Vector-Valued Integration in *BK-Spaces*

A. Pechtl

Abstract. Questions of convergence in *BK-spaces,* i.e. Banach spaces of complex-valued sequences $x = (x_k)_{k \in \mathbb{Z}}$ with continuity of all functionals $x \mapsto x_k$ $(k \in \mathbb{Z})$ will be studied by methods of Fourier analysis. An elegant treatment is possible if the Cesàro sections of a BK-space element x can be represented by vector-valued Riemann integrals. This was done by Goes [2] following the example of Katznelson [5: pp. 10 - 12). The purpose of this paper is to make precise the conditions in [2) concerning Riemann integration and to demonstrate relations between *BK-spaces* which are generated by a given BK-space.

Keywords: *BK-spaces, Riemann integration, Cesàro-sectional (weak) convergence and botndedness*

AMS subject classification: Primary 46 B 45, 46 A 45, 28 B 05, secondary 40 C 05, 42 A 24

1. Introduction

This paper is motivated by a letter of Boettcher to Goes *(Beispiel eines translationsinvarianten BK-Raumes, der nicht die Eigenschaft aB hat)* from May 31, 1990, in which the space $E = \widehat{L^2(\mathbf{T})} \oplus \widehat{M^d(\mathbf{T})}$ (cf. Example 3.7) is considered as example of a translation-invariant BK -space which fails to have the so-called property σB . Choosing some element $x = \hat{\delta_0}$ Boettcher proves that the sequence $(\sigma_n x)_{n \in \mathbb{N}_0}$ with $\sigma_n x \in \widehat{L^2(\mathbf{T})} \subseteq$ *E* for all $n \in \mathbb{N}_0$ is not bounded.

This shows that in general Proposition 4.1/(i) in Goes [2] is not valid. Actually the *BK*-valued Riemann integral used in the proof of Proposition 4.1/(i) may not exist. It is evident that the function *xe* (cf. Definition 2.7) is not Riemann integrable because $\sigma_n x \notin \widehat{M}^d(\widehat{\mathbf{T}})$ for all $n \in \mathbb{N}_0$. Thus Riemann integrability of xe is sufficient for x to have property σB (hence [2: Proposition 4.1/(i)] is valid in this case (cf. Theorem 3.5)). However it is not necessary, as $u \in E_3$ in Example 3.7 shows.

From this point of view the advantages and the limitations in the representation of $\sigma_n x$ as vector-valued integral shall be demonstrated. Especially some properties of Riemann and Bochner integration in translation-invariant *BK-spaces* are considered. Beyond this significant relations between certain BK -subspaces of the linear space Ω of all complex-valued sequences are presented.

A. Pechtl: Univesität Stuttgart, Mathematisches Institut A, Pfaffenwaldring 57, D - 70569 Stuttgart

2. Notations, definitions and preliminary remarks

2.1 Convergence and boundedness in BK -spaces. Let $\mathbb R$ and $\mathbb C$ be the set of real and complex numbers, respectively, let N and N_0 be the set of positive and non-negative integers, respectively, and Z the set of integers. Furthermore let Ω be the linear space of complex-valued sequences on Z , i.e.

$$
\Omega = \Big\{ (x_k)_{k \in \mathbb{Z}} \Big| \, x_k \in \mathbb{C} \text{ for all } k \in \mathbb{Z} \Big\}.
$$

For $k \in \mathbb{Z}$ let δ^k the Kronecker symbol and define $\sigma_n : \Omega \to \Omega$ $(n \in \mathbb{N}_0)$ by

$$
\sigma_n: x \longrightarrow \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) x_k \delta^k \qquad (x \in \Omega).
$$

The function $\sigma_n x$ is called *n*-th Cesaro section of order one of x.

Definition 2.1 (*BK*-space). $(E; \|\cdot\|_E)$ with $E \subseteq \Omega$ is called *BK-space* if

1. E endowed with the norm $\|\cdot\|_E$ is a Banach space

2. $Pr_k: E \to \mathbb{C}$ with $x \mapsto x_k$ is continuous for all $k \in \mathbb{Z}$.

Definition 2.2 (Convergence and boundedness). Let E be a BK-space, $x \in \Omega$ and $\sigma_n x \in E$ for all $n \in \mathbb{N}_0$. Then x has the

1. property σK of Cesaro-sectional convergence if $(\sigma_n x)_{n \in \mathbb{N}_0}$ is a Cauchy sequence in E, i.e. $\lim_{n\to\infty} \sigma_n x = x \in E;$

2. property σB of Cesaro-sectional boundedness if $\sup_{n\in\mathbb{N}_0} ||\sigma_n x||_E < \infty$;

3. property $S \sigma K$ of weak Cesaro-sectional convergence if $x \in E$ and $\lim_{n \to \infty} \phi(\sigma_n x)$ $= \phi(x)$ for all $\phi \in E'.$

Remark 2.3. Let P be one of the properties σK , σB or $S \sigma K$. Then the space $E_P = \{x \in \Omega | x \text{ has the property } P\}$ endowed with the norm $||x||_{E_P} = \sup_{n \in \mathbb{N}_0} ||\sigma_n x||_E$ is a BK-space with $||x||_E \leq \sup_{n \in \mathbb{N}_0} ||\sigma_n x||_E$ for all $x \in E_{S \sigma K}$, and thus for all $x \in E_{\sigma K}$ (cf. Yosida [6: Theorem $2/p.$ 120]) as well known.

Definition 2.4. A closed subspace G of E has sectional density (Abschnittsdichte AD) if the set $\Phi = \{x \in \Omega | \{k \in \mathbb{Z} | x_k \neq 0\} \text{ is finite}\}\$ is dense in G, i.e. if $G = \overline{\Phi \cap G}$. In particular let E_{AD} be defined by $E_{AD} = \overline{\Phi \cap E}$.

According to Zeller [7: Sätze 2.2, 3.3 and 3.4] we have the following lemma.

Lemma 2.5. Let $(E; \|\cdot\|_E)$ be a BK-space. Then the following assertions are true.

