Zeitschrift fiir Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 15 (1996), No. 1, 7-18

Vector-Valued Integration in BK-Spaces

A. Pechtl

Abstract. Questions of convergence in BK-spaces, i.e. Banach spaces of complex-valued
sequences ¢ = (Zx)yez With continuity of all functionals z — zi (k € Z) will be studied
by methods of Fourier analysis. An elegant treatment is possible if the Cesaro sections of a
BK-space element z can be represented by vector-valued Riemann integrals. This was done
by Goes [2] following the example of Katznelson [5: pp. 10 - 12). The purpose of this paper
is to make precise the conditions in [2] concerning Riemann integration and to demonstrate
relations between BK-spaces which are generated by a given BK-space.
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1. Introduction

This paper is motivated by a letter of Boettcher to Goes (Beispiel eines translations-
tnvarianten BK-Raumes, der mcht die Eigenschaft B hat) from May 31, 1990, in

which the space F = L2(T) ® Md(T) (cf. Example 3.7) is considered as example of a
translation-invariant BR -space which fails to have the so-called property o B. Clogmg
some element z = 6}; Boettcher proves that the sequence (0,2 )nen, With o,z ‘€ L? (T)C
E for all n € Ny is not bounded.

‘

This shows that in general Proposition 4.1/(i) in Goes [2] is not valid. Actually the
BK-valued Riemann integral used in the proof of Proposition 4.1/(i) may not exist. It
is evident that the function ze (cf. Definition 2.7) is not Riemann integrable because

onz ¢ Md(T) for all n € Ny. Thus Riemann integrability of ze is sufficient for z to
have property o B (hence [2: Proposition 4.1/(i)] is valid in this case (cf. Theorem 3.5)).
However it is not necessary, as « € E3 in Example 3.7 shows.

From this point of view the advantages and the limitations in the representation
of o,z as vector-valued integral shall be demonstrated. Especially some properties of
Riemann and Bochner integration in translation-invariant BK-spaces are considered.
Beyond this significant relations between certain BK - subspaces of the linear space Q of
all complex-valued sequences are presented.
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2. Notations, definitions and preliminary remarks

2.1 Convergence and boundedness in BK-spaces. Let R and C be the set of real
and complex numbers, respectively, let N and Ny be the set of positive and non-negative

integers, respectively, and Z the set of integers. Furthermore let 2 be the linear space
of complex-valued sequences on Z, i.e.

Q= {(xk)kez‘ zy € Clorall k € Z}.

For k € Z let 6* the Kronecker symbol and define 0, : 2 — © (n € Ny) by
- |k
n 1-
On: T — k;ﬂ ( n+1

The function o,z is called n-th Cesdro section of order one of z.

Definition 2.1 (BK-space). (E;|| - ||g) with E C € is called BK-space if

) é*  (z e Q)

1. E endowed with the norm || - ||g is a Banach space
2. Pry: E — C with z — z4 is continuous for all k € Z.

Definition 2.2 (Convergence and boundedness). Let E be a BK-space, z € Q2 and
onz € E for all n € Ng. Then z has the

1. property o K of Cesdro-sectional convergence if (0nZ)aen, is a Cauchy sequence
in E ie limy~onz =z € E;

2. property 0B of Cesdro-sectional boundedness if sup,en, |lonz|E < 00;

3. property SoK of weak Cesdro-sectional convergence if z € E and limy—o0 ¢(052)

= ¢(z) for all ¢ € E'.

Remark 2.3. Let P be one of the properties 0 K,0B or SoK. Then the space
Ep = {z € Qjz has the property P} endowed with the norm ||z] g, = SUPpen, llonZ|| E
is a BK-space with ||z||g < sup,¢n, lonz| g for all z € Egok, and thus for all z € E,
(cf. Yosida [6: Theorem 2/p. 120]) as well known.

