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Abstract. An existence and regularity result for a linear integro-differential inequality of 
parabolic type, connected with the problem of the American option pricing, is stated. The 
proof is based on the use of some estimates of Lewy-Stampacchia type for parabolic variational 
inequalities and a fixed point argument. 
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1. Introduction 

The problem of finding explicit pricing formulas for European call and put options on 
stocks which do not pay dividends was solved by Black and Scholes in [3]. As for the 
American options, the problem can be formulated in the framework of optimal stopping 
time theory. Relying on the connection between optimal stopping and variational in-
equalities (see [1] and [2]), Jaillet, Lamberton and Lapeyre stated in [9] that the price 
of the American option is the unique solution of a variational inequality of parabolic 
type. In their paper the price process is supposed to be a diffusion. In [10] Merton 
derived a model allowing for jumps in the pricing problem and proposed some tractable 
formulas for the price of European options. In this case the infinitesimal generator re-
lated to the process is given by a linear i ntegro- differential operator of parabolic type. 
In the one-dimensional case and referring to the elliptic part with constant coefficients, 
in [11] Zhang stated that the American option price in the mentioned Merton's jump 
diffusion model is the unique solution of a suitable linear integro- differential variational 
inequality. Moreover, some interesting numerical implementations are developed. 

The aim of the present paper is to state an existence and regularity result for a 
variational inequality of the same kind as that considered in [11]. However, in our 
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case, the dimension of the space is arbitrary and the elliptic part of the differential 
operator has variable coefficients. As in the other mentioned papers, the constraint in 
the variational inequality is represented by a single obstacle and the framework of the 
space variable is the whole space R'' (for other results about equations or weak solutions 
of variational inequalities see [2]). In the case that R' is replaced by an open bounded 
subset and referring to two obstacles variational inequalities of the same type considered 
in the present paper, many interesting results are stated in [7] and [8). Actually, in those 
papers, the elliptic part of the integro-differential operator can be even quasi-linear and 
the integral term is more general than the one we consider here (see, e.g., (1.3), (1.4), 
(1.8) of [8]). (Inded the case considered in the present paper could be extended to 
more general ones, in particular we could assume that the measure ii appearing in the 
integral operator also depends on the time variable in a suitable way.) However, the 
techniques we use here are quite different from the ones used in [7] and [8], where the 
proofs are based on Green representations for the solutions of the equations (see [6]) 
and on penalization methods. 

Indeed, in the particular case we are interested in, a simple argument can be carried 
on. More precisely, starting from some results about parabolic variational inequalities 
stated in [4] and [5], we develop a fixed point argument. 

First, thanks to the Lewy-Stampacchia inequalities, we are able to find a suitable 
ball in some Sobolev space Y which is stable under the map S : v —* Sv, where Sv 
is the "unique" solution of the parabolic variational inequality corresponding to the 
(fixed) value of the integral operator at v. Then, the solution is found as a fixed point 
of S, taking into account that S is shown to be weakly lower semicontinuous with 
respect to a suitable "graph-norm" with respect to the time derivative operator. The 
suitable regularity result for the solution u which allows to interpret u in the mentioned 
economical framework is derived by the use of the Lewy-Stampacchia inequalities and 
by some standard regularity results for parabolic equations (see [1]). 

2. The existence and uniqueness result 

Let us consider the evolution variational inequality 

(VI) u E X,, 
au
-- e X, u > 0, u(T,x)= t,b(T,x) for a.e. x  RN 

T 

K&+Au	/ 

aU 
	f [ Bu(t,x)(u(t,x)—v(t,x))e'dxdt 

0 RN 

for all tt' < v E X. 

Here the following notations are used: 

• For a fixed z > 0, X, is the Hilbert space L2 (0, T; H,(R")) (T> 0, N E N) and 
H(RN ) is the Sobolev space of all functions v E L2 (RN , e_Idx) (i.e. v(x)l2eI'I 
is integrable on RN) whose first weak derivatives- belong to L2 (RN , eIz ldx) (i axi
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1,.. . ,N). The space X is equipped with the inner product 

TI 

(v, w)M	

f Jv(i, x

)w ( i, x )e1'Idx +	
J Ov

( t, x ) ôw (t, x) e_hIdx) di
axi 

0	N	 ='RN	
Ox 

arid relative norm 11VII, = (v,v)/2 

• X is the dual space of X,. 