1. E has property σK if and only if $E = E_{AD}$ and $E \subseteq E_{\sigma B}$.

2. E has property $S \sigma K$ if and only if E has property σK .

Remarks 2.6. Obviously we have the relation $E_{\sigma K} \subseteq E_{S \sigma K} \subseteq E_{AD}$, and if $E_{AD} \subseteq$ $E_{\sigma B}$, then even $E_{\sigma K} = E_{S \sigma K} = E_{AD}$. If $E_{S \sigma K}$ is closed with respect to $|| \cdot ||_E$, then $E_{S\sigma K}=E_{\sigma K}.$

Definition 2.7 (Invariance and continuity of translation). Let $T = \mathbb{R}/2\pi\mathbb{Z}$, where R is the additive group of real numbers. Then $\text{Vector} \ \text{V} = \text{Vector} \ \text{V} = \text{Vector} \ \text{C} \ \text{C$

$$
e(t) = (e^{ikt})_{k \in \mathbb{Z}} \quad \text{for all } t \in \mathbb{T}.
$$

A *BK-space E* is called

1. *translation invariant* if $xe(t) = (x_ke^{ikt})_{k \in \mathbb{Z}} \in E$ and $||xe(t)||_E = ||x||_E$ for all $x \in E$ and $t \in T$

and it is called

2. homogeneous BK-space if in addition the translation is continuous, i.e. the convergence $\lim_{t\to t_0} ||xe(t) - xe(t_0)||_E = 0$ for all $x \in E$ and $t_0 \in T$ is true. lied

neous BK -space if in addition the translation is continuous, i.e.
 $m_{t\rightarrow t_0} ||xe(t) - xe(t_0)||_E = 0$ for all $x \in E$ and $t_0 \in T$ is true.

on invariant BK -space E has weakly continuous translation if
 $\lim_{t\rightarrow t_0} \phi(xe(t) - xe$

A translation invariant *BK-space E* has *weakly continuous translation if*

$$
\lim_{t\to t_0}\phi\big(xe(t)-xe(t_0)\big)=0\qquad\text{for all}\ \ x\in E,\phi\in E'\ \text{and}\ t_0\in\mathbf{T}.
$$

Remark 2.8. The continuity of xe for $x \in E$ in a particular point $t_0 \in T$ implies trivially the continuity *of xc on T.*

2.2 Vector-valued integration. In this subsection we refer to Gordon [3], a survey article, where essential criteria *of* Riemann integration are stated.

The Riemann integral and some of its properties. Let *[a, b]* be a real finite interval and X a Banach space. Furthermore let a *partition* \widetilde{P} of [a, b] be given with

$$
\widetilde{\mathcal{P}} = \left\{ t_i \middle| 0 \leq i \leq N; \, a = t_0 < t_1 < \ldots < t_N = b \right\}
$$

and

$$
|\widetilde{\mathcal{P}}| = \max \left\{ t_i - t_{i-1} : 1 \leq i \leq N \right\}
$$

its *norm.* If $\widetilde{\mathcal{P}}_1 \subseteq \widetilde{\mathcal{P}}_2$, then $\widetilde{\mathcal{P}}_2$ is called a *refinement* of $\widetilde{\mathcal{P}}_1$.

If we choose $s_i \in [t_{i-1}, t_i]$ for all $1 \leq i \leq N$, we obtain from $\widetilde{\mathcal{P}}$ a *tagged partition* \mathcal{P} *of [a, b],* i.e.

$$
\mathcal{P} = \Big\{ (s_i; [t_{i-1}; t_i]) \Big| 1 \leq i \leq N; \ a = t_0 < t_1 < \ldots < t_N = b; \ s_i \in [t_{i-1}; t_i] \Big\}.
$$

For $f: [a, b] \to X$ we call

$$
i \le N
$$
; $a = t_0 < t_1 < ... <$

$$
f(\mathcal{P}) = \sum_{i=1}^{N} f(s_i)(t_i - t_{i-1})
$$

a *Riemann sum of f.*

Definition 2.9 (Riemann integral). The function $f:[a, b] \rightarrow X$ is called *Riemann integrable (R-integrable) if*

 $\exists z \in X : \forall \varepsilon > 0 : \exists \delta > 0 : \forall \mathcal{P}$ tagged with $|\tilde{\mathcal{P}}| < \delta : \quad ||f(\mathcal{P}) - z||_X < \varepsilon$

and $z = (R) - \int_a^b f(t) dt$ is called the *Riemann integral* of *f*.

Evidently an R-integrable function *f* must be bounded (cf. [3: p. 924]). The proofs *of* the following two theorems are obvious and omitted:

Theorem 2.10 (Cauchy criteria). Let a function $f : [a, b] \rightarrow X$ be given. Then *the following assertions are pairwise equivalent.*

1. f is R -integrable on $[a, b]$.

2. $\forall \varepsilon > 0: \exists \delta > 0: \forall \mathcal{P}_1, \mathcal{P}_2$ tagged with $|\widetilde{\mathcal{P}}_1|, |\widetilde{\mathcal{P}}_2| < \delta: ||f(\mathcal{P}_1) - f(\mathcal{P}_2)||_X < \varepsilon$.

3. $\forall \varepsilon > 0: \exists \widetilde{\mathcal{P}}_{\varepsilon}: \forall \widetilde{\mathcal{P}}_1, \widetilde{\mathcal{P}}_2$ refinements of $\widetilde{\mathcal{P}}_{\varepsilon}; \mathcal{P}_1, \mathcal{P}_2$ tagged : $||f(\mathcal{P}_1) - f(\mathcal{P}_2)||_X < \varepsilon$.

Theorem 2.11. Let the function $f : [a, b] \to X$ be R-integrable on $[a, b]$. Then we *have:* **2.** $\forall \epsilon > 0 : \exists \tilde{\mathcal{P}}_{\epsilon} : \forall \tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2$ refinements of $\tilde{\mathcal{P}}_{\epsilon}; \mathcal{P}_1, \mathcal{P}_2$
 2. Integrable on every subinterval of $[a, b]$ **.

2.** *If* $||f(t)||_X \leq M$ on $[a, b]$, then $||\int_a^b f(t) dt||_X \leq$
 3. *If*

1. fis R-integrable on every subinterval of [a,b].

 $M(b-a)$.

3. *If* $h : [a, b] \rightarrow X$ is continuous, then h is R-integrable.