Definition 2.4. A closed subspace G of E has sectional density (Abschnittsdichte
AD) if the set @ = {z € Q| {k € Z|z # 0} is finite} is dense in G, i.e. f G=PNG.
In particular let E4p be defined by Eqap = $ N E.

According to Zeller [7: Satze 2.2, 3.3 and 3.4] we have the following lemma.
Lemma 2.5. Let (E;||-||g) be @ BK-space. Then the following assertions are true.
1. E has property oK if and only if E = Eap and E C E,p.

2. E has property SoK if and only if E has property oK.

Remarks 2.6. Obviously we have the relation E,x C Esqx € Eap, andif Eqp C
E,p, then even E,x = Esox = Eap. If Esok is closed with respect to || - || g, then
Esox = Eok.
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Definition 2.7 (Invariance and continuity of translation). Let T = R/27Z, where
R is the additive group of real numbers. Then

e(t) = (e™**)xez for all t e T.
A BK-space E is called

1. translation invariant if ze(t) = (zxe'**)recz € E and ||ze(t)||g = ||z||g for all z € E
andt €T

and it is called

2. homogeneous BK-space if in addition the translation is continuous, i.e. the conver-
gence lim,_.,, ||ze(t) — ze(to)||c = 0 for all £ € E and tg € T is true.

A translation invariant BK-space E has wcakiy continuous translation if
tlir{l ¢(ze(t) — ze(to)) =0 forall z€ E,¢p€ E'andty € T.
—%o

Remark 2.8. The continuity of ze for z € E in a particular point ¢ € T implies
trivially the continuity of zre on T.

2.2 Vector-valued integration. In this subsection we refer to Gordon [3], a survey
article, where essential criteria of Riemann integration are stated.

The Riemann integral and some of its properties. Let [a,b] be a real finite
interval and X a Banach space. Furthermore let a partition P of [a, ] be given with

‘f’,:{t.»

0<i<N;a=ty <ty <...<tN=b}
and o
. |P| = max {t; —ti_;: 1 <i < N}
its norm. If ’ﬁl - 732, then 732 is called a refinement of 731.
If we choose s; € [ti—),t;] for all 1 <i < N, we obtain from P a tagged partition P
of [a,b], i.e.
P= {(s;;[tg_l;t.'])ll Si<Nja=to<t) <...<ty=0b s € [ti_l;ti]}.
For f: [a,b] = X we call N
f(P) = flsi)(ti — tim1)

1=1

a Riemann sum of f.

Definition 2.9 (Riemann integral). The function f : [a,d] — X is called Riemann
integrable (R-integrable) if

Jz€ X :Ve>0:36>0:VP tagged with [P| <6: ||[f(P)—z|x <e¢

and z = (R) — f: f(t)dt is called the Riemann integral of f.

Evidently an R-integrable function f must be bounded (cf. [3: p. 924}). The proofs
of the following two theorems are obvious and omitted.
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Theorem 2.10 (Cauchy criteria). Let a function f : [a,b] — X be given. Then
the following assertions are pairwise equivalent.

1. f is R-integrable on [a,b].

2. Ve > 0:36 > 0: VP, Py tagged with [Bul, P2l < 6: [ f(P1) - F(P)llx <.

3. Ve > 0: 3P, : VP, P, refinements of Py; Py, Pz tagged : ||f(Pi)~f(P2)llx < €.

Theorem 2.11. Let the function f : [a,b) — X be R-integrable on [a,b]. Then we
have:

1. f'is R-integrable on every subintgrval of a, b].

2. If | f(t)llx < M on (a,b), then || 2 f(t)dt||, < M(b~a).
3. If h:[a,b] = X i3 continuous, then h is R-integrable.
4

. IfY is a Banach space and T : X — Y a continuous linear operator, then

‘ /ab (f(t)) dt = (/ f(t)dt)

5. If g: [a;b] = X is R-integrable on [a,b], then f + g s R- mtegra.ble on [a,b] and

/ (f +9)t)dt = / f(t)dt +/ g(t) dt.
Theorem 2.12. Let f: [a,b] = X be an R-integrable and g : [a,b] — C a contin-
uous function. Then the product function gf : [a,b] — X is R-integrable.