• (.' ),' is the pairing between X,. and X. 
•	is a fixed element in X such that the mapping I - 0(t, x) is continuous in 

[O, T) for almost every x e RN. 

. A is the differential operator given by 
N 

A = ô(aij
	

N 
--  b—(tx)—	ai(t, x )	+ao ( i, ) +>—	x) 

a 

	

1=1	 x1 

where a 3 , a, a0 belong to L°°([O,T] x R"). Then A is linear and continuous from X, 
into X and one has 

N T i3v(t, x ) ôw(t, 
( Av,w ) =	Jfaij(t,x)	

,	axj
e -Alxl dxdt

 
0 RN 

+	I I (a
i(tx -	ajj(i,x)L) ôv(tx)W(tX)e_PlZIdxdt 

1=1 0 N	
lxiaxi 

T 

+ I I ao(i,x)v(t,x)w(t,x)eIzIdxdi	for all v,w E X. 
0N 

B is the integral operator defined as 

Bv(i,x) = f (v (t,x + z ) - v(t,x))du(z) 
RN 

where zi is a . positive Radon measure on RN such that fRN e I ' I dv(x) < +. Note that 
B is linear and continuous from X, 1 into itself and from L2 ([O, T]; L) into itself with 

= L2 (R"; e I ' l dx). Let us put 

i B il =	sup	 I11 (i (v(t,x + z) - v(t,x)) dv(z)) e_kIdxdi} 
II V II L 2 ( L 0T I. L 2 )<1	

0	N	N 

By using some results about parabolic variational inequalities (see [ 4] and [51) and a 
fixed point method, we are able to prove the following
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Theorem 1. Let a 1 , a 1 , a0 be chosen in such a way that, for some c(A) > 0, 

(Av,v), ? c(A )II v II,	for ally E X,	 (1) 

and let 0 satisfy the condition

(— LO 	EX	 (2) 

where X,*, is the order dual space of X 1. (i.e. FE X,*, if and only if F = F —F, where 
F+ and F are positive elements of X,). Let moreover the coefficients a,, a, a 0 and 
the measure v be chosen in such a way that putting 

h A il = hlAhl(x,x) 

the relation

hiBil < min { (c(AlAhl) c(A)}	 (3) 

is verified. Then problem (VI) admits a unique solution u. 

Proof. The uniqueness of the solution u can be easily proved by standard argu-
ments (see, e.g., [1: Proof of Theorem 2.2]) due to the coerciveness of A and to the fact 
that one has

(Av,v) + fJ Bv(t,x)v(t,x)e 1 ' t dxdt ^ Ev 
0 RN 

with E > 0 (precisely one takes E as E = c(A) - hl B hl and a is positive as a consequence 
of (3)). 

Let us now prove the existence. First of all, let us fix an arbitrary element v in the 
space

av 
Y={vEX A. :	EX} 

and consider the parabolic variational inequality ') 

w E Y: (-Lw + Aw, z- w	
ff 

Bv(w - z)edxdt 

0 RN 

for all zEX,,z>	 (4) 

w? 

w(T,x) = (T, x) for a.e. x E RN 

' From now on the dependence on the variable (t,x) is understood.
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Conditions (1) and (2) enable to state (see [ 41 for a similar case dealing with open 
bounded subsets of RN, and [5] for a very general case) that, for any v € Y,, there 
exists a unique solution w = Sv of (4) which further satisfies the so called "Lewy-
Starnpacchia inequalities"

c9w	 (—LO	 +

	

.	 (5) 

Here the inequalitites and the "positive part" are to be intended in the sense of the 
order dual space X,*, of X. 

In order to prove the statement about the existence in Theorem 1, it is sufficient, 
by definition of S, to state that there exists a fixed point of the map S from Y, into 
itself. Actually it is possible to show that S has the following properties: 

(S1) S is weakly contznuou. from Y, into Y, where Y, is equipped with the graph 
norm with respect to the operator j, that is II v II y,	II v II + 

(S2) There exists a weakly compact convex set D C Y, such that 5(D) C D. 

At this point the existence result will follow from the application of the Tychonov fixed-
point theorem. 

