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Abstract. We prove that quasi-contractions in Krefn spaces always have contractive inter-
twining dilations. This result covers many of the known lifting of commutant theorems in both 
Hilbert and KreTn spaces. The approach is an adaptation of the angular operator method and 
uses the existence of invariant maximal non-negative subspaces for certain operators. 
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1. Introduction 

One possible approach of problems of interpolation of functions is by means of the so-
called commutant lifting of contractions, or contractive intertwining dilations, in Hilbert 
spaces, initiated by D. Sarason in [19] and B. Sz.-Nagy and C. Foia in [20] (cf. [21]) 
where the problem of description of solutions was of most interest and culminated with 
the description of all solutions in terms of Schur parameters (see [3] and [51). 

An alternate direction was opened by the approach of J. A. Ball and J. W. Helton 
in [5] (see also the corrections in [6)) who put this into a different perspective by associ-
ating a certain indefinite inner product space in such a way that the set of contractive 
intertwining dilations corresponds to the set of maximal non-negative invariant sub-
spaces of the shift operator. This approach was also applied to operators which are no 
longer contractions, but finite-rank perturbations of contractions (we call these opera-
tors quasi-contractions). For the existence of invariant maximal non-negative subspaces 
a generalized Beurling-Lax type theorem and an approximation pattern are used. 

Motivated by similar problems in which the operators act in indefinite inner prod-
uct spaces, variants of commutant lifting theorems were obtained for contractions by 
T. Constantinescu and the author in [8, 91 and by M. A. Dritschel in [11] (see also [121) 
and for quasi-contractions by T. Constantinescu and the author in [9, 10]. These pa-
pers use the approach of four-block completion for contractions and quasi-contractions, 
respectively, and then the stepwise construction of intertwining dilations. 
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The present paper arose from the author's attempt of using the approach of J. A. 
Ball and J. W. Helton when applied to quasi-contraction operators in Krein spaces. 
The main obstructions appear because we no longer have a fundamental decomposition 
in which one can write explicitly the angular operators. In this paper we prove the 
existence of contractive intertwining dilations for quasi-contractions in Krein spaces, in 
case the added spaces are positive definite (cf. Theorem 4.4). An impetus to write this 
note was given to us also by the recent paper of S. Treil and A. Volberg [23) who solve 
some generalized Nehari problems following the angular operator method combined with 
invariant maximal non-negative subspace theorems, via fixed point theorems. 

Thus, following [5] and [23], we show that the correspondence between contractive 
intertwining dilations and invariant maximal non-negative subspaces in a certain fixed 
subspace holds in this case, too, and then we use a refinement of theorems of I. S. 
Iokhvidov [18] on invariant maximal non-negative subspaces, as in [23]. This approach 
avoids the use of Beurling-Lax type theorems as well as the approximation and some 
pseudo-regularity assumptions as in [5]. 

Investigations in this direction were recently carried over also by R. Arocena, T. Ya. 
Azizov, A. Dijksma and S. A. M. Marcantognini [2]. There are two major differences 
with respect to their results: first, in our proofs we do not use the known lifting of 
commutant theorems and hence we obtain these as particular cases from our Theorem 
4.4, and second, we are able to prove the existence of intertwining dilations of quasi-
contractions with no other additional technical assumption (compare with [2: Theorem 
4.1]).

We thank T. Constantinescu for calling our attention and providing the reference 
[23], as well as for some useful discussions on the subject. 

A few words about notation and background facts. For the elementary theory of 
indefinite inner product spaces and their linear operators that we use here, we refer to 
the monographs [1, 4, 7]. Also, we use the symbol I to denote the involution with respect 
to the indefinite, inner product spaces, and leave the * to its usual meaning. If A is a 
linear manifold in some Hubert space, then clA denotes its closure. If £ is a subspace 
(that is, a closed linear manifold) of a Hilbert space fi, then PC denotes the orthogonal 
projection of fi onto L. The orthogonal direct sum and the orthogonal subtraction 
e have their usual meaning in Hilbert spaces, and by no means in Krein spaces. As 
a matter of fact, on our Krein spaces we usually fix a Hilbert-space inner product and 
refer constantly to it. If (AC, .]) is a KreTn space, then [1] refers to the orthogonality 
with respect to the indefinite inner product. If N i and 7-12 are some Hilbert spaces, 
then 8(7-Ia, 7-12) denotes the space of all bounded linear operators T: 7-Ia - fl2 

Let (X, [.,.]) be an indefinite inner product space. The negative rank r, - (X) is the 
maximal algebraic dimension over all negative subspaces £ of X, that is, [x, x] < 0 for 
all x E £ \ {0}. If A is some Hermitian operator on X, that is [Ax, y] = [x, Ay] for 
all x, y E X, then the negative rank ic_(A) is, by definition, the negative rank of the 
indefinite inner product space (X, [-, ]A), where [x, y]A = [Ax, y] for all x, y E X.



