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Abstract. We study a class of integro-differential equations containing multiplication opera-
tors, partial integral operators, and ordinary integral operators. Building on the usual iden-
tification of real functions of several variables and abstract functions, such integro- differential 
equations may be reformulated as ordinary differential equations in suitable Banach spaces. We 
give a representation theorem for the corresponding Cauchy operator and study the (unique) 
solvability of a general boundary value problem. 
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1. Generalized equations of Barbashin type 

Let J C R be some compact interval and let 

C: [a,b]xJx[a,b]—*R 

I: [a,b]xJx[a,b]x[a,b]-.-+R 

m [a, b] x J x [a, b] x [a , b] - R 

n [a, b] x J x [a, b] x [a, b] x [a, b] —* R 

f: [a,b]xJx[a,b]—+R 

be measurable functions. In what follows, we consider the integro-differential equation 

Ou(t,r,$)  
or - 

-
 c(t, r, s) u(t, r, s) 

+ I 
l(t,r, s, ) u(t, T, ) da + / m(t, r,s, r) u(r, r, s) dr	(1) 
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+ 11 n(t, r, s, a, r) u(r, r, ) dadr + f(t, r, s). 

Equations of this type are usually called generalized integro-differentzal equations of 
Barbashin type. They arise in the mathematical modelling of certain transport and 
radiation phenomena [7, 9] as well as in acoustic scattering theory [3]. 

In order to study equation (1) in a general functional-analytic setting, it is a useful 
device to write (1) as an operator differential equation in some Banach space. To this 
end, let X be some ideal space over [a, b] x [a, b], i.e. a Banach space of measurable 
real functions on [a, b] x [a, b] with monotone norm, i.e. if y E X and x is measurable 
with lxi < jyj a.e., then also x E X and li x il < IlH (see, e.g., [11]). We denote by 
C(J, X) and C' (J, X) the spaces of all continuous and all continuously differentiable 
abstract functions u : J - X, respectively. Moreover, we write C,-(X) for the space 
of all measurable functions u : [a, b] x J x [a, b] - R such that the map r -* u( . , T,.) 
belongs to C(J, X), and C,(X) for the space of all functions u [a, b) x J x [a, b] -+ R 
such that the map u(t, , .$) is absolutely continuous on J and	E C(X). 

We usually identify functions of C(J, X) and C(X) by putting 

u(r)(i, s) = u(t, T, s).	 (2)

In this sense we can prove (see also [2, 5]) the following 

	

Lemma 1. With the natural identification (2), we have C(J, X)	Cr(X) and
C'(J,X) C'(X). Furthermore, for u E C,'(X) we have 

du(r) - ôu(t,r,$) 
(t, S)  - 

dT	 aT 

and each u E C(X) satisfies 

(ju(T)dT) (t, S) = ju(t,T,$)d 

for almost all (t, s) e [a, b] x [a, b]. 

Using the identification (2), we may write equation (1) more concisely asoperator 
differential equation

(rJ)	 (3)

where
A(r) = C(r) + K(T),	K(T) = L(r) + M(r) + N(T)	(4)

with

C(T)u(t, .$) = c(t, r, .$) u(t, s)	 (5) 

L(r)u(t,$) = I l(t, T, s, a) u(t, a) do,	 (6)
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M(r)u(t, s) 
= / rn(t, r, s, r) u(r, s) dr	 (7) 

N(r)u(t, s) 
= ff 

n(t,r, s, a, r)u(r, a)dadr.	 (8) 

Any solution u E C'(J, X) of equation (3) will then be called a solution of the integro-
differential equation (1) in the ideal space X. In applications, the usual choice for X 
is either the Lebesgue space L = L([a, b] x [a, b)) or, more generally, the Orlicz space 
LM = LM([a, bj x [a, b]) generated by some Young function M (see, e.g., [8)). 

2. A representation theorem for the Cauchy operator 
The Cauchy operator (or resolvent operator) plays a crucial role in the classical theory 
of differential equations in Banach spaces (see, e.g., [4]). However, there is a problem 
when applying the classical theory to equation (3): the operators (6) and (7) (which 
may be called partial integral operators, since integration is carried out only with respect 
to some of the variables involved) are usually not compact. Nevertheless, the central 
representation theorem for the Cauchy operator carries over from integral to partial 
integral operators, as we shall show now. 

