2}) \in (0, +\infty) \times (0, t_m\alpha^{(p+1)/2})
$$

\n
$$
b(m\alpha^{(p+1)/2}, r\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m, r).
$$
 (2.6)
\nsider
\n
$$
s(t) = \alpha u_m(\alpha^{(p-1)/2}t).
$$
 (2.7)
\n
$$
s'(t) = \alpha^{(p+1)/2}u'_m(\alpha^{(p-1)/2}t)
$$
 (2.8)
\n
$$
s''(t) = \alpha^p u''_m(\alpha^{(p-1)/2}t) = \alpha^p au''_m(\alpha^{(p-1)/2}t) = as(t)^p.
$$
 (2.9)
\nsfies
\n
$$
s'' = as^p
$$

So, $s = s(t)$ satisfies

$$
b(m\alpha^{(p+1)/2}, r\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m,r).
$$
 (2.6)
\nsider
\n
$$
s(t) = \alpha u_m(\alpha^{(p-1)/2}t).
$$
 (2.7)
\n
$$
s'(t) = \alpha^{(p+1)/2}u'_m(\alpha^{(p-1)/2}t)
$$
 (2.8)
\n
$$
s''(t) = \alpha^p u''_m(\alpha^{(p-1)/2}t) = \alpha^p au_m^p(\alpha^{(p-1)/2}t) = as(t)^p.
$$
 (2.9)
\n
$$
s'' = as^p
$$

\n
$$
s(0) = 0 \text{ and } s'(0) = m\alpha^{(p+1)/2}
$$
 (2.10)
\n
$$
s = u_{m\alpha^{(p+1)/2}}
$$
 and $l_{m\alpha^{(p+1)/2}} = \alpha^{-(p-1)/2}l_m.$
\n
$$
s = \frac{(p+1)^2}{2}, r\alpha^{-(p-1)/2} = \frac{s'(r\alpha^{-(p-1)/2})}{s^q(r\alpha^{-(p-1)/2})} = \frac{\alpha^{(p+1-2q)/2} \frac{u'_m(r)}{u_m^q(r)}}{u_m^q(r)}
$$

\nFrom (2.6) we deduce easily that for r fixed the function $m \to b(m,r)$ rst note that for $m' > m$ one has, since the trajectories of the system

and by the uniqueness of the solution of the Cauchy problem

$$
s = u_{m\alpha^{(p+1)/2}}
$$
 and $l_{m\alpha^{(p+1)/2}} = \alpha^{-(p-1)/2} l_m$

Next, we have

$$
b\big(m\alpha^{(p+1)/2},r\alpha^{-(p-1)/2}\big) = \frac{s'(r\alpha^{-(p-1)/2})}{s^q(r\alpha^{-(p-1)/2})} = \alpha^{(p+1-2q)/2} \frac{u'_m(r)}{u^q_m(r)}
$$

which gives (2.6). From (2.6) we deduce easily that for r fixed the function $m \to b(m,r)$ is decreasing. First note that for $m' > m$ one has, since the trajectories of the system (2.2) cannot cross, $\begin{aligned} u^{(r)}, r\alpha^{(r)}, \alpha^{(r)}, \cdots^{(r)} \end{aligned} = \frac{1}{s^q(r\alpha^{-(p-1)/2})} = \alpha^{(r+1)/2}$

om (2.6) we deduce easily that for r fixed the function of that for $m' > m$ one has, since the traje
 $u_m(r) \le u_{m'}(r)$ and $u'_m(r) \le u'_{m'}(r)$

$$
u_m(r) \le u_{m'}(r) \quad \text{and} \quad u'_m(r) \le u'_{m'}(r)
$$

and thus

$$
l_m \ge l_{m'}.\tag{2.11}
$$

 $I_m \geq I_{m'}$. (2.11)

on some interval $(0, m_r)$. Next, $m' > m$ can be
 > 1 . Then, since *b* is decreasing in *r* and by (2.6) So, for $r > 0$ fixed, $b(m, r)$ is defined on some interval $(0, m_r)$. Next, $m' > m$ can be written as $m' = m\alpha^{(p+1)/2}$ for some $\alpha > 1$. Then, since *b* is decreasing in *r* and by (2.6)

$$
b(m',r) < b(m',r\alpha^{-(p-1)/2})
$$
\n
$$
= b(m\alpha^{(p+1)/2},r\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m,r)
$$
\n
$$
< b(m,r)
$$

and the result follows \blacksquare

We are now in a position to establish (1). First remark that, by (2.11), $\lim_{m\to 0} l_m$ exists. We claim that this limit is $+\infty$. This follows clearly from the continuous dependence in *m* of the solution to the Cauchy problem (2.2) and from the fact that, for $m = 0$, the solution is 0 and defined on the whole real line. Thus, given an L , one can find $m > 0$ such that $L < l_m$. If $b(m, L) = 1$, then u_m provides us with a solution to our problem. If $b(m, L) > 1$, then one can select $\alpha > 1$ such that

$$
b(m\alpha^{(p+1)/2}, L\alpha^{-(p-1)/2}) = \alpha^{(p+1-2q)/2}b(m, L) = 1.
$$

Then, due to the fact that *b* is decreasing in *r,*

$$
b(m\alpha^{(p+1)/2}, L) < b(m\alpha^{(p+1)/2}, L\alpha^{-(p-1)/2}) = 1 < b(m, L).
$$

But due to the continuity of the map $m \to b(m,L)$ one can find $m_0 \in (m,m\alpha^{(p+1)/2})$ such that $b(m_0,L) = 1$ and u_{m_0} is solution to our problem. In the case where $b(m,L) < 1$ one proceeds the same way selecting $\alpha < 1$.

To see that uniqueness holds, assume that we have two distinct solutions u_1 and u_2 to (2.1). Then, $m_1 = u_1'(0) \neq u_2'(0) = m_2$ and we cannot have $b(m_1, L) = b(m_2, L)$. Thus, uniqueness follows and assertion (1) of Theorem 2.1 is proved \blacksquare

Proof of assertion (2) of Theorem 2.1. So, we assume $2q = p + 1$ and as above we introduce u_m , the solution to problem (2.1) . In this case (2.5) reads

$$
0) \neq u'_2(0) = m_2
$$
 and we cannot have $b(m_1, L) = b(m_2, L)$.
and assertion (1) of Theorem 2.1 is proved **1**
2) of Theorem 2.1. So, we assume $2q = p + 1$ and as above
tion to problem (2.1). In this case (2.5) reads

$$
b(m,r) = \frac{u'_m(r)}{u_m^q(r)} = \sqrt{\frac{m^2}{u_m^2(r)} + \frac{a}{q}}.
$$
 (2.12)

$$
\rightarrow b(m,r)
$$
 is decreasing on $(0, l_m)$. Moreover, we claim that

$$
\lim_{r \to l_m} u_m(r) = +\infty.
$$
 (2.13)
learly exists. Moreover, $(u, v) = (u_m, u'_m)$ is solution to the

Since u_m is increasing, $r \to b(m, r)$ is decreasing on $(0, l_m)$. Moreover, we claim that

$$
\lim_{r \to l_m} u_m(r) = +\infty. \tag{2.13}
$$

Indeed, the above limit clearly exists. Moreover, $(u, v) = (u_m, u'_m)$ is solution to the system

$$
\lim_{r \to l_m} u_m(r) = +\infty.
$$
\n(2.13)\nly exists. Moreover, $(u, v) = (u_m, u'_m)$ is solution to the

\n
$$
u' = v \text{ and } v' = au^p
$$
\n
$$
u(0) = 0 \text{ and } v(0) = m.
$$
\n(2.14)

The functions *u* and *v* are both increasing and have a limit. If $l_m < +\infty$ and $\lim_{r \to l_m}$ $u_m(r)$ < $+\infty$, then, due to the first equation of (2.14), $\lim_{r\to l_m} u''_m(r)$ < $+\infty$ and so does $\lim_{r \to l_m} u'_m(r)$ which is impossible. If now $l_m = +\infty$ and $\lim_{r \to l_m} u_m(r) < +\infty$, then $u''_m(r)$ and thus $u'_m(r)$ are unbounded which contradicts the fact that u_m is. So, in all cases we have (2.13). It follows from (2.12) that for any $r < l_m$

are unbounded which contrad't follows from (2.12) that for
$$
b(m,r) > \lim_{r \to l_m} b(m,r) = \sqrt{\frac{a}{q}}
$$
.

