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Vector-Valued Integration in BK-Spaces 
A. Pechtl 

Abstract. Questions of convergence in BK-spaces, i.e. Banach spaces of complex-valued 
sequences x = (x k)kEZ with continuity of all functionals x -* xi, (k E Z) will be studied 
by methods of Fourier analysis. An elegant treatment is possible if the Cesàro sections of a 
BK-space element x can be represented by vector-valued Riemann integrals. This was done 
by Goes [2] following the example of Katznelson [5: pp. 10 - 12). The purpose of this paper 
is to make precise the conditions in [2) concerning Riemann integration and to demonstrate 
relations between BK-spaces which are generated by a given BK-space. 
Keywords: BK-spaces, Riemann integration, Cesàro-sectional (weak) convergence and botnd-

edness 
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1. Introduction 

This paper is motivated by a letter of Boettcher to Goes (Beispiel eines translations-
invarianten BK-Raumes, der nicht die Eigenschaft aB hat) from May 31, 1990, in 
which the space E = L2 (T) M'1 (T) (cf. Example 3.7) is considered as example of a 
translation-invariant BK-space which fails to have the so-called property aB. Choosing 
some element x = o Boettcher proves that the sequence (aflx)flEN0 with x E L2 (T) c 
E for all n E No is not bounded. 

This shows that in general Proposition 4.1/(i) in Goes [2] is not valid. Actually the 
BK-valued Riernann integral used in the proof of Proposition 4.1/(i) may not exist. It 
is evident that the function xe (cf. Definition 2.7) is not Riemann integrable because 
ox M"(T) for all n E N0 . Thus Riemann integrability of xe is sufficient for x to 
have property aB (hence [2: Proposition 4.11(i)] is valid in this case (cf. Theorem 3.5)). 
However it is not necessary, as u E E3 in Example 3.7 shows. 

From this point of view the advantages and the limitations in the representation 
of ox as vector-valued integral shall be demonstrated. Especially some properties of 
Riemann and Bochner integration in translation-invariant BK-spaces are considered. 
Beyond this significant relations between certain BK-subspaces of the linear space n of 
all complex-valued sequences are presented. 
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2. Notations, definitions and preliminary remarks 

2.1 Convergence and boundedness in BK-spaces. Let JR and C be the set of real 
and complex numbers, respectively, let N and No be the set of positive and non-negative 
integers, respectively, and 7L the set of integers. Furthermore let 1 be the linear space 
of complex-valued sequences on Z, i.e. 

=	2;k E C for all k e z}. 

For k E Z let 8k the Kronecker symbol and define c : 1? - 1 (n E N0 ) by 

a: x '-4 E (1 - _i!f.i 	X k'5 '	(x E Il). 
k=-n"	n+1) 

The function ox is called n-th Cesàro section of order one of x. 
Definition 2.1 (BK-space). (E;	[) with E c fi is called BK-space if 
1. E endowed with the norm II 1k is a Banach space 

2. Pr k : E -* C with x '- 2; k is continuous for all k E Z. 
Definition 2.2 (Convergence and boundedness). Let E be a BK-space, x E 11 and 

ux E E for all n E N0 . Then x has the 

1. property aK of Cesaro -sectionalconvergence if (c,z)fl E N0 is a Cauchy sequence 
in E, i.e.	x = x E E; 

2. property oB of Cesaro -sectionalbound edness if sup flENO IIn X IIE < 00; 

3. property SaK of weak Cesaro-sectional convergence if x E E and	0(ax) 
= (x) for all 0 E E'. 

Remark 2.3. Let P be one of the properties aK,aB or SaK. Then the space 
EP = { x E III  has the property P} endowed with the norm IIxII E = sup flENO Ik'nxIIE 
is a BK-space with II x IIE < SUPnENO IInX IIE for all x E ESUK, and thus for all x E EaK 
(cf. Yosida [6: Theorem 2/p. 120]) as well known. 