4. If Y is a Banach space and $T: X \rightarrow Y$ a continuous linear operator, then

$$
\int_a^b T(f(t)) dt = T\left(\int_a^b f(t) dt\right).
$$

5. *If* $g : [a; b] \rightarrow X$ is R-integrable on $[a, b]$, then $f + g$ is R-integrable on $[a, b]$ and

$$
I \text{ on } [a, b], \text{ then } \left\| \int_a^b f(t) dt \right\|_X \le M(b - a)
$$
\n
$$
I \text{ is continuous, then } h \text{ is } R\text{-integrable.}
$$
\n
$$
I \text{ a } ba
$$
\n
$$
I \text{ a } b
$$
\n
$$
I \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a } f \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a } f \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a } f \text{ a } f \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a } f \text{ a } f \text{ a } f \text{ a } b
$$
\n
$$
I \text{ a } f \text{ a }
$$

Theorem 2.12. Let $f : [a, b] \to X$ be an R-integrable and $g : [a, b] \to \mathbb{C}$ a contin*uous function. Then the product function* $gf : [a, b] \rightarrow X$ *is R-integrable.*

Proof. Let $||f(t)||_X \leq M$ on [a, b]. We consider a sequence of step functions $(g_n)_{n\in\mathbb{N}}$ with g_n : $[a, b] \rightarrow \mathbb{C}$ converging uniformly on $[a, b]$ to *g*. Each function g_n can be represented as $\int_a^b f(t) dt + \int_a^b f(t) dt + \int_a^b f(t) dt + \int_a^b f(t) dt + \int_a^b f(t) dt$
 X be an *R*-integration gf : [a, b] \rightarrow *Z*
 (n) $\int_a^b f(t) dt + \int_a^b f(t) dt$
 (n) $\int_a^b f(t) dt + \int_a^b f(t) dt$
 (n) $\int_a^b f(t) dt$
 (n) $\int_a^b f(t) dt$
 (n) $\int_a^b f(t) dt$
 (n) gn - X is
 M on [*a*, *b*]. We consider a sequence verging uniformly on [*a*, *b*] to *g*.
 $g_n = \sum_{k=1}^{m_n} \alpha_k^{(n)} \chi_{[\tau_{k-1}, \tau_k)} + \alpha_{m_n}^{(n)} \chi_{\{b\}}$

$$
g_n = \sum_{k=1}^{m_n} \alpha_k^{(n)} \chi_{[\tau_{k-1}, \tau_k)} + \alpha_{m_n}^{(n)} \chi_{\{b\}}
$$

where $a = \tau_0 < \tau_1 < \ldots < \tau_{m_n} = b$ and $\alpha_k^{(n)} \in \mathbb{C}$ for all $1 \leq k \leq m_n$. Obviously by the assertions 1 and 5 of Theorem 2.11 $g_n f$ is R-integrable for all $n \in \mathbb{N}$, and we get $\int_{a}^{b} g_n f(t) dt = \sum_{n=0}^{m_n} \alpha_k^{(n)} \int_{a}^{r_k} f(t) dt$. $\begin{aligned} b_n &= \sum_{k=1} \alpha_k^{(n)} \chi_{\lceil r_k \rceil} \ \kappa_{m_n} &= b \text{ and } \alpha_k^{(n)} \ \text{em 2.11 } g_n f \text{ is } b \ g_n f(t) \, dt &= \sum_{k=1}^{m_n} \kappa_{k}^{(n)} \end{aligned}$

$$
g_n - \sum_{k=1}^{\infty} \alpha_k \chi_{\{\tau_{k-1}, \tau_k\}} + \alpha_{m_n} \chi_{\{b\}}
$$

\n
$$
< \tau_{m_n} = b \text{ and } \alpha_k^{(n)} \in \mathbb{C} \text{ for all } 1 \le k
$$

\nsorem 2.11 $g_n f$ is R-integrable for all
\n
$$
\int_a^b g_n f(t) dt = \sum_{k=1}^{m_n} \alpha_k^{(n)} \int_{\tau_{k-1}}^{\tau_k} f(t) dt.
$$

\nand
\n
$$
\sup_{t \in [a, b]} |g_n(t) - g(t)| < \frac{\varepsilon}{3M(b-a)}.
$$

\nthat for two arbitrarily chosen ref

We choose $n \in \mathbb{N}$ such that

 \mathbf{I}

$$
\sup_{t\in [a,b]}|g_n(t)-g(t)|<\frac{\varepsilon}{3M(b-a)}.
$$

Let $\widetilde{\mathcal{P}}_t$ be a partition such that for two arbitrarily chosen refinements $\widetilde{\mathcal{P}}_1$ and $\widetilde{\mathcal{P}}_2$ of $\widetilde{\mathcal{P}}_t$ with P_1 and P_2 tagged

$$
\|g_n f(\mathcal{P}_1) - g_n f(\mathcal{P}_2)\|_X < \frac{\varepsilon}{3}
$$

(cf. Theorem *2.10/3.).* With

Vector-Valued Integration in *BK*-Spaces
\nhecrem 2.10/3.). With
\n
$$
||gf(\mathcal{P}_1) - gf(\mathcal{P}_2)||_X \le ||gf(\mathcal{P}_1) - g_nf(\mathcal{P}_1)||_X + ||g_nf(\mathcal{P}_2) - gf(\mathcal{P}_2)||_X
$$
\ntain
\n
$$
||gf(\mathcal{P}_1) - g_nf(\mathcal{P}_1)||_X < \frac{\varepsilon}{3M(b-a)}M(b-a) = \frac{\varepsilon}{3}
$$
\nnalogously
\n
$$
||gf(\mathcal{P}_2) - g_nf(\mathcal{P}_2)||_X < \frac{\varepsilon}{3}.
$$

we obtain

$$
\left|g f(\mathcal{P}_1)-g_n f(\mathcal{P}_1)\right| \Big|_X < \frac{\varepsilon}{3M(b-a)} M(b-a)=\frac{\varepsilon}{3}
$$

and analogously

$$
\big\|g f(\mathcal{P}_2)-g_n f(\mathcal{P}_2)\big\|_X<\frac{\varepsilon}{3}.
$$

Thus $||gf(\mathcal{P}_1) - gf(\mathcal{P}_2)||_X < \varepsilon$ for all tagged partitions \mathcal{P}_1 and \mathcal{P}_2 with refinements $\widetilde{\mathcal{P}}_1$ and $\widetilde{\mathcal{P}}_2$ of $\widetilde{\mathcal{P}}_{\epsilon}$, i.e. $\int_a^b gf(t) dt$ exists \blacksquare

The Bochner integral and some of its properties. Beside the Riemann integral we will have a look at the Bochner integral. Later we shall see consequences of these two possibilities of vector-valued integration for BK-spaces.