Contractive Intertwining Dilations	33 

2. W-spaces, generalized angular operators, and invariant 
subspaces 

We start this section with a universal property of Krein spaces. First we introduce the 
following 

Definition 2.1. An indefinite inner product space (N, [.,.)) is called a W-space if 
there exists a positive definite inner product (.,.) with respect to which (N, (.,.)) is a 
Hubert space and the inner product [.,.) is jointly continuous. 

As a consequence of the Open Mapping Principle the Hubert space topology of a 
W-space is unique with the property that it makes the indefinite inner product f.,] 
jointly continuous (see, e.g., [7)). Thus, without any ambiguity, we call this topology 
the strong topology and all the continuity properties will be referred to it. 

Proposition 2.2. Let (N, [.,.)) be a W-space. Then there exists a Kren space 
(AC, f . ,.]) which contains (N, [,]) as a subspace. 

Proof. Let (.,.) be a positive definite inner product with respect to which (N, (.,)) 
is a Hilbert space and the inner product [.,•) is jointly continuous. By the Riesz Rep-
resentation Theorem, there exists an operator G.: N - N, called the Gram operator, 
such that

[x,y) = (Gx,y)	(x,y EN).	 (2.1) 

The operator C is bounded and selfadjoint with respect to the Hilbert space (N, (.,.)). 
Modulo the multiplication of the positive inner product (.,.) with a positive constant 
we can assume that

Ifx , y lI	(x,x)(y,y)	(x,y E N) 

or, equivalently, that G is a contraction, i.e. (Gx,x)	(x, x). 
Consider now the defect operator DG = (I - G2 ) 12 and the defect space DG = 

clR(D) and let AC = Ne DG as Hilbert spaces. On the Hilbert space AC we define the 
operator

J= ^ C	DG
(2.2) 

DG —GIVG 

It is a straightforward calculation to prove that J is a symmetry, that is J = J = J1. 
Thus, defining the indefinite inner product [., .] pc by 

fx , yl,c = (Jx,y)	(x,y E )C) 

this turns AC into a KreTn space and J is a fundamental symmetry on it. N is naturally 
identified with the subspace N 0 of AC as Hubert spaces. If Pi. denotes the orthogonal 
projection of the Hilbert space AC onto its subspace N, then, taking into account (2.2), 
for all x,y EN we have 

[x , y],c = (Jx,y) = (P7 JPx,y) = (Gx,y) = [x,y] 

and the assertion is proved I
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Let fl be a W-space and let G E £(1) be the Gram operator, that is G is selfadjoint 
with respect to the positive definite inner product (.,.) and (2.1) holds. Consider the 
Jordan decomposition G = G, - G_ of G, and let fl, and fl denote the spectral 
subspaces corresponding to the non-negative semiaxis 10, +) and the negative semiaxis 
(—oo, 0), respectively. Clearly we have the decomposition

(2.3) 

and, if x = x.. + x and y = 11+ + y_ are the corresponding representations of arbitrary 
vectors x, y E fl, then

[x, y] = (G + x,y+ ) - (G_x_,y_). 

In the following, we will use the notions of positivity, negativity, neutrality, etc. with 
respect to the indefinite inner product space (71, [.,]) and fix the decomposition (2.3). 

Let M be a non-negative subspace of 71, that is a closed linear manifold such that 
Ix, x] ^! 0 for all x E M. With respect to the decomposition (2.3) this means 

(Gx + ,x + ) ^! (Gx,x.)	(x = x + x E 71).	 (2.4) 

As in the case of Kren spaces this enables us to introduce an angular operator. Let 
P± denote the projection of 71± with respect to the decomposition (2.3). Clearly P± 
are orthogonal projections in the Hilbert space 71, in particular their norms are less or 
equal to 1. Let us define an operator KM PM - 7L by 

KM : P+ x	P...x	(x E M).	 (2.5) 

By (2.4) and taking into account that G_ is injective on 71_, this definition is correct 
and

M = {x + KMXIX E P^M}.	 (2.6) 

Since M is closed, this implies that the operator KM is closed. The operator KM is 
called the generalized angular operator of the non-negative subspace M. Also note that 
in this general setting there is no reason to conclude that PM is a (closed) subspace. 
This anomaly is remedied if an extra condition is imposed. 