Thus, when $a \geq q$, then the problem (2.1) cannot have a solution. The case $a = q$ gives rise to no solution due to the fact that $u_m(r)$ is unbounded when $r \to l_m$. When $a < q$, then, clearly, for any *m* we can find a unique L_m such that $b(m, L_m) = 1$. Now, it is easy to check that if u_1 denotes the s $a < q$, then, clearly, for any m we can find a unique L_m such that $b(m, L_m) = 1$. Now, it is easy to check that if u_1 denotes the solution to (2.2) corresponding to $m = 1$, then

$$
v'' = av^p \quad \text{on} \quad (0, \alpha^{-(p-1)/2} L_1)
$$
\n
$$
v(0) = 0 \quad \text{and} \quad v'(\alpha^{-(p-1)/2} L_1) = \alpha^q.
$$
\nThus,

\n
$$
u_{\alpha^q}(t) = \alpha u_1(\alpha^{(p-1)/2}t) \qquad \text{and} \qquad L_{\alpha^q} = \alpha^{-(p-1)/2} L_1.
$$
\nIt follows that for any $L > 0$ there exists a unique α such that $L = \alpha^{-(p-1)/2} L_1$ and

Thus,

$$
u_{\alpha^q}(t) = \alpha u_1(\alpha^{(p-1)/2}t) \quad \text{and} \quad L_{\alpha^q} = \alpha^{-(p-1)/2}L_1.
$$

 u_{α} ^{*i*} is the unique solution to problem (2.1). This completes the proof of assertion (2) of Theorem **2.11** = av^p on $(0, \alpha^{-(p-1)/2}L_1)$

= 0 and $v'(\alpha^{-(p-1)/2}L_1) = \alpha^q$.
 $(\alpha^{(p-1)/2}t)$ and $L_{\alpha^q} = \alpha^{-(p-1)/2}L_1$.

0 there exists a unique α such that $L = \alpha^{-(p-1)/2}L_1$ and

0 problem (2.1). This completes the proof of ass *F*($\alpha^{(p-1)/2}t$) and $L_{\alpha^q} = \alpha^{-(p-1)/2}L_1$.
 > 0 there exists a unique α such that $L = \alpha^{-(p-1)/2}L_1$ and
 α to problem (2.1). This completes the proof of assertion (2)
 (3) of Theorem 2.1. So, we assume thro

Proof of assertion (3) of Theorem 2.1. So, we assume throughout this part that $2q < p + 1$. We introduce as before the solution u_m to problem (2.2). Recall that we have $(see (2.4))$

$$
u'_{m}(r) = \sqrt{m^{2} + \frac{2a}{p+1} u_{m}^{p+1}(r)}.
$$
 (2.15)

So, in order for $u_m(L)$ to solve $u'_m(L) = u_m(L)$ it needs to be a root of the equation

$$
F(u) = u^{2q} - \frac{2a}{p+1}u^{p+1} - m^2 = 0.
$$
 (2.16)

We have $F'(u) = 2qu^{2q-1} - 2au^p$ hence $F'(u) = 0$ if and only if u is equal to $\tau =$ ($\left(\frac{q}{p}\right)^{1/(p+1-2q)}$. Thus, *F* is increasing between 0 and *r* starting from the value $-m^2$ and decreasing after *r* going to $-\infty$ when $u \to +\infty$. So, in order for the equation (2.16) to have a root we need to have decreasing after τ going to $-\infty$ when $u \to +\infty$. So, in order for the equation (2.16) to have a root we need to have $F(\tau) \geq 0$ which reads after an easy computation So, in
So, in
 $\frac{1}{2}$
 $\frac{2q}{+1}$ $u(r) = \sqrt{m^2}$
 2 $u'_m(L) = 2$
 $u = u^2$ $\frac{2}{p}$
 2au^p hence
 2au^p hence
 2au^p hence
 2au^p hence
 2au^p hence
 2au^p hence $p+1$
hence $F'(u) =$
 y between 0 and
 $y = 0$ which reads
 $y = 1-2q$
 $\left\{1 - \frac{2q}{p+1}\right\}$
to problem $\left(2 - \left(\frac{q}{a}\right)^{q/(p+1-2q)}\right\}$

$$
\left(\frac{q}{a}\right)^{2q/(p+1-2q)}\left\{1-\frac{2q}{p+1}\right\}\geq m^2.
$$

So, in order for
$$
u_m
$$
 to be a solution to problem (2.1) we have to restrict m to satisfy\n
$$
0 < m \leq M = \left(\frac{q}{a}\right)^{q/(p+1-2q)} \left\{1 - \frac{2q}{p+1}\right\}^{1/2}.
$$

In this case (2.16) has two roots $R_1(m) < r < R_2(m)$ which coincide with τ in the case where $m = M$. Going back to (2.15) we have

s
$$
R_1(m) < \tau < R_2(m)
$$
wl
(2.15) we have

$$
\frac{u'_m(r)}{\sqrt{\frac{2a}{p+1}u_m^{p+1}(r)+m^2}} = 1
$$

hence integrating (recall that $u'_m > 0$)

$$
\frac{u'_m(r)}{\sqrt{\frac{2a}{p+1}u_m^{p+1}(r)+m^2}} = 1
$$

\n
$$
u'_m > 0
$$

\n
$$
\int_0^{u_m(r)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}+m^2}} = r.
$$

\nsolution to problem (2.1) for
\n
$$
R_i(m)
$$

\n
$$
\int_0^{R_i(m)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}+m^2}}
$$

\n
$$
m (2.1) is a solution to per
$$

Then it is clear that u_m is a solution to problem (2.1) for $L = L_1(m)$ and $L = L_2(m)$ where *R, (m)*

$$
\frac{u'_m(r)}{\sqrt{\frac{2a}{p+1}}u_m^{p+1}(r)+m^2} = 1
$$
\n
\nrecall that $u'_m > 0$)\n
\n
$$
\int_{0}^{u_m(r)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}+m^2}} = r.
$$
\n
\n u_m is a solution to problem (2.1) for $L = L_1(m)$ and $L = L_2(m)$
\n
$$
L_i(m) = \int_{0}^{R_i(m)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}+m^2}} \qquad (i = 1, 2).
$$
\n(2.17)\n
\nto problem (2.1) is a solution to problem (2.2) for some *m*, when
\nrs $L_i(m)$ are going to run over all the possible values for *L*. So, we
\nnctions $L_1(m)$ and $L_2(m)$. Let us start with $L_2(m)$.
\n u_2 is a decreasing function of *m* on (0, *M*]. Moreover,
\n $m) = +\infty$ and $L_2(M) = \int_{0}^{r} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}+M^2}}.$
\nance when *m* increases the graph of *F* goes down one has
\n $R_1(m)$ is increasing with *m*

Since every solution to problem (2.1) is a solution to problem (2.2) for some m , when *m* varies the numbers $L_i(m)$ are going to run over all the possible values for L . So, we need to study the functions $L_1(m)$ and $L_2(m)$. Let us start with $L_2(m)$.

Lemma 2.2. L_2 is a decreasing function of m on $(0, M]$. Moreover,

clear that
$$
u_m
$$
 is a solution to problem (2.1) for $L = L_1(m)$ and
\n
$$
L_i(m) = \int_0^{R_i(m)} \frac{ds}{\sqrt{\frac{2a}{p+1} s^{p+1} + m^2}}
$$
 (*i* = 1,2).
\n⁷ solution to problem (2.1) is a solution to problem (2.2) for so
\nthe numbers $L_i(m)$ are going to run over all the possible values for
\ndy the functions $L_1(m)$ and $L_2(m)$. Let us start with $L_2(m)$.
\na 2.2. L_2 is a decreasing function of m on (0, M]. Moreover,
\n
$$
\lim_{m\to 0} L_2(m) = +\infty \qquad and \qquad L_2(M) = \int_0^{\frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + M^2}}} \frac{ds}{\sqrt{\frac{2a}{p+1} s^{p+1} + M^2}}
$$
\nFirst, since when m increases the graph of F goes down one h:
\n $R_1(m)$ is increasing with m
\n $R_2(m)$ is decreasing with m.
\n
$$
m'
$$
 one has
\n
$$
\frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m^2}} < \frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m'^2}}
$$
\n
$$
\frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m'^2}}
$$
\n
$$
\frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m'^2}}
$$

Proof. First, since when *m* increases the graph of *F* goes down one has

R1 (m) is increasing with *^m*

 $R_2(m)$ is decreasing with m .