Definition 2.13 (Bochner integral). Let $(\Sigma; A; \mu)$ be a measure space. A function $f: \Sigma \to X$ is called *simple* if there exist $E_1, \ldots, E_n \in A$ and $x_1, \ldots, x_n \in X$ such that **The Bochner integral and some of its properties.** Beside the Riemann integral
we will have a look at the Bochner integral. Later we shall see consequences of these
two possibilities of vector-valued integration for *BK*and $\widetilde{\mathcal{P}}_2$ of
 The Bocl

we will ha

two possib
 Defini
 $f: \Sigma \to X$
 $f = \sum_{i=1}^{n}$ *x₁XE_i*. For a simple function f the *Bochner integral* is defined by

$$
(B) \int_{\Sigma} f d\mu = \sum_{i=1}^{n} x_i \mu(E_i).
$$

d μ -measurable if f is μ -alm
actions, i.e. if

$$
\lim_{i \to \infty} ||f_n - f||_X = 0 \quad a.e.
$$

A function $f: \Sigma \to X$ is called μ -measurable if f is μ -almost everywhere the limit of a sequence $(f_n)_{n\in\mathbb{N}}$ of simple functions, i.e. if

$$
\lim_{n\to\infty}||f_n-f||_X=0 \qquad a.e.
$$

A μ -measurable function $f : \Sigma \to X$ is called *Bochner integrable* if there exists a sequence $(f_n)_{n\in\mathbb{N}}$ of simple functions such that for the sequence of Lebesgue integrals $\left(\int_{\Sigma} ||f_n - f||_X d\mu\right)_{n \in \mathbb{N}}$ we have

$$
\lim_{n\to\infty}\int_{\Sigma}\left\|f_n-f\right\|_Xd\mu=0.
$$

Then the *Bochner integral is* defined by.

$$
(B)\int_{\Sigma} f d\mu = \lim_{n \to \infty} (B) \int_{\Sigma} f_n d\mu.
$$

In the following we consider only Lebesgue measure spaces $(\Sigma; \mathcal{L}; \lambda)$. The next theorem is due to Diestel and Uhl [1: Theorem 9/p. 49].

Theorem 2.14. Let the function I *be Bochner integrable on [a, b] with respect to the Lebesgue measure A. Then*

$$
\lim_{h \to 0} \frac{1}{h} \int_{s}^{s+h} ||f(t) - f(s)||_{X} d\lambda(t) = 0
$$

for almost all $s \in [a, b]$.

Now we obtain

12 A. Pechtl

Lemma 2.15. *Let* $h > 0$ *and* $f : [a; b] \rightarrow X$ *be a Bochner integrable function. Then*

$$
\lim_{h \to 0} \frac{1}{h} \lambda \left(\left\{ t \in [s; s+h] \middle| \| f(t) - f(s) \|_{X} < \varepsilon \right\} \right) = 1
$$

for almost all $s \in [a, b]$ *and all* $\varepsilon > 0$.

Proof. For $\varepsilon > 0$ set

$$
\lim_{h \to 0} \frac{1}{h} \lambda \Big(\Big\{ t \in [s; s+h] \Big| \|f(t) - f(s)\|_{X} < \varepsilon \Big\} \Big) = 1
$$
\n
$$
s \in [a, b] \text{ and all } \varepsilon > 0.
$$
\n
$$
\text{or } \varepsilon > 0 \text{ set}
$$
\n
$$
a_{\varepsilon}(s) = \lambda \Big(\Big\{ t \in [s; s+h] \Big| \|f(t) - f(s)\|_{X} < \varepsilon \Big\} \Big)
$$
\n
$$
b_{\varepsilon}(s) = \lambda \Big(\Big\{ t \in [s; s+h] \Big| \|f(t) - f(s)\|_{X} \geq \varepsilon \Big\} \Big).
$$
\n
$$
b_{\varepsilon}(s) = h. \text{ Hence by Theorem 2.14}
$$
\n
$$
\frac{1}{h} \Big(\varepsilon b_{\varepsilon}(s) \Big) \leq \frac{1}{h} \int_{s}^{s+h} \|f(t) - f(s)\|_{X} d\lambda(t) \longrightarrow 0 \quad \text{as}
$$
\n
$$
s \in [a, b]. \text{ Thus } \lim_{h \to 0} \frac{1}{h} a_{\varepsilon}(s) = 1 \blacksquare
$$

Then $a_{\epsilon}(s) + b_{\epsilon}(s) = h$. Hence by Theorem 2.14

$$
\frac{1}{h} \left(\varepsilon b_{\varepsilon}(s) \right) \leq \frac{1}{h} \int_{s}^{s+h} \left\| f(t) - f(s) \right\|_{X} d\lambda(t) \longrightarrow 0 \quad \text{as} \quad h \to 0
$$

for almost all $s \in [a, b]$ *. Thus* $\lim_{h \to 0} \frac{1}{h} a_{\epsilon}(s) = 1$

3. Properties of *BK-valued* **integrals**

In the following we consider BK -subspaces of Ω which are induced by a translation*invariant BK-space E and certain properties.*

Definition 3.1. *For a translation invariant BK-space E we define*

$$
E_c = \left\{ x \in E \mid xe \text{ is continuous on } \mathbf{T} \right\}
$$

$$
E_{\lambda} = \left\{ x \in E \mid xe \text{ is } \lambda \text{-measurable on } \mathbf{T} \right\}
$$

$$
E_{Ri} = \left\{ x \in E \mid (R) \cdot \frac{1}{2\pi} \int_0^{2\pi} xe(t) dt \text{ exists} \right\}.
$$

Remarks 3.2. E_c and E_{R_i} are with respect to $\|\cdot\|_E$ translation-invariant BKspaces. Obviously $E_c \subseteq E_{Ri}$ because every continuous function is R-integrable. Fur*thermore* E_c *is a homogeneous BK-space, and xe is Bochner integrable for all* $x \in E_{\lambda}$ *(cf. [1:* Theorem 2/p. 45]).