Proof. Let || f(t)||x < M on [a, b]. We consider a sequence of step functions (gn)neN
with gn : [a,b] — C converging uniformly on [a,b] to g. Each function g, can be
represented as

mn ’ :
g9n =3 o X1, ) + 2 X (0)
k=1

wherea=19< 7 < ... < Tm, = b and ai") € C for all 1 < k < m,. Obviously by the
assertions 1 and 5 of Theorem 2.11 g, f 1s R-integrable for all n € N, and we get

/ bgnf(t)df o / £ty dt.

a

We choose n € N. such that

€
sup |(ga(t) — 9(t)| < 77—
t€fa b l ®) ( )l 3M(b~a)

Let P, be a partition such that for two arbitrarily chosen refinements P, and P of P,
with P, and P, tagged

92 f(P1) = gaf(P2)|Ix <
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(cf. Theorem 2.10/3.). With -

l9f(P1) = gf (P2l < l9f(Py) = guf (POl
+[lgn f(P1) = 9nf(P2)| x + llgnf(P2) — 9 £(P2)]

we obtain

l9f(P1) = gaf(P1)||x < M(b—a) =

wlm

3M(b a)
and analogously
€
||gf('P2) - gnf(P2)|lx <
Thus ||gf('Pl) gf('Pz)”X < ¢ for all tagged partitions ’Pl and P, with refinements Py
and P, of P, i.e. f gf(t)dt exists :

The Bochner integral and some of its properties. Beside the Riemann integral
we will have a look at the Bochner integral. Later we shall see consequences of these
two possibilities of vector-valued integration for BK-spaces.

Definition 2.13 (Bochner integral). Let (T; A; 1) be a measure space. A function
f: £ — X is called simple if there exist Ey,...,E, € Aand z,,...,2, € X such that
f =3, zixg, For asimple function f the Bochner zntegral is deﬁned by

(B)/fdu-zww)

A function f: £ — X is called pu-measurable if f is p-almost everywhere the llmlt of a
sequence (fn)nen of simple functions, i.e. if

lim ffa=flly =0 ae

A p-measurable function f : £ — X is called Bochner integrable if there exists a
sequence (fn)nen of simple functions such that for the sequence of Lebesgue integrals

f): ”fn f”xd# neN We have

lim /B fo = || ydu = 0.

n—0oo

Then the Bochner integral is defined by .

(B fdu = im (B) [ fnis

In the followmg we consider only Lebesgue-measure spaces (Z; L; /\) The next
theorem is due to Diestel and Uhl [1: Theorem 9/p. 49].

Theorem 2.14. Let the function f be Bochner integrable on [a b} with respect to
the Lebesgue measure A. Then

s+h
tim 2 [ 170 - S5} A0 =0

for almost all s € [a, B).

Now we obtain
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Lemma 2.15. Let h > 0 and f :-[a;b] — X be a Bochner integrable function.
Then

.1
lim ZA({t € [s;s+ h]‘ 15@) - f&)x <e}) =1
for almost all s € [a,b] and all e > 0.
Proof. For € > 0 set

ac(s) = A({t € lsss + 1| 1£0) - £l <))
be(s) = ({1 € lsis + HI[ 150 = £ 2 e}).

Then a.(s) + be(s) = h. Hence by Theorem 2.14

s+h
R <3 [0 - 160 — 0w k-0

for almost all s € [a,b). Thus lima—o 3ac(s) =11

3. Properties of BK-valued integrals
In the following we consider BK-subspaces of ! which are induced by a translation-
invariant BK-space E and certain properties.