So, if $m > m'$ one has

$$
\frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m^2}} < \frac{1}{\sqrt{\frac{2a}{p+1} s^{p+1} + m'^2}}
$$

and, integrating,

one has
\n
$$
\frac{1}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}} < \frac{1}{\sqrt{\frac{2a}{p+1}s^{p+1} + m'^2}}
$$
\nng,
\n
$$
L_2(m) = \int_0^R \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}}
$$
\n
$$
< \int_0^{R_2(m)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m'^2}} < \int_0^{R_2(m')} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m'^2}}
$$
\n
$$
= L_2(m').
$$

 \mathbf{I}

On a Class of Nonlinear

\nThus,
$$
L_2
$$
 is decreasing. On the other hand, $R_2(m) \geq \tau$ so that

\n
$$
L_2(m) \geq \int_0^{\tau} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}}.
$$

\nLetting $m \to 0$ one obtains $\lim_{m \to 0} L_2(m) = +\infty$ since

\n
$$
\int_0^{\tau} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1}}}
$$

Letting $m \to 0$ one obtains $\lim_{m \to 0} L_2(m) = +\infty$ since

$$
\int_0 \frac{ds}{\sqrt{\frac{2a}{p+1} s^{p+1}}}
$$

diverges $\left(\frac{p+1}{2} > 1\right)$. This concludes the proof of Lemma 2.2

Next we turn to the study of *L1 .* We have

Lemma 2.3. When $m \to 0$, then $R_1(m) \sim m^{1/q}$ and $L_1(m) \sim m^{\frac{1}{q}-1}$. In particular $\lim_{m\to 0} L_1(m) = +\infty$.

Proof. First, note that when $m \to 0$, then any limit value of $R_1(m)$ must satisfy diverges $(\frac{p+1}{2} > 1)$. This concludes the proof of Lemma 2.2 **I**

Next we turn to the study of L_1 . We have

Lemma 2.3. When $m \to 0$, then $R_1(m) \sim m^{1/q}$ and $L_1(m) \sim m^{\frac{1}{q}-1}$. In periodic Im_{m $\to 0$} $L_1(m) = +\infty$ Next we t

Lemma 2
 $\lim_{m\to 0} L_1(m)$

Proof. F
 $u^{2q} - \frac{2a}{p+1} u^{p+1}$

and the only p

to (2.16) we h

or

or

Since, $\lim_{m\to 0}$

P + 1)p+1-29 >(q) *p+1-2q - =r>Ri(rn)* 2a *a*

and the only possible limit value for $R_1(m)$ is 0 so that $\lim_{m\to 0} R_1(m) = 0$. Going back
to (2.16) we have
 $R_1(m)^{2q} - \frac{2a}{m} R_1(m)^{p+1} - m^2 = 0$ to (2.16) we have

$$
R_1(m)^{2q}-\frac{2a}{p+1}R_1(m)^{p+1}-m^2=0
$$

$$
R_1(m)^{2q}\left\{1-\frac{2a}{p+1}R_1(m)^{p+1-2q}\right\}=m^2.
$$

Since, $\lim_{m\to 0} R_1(m) = 0$ we deduce that, when $m \to 0$, $R_1(m)^{2q} \sim m^2$ and thus or
Since, \lim_{m}
 $R_1(m) \sim m$ $h^{1/q}$. Going back to the definition (2.17) we have

$$
[(m)^{2q} - \frac{2a}{p+1} R_1(m)^{p+1} - m^2 =
$$

\n
$$
[n]^{\frac{2q}{q}} \left\{ 1 - \frac{2a}{p+1} R_1(m)^{p+1-2q} \right\} =
$$

\nwe deduce that, when $m \to 0$
\nto the definition (2.17) we have
\n
$$
R_1(m)
$$

\n
$$
L_1(m) = \int_0^{\frac{2a}{p+1} \cdot 1} \frac{ds}{s^{p+1} + m^2}
$$

\netting

Changing of variable, i.e. setting

$$
m) = 0
$$
 we deduce that, when $m \to 0$, $R_1(m)$;
ing back to the definition (2.17) we have

$$
R_1(m)
$$

$$
L_1(m) = \int_0^1 \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}}.
$$

le, i.e. setting

$$
u = \left(\frac{2a}{p+1}\right)^{1/(p+1)} m^{-2/(p+1)} s = C m^{-2/(p+1)} s
$$

we obtain

Since,
$$
\lim_{m\to 0} R_1(m) = 0
$$
 we deduce that, when $m \to 0$, $R_1(m)^{2q} \sim m^2$ and thus
\n $R_1(m) \sim m^{1/q}$. Going back to the definition (2.17) we have
\n
$$
L_1(m) = \int_0^{R_1(m)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}}.
$$
\nChanging of variable, i.e. setting
\n
$$
u = \left(\frac{2a}{p+1}\right)^{1/(p+1)} m^{-2/(p+1)} s = C m^{-2/(p+1)} s
$$
\nwe obtain
\n
$$
L_1(m) = \frac{1}{C m^{1-2/(p+1)}} \int_0^{C m^{-2/(p+1)} R_1(m)} \frac{du}{\sqrt{u^{p+1}+1}}
$$
\n
$$
= \frac{R_1(m)}{m} \frac{1}{C m^{-2/(p+1)} R_1(m)} \int_0^{C m^{-2/(p+1)} R_1(m)} \frac{du}{\sqrt{u^{p+1}+1}}.
$$
\nSince $C m^{-2/(p+1)} R_1(m) \sim C m^{1/q-2/(p+1)} \to 0$ when $m \to 0$ we obtain $L_1(m) \sim \frac{R_1(m)}{m} \sim m^{\frac{1}{q}-1}$ which concludes the proof

 $1/q-2/(p+1) \rightarrow 0$ when $m \rightarrow 0$ we obtain $L_1(m)$ $m^{\frac{1}{q}-1}$ which concludes the proof \blacksquare

Next let us show

Lemma 2.4. Let us denote by $L_i'(m)$ the derivative of L_i with respect to m . Then *one has*

M. Chipot and F. Voirol
\nt let us show
\n
$$
\mathbf{n} \mathbf{m} \mathbf{a} \quad \mathbf{2.4.} \quad Let \text{ us denote by } L'_i(m) \text{ the derivative of } L_i \text{ with respect to } m. \text{ Then}
$$
\n
$$
\left(1 - \frac{2}{p+1}\right) L_i(m) + mL'_i(m) = \left(1 - \frac{2q}{p+1}\right) \left\{ \frac{1}{qR_i^{q-1} - aR_i^{p-q}} \right\} \qquad (2.19)
$$
\n1,2. Moreover,
\n
$$
\lim_{m \to M} L'_1(m) = +\infty \qquad \text{and} \qquad \lim_{m \to M} L'_2(m) = -\infty. \qquad (2.20)
$$
\n
$$
\text{of. Going back to (2.18) one has}
$$

 $for i = 1, 2. Moreover,$

$$
\lim_{m \to M} L'_1(m) = +\infty \qquad \text{and} \qquad \lim_{m \to M} L'_2(m) = -\infty. \tag{2.20}
$$