Definition 2.4. A closed subspace G of E has sectional density (Abschnittsdichte 
AD) if the set (P = { x E 01 {k e 7Llxk 0 01 is finite) is dense in C, i.e. if G = 4) fl G. 
In particular let EAD be defined by EnD = 4) fl E. 

According to Zeller [7: Sätze 2.2, 3.3 and 3.4] we have the following lemma. 
Lemma 2.5. Let (E; II lIE) be a BK-space. Then the following assertions are true. 

1. E has property aK if and only if E = EAD and E ç E,,8. 
2. E has property SaK if and only if E has property aK 

Remarks 2.6. Obviously we have the relation EaK 9 ESCYK ç EAD, and if EAD ç 
E0B, then even E,, K = ESYK = EAD . If ES,K is closed with respect to II E , then 
ESOK = E0K.
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Definition 2.7 (Invariance and continuity of translation). Let T = IR/27rZ, where 
R is the additive group of real numbers. Then 

e(t) = ( e t/t )kEz	for all t E T. 

A BK-space E is called 
1. translation invariant if xe(t) = (xke" t )kEZ E E and II xe ( i )Ik = li x ilE for all x E E 

and t E T 

and it is called 
2. homogeneous BK-space if in addition the translation is continuous, i.e. the conver-

gence lim t _.j0 II xe ( t ) - xe( to)IIE = 0 for all x E E and to E T is true. 
A translation invariant BK-space E has weakly continuous translation if 

lim(xe(t)—xe(to)) =0	for all xE E,4 E E' and toE T. t	to 

Remark 2.8. The continuity of xc for x E E in a particular point to E T implies 
trivially the continuity of xc on T. 

2.2 Vector-valued integration. In this subsection we refer to Gordon [ 3], a survey 
article, where essential criteria of Riemann integration are stated. 
The Riemann integral and some of its properties. Let [a, b] be a real finite 
interval and X a Banach space. Furthermore let a partition P of [a, bj be given with 

{t i 0<i<N;a—_to<t i < ... <tN=b} 

and
JPJ = max {t, - i_ 1 : 1 <i <N} 

its norm. If P ç 22, then 22 is called a refinement of Pi. 

If we choose si E [t 1 _ 1 , t,] for all 1 <	N, we obtain from P a tagged partition P

of [a, b], i.e. 

2= {(s;[t_i;t])1 <i<N; a=t 0 <t 1 < ... < t =b; s1E 

For f: [a, bj - X we call

1(2) =	f(s 1 )(t - 

a Riemann sum of f. 
Definition 2.9 (Riemann integral). The function f: [a, b] —* X is called Riemann 

integrable (R-integrable) if 

z E X :Ve>0: a8>0:VP tagged with P<5: IIf(P) — z IIx <e 

and z = (R) — fa' 1(t) dt is called the Riemann integral of f. 
Evidently an R-integrable function f must be bounded (cf. [3: p. 924J). The proofs 

of the following two theorems are obvious and omitted:
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Theorem 2.10 (Cauchy criteria). Let a function f : [a, b] — X be given. Then 
the following assertions are pairwise equivalent. 

1. 1 is R-integrable on [a, b]. 

2. Ve>0: 8 >0: V2 1 ,P2 tagged with lP j j, 1 2, j < 5: llf(P) - f(22)[Ix <e. 

3. Ve >0:3P, : V2 1 ,P2 refinements of Pe;Pi,22 tagged : lf(Pi)—f(P2)IJx < E. 

Theorem 2.11. Let the function f : [a, b) — X be R-integrable on [a, b]. Then we 
have:

1. fis R-integrable on every subinterval of [a,b]. 

2. If llf( t )llx <M on [a, b], then 11 f f(t) dt I	M(b - a). 

3. If h : [a, b] — X is continuous, then h is R-integrable. 

4. If Y is a Banach space and T: X —p Y a continuous linear operator, then 

Ib T(f(t)) dt = T 
(fb 

f(t) dt). 

5. If g : [a; b] — X is R-integrable on [a, b], then I + g is I1-integrable on [a, b] and 

66 

jf
 (f+g)(t)dt=j(t)dt+j g(t)dt. 