We define £ T (X) as the space of all regular partial integral operators (see [101) in 
X. This is a Banach space with the norm 

II/1 IItr(X) = II I .4 I IIt(X), 

where J AI denotes the module of A (see again [10]). It turns out that, if (4) is locally 
(Bochner) integrable as a function from some interval into £'(X), the Cauchy operator 
for equation (3) is itself a regular partial integral operator: 

Theorem 1. Suppose that the operator function (4) is locally integrable in 12"(X). 
Then the Cauchy operator U(r,ro) for the differential equation (3) admits a represen-
tation

U(r, r0 ) u(t, s) = e(t, r, i-o, s) u(t, s) + H(r, r0 ) u(i, s) 

where

e(t,r,ro,$) = exp I I c(t, ^, s) d} 
ro 

and H is a partial integral operator defined by 

H(r,ro)u(t,$) 
= I 1(t,r, To, s,a) t, do, + I th(t, 7, 7o, s, r) u(r, s) dr 

+ 11 h(t, r, ro, s, o,, r)u(r, a) dadr



902	Chen Chur-jen 

with measurable functions 

1: (a, b] x J xi x (a, b] x [a, b) - R 

th: [a, b] x J x J x[a,b]x[a,b]—R 

h: [a,b]xixJx[a,b]x[a,b]x[a,b]—+R. 

Moreover, we have the inclusion U(r,To) E £T(X) and the implications 

l=0	: 1=0	 rn=0	m=0 

n=l=0 = ñ=1=0	n = m = 0	. ñ= fin =0. 

Finally, if A is of Volterra type, i.e. 

	

l(t,r,s,a) = 0 (a > s),	m(t,r,s,r) = 0 (r > t) 

n(t, T, 5, a, r) = 0 (a > s or r > I), 

then H is also of Volterra type. 

Proof. The Cauchy operator U(r,ro) is given by the series 

T ri ?2	?.-I 

U(rro)=I+ffJ... f A(Ti )A(T2 ) ... A(r)dr ... dT1 
n=Ir

O TO TO	T0 

which converges in the norm of the space £T(X). By [6: Theorems 7 and 8], every 
operator A(ri )A(r2 ) . A(r,,) (n = 1,2,...) belongs to the space R.(X) + R. 1 (X) + 
1m(X) + R(X), i.e. admits a representation 

A(Ti ) .	A(i) u(t, s) = c(t, r1 ,$) ... c(t, T, s) u(t, s) 

+ J m(t,Ti,. . . ,T,s,r)u(r,$)dr
	 (9) 

	

+ I]	,Tn,S,a,r)u(r,a)dadr 

where the kernel functions are all measurable. Moreover, 

II A(i )IIr.(x)	IlA(Tn)IIr(x) 

r1 .... , T,, ,	 IIA(' )II'(x) •• IIA(mm)IIz(x), 

	

I TlTZ( T1, . . . , T,,, , , ) R(X)	II A( T1)IIcx)	IIA(mn)IIcr(x).
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In fact, it is obvious by [6: Theorem 21 and (9) that the left-hand sides of the previous 
inequalities are all bounded by	 - 

IA( l )	A(,	IL( x ) :5 II IA(ri)I	IA(r)I IIt(x) 
II IA(ri)I IiC( x ) ••• II IA(r)I IL(X) 

	

= JA(TI )IL ( x )	IA(Tn)IL,(x). 

Integrating (9) over r1 ,. , T. yields 

(ff ... f A(r1 ).. A(r)dr .. .drI) 
\r0 ro	r0 

= 1-1( log c(t,r, To, s)) u(t,$) 

+] (	... J 1n(t,rl,...,rn,s,a)dr... dTI ) u(t, or) do, 

+ J 
(J ... 

I	,r,s,r)dr	drl) u(r,$)dr, 

+11 (1••• 
'-'nn( t , Tj I	Tn, s, or , r) dT. ... dTj u(r, a) dordr 

where we made use of Fubini's theorem and Lemma 1. Since the spaces R,(X), Rm(X), 
and R.(X) are closed, we may interchange summation and integration. Thus the 
assertion follows with 

T, r0, S, ) =
n=1 

00 r 

th(t,r,ro,s,r) =
n=1

ro 00 r 

ñ(t,r,ro,s,a,r) =
n=1 ro

dr1 
ro

dr1 
ro 

ro 

More precisely, we have by [6) (eliminating some typing errors) that l j = 1, in 1 = in,
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Ti1 = Ti,
l+i (ti r1 , . . . 