Proof. Going back to *(2.18)* one has

$$
\int L_i(m) + mL'_i(m) = \left(1 - \frac{2q}{p+1}\right) \left\{\frac{1}{qR_i^{q-1} - aR}\right\}
$$

ver,

$$
\lim_{n \to M} L'_1(m) = +\infty \qquad and \qquad \lim_{m \to M} L'_2(m) = -\infty
$$

back to (2.18) one has

$$
Cm^{1-2/(p+1)}L_i(m) = \int_0^{2m-2/(p+1)} \frac{du}{\sqrt{u^{p+1}+1}}.
$$

ng with respect to m we get

Hence differentiating with respect to *m* we get

$$
\lim_{m \to M} L'_{1}(m) = +\infty \quad \text{and} \quad \lim_{m \to M} L'_{2}(m) = -\infty. \tag{2.20}
$$
\nProof. Going back to (2.18) one has\n
$$
Cm^{-2/(p+1)}L_{i}(m) = \int_{0}^{2M} \frac{du}{\sqrt{u^{p+1}+1}}.
$$
\n
$$
Cm^{1-2/(p+1)}L_{i}(m) = \int_{0}^{2M} \frac{du}{\sqrt{u^{p+1}+1}}.
$$
\n
$$
C\left(1 - \frac{2}{p+1}\right) m^{-2/(p+1)}L_{i}(m) + Cm^{1-2/(p+1)}L'_{i}(m)
$$
\n
$$
= \frac{1}{\sqrt{(Cm^{-2/(p+1)}R_{i}(m))^{p+1}+1}} (Cm^{-2/(p+1)}R_{i}(m))' \qquad (2.21)
$$
\n
$$
= \frac{m}{\sqrt{\frac{2a}{p+1}R_{i}(m)^{p+1}+m^{2}}} C\left(-\frac{2}{p+1}m^{-1-2/(p+1)}R_{i}(m) + m^{-2/(p+1)}R'_{i}(m)\right).
$$
\n
$$
Cm^{2}
$$
\n
$$
R_{i}(m)^{2q} = \frac{2a}{p+1}R_{i}(m)^{p+1} + m^{2} \qquad (2.22)
$$
\n
$$
Cm^{2}
$$
\n
$$
Cm^{2}/(p+1)
$$
\n
$$
\left(1 - \frac{2}{p+1}\right) L_{i}(m) + mL'_{i}(m) = \frac{m}{R_{i}(m)^{q}} \left\{ R'_{i}(m) - \frac{2}{p+1} \frac{R_{i}(m)}{m} \right\}
$$
\n
$$
= \left\{ mR'_{i}(m)R_{i}(m)^{-q} - \frac{2}{R_{i}(m)^{1-q}} \right\}.
$$
\n
$$
(2.23)
$$

Since

$$
R_i(m)^{2q} = \frac{2a}{p+1}R_i(m)^{p+1} + m^2
$$
 (2.22)

relation (2.21) reads after pulling out $Cm^{-2/(p+1)}$

$$
R_i(m)^{2q} = \frac{2a}{p+1} R_i(m)^{p+1} + m^2
$$
(2.22)
tion (2.21) reads after pulling out $Cm^{-2/(p+1)}$

$$
\left(1 - \frac{2}{p+1}\right) L_i(m) + mL'_i(m) = \frac{m}{R_i(m)^q} \left\{ R'_i(m) - \frac{2}{p+1} \frac{R_i(m)}{m} \right\}
$$

$$
= \left\{ mR'_i(m)R_i(m)^{-q} - \frac{2}{p+1}R_i(m)^{1-q} \right\}.
$$
(2.23)
erentiating (2.22) we obtain
$$
R'_i(m) = \frac{m}{qR_i(m)^{2q-1} - aR_i(m)^p}
$$
hat
$$
mR'_i(m) = \frac{m^2}{qR_i(m)^{2q-1} - aR_i(m)^p} = \frac{R_i(m)^{2q} - \frac{2a}{p+1}R_i(m)^{p+1}}{qR_i(m)^{2q-1} - aR_i(m)^p}.
$$
lacing into (2.23) we obtain (2.19). Now when $m \to \tau$, then $R_i(m) \to \tau$ where $n = -a$ ^{p-1} vanishes. Since $R_1(m) < \tau < R_2(m)$ we see passing to the limit in (2.19)

Differentiating *(2.22)* we obtain

$$
R_i'(m) = \frac{m}{qR_i(m)^{2q-1} - aR_i(m)^p}
$$

so that

$$
R_i'(m) = \frac{m}{qR_i(m)^{2q-1} - aR_i(m)^p}
$$
\nso that

\n
$$
mR_i'(m) = \frac{m^2}{qR_i(m)^{2q-1} - aR_i(m)^p} = \frac{R_i(m)^{2q} - \frac{2a}{p+1}R_i(m)^{p+1}}{qR_i(m)^{2q-1} - aR_i(m)^p}.
$$
\nReplacing into (2.23) we obtain (2.19). Now when $m \to \tau$, then $R_i(m) \to \tau$ where

 $qu^{q-1} - au^{p-1}$ vanishes. Since $R_1(m) < r < R_2(m)$ we see passing to the limit in (2.19) that *(2.20)* holds I

Next we have

Lemma 2.5. On $(0, M)$ the function L_1 is decreasing until a value $m_0 \in (0, M)$ *and then increasing until M.*

Proof. Due to Lemmas *2.3* and *2.4* it is enough to show that at a point where $L'_1(m) = 0$, then $L''_1(m) > 0$ so that *m* could only be a minimum. For that, differentiating *(2.19)* we obtain

Next we have
\nLemma 2.5. On (0, M) the function
$$
L_1
$$
 is decreasing until a value $m_0 \in (0, M)$
\nd then increasing until M.
\nProof. Due to Lemmas 2.3 and 2.4 it is enough to show that at a point where
\n $(m) = 0$, then $L_1''(m) > 0$ so that m could only be a minimum. For that, differenti-
\ning (2.19) we obtain
\n
$$
\left(1 - \frac{2}{p+1}\right) L_1'(m) + L_1'(m) + mL_1''(m)
$$
\n
$$
= \left(1 - \frac{2q}{p+1}\right) \left\{ \frac{1}{qR_1^{q-1} - aR_1^{p-q}} \right\}' \qquad (2.24)
$$
\n
$$
= -\left(1 - \frac{2q}{p+1}\right) \frac{1}{(qR_1^{q-1} - aR_1^{p-q})^2} \left\{ q(q-1)R_1^{q-2} - a(p-q)R_1^{p-q-1} \right\} R_1'.
$$
\nis clear from (2.21) that at a point where $L_1'(m) = 0$ one must have $R_1'(m) >$
\nthen (see (2.24)) at a point where $L_1'(m) = 0$ the sign of $L_1''(m)$ is given by the
\npositive sign of $\{q(q-1)R_1^{q-2} - a(p-q)R_1^{p-q-1}\}$ so that $L_1''(m) > 0$ if and only if
\n $q-1)R_1^{q-2} - a(p-q)R_1^{p-q-1} < 0$ or
\n
$$
\frac{q(q-1)}{a(p-q)} < R_1^{p+1-2q} \qquad (2.25)
$$
\n
$$
\frac{q(q-1)}{a(p-q)} < R_1^{p+1-2q} \qquad (2.25)
$$
\n
$$
\frac{q(q-1)}{a(p-q)} < R_1^{p+1-2q} \qquad (2.25)
$$

It is clear from (2.21) that at a point where $L'_1(m) = 0$ one must have $R'_1(m)$ 0, then (see (2.24)) at a point where $L'_1(m) = 0$ the sign of $L''_1(m)$ is given by the opposite sign of $\{q(q-1)R_1^{q-2} - a(p-q)R_1^{p-q-1}\}$ so that $L_1''(m) > 0$ if and only if $q(q-1)R_1^{q-2} - a(p-q)R_1^{p-q-1} < 0$ or *q* $R_1^{q-1} - aR_1^{p-q}$? $q(q-1)R_1^r - a(p-q)R_1^r$

1) that at a point where $L'_1(m) = 0$ one must

at a point where $L'_1(m) = 0$ the sign of $L''_1(m)$
 $q \cdot p-1$, $R_1^{q-2} - a(p-q)R_1^{p-q-1}$ so that $L''_1(m) > 0$
 $q \cdot q$, $R_1^{p-q-1} < 0$

$$
\frac{q(q-1)}{a(p-q)} < R_1^{p+1-2q} \tag{2.25}
$$

(note that $q < p$ since $2q < p + 1 < 2p$). Next, going back to (2.19), at a point where $L'_1(m) = 0$ we have

p since
$$
2q < p + 1 < 2p
$$
). Next, going back to (2.19), at
\nhave
\n
$$
\left(1 - \frac{2}{p+1}\right) L_1(m) = \left(1 - \frac{2q}{p+1}\right) \left\{\frac{1}{qR_1^{q-1} - aR_1^{p-q}}\right\}.
$$
\n
$$
= \int_{0}^{R_1(m)} \frac{ds}{\sqrt{\frac{2a}{\sqrt{16} + 1} + m^2}} > \frac{R_1(m)}{\sqrt{\frac{2a}{\sqrt{16} + 1} + m^2}} = R_1(m)
$$