Theorem 2.12. Let f : [a, b] — X be an R-integrable and g : [a, b] —p C a contin-
uous function. Then the product function gf : [a, b] — X is R-integrable. 

Proof. Let llf( t )llx <M on [a, b. We consider a sequence of step functions 
with g,, : [a, b] —* C converging uniformly on [a, b] to g. Each function g, can be 
represented as

Mn 

E
(n)	 (n) gn -	ak Xlrk_1,rk) +QmnX{b}


k=I 

where a=ro<rl<...<r,=bandk 
(n) EC for all 1km. Obviously bythe 

assertions 1 and 5 of Theorem 2.11 gf is R-integrable for all ri E N, and we get 

b	 Mn 

gf(t)dt 	(n) 
=a ff(t)dt. 

6=1 

We choose ru E N such that

sup g(t) — g(t)	
C 

< 
tElo,bl	 3M(b - a) 

Let Pe be a partition such that for two arbitrarily chosen refinements Pi and 22 of Pe 
with P and 22 tagged

g.f(P2)IIX <
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(cf. Theorem 2.10/3.). With 

119A PI) — gf( P2)II X	9f(P1) — 
+ 19f(P1 ) — g fl f(P2 )	+ g.f(P2) — gf(P2)Ix 

we obtain
6	 C M gf( Pi) —gnf(Pi)	<	 M(b — a) = — X 3M(b—a)	 3 

and analogously
gf(P2) — gflf(P2)j < 

Thus 11gf(Pi) — g f(P2)	<C for all tagged partitions P1 and P2 with refinements 21

and 22 of P, i.e. f, gf(t)dt exists I 
The Bochner integral and some of its properties. Beside the Riemann integral 
we will have a look at the Bochner integral. Later we shall see consequences of these 
two possibilities of vector-valued integration for BK-spaces. 

Definition 2.13 (Bochner integral). Let (; A; ) be a measure space. A function 
f: E — Xis called simple if there exist E1 ,...,E E A and xi,	x " E X such that 
f =	x1x. For a simple function I the Bochner integral is defined by 

(B)ffdiz = 

A function f E —* X is called 'u-measurable if f is si-almost everywhere the limit of a 
sequence (ffl)flEN of simple functions, i.e. if 

lim IIf — f 1 X = 0	a.e. 
TI —co 

A u-measurable function f : E —* X is called Bochner integrable if there exists a 
sequence (fn)EN of simple functions such that for the sequence of Lebesgue integrals 
(f Mm — fIIxd)flEN we have

lim f IIfn_fM di 0 n cc 

Then the Bochner integral is defined by. 

(B) fd = j f,,d,u. 

In the following we consider only Lebesgue -measure spaces (E, L; A). The next 
theorem is due to Diestel and Uhl [1: Theorem 9/p. 49]. 

Theorem 2.14. Let the function I be Bochner integrable on [a, b] with respect to 
the Lebesgue measure A. Then 

 
js1h 1

1f(t) — f( s ) I dA ( t ) = 0 

for almost ails E [a, b]. 

Now we obtain
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Lemma 2.15. Let h > 0 and I [a; b] -+ X be a Bochner integrable function. 
Then

urn 
1 
A t E [s;s + h] flf(t) - f(s)11 X <}) =1 

for almost all s E [a, b] and all e > 0. 

Proof. Fore > 0 set 

a, (s)= A({t E [s;s + hj f(t) - f(s )11 X <}) 

b, (s)= A({t E [s;s + h] Mf() - f(s)II > 

Then a, (s) + be(s) = h. Hence by Theorem 2.14 

	

1	1 
(ebe(s))

	1,+h

 
11f(t)f(s)IxdA(t) - 0 as h - 0 

for almost all .s E [a, b]. Thus limh..o k ae( s ) = 1 1 

3. Properties of BK-valued integrals 
In the following we consider BK-subspaces of Q which are induced by a translation-
invariant BK-space E and certain properties. 