It will be our aim to demonstrate *relations between* the *spaces Ep for P equal* one *of* the properties σK , σB , $S \sigma K$, AD , c , R_i or λ and to compare these relations with results in [2].

Theorem 3.3. The function xe is continuous if and only if xe is λ -measurable, *i.e.* $E_c = E_\lambda$.

Proof. Evidently the continuity *of the function xc implies its measurability. Lemma* 2.15 *and the translation invariance of E imply*

$$
\lim_{h\to 0}\frac{1}{h}\lambda\Big(\Big\{\tau\in[t;t+h]\Big\|\|xe(\tau)-xe(t)\|_{E}<\varepsilon\Big\}\Big)=1
$$

Vector-Valued Integration in BK-Spaces 13
for all
$$
t \in \mathbf{T}
$$
 and all $\varepsilon > 0$. Supposing that xe is not continuous we get

$$
\exists \delta > 0 : \exists (t_n)_{n \in \mathbb{N}} : t_n \downarrow t_0 : \forall t_n : \quad \left\| x e(t_n) - x e(t_0) \right\|_E \ge \delta \qquad (1)
$$
for $t_0 \in (0, 2\pi)$. Let $\varepsilon = \frac{\delta}{16}$ and

for $t_0 \in (0, 2\pi)$. Let $\varepsilon = \frac{\delta}{16}$ and

$$
A_k(h) = \left(\left\{ \tau \in [t_k, t_k + h] \middle| \left\| x e(\tau) - x e(t_k) \right\|_E < \frac{\delta}{16} \right\} \right)
$$

for all $k \in \mathbb{N}_0$. Choose *h* such that $\lambda(A_0(h)) \geq \frac{9}{10}h$. Then by the translation invariance *we* also have $\lambda(A_n(h)) \geq \frac{9}{10}h$ for all $n \in \mathbb{N}$. Let now be $n_0 \in \mathbb{N}$ such that $|t_n-t_0| < \frac{1}{10}h$ for all $n \geq n_0$. Then $A_n(h) \cap A_0(h) \neq \emptyset$ for $n \geq n_0$ because otherwise $t \in \mathbf{T}$ and all $\varepsilon > 0$. Supposing that xe is not continuous we get
 $\exists \delta > 0 : \exists (t_n)_{n \in \mathbb{N}} : t_n \downarrow t_0 : \forall t_n : \quad ||xe(t_n) - xe(t_0)||_E \ge \delta$
 $\in (0, 2\pi)$. Let $\varepsilon = \frac{\delta}{16}$ and
 $A_k(h) = \left(\left\{ \tau \in [t_k, t_k + h] \middle| ||xe(\tau) - xe(t_k)||_E < \frac{\delta}{$ *xe* $A_k(h) = \left(\left\{ \tau \in [t_k, t_k + h] \middle| ||xe(\tau) - xe(t_k)||_E < \frac{\delta}{16} \right\} \right)$
 *N*₀. Choose *h* such that $\lambda(A_0(h)) \ge \frac{9}{10}h$. Then by the translation
 xe $\lambda(A_n(h)) \ge \frac{9}{10}h$ for all $n \in \mathbb{N}$. Let now be $n_0 \in \mathbb{N}$ such that

$$
\frac{11}{10}h > \lambda([t_0,t_n+h]) \geq \lambda(A_n(h) \cup A_0(h)) = \lambda(A_n(h)) + \lambda(A_0(h)) \geq \frac{18}{10}h.
$$

With $r_n \in A_n(h) \cap A_0(h)$ we obtain

$$
\|xe(t_n)-xe(t_0)\|_E \leq \|xe(t_n)-xe(\tau_n)\|_E + \|xe(\tau_n)-xe(t_0)\|_E < \frac{\delta}{8}
$$

for all $n \ge n_0$. This is a contradiction to (1). Thus *xe* is continuous in t_0 und therefore

on **T s**

Theorem 3.4. Let $(K_n)_{n \in \mathbb{N}_0}$ with
 $K_n(t) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) e^{ikt}$ on **TI**

Theorem 3.4. *Let* $(K_n)_{n\in\mathbb{N}_0}$ *with*

$$
E = ||xC(n)||E + ||xC(n)||
$$

tradiction to (1). Thus *xe* is con
$$
x = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1}\right) e^{ikt}
$$

be the Fejér kernel. Then

$$
an(t) = \sum_{k=-n}^{n} {n+1 \choose n+1}^{k}
$$

$$
\sigma_n x = \frac{1}{2\pi} \int_0^{2\pi} K_n(t) x e(-t) dt
$$

for all $n \in \mathbb{N}_0$ *and all* $x \in E_{R_i}$.

Proof. Since $\frac{1}{2\pi} \int_0^{2\pi} x e(-t) dt$ exists for all $x \in E_{R_i}$, we obtain by Theorem 2.12 for all $n \in \mathbb{N}_0$ and all $x \in E_{Ri}$.
 Proof. Since $\frac{1}{2\pi} \int_0^{2\pi} xe(-t) dt$ exists for all $x \in E_{Ri}$, we obtain by Theorem 2.12

for all $n \in \mathbb{N}_0$ the existence of the integrals $\frac{1}{2\pi} \int_0^{2\pi} K_n(t)xe(-t)dt \in E$ 4 of Theorem 2.11 we have for all $k \in \mathbb{Z}$

N₀ and all
$$
x \in E_{Ri}
$$
.
\nSince $\frac{1}{2\pi} \int_0^{2\pi} xe(-t) dt$ exists for all $x \in E_{Ri}$, we obtain by T!
\nN₀ the existence of the integrals $\frac{1}{2\pi} \int_0^{2\pi} K_n(t)xe(-t)dt \in E$. Usi
\n
$$
Pr_k\left(\frac{1}{2\pi} \int_0^{2\pi} K_n(t)xe(-t)dt\right) = \frac{1}{2\pi} \int_0^{2\pi} Pr_k\left(K_n(t)xe(-t)\right)dt
$$
\n
$$
= \frac{1}{2\pi} \int_0^{2\pi} K_n(t)xe^{-ikt} dt
$$
\n
$$
= \begin{cases} \left(1 - \frac{|k|}{n+1}\right)x_k & \text{for } |k| > n. \end{cases}
$$
\n
$$
\int_0^{\pi} K_n(t)xe^{i\pi t} dt = \begin{cases} \left(1 - \frac{|k|}{n+1}\right)x_k & \text{for } |k| > n. \end{cases}
$$

Thus $\frac{1}{2\pi} \int_0^2$ $\int_0^{2\pi} K_n(t)xe(-t) dt = \sigma_n x$ According to [2] we obtain the following Theorems 3.5 and 3.6.