Clearly

$$
\frac{q(q-1)}{a(p-q)} < R_1^{p+1-2q}
$$
\nnat $q < p$ since $2q < p+1 < 2p$). Next, going back to (2.19), at a point $q < p$ since

\n
$$
\left(1 - \frac{2}{p+1}\right) L_1(m) = \left(1 - \frac{2q}{p+1}\right) \left\{\frac{1}{qR_1^{q-1} - aR_1^{p-q}}\right\}.
$$
\n
$$
L_1(m) = \int_0^{R_1(m)} \frac{ds}{\sqrt{\frac{2a}{p+1}s^{p+1} + m^2}} > \frac{R_1(m)}{\sqrt{\frac{2a}{p+1}R_1(m)^{p+1} + m^2}} = R_1(m)^{1-q}.
$$
\npoint where $L_1'(m) = 0$ we have

So at a point where $L'_1(m) = 0$ we have

here
$$
L'_1(m) = 0
$$
 we have
\n
$$
\left(1 - \frac{2}{p+1}\right) R_1^{1-q} < \left(1 - \frac{2q}{p+1}\right) \left\{\frac{1}{q R_1^{q-1} - a R_1^{p-q}}\right\}
$$
\n
$$
\left(1 - \frac{2}{p+1}\right) \left\{q - a R_1^{p+1-2q}\right\} < \left(1 - \frac{2q}{p+1}\right)
$$

which reads also

$$
\left(1-\frac{2}{p+1}\right)\left\{q-aR_1^{p+1-2q}\right\} < \left(1-\frac{2q}{p+1}\right)
$$

or

Voirol
\n
$$
\frac{p-1}{p+1} \{q - aR_1^{p+1-2q}\} < \frac{p+1-2q}{p+1}
$$
\ninequality

This is equivalent to the inequality

equality
\n
$$
\{q - aR_1^{p+1-2q}\} < \frac{p+1-2q}{p-1}
$$
\n
$$
q - \frac{p+1-2q}{p-1} < aR_1^{p+1-2q}.
$$
\n
$$
p - q < q - \frac{p+1-2q}{p-1}
$$
\n
$$
\frac{q(q-1)}{p-q} < q - \frac{p+1-2q}{p-1}
$$

and the last to the inequality

$$
q-\frac{p+1-2q}{p-1}
$$

So we will be done thanks to *(2.25) if*

$$
-\frac{p+1-2q}{p-1} < aR_1^{p+1-2q}
$$
\n2.25) if

\n
$$
\frac{q(q-1)}{p-q} < q - \frac{p+1-2q}{p-1}
$$

or equivalently

$$
q - \frac{p+1-2q}{p-1} < aR_1^{p+1-2q}.
$$
\nbe done thanks to (2.25) if

\n
$$
\frac{q(q-1)}{p-q} < q - \frac{p+1-2q}{p-1}
$$
\nthey

\n
$$
\frac{p+1-2q}{p-1} < q - \frac{q(q-1)}{p-q} = q \left\{ 1 - \frac{q-1}{p-q} \right\} = q \left\{ \frac{p+1-2q}{p-q} \right\}
$$
\nThus, the following equation is:\n
$$
P = \frac{1}{p-1} \left(\frac{q}{p-q} \right)
$$
\nwhich is true since $q > 1$.

or equivalently
 $\frac{p+1-2q}{p-1}$
This will be true if $\frac{1}{p-1}$
Combining the inform $< \frac{q}{p-q}$ which is true since $q > 1$

Combining the information of the different lemmas we see that the curves L_1 and *L2* look as below.

Set $L^* =$ solution, h $\inf_{(0,M)} L_1$. Then for $L < L^*$, $L = L^*$ and $L > L^*$ problem (2.1) has no solution, has a unique solution and has exactly two solutions, respectively.

Remark 2.1. The method used in proving assertion (3) of Theorem *2.1* could also have been used to establish assertions (1) and (2).

3. The higher dimensional case

In this section we assume that *u* is a weak solution to (1.1) such that $u \in H^1(\Omega) \cap L^{p+1}(\Omega)$.

In the case where $2q = p + 1$, we have a similar result to the one-dimensional case:

Theorem 3.1. Assume that $2q = p + 1$. Then, if a is large enough, the problem *(1.1) cannot have a non-trivial solution.* On a Class of Nonlinear Elliptic Problems 863
 nsional case

that u is a weak solution to (1.1) such that $u \in H^1(\Omega) \cap$
 $p + 1$, we have a similar result to the one-dimensional case:

the that $2q = p + 1$. Then, if a is l

Proof. Let us denote by ν a smooth vector field such that

$$
\nu = n \quad \text{on } \Gamma_1 \qquad \text{and} \qquad |\nu| \le 1. \tag{3.1}
$$

Multiplying the first equation of (1.1) by u and integrating over Ω we get

this section we assume that *u* is a weak solution to (1.1) such that
$$
u \,\epsilon H^1(\Omega) \cap
$$

\n¹¹(Ω).
\nIn the case where $2q = p + 1$, we have a similar result to the one-dimensional case:
\n**Theorem 3.1.** Assume that $2q = p + 1$. Then, if *a* is large enough, the problem
\n1) cannot have a non-trivial solution.
\n**Proof.** Let us denote by *v* a smooth vector field such that
\n $v = n$ on Γ_1 and $|v| \le 1$. (3.1)
\nItiplying the first equation of (1.1) by *u* and integrating over Ω we get
\n
$$
a \int_{\Omega} u^{p+1} dx = \int_{\Omega} \Delta u u dx = \int_{\Omega} \nabla \cdot (\nabla u u) dx - \int_{\Omega} |\nabla u|^2 dx
$$
\n
$$
= \int_{\Gamma_1} \frac{\partial u}{\partial n} u d\sigma(x) - \int_{\Omega} |\nabla u|^2 dx = \int_{\Gamma_1} u^{q+1} d\sigma(x) - \int_{\Omega} |\nabla u|^2 dx
$$
\n
$$
= d\sigma(x)
$$
 denotes the superficial measure on Γ . Hence
\n
$$
\int_{\Omega} |\nabla u|^2 dx + a \int_{\Omega} u^{p+1} dx = \int_{\Gamma_1} u^{q+1} d\sigma(x).
$$
\n(3.3)
\n
$$
= \int_{\Gamma_1} u^{q+1} d\sigma(x) = \int_{\Omega} \nabla \cdot (u^{q+1} v) dx
$$
\n
$$
= (q+1) \int_{\Omega} u^q \nabla u \cdot v dx + \int_{\Omega} u^{q+1} \nabla \cdot v dx.
$$
\n(3.4)

were $d\sigma(x)$ denotes the superficial measure on Γ . Hence

$$
\int_{\Omega} |\nabla u|^2 \, dx + a \int_{\Omega} u^{p+1} \, dx = \int_{\Gamma_1} u^{q+1} \, d\sigma(x). \tag{3.3}
$$

Next, remark that

$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) = \int_{\Omega} \nabla \cdot (u^{q+1} \nu) dx
$$
\n
$$
= (q+1) \int_{\Omega} u^q \nabla u \cdot \nu dx + \int_{\Omega} u^{q+1} \nabla \cdot \nu dx.
$$
\nHence,\n
$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le (q+1) \int_{\Omega} u^q |\nabla u| dx + C \int_{\Omega} u^{q+1} dx \qquad (3.5)
$$
\nwhere *C* denotes the $L^{\infty}(\Omega)$ -norm of $\nabla \cdot \nu$, i.e. $C = |\nabla \cdot \nu|_{\infty}$. Using the Young inequality\n
$$
ab \le \frac{\epsilon^2}{2} a^2 + \frac{1}{2\epsilon^2} b^2 \text{ we obtain}
$$
\n
$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le \frac{(q+1)\epsilon^2}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{q+1}{2\epsilon^2} \int_{\Omega} u^{2q} dx
$$
\n
$$
+ \frac{C\epsilon^2}{2} \int_{\Omega} u^2 dx + \frac{C}{2\epsilon^2} \int_{\Omega} u^{2q} dx.
$$

Hence,

$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le (q+1) \int_{\Omega} u^q |\nabla u| dx + C \int_{\Omega} u^{q+1} dx \tag{3.5}
$$