Definition 3.1. For a translation invariant BK-space E we define

E. = {a: € E| ze is continuous on T}

E, = {z € E' ze is A-measurable on T}

Egi = {x € E) (R)_2L7r /2” ze(t) dt exists}.
0

Remarks 3.2. E. and Eg; are with respect to || - || g translation-invariant BK-
spaces. Obviously E. C Epg; because every continuous function is R-integrable. Fur-
thermore E. is a homogeneous BK-space, and ze is Bochner integrable for all z € E,
(cf. [1: Theorem 2/p. 45]).

It will be our aim to demonstrate relations between the spaces Ep for P équal one of
the properties o K,0B, So K, AD, c, Ri or A and to compare these relations with results
in [2].

Theorem 3.3. The function ze is continuous if and only if ze is A-measurable,

.e. E. = FE,.

Proof. Evidently the continuity of the function ze implies its measurability. Lem-
ma 2.15 and the translation invariance of E imply

lim %/\({r € [t + ]| [Joe(r) ~ ze(v)]|p < €}) =1
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for all t € T and all € > 0. Supposing that ze is not continuous we get
36> 0:3(tn)neN:ta L to: Vin: |lze(ta) - :z:e(to)“E >4 (1)

for tg € (0,2r). Let € = £ and

Ag(h) = ({'r € [tr,tx + h]' ||2:e(-r) — xe(tk)”E < %})

for all k € Ny. Choose h such that /\(Ao(h)) > loh Then by the translation i 1nva.r1a.nce
we also have A\(An(R)) > +5h for all n € N. Let now be ng € N such that |t, —to] < 75
for all n > ng. Then A,,(h) N Ao(h) # 0 for n > ng because otherwise

TG > Mltostn + k1) 2 A(4(R) U Ao(A) = A(A() + A(40()) > oh
With 7, € An(h) N Ag(h) we obtain

§
||lze(tn) - ze(to)|| p < ||zelta) - :ce(r,.)||E + ||ze(ma) = ze(to)”E <3
for all n > ng. This is a contradiction to (1). Thus ze is continuous in ¢y und therefore
onTH
Theorem 3.4. Let (K, )nenN, with

Ka(t) = Z": (1 - %) eikt

k=—n

be the Fejér kernel. Then

2r

1
nl = — n ~t)dt
TnZ = o A Ka(t)ze(~t)

for alln € Ny and all z € Ep;.

Proof. Since 3~ fo re(—t)dt exists for all z € Eg;, we obtain by Theorem 2.12

for all n € Ny the exxstence of the integrals ;- f Kq(t)ze(—t)dt € E. Using assertion
4 of Theorem 2.11 we have for all k € Z

Pry (2% A ”K,,(t)xe(—t)dt) %/o ”Prk(K,,(t):ce(—-t)) dt

1 2w -
= 2/, Kn(t)zge ' " dt
_ (1—--’4;%)1:,: for [k| < n
0 for |k| > n.

Thus A 2" Ku(t)ze(=t)dt = 0z B
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According to [2] we obtain the following Theorems 3.5 and 3.6.

" Theorem 3.5. Let.E be_a translation invariant BK-space. Then
1. Eri C EyB
2. Esox = Eap = E. = Esk.

Proof. We prove the two assertions in the following way.
1. Let £ € Eg;. Then for all n € Ny
: 1 2 : ’ 1 27 '
ozl = |5 [ Ketme-yae| < 5o [ Kulelle de = lalle
- TJo . g 2m /g .
Thus sup,en, llonzllE < ||lz]lE < 00, i.e. Egri € Eyp.