=C(t,T1,S)C(i,T,S)l(t,T+l,S,O) 

+ln(t,ri .... ,rnrs,o)c(t,rn+i,a) 
6 

+ J	. ,r,s,e)1(i,r+i,,a)de 
a 

m+i(i,T1,... ,rn+i,s,r) 

= c(t,ri ,$) . . c(t,rn,$)m(,rn+i,s,r)

+ rn(t, Ti,... , Tn, s, r) c(r, 7n+1, s) 

+ I Tnn( t , 71, - . . 

72+l(t,Ti.... ,T+1,$)o,r) 

=c(t,ri,$) ... c(t,rn,$)n(t,Tn+I,s,a,r) 

+ nn( t , T1, ... ,Tn,s,a,r)c(r,T+1,) 

+l(t,ri .... ,r,s, Or ) rn(t,r+i,a)r) 

+mn(t,ri,...,rn,s,r)l(r,rn+i,s,a) 

+ / ln(t,r1,... 

+ / m(t,ri,... 

+ 
f 

nn( t , T I I	T,S,,r)l(T,T+I,e,a)de 

+ f 
nn(t , T1, -  

+ ff nn(t , 71,	Tn, S , C, 77) n( 77, 7*n+, ) ^, o, , r) &74- 

By these formulas, the additional statements are obvious I 

As can be seen by the formula for	the implication "n = 0 = ñ = 0" is in
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general not true, if I and m do not vanish. 
Of course, the formulas arising in the proof of Theorem 1 are very clumsy, and they 

may hardly be used for calculating the Cauchy operator U(r, r0 ). Under additional 
assumptions, however, the calculations simplify. For example, in case in = n = 0 
(or, analogously, in case I = n 0) equation (3) becomes a usual Barbashin equation 
with respect to (T, s) involving a parameter I. In this case we consider the parameter 
dependent operator function 

Aj(r)v(s) = c(t,r, s) v(s) + / l(t,r, s, ) v(a) do,	 (10) 

and assume that we are able to calculate the Cauchy operator for the Barbashin equation 

dr - A
t (T)v(T)	(r E J)	 (11) 

in some Banach space Y over [a, b] which is obtained from X by "freezing" the argument 
t. In order to make this more precise, let us say that an ideal space X over [a, bJ x [a, 6] 
is projectable to an ideal space Y over [a, 6], if for any u E X we have u(t,.) E Y for 
almost all t E [a, bj. 

For example, X = L([a, b] x [a, b]) is always projectable to Y = L([a, b]). More 
generally, for ideal spaces X with mixed norm (see, e.g., [6]), it is trivial to determine 
a space Y to which X is projectable. 

Theorem 2. Let m = n = 0. Suppose that X is projectable to Y, and the operator 
function (4) is locally integrable in £(X). Assume that, for almost all t E [a, b], the 
operator function (10) is locally integrable in £(Y) with Cauchy operator U,(r,ro). Then 
the Cauchy operator of equation (3) is given by 

U(r, r0 ) u(t, s) = U(r, TO ) u(t, .)(s) 
where equality holds for almost all t E [a, 6], provided one chooses a proper representation 
of the right-hand side. 

Proof. Again, the Cauchy operators U(T,ro) and U(r,ro) can be calculated by 
T	Ti	T2 Tn_i 

U(r,ro)u=u+fJf...
f r0 T0 To To 

T	r,	T2 00
Tn_i 

Ui(T,ro)v=v+fJJ...
f 

To T0 To To

A(ri)A(r2)... A(r)udr... drj	(12) 

Ai( ri)At(r2) ... Aj(r)vdr ... dr1 .	(13) 

Now observe that for any u E X we have A(r)u(t,$) = Aj(r)u(t,-)(s) for almost all 
(t, s) € [a, 6] x [a, bj. Consequently, by induction the equality 

A(ri )A(r2 ) . . A(rn )u(t, s) = At(T1)A t (r2 ) . . . A 1 (r,) u(t, .)(s) 
holds for almost all (t, s) € [a, b] x [a, 6]. By Lemma 1 (and an analogous result for 
Y), the partial sums of (12) and (13) for U(T, r0 ) u(t,.) and U(r, ro) u(t,.) coincide, for 
almost all t, a.e. on [a, b]. It remains to observe that, by the following lemma, the same 
is true for their limits I
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Lemma 2. Let ci be a finite measure space and X an ideal space over cix ci which is 
projeciable to some ideal space Y over Q. If II u - u lix —+ 0, and II u ( t , .)- v(t, )IIy - 0 
for almost all t E ci, then for almost all t we have u(t,.) = v(t,.) a. e. on Q. 