$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le (q+1) \int_{\Omega} u^q |\nabla u| dx + C \int_{\Omega} u^{q+1} dx
$$

as the $L^{\infty}(\Omega)$ -norm of $\nabla \cdot \nu$, i.e. $C = |\nabla \cdot \nu|_{\infty}$. Using the Y

$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le \frac{(q+1)\varepsilon^2}{2} \int_{\Omega} |\nabla u|^2 dx + \frac{q+1}{2\varepsilon^2} \int_{\Omega} u^{2q} dx
$$

$$
+ \frac{C\varepsilon^2}{2} \int_{\Omega} u^2 dx + \frac{C}{2\varepsilon^2} \int_{\Omega} u^{2q} dx.
$$

Due to the Poincaré inequality one has for some constant *K*

$$
\int_{\Omega} u^2 dx \leq K \int_{\Omega} |\nabla u|^2 dx
$$

so that we derive

M. Chipot and F. Voirol
\nnat we derive
\n
$$
\int_{\Gamma_1} u^{q+1} d\sigma(x) \le \frac{\varepsilon^2}{2} \{(q+1) + CK\} \int_{\Omega} |\nabla u|^2 dx + \left\{ \frac{q+1}{2\varepsilon^2} + \frac{C}{2\varepsilon^2} \right\} \int_{\Omega} u^{p+1} dx
$$
\n
$$
e^2 Q = p+1.
$$
 Combining this with (3.3) and selecting ε such that $\frac{\varepsilon^2}{2} \{(q+1) + CK\}$
\nbtain for some constant C
\n
$$
a \int_{\Omega} u^{p+1} dx \le C \int_{\Omega} u^{p+1} dx
$$

since $2q = p+1$. Combining this with (3.3) and selecting ε such that $\frac{\varepsilon^2}{2}$ {(q+1)+CK} = 1 we obtain for some constant *^C*

$$
a\int_{\Omega}u^{p+1}dx\leq C\int_{\Omega}u^{p+1}dx
$$

hence a contradiction when *a* is large enough, $u \neq 0$.

In the case where $2q < p+1$, then, as in the one-dimensional case we can show that the problem (1.1) can fail to have a solution when the size of Ω is too small. More precisely let us show Theorem 3.2. *Assume that* $2q < p + 1$, then, as in the one-dimensional case we can show
the problem (1.1) can fail to have a solution when the size of Ω is too small. More
isely let us show
Theorem 3.2. *Assume that*

of Ω is small enough the problem (1.1) cannot have a non-trivial solution. **Theorem 3.2.** Assume that $2q < p+1$ and $p \leq \frac{n+2}{n-2}$ when $n \geq 3$. Then, if the size

Proof. Consider for instance for $\varepsilon \in (0, 1]$

$$
\Omega_{\varepsilon} = (-1,1)^{n-1} \times (0,\varepsilon) \quad \text{and} \quad \Gamma_1 = (-1,1)^{n-1} \times \{0\}
$$

and denote by $u = u_{\varepsilon}$ the solution to problem (1.1) corresponding to $\Omega = \Omega_{\varepsilon}$. Recall that by (3.2) one has

Assume that
$$
2q < p+1
$$
 and $p \leq \frac{n+2}{n-2}$ when $n \geq 3$. Then, if the size the problem (1.1) cannot have a non-trivial solution.

\nfor instance for $\varepsilon \in (0,1]$

\n1, $1)^{n-1} \times (0,\varepsilon)$ and $\Gamma_1 = (-1,1)^{n-1} \times \{0\}$

\n, the solution to problem (1.1) corresponding to $\Omega = \Omega_{\varepsilon}$. Recall

\n
$$
\int_{\Omega} |\nabla u|^2 dx + a \int_{\Omega} u^{p+1} dx = \int_{\Gamma_1} u^{q+1} d\sigma(x).
$$
 (3.6)

\nLet the Young Inequality

Next, remark that due to the Young Inequality

$$
\Omega_{\epsilon} = (-1,1)^{n-1} \times (0,\epsilon) \quad \text{and} \quad \Gamma_{1} = (-1,1)^{n-1} \times \{0\}
$$
\nand denote by $u = u_{\epsilon}$ the solution to problem (1.1) corresponding to $\Omega = \Omega_{\epsilon}$. Recall
\nthat by (3.2) one has\n
$$
\int_{\Omega} |\nabla u|^{2} dx + a \int_{\Omega} u^{p+1} dx = \int_{\Gamma_{1}} u^{q+1} d\sigma(x). \qquad (3.6)
$$
\nNext, remark that due to the Young Inequality\n
$$
\int_{\Gamma_{1}} u^{q+1} d\sigma(x) = -\int_{\Omega} \frac{\partial}{\partial x_{n}} u^{q+1} dx
$$
\n
$$
= -(q+1) \int_{\Omega} u^{q} \frac{\partial u}{\partial x_{n}} dx
$$
\n
$$
\leq (q+1) \left\{ \frac{\delta^{2}}{2} \int_{\Omega} |\nabla u|^{2} dx + \frac{1}{2\delta^{2}} \int_{\Omega} u^{2q} dx \right\}
$$
\n
$$
\leq (q+1) \left\{ \frac{\delta^{2}}{2} \int_{\Omega} |\nabla u|^{2} dx + \frac{1}{2\delta^{2}} \left(\int_{\Omega} u^{p+1} dx \right)^{2q/(p+1)} |\Omega|^{1-2q/(p+1)} \right\}.
$$
\nCombining with (3.6) and selecting $(q+1)\frac{\delta^{2}}{2} = \frac{1}{2}$ we obtain for some constant C \n
$$
\frac{1}{2} \int_{\Omega} |\nabla u|^{2} dx + a \int_{\Omega} u^{p+1} dx \leq C \left(\int_{\Omega} u^{p+1} dx \right)^{2q/(p+1)} |\Omega|^{1-2q/(p+1)}.
$$

Combining with (3.6) and selecting $(q + 1)\frac{\delta^2}{2} = \frac{1}{2}$ we obtain for some constant *C*

$$
\frac{1}{2}\int_{\Omega}|\nabla u|^2dx+a\int_{\Omega}u^{p+1}dx\leq C\left(\int_{\Omega}u^{p+1}dx\right)^{2q/(p+1)}|\Omega|^{1-2q/(p+1)}.
$$

On a Class of Nonlinear Elliptic Problems
Thus, if we denote by $|u|_{p+1}$ the usual $L^{p+1}(\Omega)$ -norm we get for some constants
 $|u|_{n+1}^{p+1} \leq C|\Omega|$

$$
|u|_{p+1}^{p+1} \le C|\Omega| \tag{3.7}
$$

On a Class of Nonlinear Elliptic Problems
\n
$$
865
$$
\n $+1$ the usual $L^{p+1}(\Omega)$ -norm we get for some constants\n
$$
|u|_{p+1}^{p+1} \leq C|\Omega|
$$
\n $\int_{\Omega} |\nabla u|^2 dx \leq C |u|_{p+1}^2 |\Omega|^{1-2q/(p+1)}$ \n(3.8)\nnbedding Theorem (see [2: p. 148]) we know that there exists

Next, from the Sobolev embedding Theorem (see *[2: p.* 148]) we know that there exists a constant *C* such that

$$
|v|_{p+1}^2 \leq C \int_{\Omega_1} |\nabla v|^2 dx
$$

for any $v \in H^1(\Omega_1)$ vanishing on $\partial \Omega_1 \setminus \Gamma_1$. So, extending $u = u_{\epsilon}$ by 0 outside of $\Omega = \Omega_{\epsilon}$ we derive $|v|^2_{p+1} \leq C \int_{\Omega_1} |\nabla v|^2 dx$

i vanishing on $\partial \Omega_1 \setminus \Gamma_1$. So, extending $u = u_{\epsilon}$ by
 $|u|^2_{p+1} \leq C \int_{\Omega} |\nabla u|^2 dx$.