Theorem 3.5. Let E be a translation invariant BK-space. Then

1.
$$
E_{Ri} \subseteq E_{\sigma B}
$$

2. $E_{S\sigma K} = E_{AD} = E_c = E_{\sigma K}$.

Proof. We prove the two assertions in the following way.

1. Let $x \in E_{R_i}$. Then for all $n \in \mathbb{N}_0$

$$
\|\sigma_n x\|_E = \left\|\frac{1}{2\pi}\int_0^{2\pi} K_n(t)x e(-t) dt\right\|_E \leq \frac{1}{2\pi}\int_0^{2\pi} K_n(t)\|x\|_E dt = \|x\|_E
$$

Thus $\sup_{n\in\mathbb{N}_0} ||\sigma_n x||_E \leq ||x||_E < \infty$, i.e. $E_{R_i} \subseteq E_{\sigma B}$.

2. We prove $E_{S\sigma K} \subseteq E_{AD} \subseteq E_c \subseteq E_{\sigma K} \subseteq E_{S\sigma K}$. Let $x \in E_{S\sigma K}$. Then by [6: Theorem $2/p.$ 120

$$
\forall \varepsilon > 0 : \exists \alpha_i^{(n)} \ge 0 \ (0 \le i \le n) : \quad \sum_{i=0}^n \alpha_i^{(n)} = 1 \text{ and } \left\| \sum_{i=0}^n \alpha_i^{(n)} \sigma_i x - x \right\|_E < \varepsilon,
$$

i.e. $x \in E_{AD}$. Hence $E_{S\sigma K} \subseteq E_{AD}$. From $x \in E_{AD}$ one obtains that for all $\varepsilon > 0$ there exists an $z_x \in \Phi \cap E$ with $||x - z_x||_E < \frac{\epsilon}{3}$. Obviously $z_x \in E_c$ and therefore

$$
\forall t_0 \in \mathbf{T} : \exists U_{\delta}(t_0) : \forall t \in U_{\delta}(t_0) : \quad ||z_x e(t) - z_x e(t_0)||_E < \frac{\varepsilon}{3}
$$

From this we get

$$
||xe(t) - xe(t_0)||_E \le ||xe(t) - z_x e(t)||_E
$$

+
$$
||z_x e(t) - z_x e(t_0)||_E + ||z_x e(t_0) - xe(t_0)||_E
$$

<
$$
< \varepsilon.
$$

for all $t \in U_{\delta}(t_0)$, i.e. $x \in E_c$. Trivially $x \in E_{Ri}$ and $\|\sigma_n x - x\|_E \to 0$ (cf. [2: p. 246]), i.e. $x \in E_{\sigma K}$. Consequently $|\phi(\sigma_n x) - \phi(x)| \to 0$ for all $\phi \in E'$, i.e. $x \in E_{S \sigma K}$

Theorem 3.6. Let E_{wc} be the space of those elements $x \in E$ for which xe has weakly continuous translation. Then $E_{wc} = E_{\sigma K} = E_c$. Thus in E weakly continuous translation is equivalent to continuous translation.

Proof. We have $E_{\sigma K} = E_c$ and $E_c \subseteq E_{wc}$. We only have to prove $E_{wc} \subseteq E_c$. Let $x \in E_{wc}$. Then xe is weakly continuous and therefore weakly measurable. The range of xe, i.e. $\{xe(t)|t \in \mathbf{T}\}\$, is a subset of the closure of

$$
\left\{\sum_{k=0}^n \beta_k x e(t_k) \middle| n \in \mathbb{N}_0 \text{ and } \beta_k \in \mathbb{Q}, t_k \in \mathbb{Q} \cap \mathbf{T} \text{ for all } 0 \leq k \leq n \right\}
$$

(cf. $[6:$ Theorem $2/p.$ 120), where Q denotes the set of all rational numbers. Therefore $\{xe(t)|t \in \mathbf{T}\}\$ is a separable set. Thus the conditions of the Pettis theorem [6: p. 131] are fulfilled, and we obtain $x \in E_{\lambda} = E_c$ (cf. Theorem 3.3), i.e. $E_{wc} = E_c = E_{\sigma K}$.

Boettcher and Goes noticed that Theorem 3.6 can also be interpreted as an application of the theorem in [6: p. 233]. Furthermore we have to remark that in the proof of Proposition 4.3 in [2] there is not paid attention to the fact that the additional condition $E \subseteq E_{R_i}$ is used.

The following example illustrates inclusion relations between the considered *BK*spaces.