Proof. By the assumption on ci, we have u, —p u in measure, hence for a properly 
chosen subsequence u, — u a.e. on Q. In other words, for almost all i we have 
ufl k (t,) —* u(t,.) a.e. on ci, and hence also in measure. On the other hand, we have 
u(t,.) —* v(t,.) in measure for almost all t E 92i 

We illustrate the results of this section by means of an elementary example. 
Example 1. Let [a, b] = [0, 11, X = L2 , c(t, T, s) = m(t, r, s, r) = n(t, T, s, a, r) = 

f(t, r, s)	0, and l(t,r, s, a) = r, i.e. we consider the differential equation (3) with 
f(r)0and	

1 

A(r)u(t,$) = JTu(ta)da. 

It is obviously that A(T) is locally integrable in £'(X). According to the proof of 
Theorem 1, we get

rn(t,ri,... ,r,,s,r) = n(t,r1,... ,r,s, o r , r)	0 
l(t,r1 ,. . . ,r,,s,a) = T1 T2	r,. 

This implies that
ii(t,r,ro,s,r)	h(t, r, ro, s, a, r)	0 
l(t,r, To, s,a) = cT_To - 1. 

The Cauchy operator U(r, r0 ) is therefore given in this case by 

U(r, r0 ) u(t, s) = u(t, s) + H(r, r0 ) u(t, s) = u(t, s) + I (e r—ro  — 1) u(t, a) dci. 

On the other hand, the corresponding parameter dependent operator function (10) is 
here

At(r)v(s) = I r v (a) da. 

By Theorem 2, the Cauchy operator for the differential equation 

dr - A
j (r)v(r)	(r E J) 

has the form

U(r, r0 ) v(s) = v(s) + /° - 1) v(a) dci 

and the equality U(r, r0 ) u(t, s)	U(r, r0 ) u(t, .)(s) for almost all t E [0, 1] is obvious.
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3. Generalized boundary value problems 

We consider now the equation (1) for (i, r, s) E [-1, 11 x [7- 1 ,7-2 ] x [-1,1), subject to the 
boundary conditions 

u(t, i 1 , s) = (t, s)	((t, s) E Q)
	

(14) 

u(t, T2, s) = tb(t, s) ((t, s) E QC = ([- 1,11 x [-1,1)) \ Q) (15) 

where Q is some measurable subset of [-1,1] x f—i, 1]. As before, let X be an ideal 
space over [-1,1] x [-1,1]. A solution of this boundary value problem is, by definition, a 
function u E C,(X) which satisfies (1), (14) and (15) almost everywhere. In the special 
case

c(t, r, s) = c(s),	l(t, r, s, o-) = m(t, r, s, r)	0,	n(t, T, s, a, r)	n(s, o) 

this boundary value problem was studied in (1]. 
We first consider the case Q = (0, 11 x [-1, 11. Suppose that A(r) is locally integrable 

in the space £'(X). As we have shown in Theorem 1, the Cauchy operator U(r, r0 ) for 
the differential equation (3) may always be written in the form 

U(-r, ro)u(i, s) = e(t, r, ro, s) u(t, s) 

+ Ji(t,r, To, s,a)u(i,a)da 

+
 J

1	
(16) 

n(t,r, To, s,r)u(r,$)dr 

+JJ ñ(t, T, ro, s, a, r) u(r, a) 

where 1, th and Ii are measurable. For f E C,-(X), the (unique) solution of equation (3) 
with initial condition u(r0 ) = u,-0 E X is then given by 

r 
u(r) = U(r,ro)u,-0 + f U(T, 0) f (0) dO. 

ro 

Let

I 
U,-1 = {	

on (0,11 x [-1,1]	
and	

u,-, = z on (0,1] x [-1,11

 on [-1,0) x [-1,1] on [-1,0) x [-1,1]
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where y and z will be specified later. For To = 71 we get then 

u(t,r,$) =

0 
m j (t, T, S) +	th(t,T,TI , s,r)y(r, s) dr	

if (t, s) E (0,1] x [-1,1) 