and (3.9) we obtain
 $|_{p+1}^{2q} |\Omega|^{1-2q/(p+1)}$ and (if $u \neq 0$) $1 \leq C |u|_{p+1}^{2q-2}$
 $1 \leq C |\Omega$

$$
|u|_{p+1}^{p+1} \le C|\Omega|
$$
\n
$$
\int_{\Omega} |\nabla u|^2 dx \le C|u|_{p+1}^{2q} |\Omega|^{1-2q/(p+1)}.
$$
\n(3.8)
\nthe Sobolev embedding Theorem (see [2: p. 148]) we know that there exists
\nsuch that\n
$$
|v|_{p+1}^2 \le C \int_{\Omega_1} |\nabla v|^2 dx
$$
\n
$$
I^1(\Omega_1)
$$
\nvanishing on $\partial\Omega_1 \setminus \Gamma_1$. So, extending $u = u_{\epsilon}$ by 0 outside of $\Omega = \Omega_{\epsilon}$
\n
$$
|u|_{p+1}^2 \le C \int_{\Omega} |\nabla u|^2 dx.
$$
\n(3.9)
\n3.8) and (3.9) we obtain\n
$$
\le C|u|_{p+1}^{2q} |\Omega|^{1-2q/(p+1)} \quad \text{and (if } u \ne 0) \quad 1 \le C|u|_{p+1}^{2q-2} |\Omega|^{1-2q/(p+1)}.
$$

Combining (3.8) and (3.9) we obtain

$$
|u|_{p+1}^2 \le C|u|_{p+1}^{2q} |\Omega|^{1-2q/(p+1)} \quad \text{and (if } u \neq 0) \quad 1 \le C|u|_{p+1}^{2q-2} |\Omega|^{1-2q/(p+1)}.
$$

Hence by (3.7)

$$
1 \leq C |\Omega|^{2(q-1)/(p+1)} |\Omega|^{1-2q/(p+1)} = C |\Omega|^{1-2/(p+1)}
$$

and a contradiction when $|\Omega| = |\Omega_{\epsilon}|$ is small enough

In fact, as we are going to see, what is important is the size of $|\Gamma_1|$ with respect to the one of $|\Omega|$. So, we would like to conclude this paper by an existence result referring the reader to forthcoming works for more on this topic. In what follows we will assume that *p* $f(p+1)$ and (if $u \neq 0$) $1 \leq C |u|_{p+1}^{2q-2} |\Omega|^{1-2q/(p+1)}$.
 $g(t) = C |\Omega|^{1-2q/(p+1)} = C |\Omega|^{1-2/(p+1)}$
 $= |\Omega_{\epsilon}|$ is small enough **if** ϵ see, what is important is the size of $|\Gamma_1|$ with respect to the to conclude this pontradiction when $|\Omega| = |\Omega_{\epsilon}|$ is stand, as we are going to see, what
of $|\Omega|$. So, we would like to conclear to forthcoming works for more
 $q < \frac{n}{n-2}$
the trace operator is compact fro
 $E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx + \frac{a}{p$ is important is the size of $|\Gamma_1|$ with respect to

ude this paper by an existence result referring
 e on this topic. In what follows we will assume

when $n \ge 3$ (3.10)

om $H^1(\Omega)$ into $L^{q+1}(\Gamma)$. We define
 $|v|^{p$ $\frac{1}{2}$ ion when $|\Omega| =$
2 re are going to
 $\frac{1}{2}$ o, we would lilt
 $\frac{1}{2}$ or $\frac{1}{2}$ $\int_{\Omega} |\nabla v|^2 dx +$ $|\Omega_{\epsilon}|$ is small enough

ee, what is important is the

to conclude this paper by a

s for more on this topic. In w
 $<\frac{n}{n-2}$ when $n \geq 3$

mpact from $H^1(\Omega)$ into L^{q+1}
 $\frac{a}{p+1} \int_{\Omega} |v|^{p+1} dx - \frac{1}{q+1} \int_{\Gamma}$

$$
q < \frac{n}{n-2} \qquad \text{when} \ \ n \geq 3 \tag{3.10}
$$

so that the trace operator is compact from $H^1(\Omega)$ into $L^{q+1}(\Gamma)$. We define

$$
E(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx + \frac{a}{p+1} \int_{\Omega} |v|^{p+1} dx - \frac{1}{q+1} \int_{\Gamma_1} |v|^{q+1} d\sigma(x).
$$
 (3.11)
we have
correm 3.3. Assume that $2q < p+1$ and that (3.10) holds. Set

$$
V_0 = \{v \in H^1(\Omega) | v = 0 \text{ on } \Gamma_0\} \quad \text{and} \quad V = V_0 \cap L^{p+1}(\Omega).
$$

Then we have

Theorem 3.3. Assume that $2q < p+1$ and that (3.10) holds. Set

$$
V_0 = \left\{ v \in H^1(\Omega) \middle| v = 0 \text{ on } \Gamma_0 \right\} \qquad \text{and} \qquad V = V_0 \cap L^{p+1}(\Omega).
$$

Then there exists $u \in V$ *such that* $E(u) \leq E(v)$ *for all* $v \in V$ *.*

Proof. First remark that arguing as in (3.4) and (3.5) one has for $v \in V$

2.30
$$
p+1.3\Omega
$$
 $q+1.3\Gamma_1$
\n3.3. Assume that $2q < p+1$ and that (3.10) holds. Set
\n
$$
= \{v \in H^1(\Omega) | v = 0 \text{ on } \Gamma_0\} \quad \text{and} \quad V = V_0 \cap L^{p+1}(\Omega).
$$
\n
$$
= V_0 \cap L^{p+1}(\Omega).
$$

866 M. Chipot and F. Voirol
Then, since $q < \frac{p+1}{2} < p$, by Hölder's inequality

Let
$$
|x| < \frac{p+1}{2} < p
$$
, by Hölder's inequality

\n
$$
\int_{\Omega} |v|^{q+1} dx \leq \left(\int_{\Omega} |v|^{p+1} dx \right)^{(q+1)/(p+1)} |\Omega|^{1-(q+1)/(p+1)} = |\Omega|^{1-(q+1)/(p+1)} |v|_{p+1}^{q+1}.
$$

\nLet $|v| < 0$ and $|v| < 0$ and $|v| < 0$ and $|v| < 0$.

\nLet $|v| < 0$ and $|v| < 0$ and $|v| < 0$ are a constant $|v| < 0$.

Moreover, using the Young inequality one has for some ε and some constant C

Since
$$
q < \frac{p+1}{2} < p
$$
, by Hölder's inequality
\n
$$
\int_{\Omega} |v|^{q+1} dx \leq \left(\int_{\Omega} |v|^{p+1} dx \right)^{(q+1)/(p+1)} | \Omega|^{1-(q+1)/(p+1)}
$$
\n
$$
= |\Omega|^{1-(q+1)/(p+1)} |v|_{p+1}^{q+1}.
$$
\n
$$
= |\Omega|^{1-(q+1)/(p+1)} |v|_{p+1}^{q+1}.
$$
\n
$$
(q+1) \int_{\Omega} |v|^q |\nabla u| dx \leq \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} \int_{\Omega} |v|^{2q} dx
$$
\n
$$
\leq \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} \left(\int_{\Omega} |v|^{p+1} dx \right)^{2q/(p+1)} \qquad (3.14)
$$
\n
$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} \left(\int_{\Omega} |v|^{p+1} dx \right)^{2q/(p+1)} \qquad (3.14)
$$
\n
$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} |v|_{p+1}^{2q}.
$$
\n
$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} |v|_{p+1}^{2q+1}.
$$
\n
$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + \frac{a}{p+1} |v|_{p+1}^{p+1} - C_1 |v|_{p+1}^{q+1} - C_2 |v|_{p+1}^{2q}.
$$
\n
$$
= \varepsilon \text{ such that } \varepsilon < \frac{1}{2} \text{ and denoting}
$$
\n
$$
|v| = |\nabla v|_{2} + |v|_{p+1}
$$
\n
$$
= |\Omega v|_{2} + |v|_{p+1}
$$
\n
$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + \frac{a}{p+1} |v|_{p+1}^{p+1} - C_1 |v|_{p+1}^{q+1}.
$$
\n
$$
= \varepsilon \int_{\Omega}
$$