Example 3.7. First we define the following spaces: Let $L^p(\mathbf{T})$ $(1 \leq p < \infty)$ be the space of all complex-valued Lebesgue measurable functions on T with $\int_0^{2\pi} |f|^p d\lambda < \infty$ spaces.
 Example 3.7. First we define

space of all complex-valued Lebesg

and $||f||_p = \left(\frac{1}{2\pi}\int_0^{2\pi} |f|^p d\lambda\right)^{1/p}$

space of $L^1(\mathbf{T})$ of all essentially b (cf. Katznelson [5: p. 14]) and $L^{\infty}(\mathbf{T})$ the subess sup_{tET} $|f(t)|$. Furthermore let $M^d(\mathbf{T})$ be the space of all purely discontinuous (Borel) measures on T (cf. Hewitt and Ross [4: Definition 19.13/p. 269] and [5: p. 37]).

space of *L*¹(*T*) of all essentially bounded functions endowed with the norm $||f||_{\infty}$ esses $sup_{t\in T} |f(t)|$. Furthermore let $M^d(T)$ be the space of all purely discontinuous (Borel measures on T (cf. Hewitt and Ross [4 Now we consider the associated translation invariant BK-spaces $\widehat{L}^p(\widehat{\mathbf{T}}), \widehat{L}^{\infty}(\widehat{\mathbf{T}})$ and **Example 11** \mathbb{Z} (X) of an essembly bounded functions endowed with the norm $||f||_{\infty}$ =

ess sup_{te} \mathbf{T} | $f(t)$ |. Furthermore let $M^d(\mathbf{T})$ be the space of all purely discontinuous (Borel)

measures on **T** (c ∞ and $c_0 = \{v \in l^{\infty} \mid \lim_{|k| \to \infty} |v_k| = 0\}$. Then the translation invariant BK-space $\overbrace{M^d(\mathbf{T})}^{\text{No}}$
 ∞ } and $(E; \|\cdot\)$ $(E; \|\cdot\|_E)$ shall be constructed by

$$
E=E_1\oplus E_2\oplus E_3\oplus E_4
$$

and endowed with the norm $\|\cdot\|_E = \sum_{k=1}^4 \|\cdot\|_{E_k}$. Let

 $E_1 = \left\{ x \in \widehat{L^{\infty}(\mathbf{T})} \middle| \ x_{2k} = 0 \text{ for all } k \in \mathbb{Z} \setminus \{0\} \right\}.$

Then

$$
\forall x \in E_1 : \exists f \in L^{\infty}(\mathbf{T}) : \forall k \in \mathbb{Z} : x_k = \hat{f}(k).
$$

Let be $||x||_{E_1} = ||f||_{\infty}$. Then E_1 endowed with this norm is a BK-space. With

$$
E_2 = \left\{ y \in \widehat{M^d(\mathbf{T})} \middle| y_{2k} = 0 \text{ for all } k \in \mathbb{Z} \setminus \{0\} \right\}
$$

one obtains

$$
\forall y \in E_2 : \exists \mu \in M^d(\mathbf{T}) : \forall k \in \mathbb{Z} : y_k = \hat{\mu}(k).
$$

Correspondingly let be $||y||_{E_2} = \text{var}(\mu)$ (total variation of μ). According to [4: Theorem 19.20/p. 273] we have $M^d(\mathbf{T}) \cap L^1(\mathbf{T}) = \{0\}$, and with $L^{\infty}(\mathbf{T}) \subseteq L^1(\mathbf{T})$ we have $M^d(\mathbf{T}) \cap L^\infty(\mathbf{T}) = \{0\}$ respectively $E_1 \cap E_2 = \{0\}$. Furthermore let E_3 and E_4 be defined by

$$
E_3 = \left\{ u \in l^{\infty} \middle| \ u_{2k+1} = u_{4k} = 0 \text{ for all } k \in \mathbb{Z} \right\}
$$

and

$$
E_4 = \Big\{ v \in c_0 \Big| v_0 = v_{2k+1} = v_{4k+2} = 0 \text{ for all } k \in \mathbb{Z} \Big\},\
$$

and let E_3 and E_4 be endowed with the usual norm $||w||_{E_3} = ||w||_{\infty} = \sup_{k \in \mathbb{Z}} |w_k|$ and $||w||_{E_4} = ||w||_{\infty} = \sup_{k \in \mathbb{Z}} |w_k|$, respectively.

16 A. Pechtl

As direct sum of BK -spaces E is evidently a BK -space. First we prove that in general E_c is a proper subset of E_{Ri} . Choose $f \in L^{\infty}(\mathbf{T})$ with

$$
f(t) = \begin{cases} 0 & \text{for } t \in [0, \pi) \\ 1 & \text{for } t \in [\pi, 2\pi) \end{cases}
$$

Then $x \in E_1$ with

$$
x_k = \hat{f}(k) = \begin{cases} 0 & \text{for } 0 \neq k \text{ even} \\ \frac{1}{2} & \text{for } k = 0 \\ \frac{i}{\pi k} & \text{for } k \text{ odd} \end{cases}
$$

and $xe(\tau) = \hat{f}_{\tau}$ (where $f_{\tau}(t) = f(t + \tau)$ for all $t \in \mathbf{T}$) such that

$$
||xe(\tau_1)-xe(\tau_2)||_E=||f_{\tau_1}-f_{\tau_2}||_{\infty}=1
$$

for all τ_1 and τ_2 with $\tau_1 \neq \tau_2$. Thus $x \notin E_c$. Now we prove the existence of $\frac{1}{2\pi}\int_0^{2\pi} x e(t) dt$. For $\varepsilon > 0$ let

$$
\widetilde{\mathcal{P}}_{\epsilon} = \left\{ t_j^{(\epsilon)} \middle| 0 = t_0^{(\epsilon)} < t_1^{(\epsilon)} < \ldots < t_{N_{\epsilon}}^{(\epsilon)} = 2\pi \right\}
$$

be a partition with $|\tilde{\mathcal{P}}_{\epsilon}| < \frac{\epsilon \pi}{4}$, and let $\tilde{\mathcal{P}}_1$ and $\tilde{\mathcal{P}}_2$ be two refinements of $\tilde{\mathcal{P}}_{\epsilon}$. Then $\widetilde{\mathcal{P}}_k = \bigcup_{j=1}^{N_{\epsilon}} \widetilde{\mathcal{P}}_{kj}$ $(k \in \{1, 2\})$ with

$$
\widetilde{\mathcal{P}}_{kj} = \left\{ t_i^{(kj)} \middle| t_{j-1}^{(\epsilon)} = t_0^{(kj)} < t_1^{(kj)} < \ldots < t_{N_{kj}}^{(kj)} = t_j^{(\epsilon)} \right\} \qquad (1 \leq j \leq N_{\epsilon}).
$$