+ f I ñ(i,r,ri,s,a,r)y(r,a)dadr 
-1 -1 

e(t, r, r1 , s)y(t, s) + f l(t,T,ri , s, ) y(t, a) da 

+ m 2 (t,r, s) + fl th(i,r, 7 1 , s,r)y(r, s)dr	if (t, S) E [-1,0) x [-1,1] 

+
 J f ñ(t,r, T I , s,a,r)y(r,a)dadr 

-1 -1 

where 

rn 1 (t, r, s) = e(t, r, Ti ,$) ( t, s) 

+J I(i,r,Ti , s, a) (i, a) da + J th(t,r, T1, s, r) (r, s) 

+ if ñ(t,r,ri,s, a, r) (r, a) dadr +J U(r, 9) f(9)(t, s) dO 

m2 (t,r,$) = I fin(t, T, T I , s, r) W(r, s) d 

+ JJ ñ(t,r, r1,s, a, r) (r, a) dadr + J U(r, 9) f(9)(t, s) dO. 

Using now also the boundary condition (15) for r = 7-2, we arrive at the following 
system: 

z(t,$) = mi(t,r2,$) 

+J (t, r2 , TI, s, r)y(r, s)dr +JJ ñ(t, 72, T1, s, a, r)y(r, a) dordr
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if (t, s) E (0,11 x 1-1,11 and 

0(t, s) = e(t, r2 , 7-1, s)y(t, s) + m 2 (t, 72, s) 

+f I 21 ,5, a) y(t, a) do, + J th(t, T2, TI , s, r) y(r, s) 

+11 ñ(t, T2, r1, s, a, r) 

if (I, s) E [-1,0) x [-1, 1). To simplify this we put, for (t, s) e [-1,0] x [-1,1], 

I(t,s,a)
l(t, T2, 71 ,s, a) = —  
e(t, 72, r1, s) 

=	ñ(t,T2,Ti,s,a,r) ñ(t, .s, a, r)
e(t, 72, T1 , s)

th(t;s,r) — m(t, T2,Ti,S,r) 
—  and	 e(t,T2,Ti,$) 

J(t s)— 1'(t,$) - m2(t,T2,S) 
—	e(t,r2,ri,$) 

The above system may then in turn be written as a single equation 

y(t,$) =fi(t,72,T1sa)Y(t,a)da +fth(tr2 TI, s,r)y(r,$)dr

(17) 

+ffn(t,Tz, TI, s,a,r)y(r,a)do, +f(t,$) 

for (t, s) E [-1,01 x [-1,1]. This is a partial integral equation of the second kind. If . A 
is of Volterra type this equation is also of Volterra type, by Theorem 1 above, and has 
been studied in [6]. It turns out that in this case the equation (17) is usually uniquely 
solvable. 

Now we consider a general measurable set Q c [-1, 11 x [-1, 1]. We denote by XQ the 
subspace of X consisting of functions with support in Q, and by XQ its complemented 
subspace. 

The proof of the following lemma follows from a straightforward calculation. Recall 
that an operator function A = A(r) is strongly continuous if r '—* A(T)x is continuous 
for any x. 

Lemma 3. Let I = m = ii = 0, W E XQ, and 0 E XQC. Suppose that the operator 
function (5) is strongly continuous and measurable in £(X). Then the boundary value 
problem (1), (14), (15) has for each f E Cr(X) a unique solution in C,(X). This solution 
is given by

g(t,T,$) — { e(t,T,ri,$)cp(t,.$) + Pf(t,r,.$) if (t, S) e Q 

—	e(t, T, 7-2, s) (t, s)+ Pf(t,T, s) if (t, s) e QC
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where we have put

f e(t,r,9,$)f(t,O,$)dO if(t,$) E  
Pf(tr.$) = TI 

fe(t,r,9,$)f(t,O,$)dO if(t,$) E QC 

Lemma 4. Let K(r) = L(r) + M(r) + N(r) be defined as in (6) - (8) and k on 
C,(X) be defined by Ku(t, 'r, s) = K(T)u(T)(t, s). Suppose that the operator function 
K(T) is strongly continuous in £(X). Then K maps the space C(X) into itself. 

