An Example for Different Associated Spaces in the Case of Pseudoanalytic Functions

U. Yüksel

Abstract. The theory of solving initial-value problems in associated spaces makes it possible to solve initial-value problems with more general initial functions. In many cases the associated space is not uniquely determined, i.e. there exist various so-called co-associated spaces in which initial-value problems can be solved. The present paper is aimed at giving an example to this fact.

Keywords: Associated operators, initial-value problems, Cauchy-Kovalevska theorem AMS subject classification: 30 G 20, 35 A 10

The paper [3] deals with the initial-value problem

$$\frac{\partial w}{\partial t} = Lw := C_0(t, z)\frac{d_E w}{dz} + A_0(t, z)w + B_0(t, z)\overline{w}$$

$$w(0, z) = w_0(z)$$
(1)

in the space of functions which satisfy the equation

$$lw := \frac{\partial w}{\partial \bar{z}} - a_E(z)w - b_E(z)\overline{w} = 0$$
⁽²⁾

where

$$rac{d_E w}{dz} = rac{\partial w}{\partial z} - A_E(z) w - B_E(z) \overline{w}$$

and a_E , b_E , A_E , B_E are the characteristic coefficients defined by Bers (see [1: p. 5]). The functions which satisfy the equation (2) are known as *E*-pseudoanalytic in the sense of Bers (cf. [1: p. 6]). Thus the initial-value problem (1) is investigated in the space of pseudoanalytic functions. In the first part of the paper [3] the authors proved that *L* is associated to *l*, i.e. lw = 0 implies l(Lw) = 0 if the following sufficient conditions hold:

$$A_{0,\bar{z}} - C_0(A_{E,\bar{z}} - a_{E,z}) = 0$$
 (3)

$$C_0 b_{E,z} + \overline{C}_0 b_{E,\bar{z}} + b_E \overline{C'_0} + 2i b_E \operatorname{Im} \left(C_0 (\bar{a}_E - A_E) + A_0 \right) = 0$$
(4)

$$B_0 - B_E C_0 - b_E \overline{C}_0 = 0 \tag{5}$$

U. Yüksel: University of Ankara, Dep. Math., 06100 Tandogan Ankara, Turkey. – The author is most grateful to Prof. Dr. W. Tutschke for some helpful hints improving the final version of the paper.

while C_0 is holomorphic. If $0 \neq C_0$ is a real constant and $A_E = B_E \equiv 0$ (for that it is necessary and sufficient that F, G are antiholomorphic where E = (F, G), see [1: p. 5]), then these conditions are reduced to

$$A_{0,z} + C_0 a_{E,z} = 0 \tag{6}$$

$$C_0(b_{E,z} + b_{E,\bar{z}}) + 2ib_E(\operatorname{Im} A_0 - C_0 \operatorname{Im} a_E) = 0$$
(7)
$$B_0 - b_E C_0 = 0.$$

They are a special case of the conditions (3) - (5). If b_E does not vanish identically, then A_0 must satisfy the inhomogeneous Cauchy-Riemann equation (6) and the linear algebraic side condition (7) at the same time. Provided $b_E \neq 0$ everywhere, Im A_0 is uniquely determined by (7) which implies that (6) is a first order system for Re A_0 . The sufficient conditions for the solvability of this system can be written by the paper [3] as

$$\operatorname{Re}\left(\frac{1}{b_{E}}(b_{E,z}+b_{E,\bar{z}})\right)=0\tag{8}$$

$$\operatorname{Im}\left(\frac{b_{E,z}}{b_E}\right)_{z\bar{z}} = \operatorname{Im} a_{E,z\bar{z}} + \operatorname{Im} a_{E,zz}.$$
(9)

It can be easily shown that the characteristic coefficients a_E and b_E satisfy the relations

$$a_{E,z} = -b_E \bar{b}_E \tag{10}$$

$$b_{E,z} = -b_E \bar{a}_E \tag{11}$$

if $A_E = B_E \equiv 0$. By virtue of the equality

$$\operatorname{Im} a_{E,z\bar{z}} + \operatorname{Im} a_{E,zz} = (\operatorname{Im} a_{E,z})_{z} + (\operatorname{Im} a_{E,z})_{\bar{z}}$$

and the relation (10), the right-hand side of condition (9) vanishes identically. On the other hand by the aid of the relations (10) and (11) one gets

$$\operatorname{Im}\left(\frac{b_{E,z}}{b_E}\right)_{z\bar{z}} \equiv 0.$$

Therefore (9) is an identity. Moreover by the relation (11), condition (8) can be rewritten as

$$\operatorname{Re}\left(\frac{b_{E,\bar{z}}}{b_E}\right) = \operatorname{Re}a_E.$$
(12)

So we have proved the following

Lemma: Let D be a simply connected and bounded domain, and E = (F,G) be a smooth generating pair defined on D such that the generating functions F and G are antiholomorphic. Assume, further, that $0 \neq C_0$ is a real constant, $b_E \neq 0$ everywhere,

 $B_0 = b_E C_0$ and the condition (12) holds. Then there exists a coefficient A_0 which is uniquely determined up to an arbitrary real constant such that the operator

$$Lw = C_0 \frac{\partial w}{\partial z} + A_0 w + B_0 \overline{w}$$

is associated to the operator

$$lw = \frac{\partial w}{\partial \bar{z}} - a_E w - b_E \overline{w}.$$

Thus if the properties which are formulated in the lemma are fulfilled, then the initial-value problem

$$\frac{\partial w}{\partial t} = Lw := C_0 \frac{\partial w}{\partial z} + A_0 w + B_0 \overline{w}$$
$$w(0, z) = w_0(z)$$

can be solved in the space of pseudoanalytic functions by the abstract Cauchy-Kovalevska theory (see [3]).

Now we assume that C_0 is holomorphic and $b_E \equiv 0$ besides $A_E = B_E \equiv 0$. Then (4) holds identically, (5) implies $B_0 \equiv 0$, (10) shows that a_E is antiholomorphic and, consequently, (3) implies that A_0 is holomorphic. Hence the operator L,

$$Lw = C_0 \frac{\partial w}{\partial z} + A_0 w$$

is associated to the operator l,

$$lw = \frac{\partial w}{\partial \bar{z}} - a_E w$$

if C_0 and A_0 are holomorphic and a_E is antiholomorphic. Therefore the Cauchy-Kovalevska problem

$$\frac{\partial w}{\partial t} = Lw := C_0 \frac{\partial w}{\partial z} + A_0 w$$

$$w(0, z) = w_0(z)$$
(13)

is solvable in the space of pseudoanalytic functions by the same theory. In the classical case we have E = (1, i) and, consequently, all characteristic coefficients vanish identically. Then the initial-value problem (13) has a solution in the space of holomorphic functions in virtue of the classical Cauchy-Kovalevska theorem (in the linear case).

The above example shows that possibly there are various associated spaces in which initial-value problems are solvable. In such cases a permissible initial function has not necessarily to belong to a fixedly chosen associated space. On the contrary, more general initial functions are permissible, too, if only they can be decomposed into components belonging to one of the associated spaces (see [2]).

References

- [1] Bers, L.: Theory of Pseudoanalytic Functions. New York: New York University 1953.
- [2] Heersink, R. and W. Tutschke: A decomposition theorem for solving initial-value problems in associated spaces. Rend. Circolo Mat. Palermo 43 (1994), 419 - 434.
- [3] Tutschke, W. and C. Withalm: The Cauchy-Kovalevska theorem for pseudoanalytic functions in the sense of L. Bers. Complex Variables 1 (1983), 389 - 393.

Received 14.03.1995