For corresponding tagged partitions $\mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_e we get

$$
\left\| \frac{1}{2\pi} x e(\mathcal{P}_k) - \frac{1}{2\pi} x e(\mathcal{P}_\epsilon) \right\|_{E_1}
$$
\n
$$
= \frac{1}{2\pi} \left\| \sum_{j=1}^{N_{\epsilon}} \sum_{i=1}^{N_{k,j}} \left(x e(s_i^{(kj)}) - x e(s_j^{(e)}) \right) (t_i^{(kj)} - t_{i-1}^{(kj)}) \right\|_{E_1}
$$
\n
$$
= \frac{1}{2\pi} \left\| \sum_{j=1}^{N_{\epsilon}} \sum_{i=1}^{N_{k,j}} \left(f_{s_i^{(kj)}} - f_{s_j^{(k)}} \right) (t_i^{(kj)} - t_{i-1}^{(kj)}) \right\|_{\infty}
$$
\n
$$
\leq \frac{1}{2\pi} \left\| \sum_{j=1}^{N_{\epsilon}} \left(\chi_{\left[\pi - t_j^{(e)}, \pi - t_{j-1}^{(e)} \right]} + \chi_{\left[2\pi - t_j^{(e)}, 2\pi - t_{j-1}^{(e)} \right]} \right) (t_j^{(e)} - t_{j-1}^{(e)}) \right\|_{\infty}
$$
\n
$$
\leq \frac{1}{2\pi} 4|\widetilde{\mathcal{P}}_{\epsilon}|
$$
\n
$$
< \frac{\epsilon}{2}.
$$

Thus we have

$$
\left\| \frac{1}{2\pi} x e(\mathcal{P}_1) - \frac{1}{2\pi} x e(\mathcal{P}_2) \right\|_{E_1}
$$

\$\leq \left\| \frac{1}{2\pi} x e(\mathcal{P}_1) - \frac{1}{2\pi} x e(\mathcal{P}_e) \right\|_{E_1} + \left\| \frac{1}{2\pi} x e(\mathcal{P}_2) - \frac{1}{2\pi} x e(\mathcal{P}_e) \right\|_{E_1}\$<\varepsilon\$.

Therefore $\frac{1}{2\pi}xe$ is R-integrable by assertion 3 in Theorem 2.10 (cf. also [3: Example $12/p.930$.

Furthermore there exist elements of E which do not have σB . These elements cannot be R-integrable. Let $\mu \in M^d(\mathbf{T})$ be such that μ is the difference of the two Dirac measures δ_0 and δ_π , i.e. $\mu = \delta_0 - \delta_\pi$. Then $y \in E_2$ with

$$
y_k = \hat{\mu}(k) = \begin{cases} 0 & \text{for } k \text{ even} \\ \frac{1}{\pi} & \text{for } k \text{ odd.} \end{cases}
$$

We have $\sigma_n y \in E_1$ for all $n \in \mathbb{N}_0$, but $(\|\sigma_n y\|_{E_1})_{n \in \mathbb{N}_0}$ is not bounded. (This is a modification of Boettcher's example.)

We know that $E_{R_i} \subseteq E_{\sigma B}$. In general this inclusion is proper. Let $u \in E_3$ be such that

$$
u_k = \begin{cases} 1 & \text{for } k = 4p + 2 \ (p \in \mathbb{Z}) \\ 0 & \text{otherwise.} \end{cases}
$$

Evidently $||u||_E = ||u||_{E_3} = 1$ and $\sup_{n \in \mathbb{N}_0} ||\sigma_n u||_E = 1$, i.e. $u \in E_{\sigma B}$. The function ue is not R-integrable, otherwise $u_0 = 0$ would imply

$$
\frac{1}{2\pi}\int_0^{2\pi}ue(t)\,dt=\frac{1}{2\pi}\int_0^{2\pi}ue(-t)\,dt=\sigma_0\,u=0\,\,(\in E)
$$

or written as a limit

$$
\lim_{k \to \infty} \left\| \frac{1}{2\pi} \sum_{j=1}^{k} u e\left(\frac{2\pi j}{k}\right) \frac{2\pi}{k} \right\|_{E} = 0.
$$

But for any $k = 4p + 2$ one obtains

$$
\left\| \frac{1}{2\pi} \sum_{j=1}^{k} u e\left(\frac{2\pi j}{k}\right) \frac{2\pi}{k} \right\|_{E} \ge \left| \frac{1}{2\pi} \sum_{j=1}^{k} u_{k} e^{ik \frac{2\pi j}{k}} \frac{2\pi}{k} \right| = 1.
$$

The function we cannot be R-integrable, i.e. E_{R_i} is a proper subset of $E_{\sigma B}$. Finally it is well known that there exist elements in $E_{\sigma B}$ which are not in E. Let $w = (w_k)_{k \in \mathbb{Z}}$ be such that

$$
w_k = \begin{cases} 1 & \text{for } k = 4p \ (p \neq 0) \\ 0 & \text{otherwise.} \end{cases}
$$

Obviously $w \notin E$, $\sigma_n w \in E_4$ for all $n \in \mathbb{N}_0$ and $\sup_{n \in \mathbb{N}_0} ||\sigma_n w||_E < \infty$.

The following chart shows the relations between the spaces, which are generated by a translation-invariant *BK-space E.*

References

- 1) Diestel, J. and J. J. Uhl Jr.: *Vector measures* (Mathematical Surveys: Vol. 15). Providence, Rh. I.: Amer. Math. Soc. 1977.
- *[2] Goes, G.: Generalizations of theorems of Fejér and Zygmund on convergence and bound edness of conjugate series.* Studia Math. 57 (1976), 241 - 249.
- [3] Gordon, R.: *Riemann integration in Banach spaces.* Rocky Mountain J. Math. 21(1991), 923 - 949.
- *[4] Hewitt, E. and K. A. Ross: Abstract Harmonic Analysis.* Vol. 1: *Structure of Topological Groups, Integration Theory, Group Representations.* Berlin - Göttingen - Heidelberg: Springer-Verlag 1963.
- *¹* ⁵] Katznelson, Y.: An *Introduction to Harmonic Analysis.* New York: Wiley 1968.
- (6] Yosida, K.: *Functional Analysis.* Berlin Gottingen Heidelberg: Springer-Verlag 1965.
- *¹* 7] Zeller, K.: *Abschnittskonvergenz in FK-Ràumen.* Math. Z. 55 (1951), 55 70.

Received 14.03.1995; in revised form 05.10.1995