Therefore let us verify property (S 1 ). Let {v} - v in Y, and let w,, = SVn for all 
n € N. If one considers the solution ü of the problem 

 — --+Aw- =O (iEX)} 

zi(T,x) = ?,b(T,x) 

and put U7n = w - ü, then it is easy to verify that Ii5, solves the variational inequality 

/ oun	- 

	

i7EY: (--—+Aw	
/14 

for all  €X,4 , z 

iiJ(T,x)=O fora.e. xER' 

> J J Bv( - z)edxdt 
0 ii?

(6) 

We claim that {ii,,} is bounded in Y,1 . Indeed, by the Lewy-Stampacchia inequalities 

+ 
—Bv ----- +	< —Bv + (- + AV;+ Bv)	 (7) 

and the positivity of the operator -A on the closed subspace Y14° of Y14 given by 

Y,={v€Y,4 : v(T,x)=O fora.e.
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one easily deduces the relation

++ AJ) 

So the coerciveness of A and the boundedness of {Bv} in X. imply 

IiY II <const.	 (8)


On the other hand, still (7), the boundedness of A and (8) yield 

InlI X, [In
jj 5F.	Olt

+ AUin	+ const	<const.	(9) 
X" 

Thus (8) and (9) give the boundedness of {T,, I in Y. 
Therefore at least a subsequence of {iiY,,}, still named {ni}, weakly converges to 

some Ill in Y. At this point, still taking into account the positivity of - on Y, one 
observes that, for any z e X,4 , the functional 

/ Ov

Fz(v)(\v	

/l 

is convex. Moreover, F is weakly lower semicontinuous on Y,,o since it is continuous in 
the Y,-norm. Then one gets 

	

ffJ_z)	liminf(_ 2 ,iZ)n_ z).	 (10) 

The same argument applied to the functional G defined, for any z E X, as 

G(v) = (Av,v, - z),4 

(G too is weakly lower semicontinuous and convex, thanks to the coerciveness of A) 
yields

	

(AY,iJ—z)	 (11)


Thus (6), (10), (11) and the weak convergence of BVn to By in X,A give 

GW
+ Aili,IIY— z

IL 

T	 T	 (12) 

Jf Bv z C xIdxdt - urn sup I I BVn iii, ekIdxdt. 
0 R	 0 R 

Now, let us take any number > Lu. Due to the compact embedding of H, into 
= L2 (R", e_7InIdx)	 c (see [11] for a proof in the one-dimensional case, which an be
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easily extended to the N-dimensional case), one has that {Bv} strongly converges, 
up to subsequences, to By in L?. Therefore, since {iiJne"} is weakly convergent to 
{uie'7kl } in L2 (O,T;H) with , = -y— p , one easily deduces that 

iim sup JJ Bv nez'dxdt 

0 RN 

= urn sup  J Bv. (e) edxdt 
0 RN 

= urn J J Bv. (e)edxdt	 (13) 
0 RN 

= J J Bve'e"dxdt 
0 R 

= J J Bvedxdt 
o RN 

so that (12) and (13) imply that T solves the variational inequality 

T 
GW 

JEY	 -	> J J Bv(iU - z)eMdxdt 1 :
RN	 (14) 

for all zEX,,z>t,b	 I 

w>.	 J 
Now, recalling the definition of U7,, = w, - w, one easily checks that w = T + ü = 
limiiJ + ü = lim w,, is the solution of the variational inequality 

JJaw 
w  Y: (—+Aw i z _)	Bv.(w —z)e'Idxdi 

0 RN 

for all z E X,, z 

w>b 

w(T,x) = T,b(T,x) for a.e. x E RN 

that is w Sv, and S is weakly continuous on Y,. 

Now let us verify property (S2 ). At this purpose let us put, for any r > 0, 

Dr{vEY,: II v Ih' <r}
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and let us show that Dr verifies
S(Dr) C Dr	 (15) 

for any r 2 F> 0 suitable choosen so that, for r 2 F, as Dr is a weakly compact convex 
subset of Y,, property (S 1 ) will be satisfied with D = Dr. Indeed, let v E Dr, w = Sv 
and ü = w — 0, so that ü belongs to Y° and (— , @), > 0. By the Lewy-Stampacchia 
inequalities, one deduces	

Is

_Bv+(_+AO) :^—+Ai 

< —Bv+ (— 
at 

+ AO + 
Bv) 

+ (—' 

Hence, the usual calculations based on the positivity of - on	and the coerciveness at 
of A easily yield

ii II 

	

c(A)II il IIx,	@ + A@	3lIBvIIL2([o,ll;L) + 3	+ A7f	 (16) 

	

x	 x 

Moreover, taking the second inequality in (16) into account 

	

II 0
	[9'

II
Ail hl ü IlL .	(17)
+ h + AII ^ 3 II BV lIL 2 ([o,;L) + 3	

IIx. 