Thus, collecting (3.11) - (3.14) we obtain for some constants C_1 and C_2 depending eventually of ε

$$
= \varepsilon \int_{\Omega} |\nabla v|^2 dx + C_{\varepsilon} |v|_{p+1}^{24}.
$$
\nThus, collecting (3.11) - (3.14) we obtain for some constants C_1 and C_2 depending
eventually of ε
\n
$$
E(v) \ge \left(\frac{1}{2} - \varepsilon\right) \int_{\Omega} |\nabla v|^2 dx + \frac{a}{p+1} |v|_{p+1}^{p+1} - C_1 |v|_{p+1}^{q+1} - C_2 |v|_{p+1}^{2q}.
$$
\nSelecting ε such that $\varepsilon < \frac{1}{2}$ and denoting
\n
$$
|v| = |\nabla v|_2 + |v|_{p+1}
$$
\nis clear since $q + 1 < p + 1$ and $2q < p + 1$ that

\n
$$
\lim_{|v| \to +\infty} E(v) = +\infty.
$$
\n(3.16)

\nLet us denote by $\{v_k\}$ a minimizing sequence of E on V , i.e. a sequence $\{v_k\}$ satisfying
\n
$$
\lim_{k \to +\infty} E(v_k) = \inf_{v \in V} E(v).
$$
\n(3.17)

\nBy (3.15) and (3.16) one has, for some constant C , $|\nabla v_k|_2 \leq C$ and $|v_k|_{p+1} \leq C$. So, one can extract a subsequence that for convenience we will still denote by v_k such that

$$
|v| = |\nabla v|_2 + |v|_{p+1} \tag{3.15}
$$

it is clear since $q + 1 < p + 1$ and $2q < p + 1$ that

$$
\lim_{|v| \to +\infty} E(v) = +\infty. \tag{3.16}
$$

Let us denote by $\{v_k\}$ a minimizing sequence of *E* on *V*, i.e. a sequence $\{v_k\}$ satisfying

$$
\lim_{k \to +\infty} E(v_k) = \inf_{v \in V} E(v). \tag{3.17}
$$

By (3.15) and (3.16) one has, for some constant *C*, $|\nabla v_k|_2 \leq C$ and $|v_k|_{p+1} \leq C$. So, one can extract a subsequence that for convenience we will still denote by v_k such that for some $u \in V$ one has $\lim_{k \to +\infty} E(v_k) = \inf_{v \in V}$

for some constant
 $v_k \to u$ in V_0
 $v_k \to u$ in L^p

$$
\lim_{k \to +\infty} E(v_k) = \inf_{v \in V} E(v)
$$

for some constant C, $|\nabla$
that for convenience we
 $v_k \to u$ in V_0
 $v_k \to u$ in $L^{p+1}(\Omega)$
 $v_k \to u$ in $L^{q+1}(\Gamma)$
lower semicontinuity of

(recall (3.10)). Using now the lower semicontinuity of the maps $v \to |\nabla v|_2^2$ and v $|v|_{p+1}^{p+1}$ one deduces

$$
v_k \to u \qquad \text{in} \quad L^{q+1}(\Gamma)
$$
\nall (3.10)). Using now the lower semicontinuity of the maps $v \to |\nabla v|_2^2$ and
\n v_1 one deduces\n
$$
\inf_{v \in V} E(v) = \lim_{k \to +\infty} E(v_k)
$$
\n
$$
\geq \frac{1}{2} \liminf_{k} |\nabla v_k|_2^2 + \frac{a}{p+1} \liminf_{k} |v_k|_{p+1}^{p+1} - \frac{1}{q+1} \lim_{k} \int_{\Gamma_1} |v_k|^{q+1} d\sigma(x)
$$
\n
$$
\geq E(u).
$$

So, u is a minimizer of E and the result follows

Remark 3.1. At this stage, nothing prevents the solution *u* to be equal to 0. As we will see this happens for instance under the assumptions of Theorem 3.2. Note also that the proof of Theorem 3.3 holds when $|\Gamma_0| = 0$. *IDi* II is the assumptions of Theorem 3.2. Note also
 I 3.3 holds when $|\Gamma_0| = 0$.
 I rexistence result.
 Ine that $2q < p + 1$ *and that* (3.10) *holds. Set*
 $= \inf_{y \in \Gamma_0} |x - y|$ *and* $D_1 = \{x \in \mathbb{R}^n | d(x) \le 1\},$

Let us now turn to our existence result.

Theorem 3.4. Assume that $2q < p + 1$ and that (3.10) holds. Set

By the proof of Theorem 3.3 holds when
$$
|1 \ 0| = 0
$$
.

\nAs now turn to our existence result.

\nFor example, 3.4 . Assume that $2q < p + 1$ and that (3.10) holds. Set

\n
$$
d(x) = \text{dist}(x, \Gamma_0) = \inf_{y \in \Gamma_0} |x - y|
$$
 and $D_1 = \{x \in \mathbb{R}^n | d(x) \le 1\},$

where $\lvert \cdot \rvert$ denotes either the Lebesgue measure, either the superficial measure on Γ . Then *if*

$$
D_0) = \inf_{y \in \Gamma_0} |x - y| \quad and \quad D_1 = \{x \in \mathbb{R}^n | d(x) \le 1\},
$$

\nthe Lebesgue measure, either the superficial measure on Γ . Then
\n
$$
\frac{1}{2}|D_1| + \frac{a}{p+1}|\Omega| - \frac{1}{q+1}|\Gamma_1 \setminus D_1| < 0,
$$
\n*isolution u to problem* (1.1).

there exists a non-trivial solution u to problem (1.1).

Proof. Consider the function $v = d \wedge 1$ where \wedge denotes the minimum of two tions. It is clear that $v \in V$. Moreover, since *d* is a Lipschitz continuous function a Lipschitz constant less than 1, $|\nabla d(x)| \le 1$ for a functions. It is clear that $v \in V$. Moreover, since *d* is a Lipschitz continuous function with a Lipschitz constant less than 1, $|\nabla d(x)| \leq 1$ for a.e. $x \in \Omega$. So, we have

denotes either the Lebesgue measure, either the superficial measure of
$$
\frac{1}{2}|D_1| + \frac{a}{p+1}|\Omega| - \frac{1}{q+1}|\Gamma_1 \setminus D_1| < 0,
$$
\nis a non-trivial solution u to problem (1.1).
\n6. Consider the function $v = d \wedge 1$ where \wedge denotes the minimum
\nIt is clear that $v \in V$. Moreover, since d is a Lipschitz continuous
\nschitz constant less than 1, $|\nabla d(x)| \leq 1$ for a.e. $x \in \Omega$. So, we have
\n
$$
E(v) = \frac{1}{2} \int_{D_1} |\nabla d|^2 dx + \frac{a}{p+1} \int_{\Omega} |v|^{p+1} dx - \frac{1}{q+1} \int_{\Gamma_1} |v|^{q+1} d\sigma(x)
$$
\n
$$
\leq \frac{1}{2}|D_1| + \frac{a}{p+1}|\Omega| - \frac{1}{q+1}|\Gamma_1 \setminus D_1|
$$
\n
$$
< 0.
$$

Thus, the infimum (3.17) is negative and achieved for a non-zero function *u.* Noting that $|u| \in V$ and $E(u) = E(|u|)$, there is no loss of generality in assuming $u \geq 0$. But then, it is easy to see that u is solution to problem (1.1) . This completes the proof of the theorem \blacksquare gative and achieved

), there is no loss of

solution to problem

is very easy to find a

xed domain it is enou

where $|\Gamma_0| = 0$ one re
 $\frac{a}{p+1} |\Omega| \varepsilon^{p+1} - \frac{1}{q+1}$

case problem (1.1) has

Remark 3.2. Note that it is very easy to find an open set Ω for which (3.18) holds. Assuming Ω included in some fixed domain it is enough to choose $|\Gamma_1 \setminus D_1|$ large enough.

Remark 3.3. In the case where $|\Gamma_0| = 0$ one remarks that since $q < p$,

$$
E(\varepsilon) = \frac{a}{p+1} |\Omega| \varepsilon^{p+1} - \frac{1}{q+1} |\Gamma| \varepsilon^{q+1} < 0
$$

for *e* small enough. So, in this case problem (1.1) has always a solution (compare with [3]).

References

- [1] Chipot, M., F'ila, M. and P. Quittner: *Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions.* Acta Math. Univ. Comenianae 60 (1991), 35 - 103.
- *[2] Gilbarg, D. and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.* Berlin-Heidelberg-New York: Springer - Verlag 1977.
- *[3] Quittner, P.: On global existence and stationary solutions for two classes of semilinear* parabolic problems. Comment. Math. Univ. Carolinae 34 (1993), 105 - 124.

Received 24.02.1995