2. We prove Esox € Eap C E. C E,x C Esyk. Let £ € Esyx. Then by [6:
Theorem 2/p. 120]

1 and

V€>0:30:$")_>_0(0§i§n): Zaﬁ")
=0

n
2 asn)aix —z|| <eg,
=0 E
i.e. £ € E4p. Hence Esoix € E4ap. From z € E4p one obtains that for all ¢ > 0 there
exists an z; € ® N E with ||z — 2.||g < §. Obviously 2z, € E. and therefore

Vio € T : Is(to) : YVt € Us(to) :  |lzze(t) — zze(to)|| £ < %
From this we get

||:ce(t) - xc(to)”E < ”:ze(t) - z,e(t)”E
+ ||z,e(t) - z,e(to)”E + "z,e(to) - xe(to)“E
<e, ~

for all t € Us(to), i.e. = € E.. Trivially z € Eg;‘and |lonz — z||g — 0 (cf. [2: p. 246]),
i.e. € E,x. Consequently |¢(onz) — ¢(z)| = Oforall ¢ € E',ie. 2 € Esoi I

Theorem 3.6. Let E,. be the space of those elements z € E for. which ze has
weakly continuous translation. Then E,. = E,x = E.. Thus in E weakly continuous
translation s equivalent to continuous translation.

Proof. We have E,x = E. and E. C E,.. We only have to prove E,,. C F.. Let

z € Eyc. Then ze is weakly continuous and therefore weakly measurable. The range of
ze, i.e. {ze(t)|t € T}, is a subset of the closure of

{ i ﬂk:ce(tk)

k=0

nGNo.andv Br € Q,t €eQNT for all 0_<_k§n}

(cf. [6: Theorem 2/p. 120]), where Q denotes the set of all rational numbers. Therefore
{ze(t)|t € T} is a separable set. Thus the conditions of the Pettis theorem [6: p. 131]
are fulfilled, and we obtain z € E5 = E. (cf. Theorem 3.3), i.e. Ey. = E. = Eox §
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Boettcher and Goes noticed that Theorem 3.6 can also be interpreted as an ap-
plication of the theorem in {6: p. 233]. Furthermore we have to remark that in the
proof of Proposition 4.3 in (2] there is not paid attention to the fact that the additional
condition E C Ep; is used.

The following example illustrates inclusion relations between the considered BK-
spaces.

Example 3.7. First we define the following spaces: Let LP(T) (1 <p< oo)be the
space of all complex-valued Lebesgue measurable functions on T with f02" |fIPdA < o

- Y
and ||fll, = (ﬁ 02 |f|”d/\) g (cf. Katznelson [5: p. 14]) and L®(T) the sub-

space of L'(T) of all essentially bounded functions endowed with the norm 1 fllco =
esssuper | f(t)|. Furthermore let M?(T) be the space of all purely discontinuous (Borel)
measures on T (cf. Hewitt and Ross [4: Definition 19.13/p. 269] and [5: p. 37)).

Now we consider the associated translation invariant BK-spaces Lr(T), L;(?) and
M4(T) of sequences of Fourier(-Stieltjes) coefficients, I®° = {u € Q| supyez lukl <

oo} and ¢ = {ve l°°| limkj~oo [vk] = 0}. Then the translation invariant BK-space
(E;1 - ll) shall be constructed by

E=E 0E,®E; ®E,

and endowed with the norm || - ||g = 34, || - |l&, - Let
E = {z € Li(?)‘m =0 forall k€ Z\A{O}}.

Then .

Ve € Ey:3f € L(T):Vk€Z: zi = f(k).
Let be ||z]lg, = ||f]loc- Then E, endowed with this norm is a BK—spéce. With

Bz = {y € M%T)| yox = 0 for all k € 2\ {0} }

one obtains .
Vye Ey:3ue MYT):Vk€Z: yi=a(k).
Correspondingly let be ||y||g, = var(u) (total variation of u). According to {4: Theorem
19.20/p. 273} we have M4(T) N L'(T) = {0}, and with L>(T) C L!(T) we have
M?4(T) N L®(T) = {0} respectively E; N E, = {0}. Furthermore let E; and E, be
defined by

Ey = {u € 1°°| Usk4r = ugk = 0 for all k € z}

and
E, = {v € co‘vo = Ugk4+1 = Ugk42 =0 forall k € Z},

and let E3 and E4 be endowed with the usual norm ||w| g, = ||[w||eo = Sup; ez Jwk| and
llwlle, = ||wlloo = supgez lwk|, respectively.
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As direct sum of BK-spaces E is evidently a BK-space. First we prove that in
general E, is a proper subset of Egp;. Choose f € L*°(T) with

3 0 forte[0,n)
fie) = { 1 fort € [w,2n).