Finally, by (16) and (17) and the definition of ü = w - , one easily deduces 

hI Sv iI y, = hI w hI y, !^ R i (A,B)lIvIly + R2(A,B4O) 

where

R1(A,B) = 3 I1 B hl (1 + 11 Ahl+ 1
 c(A) ) 

and R2 (A, B, ) is a suitable positive number depending on A, B and b. At this point, 
taking into account the elementary inequality 

sx + R2 (A, B, ') x	for 0 < s < 1 and x = i(s) > 0 sufficiently large 

one easily deduces that relation (3) (which implies R 1 (A, B) < 1) and the choice of a 
sufficiently large ,- > 0 (precisely it is sufficient to take r in such a way that R 1 (A, B)r + 
R2 (A,B,) < r) guarantee the inclusion (15). So property (S 2 ) is verified with D = 
Dr 
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3. The regularity results 

The aim of this section is to give some regularity results for problem (VI). They allow 
to give an economical interpretation of the solution u at least in the case N 5. This 
interpretation was already proposed in [11] for the one-dimensional case under some 
weaker assumptions (the operator A was not supposed to be coercive and no constraint 
was made on B in dependence of A) as well as under some stronger assumptions (the 
coefficients of A were supposed to be constant). 

A first "regularity" (in some sense) result can be obtained as a consequence of 
the method itself followed in order to construct the solution u to problem (VI). It is 
expressed by the following 

Theorem 2. The solution u of problem (VI) verifies the inequalities 

O< —ôu 
5i	Olt 

 
+Au+Bu< (—LO + AO + Bu 	 (18) 

in the sense of the order dual space. 

Proof. Using the notations introduced in the proof of Theorem 1, as immediate 
consequence of the fact that u = Su and that, for any v E Y,, 

ô(Sv) 
—Bv< —	+A(Sv)_Bv+(_+Ab+Bv)

Olt 

the statement follows I 

The other regularity results can be obtained as corollaries of Theorem 1, using the 
fact that Bu belongs to X and applying some general regularity results for parabolic 
equations (see [11). 

At this purpose, let us define, for m E NU {O} and q e [1, +oo), the space 
as the Sobolev space of all functions v E L (RN, e l ' l dx) whose weak derivatives up 
to the order rn belong to L(Rl,e_MlnIdx), equipped with the norm 2) 

IVIIWm. N) =	
CJ Ox 

q	11q 

 

e_hIdx) 

IoI^	
N 

(note that W'2 (R N) H(RN ) and W(R') = 
An immediate consequence of Theorem 2 is given by the following 

Corollary 1. Let u be the solution of problem (VI) and let the element 

g= (_+A+Bu)_Bu	 (19) 

2) o denotes a multi—index (ar,... ,ON) € (NU{O}) N and j orl = a i + ... +QN.
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belong to some space Z of the type LP(0,T; W" 7 (R')), for some choice of p, q E 
[1, +oo] and m e N U {0}. Then, for a suitable f E Z, u solves the problem 

—u'+ Au = f 

	

u(T,x)=b(T,r).	 (20)


Proof. It follows from (18) and from the fact that the space Z is a lattice, thus 
any element in the "order interval" [0, g[ belongs to Z  

In order to give the economical interpretation of the solution u of problem (VI), we 
need to use the following regularity result which is a consequence of Corollary 1. 

Theorem 3. Let the coefficients a 13 , a 1 , a0 defining the operator A satisfy the con-
ditions

a13, a 1 , a0 E C'([O,T] x RN)	 (21) 

a 13 (x, t) = a31 (x, t) for all i,j E {1, . . . , N}	 (22) 

ao(x,t) fi for some >0	 (23) 
aajII <const	 (24) 

< const for all k E {1,...,N}	 (25)
c9xk 

and let 1' verify
E LP(0,T;W7(RN)) 

ao E LP(0,T;L(RN)) 

AO E 

-	+ A,b E L2 (0, T; H,(RN)) 
Olt 

with any p E [2, +) if N <2 and p = 2* if N > 2 3) Then the solution u of problem 
(VI) verifies the conditions

u E LP(0,T;Wi(RN))	 (27) 
au 

	

E L'(0,T;L(R"))	 (28) 

for any pE [2,--oo) if N 2 and p= 2* if N >2. 