Definition 3.1. For a translation invariant BK-space E we define 

E = { x E E xc is continuous on T} 

E,, = {x E E xe is A-measurable on T} 

1	f2 IT 

ER; = { X E E (R)-- / xe(t)dt exists}. 

2ir Jo 

Remarks 3.2. E and ERj are with respect to translation-invariant BK-
spaces. Obviously E c ERi because every continuous function is R-integrable. Fur-
thermore Ec is a homogeneous BK-space, and xc is Bochner integrable for all x E E,, 
(cf. [1: Theorem 2/p. 45]). 

It will be our aim to demonstrate relations between the spaces Ep for P equal one of 
the properties aK, aB, SaK, AD, c, Ri or A and to compare these.relations with results 
in [2]. 

Theorem 3.3. The function xc is continuous if and only if xc is A-measurable, 
i.e. E=EA. 

Proof. Evidently the continuity of the function xc implies its measurability. Lem-
ma 2.15 and the translation invariance of E imply 

urn 1 A ' 1r E It; + h] 
II xc( r ) - xe( t ) I E <}) = 1 

h-.Oh .t
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for all i E T and all e > 0. Supposing that xc is not continuous we get 

	

8 > 0 : (tn)n EN tn .J. t0 Vt :	Ixe(tn) - xe ( to )IIE 2 t5	 (1)


for to E (0, 27r). Let e = and 

A t(h) = ({r E [tk,tk + h] II xe ( T) - xe(tk)IIE < 

for all k E N0 . Choose h such that )(A0 (h)) 2-2- h. Then by the translation invariance 
we also have A (A n (h)) > hforallnE N. Let now 	E Nsuch that Itn_toI< 10
for all n no. Then An (h) fl Ao(h) 54 0 for n no because otherwise 

11	 18
h> A([t0 ,t + h]) 2 .\ (An (h) U A0 (h)) = A (A n (h)) + A(A0 (h)) ^ 10

With rn E A(h) fl Ao(h) we obtain 

xe ( tn) - xc ( to)II E	- xe (Tfl)ME + Ixc(rn) - xe (to)IIE <


for all n n0 . This is a contradiction to (1). Thus xc is continuous in to und therefore 
on TI 

Theorem 3.4. Let (Kfl ) flE NO with

-
K. (t) 
= .—n 

(i	Iki 
-	

etkt 
k  

be the Fejér kernel. Then

1	2,r 

EYX = - f Kn(t)xe(—t)dt 
27r 

for all n E No and all x E Eft;. 

Proof. Since	fxe(—t)dt exists for all x E ERi, we obtain by Theorem 2.12 
for all ii € No the existence of the integrals	f K(t)xc(—t)dt E E. Using assertion

4 of Theorem 2.11 we have for all k E 7L

1 
Prk (i /

2,r 

Kn(t)xe(_t)dt) 
= —j Prk(K(t)xe( — t)) dt 

	

27r 

0

1	 2 p 
=	J Kn(t)xc	dt 

(1 — iL' =	+1) xk for lkl<ri 

{ 0 

Thus	' jKn (t)xe(_t) dt = ox I
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According to [21 we obtain the following Theorems 3.5 and 3.6. 

Theorem 3.5. Let.E bea translation invariant BK-space. Then 

1. ERI c E8 

2. ES,,K=EAD=EC=EOK. 

Proof. We prove the two assertions in the following way. 
1. Let x E ERI. Then for all n E No 

1i 
iiaxlIE	-f

27

 
K(t)xe(—t)dt 

< -f
2'
 

K(t)xdt = iixiIE. -	27r 	 E	r 

Thus SU PnENO li a fl x iiE	iixiiE < oo, i.e. ERI C E8. 