Proof. For any u E C(X) we have 

	

II Ku (, T, - Ku( . , ro,	IK(T) (u(r) - u('ro)) 1 1 + I I (K (r) - K(ro)) u(ro)II. 

The right-hand side of this inequality tends to zero, as r - r0 , by the uniform bound-
edness principle and the strong continuity of the operator function K(T)I 

Theorem 3. Assume that the operator functions C(r) and K(r) are strongly con-
tinuous and measurable in £(X), and let f E CT (X). Then each solution of the boundary 
value problem (1), (14), (15) is a solution of the fixed point equation 

u(t, r, s) = Pku(t, r, s) + g(t, r, s). (18) 

Conversely, every solution u C C(X) of equation (18) actually belongs to C,(X) and 
solves the boundary value problem (1), (14),(15). 

Proof. Suppose that u E CT (X) solves problem (1), (14), (15). Replace f in 
Lemma 3 by f = Ku + f . Since, by Lemma 4, f E C(X), the C,(X)-solution of 
equation

S) = c(t,r, s) u(t,r, s) + f(t,T, s) 
aT 

with boundary conditions (14) and (15) is given by 

(i,T, s) = Pku(t,r, s) + g(t,r, s) = u(t, r, s). (19) 

For the conversion, let u C CT (X) solve equation (19). Since again I C C(X), by 
Lemma 3, the initial value problem has the C,(X)-solution (19) U 

Lemma 5. Under the assumptions of Theorem 3, the operators P and Pk map 
C(X) into C,'(X). Furthermore, 

dPu 

	

dT	
T, = u( . , r,.) + C(r)Pu( . , r,.) 

	

dPku	-	 - 
di- (.,	

= Ku(., r,.) + C(i-)PKu(., T, 

Proof. By Lemma4 it suffices to consider P. Let I = u C C(X) and = II.' 0. 
By Lemma 3 there exists a solution g C C(X) of the equation 

5g 
—(t, r, s) = c(t, 'r, s) g(t, r, s) + u(t, r, s), 
aT 

namely g = Pu. This shows that Pu E C,'(X) as claimed I
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From Lemma 5 we conclude that the operator B = Pk maps C(J, X) into itself. 
Thus we may estimate the spectral radius of B: 

Theorem 4. Suppose that the conditions of Theorem 3 are satisfied, and K = K(r) 
is locally integrable in £ T (X). Assume, in addition, that for almost all (t, r, s) we have 

c(t,r,$)	0 ((t, s) E Q)	and	c(t,r,$) >0 ((t, s) E Qc) 

and
r2	r2 

f . fIIIK (81)I ... IK(9)IMd9 ... dO1 <1	 (20) 

for some n. Then the boundary value problem (1), (14), (15) has a unique solution 
uEC(X) for any çOEXQ ,l,bEXQ C, and fEC(X). 

Proof. It suffices to prove that the spectral radius r(B) of the operator B = PK 
in the space C(J,X) = C(X) is strictly less than 1. For any u E C,-(X) we have 

IBu(t,7-'S) 
1 

	f IK(0)I Iu( . , 0, -)I(t, s) dO. 

By induction, we get 

IBu(t,r,$)I 
r2	r2 

	

 ] 
IK(O ' ) I	IK(0)I Iu(,O,.)I(t,$)dO••• d81. 

This implies that, for almost all T, 

II Bu( , r , ) II  

r2	r2

	

 K(9 1 )I	IK(0)I Iu(, O, )I dOe ... dO1 

(
!	JIIIK ( 0i)V . IK(8n)III d9n	do1) 

rl 

We conclude that r(B) II B II" < 1 in C(J,X) I 

We close with an example which shows that in general the boundary value problem 
(1), (14), (15) need not have a unique solution. 

Example 2. Let J = [0, fl and 

0	ifs,a>0ors,r<0 
l(s,a)= 1	ifs>O and 7<0 

—1 ifs<O and o>0.
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Consider the boundary value problem 

au(t, r,	
= f l(s, a) u(t,r, a) do, 

—1 

u(t,0,$) 0 (s >0)	and

((t,T,$) E [-1,1] x 10, m2 l x [-1,1]) 

u(t,.,$)=0 (s <0). 

Apart from the trivial solution u(t, r, s) 0, a non-trivial solution is then given by 

u(t,r,.$) = IsinT ifs>0 

lcosr ifs<0. 
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