Proof. First of all, the fact that -	+ A,b belongs to L2 (0, T; H(R")) implies

that u is the solution of a problem of the type 

au 
_+Au=fEL2(0,T;H(RN))l	

(29) 
u(T,x) = b(T,x) E H(RN)	J 

3) For N >2, 2 is defined as 2 = N-2
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thanks to Corollary 1. Then a general result about parabolic inequalities (see Li: The-
orem 6.11]) assures that u belongs to L(O,T;H,(RN)) with E L2(O,T;H,(R")). 
Therefore Bu itself belongs to Loo (0, T; H,(R'')), thus, in particular, it belongs to 
LP (0, T; L(RN)), due to the well-known result about the embeddings of Sobolev spaces 
into LP spaces. Therefore f itself in (29) belongs to the space 

L2(O,T;H,(R')) fl L1(O,T;L(RN)). 

At this point, conditions (21) - (25) yield (27) and (28), as a consequence of another 
general result about parabolic equations (see [1: Theorem 6.12 )])U 

4.. An economical interpretation 

Let us illustrate now an economical interpretation of the solution of problem (VI) in the 
one-dimensional case and in case that the coefficients of the operator A are constant. 

Let us consider an American put option over a stock whose price is described by a 
stochastic process (S)>o given by the solution of the Cauchy problem 

so = y 

dS	 IN, \ I pdi + adBt+ d (>2 U, 
\j=1 ) 

where y is the so called "spot price" at the time t = 0, (Bt )>o is a standard IR-valued 
Brownian motion, (U,),> 1 is a sequence of identically distributed random variables in 
(-1, +oo), p and a are constants with a > 0, and U, represent the jumps of the process, 
which are connected with a Poisson process (N,)> 0 . The processes (B t ) t > 0 , (N)>o 
and (U,)> 1 are independent. 

Let us suppose that the interest rate r is a strictly positive constant and that 
= r - AEU 1 (A is the "intensity" of the Poisson process (N1 )>o). Let us suppose 

that the American option, of expiring date T, allows a profit f(St ) = (K - S t )l if it is 
exercised at time t where K is the so called "exercise price". One defines 

P(t, S ) = sup E(e_t'(T_t)f(S)) 
rET,,' 

as the value of the option at time t, where 7,T is the set of the stopping times in [, T] 
and ( S,' , Y).,>t is the process defined by 

= ye_'/2)(3_a_	[ (1 + Lii). 
j=N,+1 

4) Actually in that result the term U(x) = u(x,T) is supposed to be equal to zero, but it 
is easy to check that the same result holds if there exists some ii E L(O,T;W'(R'')) with 

LuL -	+ Au) E L2 (0,T; H' , (R `4 )) fl V'(O,T; LP (RN )) such that ü(T,x) = ü(x). In our case 

one takes ü =
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Let us consider the change of variable X = log S and define 

u*(t x) = sup (c_r(T_.i)(Xtz)) 
rE7E 

where i(x) = (k - er )+ . It is easy to check that P(t,x) = u(t, log x). That is, in 
order to evaluate the price P(t,x), it is sufficient to compute u. In [11] the author 
shows also that u coincides with the unique solution of the variational inequality of 
type (VI) related to the choices N = 1 and constant coefficients for the operator A. The 
results contained in the present paper unable us to give a suitable generalization of this 
economical interpretation to the case N < 5 and to variable coefficients of A. Indeed a 
main argument in the proof proposed by [11] is the fact that the exponent p appearing 
in (26) must satisfy p > . This relation is obviously satisfied for N = 1 (the Zhang 
case where p = 2 by definition of solution of problem (VI)) and N = 2 (in this case one 
can consider any p ^! 2, thus p> 1 = 1). Otherwise, if N > 3 one has to take p = 2* in 
(26) and condition p> is equivalent to that of N 5. A detailed exposition of these 
results will be given in a forthcoming paper. 
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