2. We prove ESTK C EAD C E ç EK C ESaK . Let x E ESK . Then by [6: 
Theorem 2/p. 120]

n	 II n

	 L 
(n)	 V	(n)	 II'c' (n) VE>0:a2 ^0(0in):	 =1 and	7x_x < 

i =Oii 1=0  

i.e. x (E EAD. Hence ESTK ç EAD ; From x E EAD one obtains that for all e > 0 there 
exists an z E fl E with li x - Zr 11  < 1 . Obviously z E E and therefore


	

Vt 0 E T: U(to) : Vt E U00) :	Ii ze ( t) - ze ( t0)liE < E 

From this we get 

xe(t) - xe ( to )IIE <	- zze(t)IIE 
+ Ik e(t) - zZ e ( to)M E + I zr e ( to) - xe(to)ME 

<C, 

for all t E U6 (to), i.e. x E E. Trivially x E ER1 aiid lkt x - XliE - 0 (cf. [2: p. 246]), 
i.e. x E Egg. Consequently i(ax) - (x)i — 0 for all 0 E E', i.e. x E EScYK I 

Theorem 3.6. Let E., be the space of those elements x E E for, which ze has 
weakly continuous translation. Then = EK = E. Thus in E weakly continuous 
translation is equivalent to continuous translation. 

Proof. We have Ea R E and E C	We only have to prove	E. Let 
x E	Then xe is weakly continuous and therefore weakly measurable. The range of

xe, i.e. {xe(t)It E T}, is a subset of the closure of 

{ 
Eet	EN0 and Ok E Q,t k E QflT for all 0 :5 k 

(cf. [6: Theorem 2/p. 120]), where Q denotes the set of all rational numbers. Therefore 
{xe(t)l t E T} is a separable set. Thus the conditions of the Pettis theorem [6: p. 131] 
are fulfilled, and we obtain x E EA = E (cf. Theorem 3.3), i.e.	= E = EaK I
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Boettcher and Goes noticed that Theorem 3.6 can also be interpreted as an ap-
plication of the theorem in [6: p. 2331. Furthermore we have to remark that in the 
proof of Proposition 4.3 in [2] there is not paid attention to the fact that the additional 
condition E ç ERI is used. 

The following example illustrates inclusion relations between the considered BK-
spaces. 

Example 3.7. First we define the following spaces: Let LP (T) (1 p < oo) be the 
space of all complex-valued Lebesgue measurable functions on T with f f P d\ .< 

and 'lillp = ( f lfVd ')	(cf. Katznelson [5: p. 14]) and L(T) the sub- 
space of L' (T) of all essentially bounded functions endowed with the norm = 
ess suptET lf()l . Furthermore let Md(T) be the space of all purely discontinuous (Borel) 
measures on T (cf. Hewitt and Ross [4: Definition 19.13/p. 269] and [5: p. 37]). 

Now we consider the associated translation invariant BK-spaces LP (T), L°°(T) and 
M d (T) of sequences of Fourier(-Stieltjés) coefficients, 100	{u E Q 1 supkEz luki < 
oo} and co = {v E 1 00 1 lim 1k1 _ lvki = O}. Then the translation invariant BK-space 
(E;	ll) shall be constructed by 

E = E 1 e E2 0 E3 

and endowed with the norm	=	liE. Let 

E1 = {xEi3)x2k=o for all kEZ\{O}}. 

Then
Vx E E1 : 3f E L00 (T) : Vk E Z: Xk = f(k). 

Let be Il x IIE1 = if 100 . Then E1 endowed with this norm is a BK-space. With 

E2 = { yEM ' (T ) y2k =0 for all kEZ\{O}} 

one obtains
VYEE2:3p.EMd(T):VkEZ: yk=1z(k). 

Correspondingly let be 11 y 11E2 = var() (total variation of ). According to [4: Theorem 
19.20/p. 2731 we have Md (T) fl L'(T) = { O}, and with L°°(T) c L(T) we have 
M d (T) fl L°°(T) = { O} respectively E 1 fl E2 = { O}. Furthermore let E3 and E4 be 
defined by

.E3={uE100u2k+I=u4k=0 for all kEZ} 

and
E4 = {v E co v0 = v2k+1 = V4k+2 = 0 for all k e z}, 

and let E3 and E4 be endowed with the usual norm IIWIIE3 = llll00 = supkEz Iwkl and 
I l w ll4 = w 00 = SUPkEZ I wkI, respectively.
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As direct sum of BK-spaces E is evidently a BK-space. First we prove that in 
general E is a proper subset of	Choose I E L°°(T) with 

1 0 for tE[0,7r) f(t)=1
	for tE[ir,2ir). 