Then z € E, with
for 0 # k even

0
1
2 for k=0

zr = f(k) =
1
s for k odd
and ze(7) = fr (where f,(t) = f(t + 7) for all t € T) such that
lze(r1) = ze(r2)|| g = | fri = frall oo =

for all 7, and 7, with 7y # 7. Thus z ¢ E.. Now we prove the existence of
= :" ze(t)dt. Fore > 0 let

735 _ {t;e)

0=tf,‘)<t§‘)<...<t(,f,3=27r}

be a partition with |73€| < &, and let '731 and 52 be two refinements of ﬁc. Then

Py = U;V;I ﬁkj (k € {1,2}) with

Pe; = {tf"’) £, =18 < ) < < t(D) = tg‘)} (1<j<N,)

For corresponding tagged partitions Py, P; and P, we get

1 1
“ 5‘;1‘6(7’1:) - ;ze(’P,)

E,

1 Ne Nij

=0 ZZ(“ (*}) :ce(s(‘)))(t(k’) t(kj))
j=1i=1 E,
Ne Nij

51; ZZ (f (ki) — f( ))(t(k]) tsli])))

=1 1i=1

o0

N:
(e) _ 4(e)
Z (X[n—zgﬂ,x-zg')‘] + x[21r—t§.'),21r-t§.‘_)l]) (7 - %)

In
S’I'-‘

oo

IA

IPeI

A
ST m|,_.
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Thus we have

—:l:e('Pl) - :z:e('Pg)

E\

1
S 2—7rxe(771

1
+ “2—7"1‘8(7)2

<E.

Therefore 3-ze is R-integrable by assertion 3 in Theorem 2.10 (cf. also [3: Example
12/p. 930]).

Furthermore there exist elements of E which do not have 0 B. These elements
cannot be R-integrable. Let u € M?(T) be such that u is the difference of the two
Dirac measures & and &, i.e. g = § — 6,. Then y € E, with

0 for k even

= (k) =
yr = (k) l for k odd.
s

We have o,y € E, for all n € Ny, but (Jloayl|g, Jnen, is not bounded. (This is a
modification of Boettcher’s example.)
We know that Fr; C E,g. In general this inclusion is proper. Let u € E; be such
that
{1 fork=4p+2 (peZ)
U =

0 otherwise.

Evidently |lu||g = |lullg, = 1 and sup, ¢, |lonu|le =1, ie. u € E,p. The function ue
is not R-integrable, otherwise uy = 0 would imply

2w 2n
51;/ ue(t)dt=—/ (—t)dt =oou =0 (€ E)
0

or written as a limit

k .
. 1 273\ 2r
| 3 2 ve (T) 3 e
1=1 E
But for any k£ = 4p + 2 one obtains

k . k
1 273\ 27 1
ZWJZ:“(T )Z| = 2 g7 2w =1
E =

The function ue cannot be R-integrable, i.e. Eg; is a proper subset of E,g. Finally it
is well known that there exist elements in E,p which are not in E. Let w = (wi)rez

be such that
{1 fork=4p (p#0)
W =

0 otherwise.
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Obviously w ¢ E, 0,w € E, for all n € Ny and SUPen, llonw|lE < 0.

The following chart shows the relations between the spaces, which are generated by

a translation-invariant BK-space E.

r \
Q
—
E N
- ~
EaB
f ER:'\
’
Esonw = Eqn = Eap )
= E( = Ewr = E»\
\ L 1l J
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