Then x E E 1 with

	

0	for 054keven 

X k = f(k)	1	for k=0 

—f-- for kodd 
irk 

and xe(r) = fr (where fr(i) = f(i + r) for all t E T) such that 

xe(ri) - xe(r2)11E =	- fT2	= 1 

for all 7- 1 and i with 71 54 7-2. Thus x	E. Now we prove the existence of 
.1. f02 ' 2i	xe(t) dt. For e > 0 let 

- 

	

—t	0 = 4c) <j(e) <•<	- 21r}N. - 

be a partition with PC <	, and let P and P2 be two refinements of 7's. Then 

= U'1 P, 3 (k E 11,2}) with 

Pk3	{j(kj) 
t(e) -	< (kj) <	(kj) -	(1	< Ne). 

	

=	'-1 - 0	 kj ... < t	- 3 J 

For corresponding tagged partitions P I , P2 and Ve we get 

—xe(Pk ) - 1—xe(Pe)II 

	

27r	27r	lIE1 
II N N,:,  

	

=(xe(s)	
(e) '\ 

	

- xe(sj )j (t' -	31)) II 

	

IIj=i t=i	 II El 

	

II N NkJ	 II 

	

=>	- f.)) (t' - t3)) 

I Ii=' 00 

1 N 

I(x_,c, 7r—t'2iJ + x 12 _c	21r_i2i)) (t	
- j(e) ) Ii 3	j-1

00 

4IPeI 2ir 
C 

<—. 2
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Thus we have 

'l---xe(Pi) - 
11 2x	 2ir 

1l 
<I 

1 
—xe(Pi)- _Lxe(P)

11E j
 

I 2	2ir  
< C.

111	 1 
+ II—xe(P2 ) - —xe(P)'1 

II 2	2ir	II 
lIE1 

Therefore	xe is R-integrable by assertion 3 in Theorem 2.10 (cf. also [3: Example 
12/p. 930]). 

Furthermore there exist elements of E which do not have aB. These elements 
cannot be R-integrable. Let z E Md(T) be such that /1 is the difference of the two 
Dirac measures 50 and S,, i.e. i = 80 -	Then y E E2 with 

( 0 for keven 
Yk	=1 for k odd.
IL7T 

We have a,1 y E E 1 for all n E N0 , but (IIcYIIE,)nENO is not bounded. (This is a 
modification of Boettcher's example.) 

We know that ER1 c E B . In general this inclusion is proper. Let u E E3 be such 
that

11 fork=4p+2 (pE7L) 
Uk =

1. 0 otherwise. 
Evidently II U IIE = II u IIE3 = 1 and SUPnENO II a flu IIE	1, i.e. u E E B . The function tie 
is not R-integrable, otherwise u 0 = 0 would imply 

1	r2r	1	2i 
ue(t)dt 

=
ue(-t)dt = aou = 0 (E E) 27r 0	 27r 0 

or written as a limit
II  

lim 
II± 

k 

vue(!2)1 
=0. k—.c, II 2x L.. 

2=1	 E 

But for any k = 4p + 2 one obtains 

k k	 I 

2ir1	
k!.i27rI - Uke	iI =1. 2 7 h-' _k ) T j=1	 lE	I	j=1 

The function ue cannot be R-integrable, i.e. ER1 is a proper subset of E,,B. Finally it 
is well known that there exist elements in EaB which are not in E. Let w = (wk)kEz 
be such that

1 for k=4p (pO) 
Wk

0 otherwise.
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Obviously w E, a,,w E E4 for all n E No and SUP -EN(, II an w IIE <00. 
The following chart shows the relations between the spaces, ,which are generated by 

a translation-invariant BK-space E.

fl 

E 

Es 1, = E,1 • = EA 0 

= E = Em,. = 
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