Remark 2.3. The condition that in the Jordan decomposition of the Gram oper-
ator G the operator G_ has closed range is equivalent with the condition that the spec-
trum of G has a gap (—e, 0). In particular, this shows that this condition is independent 
on which admissible positive definite inner product (.,.) we consider on the W-space 7-1 
since, by changing it with another Gram operator, say B, we have B = CGC for some 
boundedly invertible C E £(7-1) (the inner products on the incoming Hubert space 71 
and the outgoing Hilbert space 71 are different) and this transformation preserves the 
topology of the spectrum. 

A basic step in this approach is the possibility of handling generalized angular 
operators in W-spaces in a similar fashion as the angular operators in KreTn spaces. 
The next result comes from a paper of S. Treil [22] (cf. (23]). We give a detailed proof, 
for the reader's convenience (the article [22] was unaccesible to us) as well as for the 
reason that it will play a major role during the next section.
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Proposition 2.4. With the previous notation, assume that the operator G_ has 
closed range. Then: 

(1) M is a non-negative subspace of 7-( if and only if PM is closed, KM is bounded 
and the inequality

KGKM :5 PP+ MG+IP+M	 (2.7) 

holds.

(2) Let M and Al be non-negative subspaces. Then M c Al if and only if KM c 
Kj.j, that is P+ M C P^jV and KM X = Kj,rx for all x E PPM. 

(3) For any non-negative subspace M there exists a maximal non-negative subspace 
M such that M C M. 

(4) A non-negative subspace M is maximal if and only if P+ M = 
Proof. (1). Let M be a non-negative subspace and consider KM - its generalized 

angular operator as in (2.5). We first prove that the linear manifold PM is closed. To 
this end, let ( X n)n>l C M be a sequence of vectors such that P+x — y as n —* oo, for 
some vector y E	Then 

Il GP+ x II 2 = (G+P+x,P^x) ^ (G_P.x,P_x) = IIGP_xII2. 
This implies that (G!P_x)> 1 is a Cauchy sequence and hence there exists a z E ?_ 
such that GP_x - z as n - co. Since G_ has closed range, it is invertible on 7L


	

and the same is its square root G.!. Therefore, P_x n — G17z as n —	and hence 

x = x + P_ x — y + C 2 z = x	as n - . 

Since the projection P+ is bounded, this implies that Px —* P^x = y as n — oo and 
hence y E PP M. Thus PM is closed. 

Since the generalized angular operator KM is closed and its domain P+M is closed, 
by the Closed Graph Theorem we infer that the operator KM is bounded. Further, the 
inequality (2.4) can be written as 

(G+x,x) ^! (G_KMX + ,KMX + )	(x.4. E P+ M)	 (2.8) 

and, since the operator KM is bounded, this is equivalent to the inequality (2.7). This 
equivalence proves also the converse implication. 

(2). If M ç Al are non-negative subspaces, then PM C PAl and the inclusion 
KM c K,,.r comes directly from the definition of the generalized angular operator. 
Conversely, if KM c KM, then 

M = {x+KMxIx E P+M} c {x+KgIx E P+JV} = M. 

(3) and (4). Let M be a non-negative subspace and KM its angular operator. As 
in (1) PM is closed, KM is bounded and the inequality (2.7) holds. We first remark 
that the inequality (2.7) is equivalent to 

KM = Cl7 CGPP+M	 (2.9)
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for a uniquely determined contraction C: clR.(G+P+ IM) -* IL. We now remark that 
the inequality

IICGPP,MP+hII	IGPh	(h E M)	 (2.10) 

holds. This inequality enables us to define the operator C: clR(G) -p	as follows: 

j' CG.P.h = CGPP+ Mh for h E M 
tCx=0	 for xE7-t+e(G.P+M). 

Again by (2.10), the operator C is contractive. Define the operator K: I1+ - fl_ by 

k = Cl7 CG. 

Then the subspace M = {x+KxI x E I1+ } is maximal non-negative. From the definition 
of the operator K it follows that KM ç K and hence M c MU 

Corollary 2.5. If the operator G_ has closed range, then the set 

X = {KM I M a maximal non-negative subspace} 

is convex and compact with respect to the weak operator topology on 

Proof. 'It follows from the proof of Proposition 2.4 (see (2.9)) that 

= {GI CG C: clR(G+) - -, II C II i}. 

This shows that X is convex and, in view of the Alaoglu Theorem, it is also compact 
with respect to the weak operator topology on £(H, 11)1 

We conclude this section by recalling a theorem of existence of maximal invariant 
subspaces (cf. S. Treil and A. Volberg [23]) which is a generalization of a theorem of 
I. S. Iokhvidov [18]. Its proof is based on Proposition 2.4 and its Corollary 2.5 (cf. [22]) 
and a fixed point theorem of Ky Fan [13] and I. L. Glicksberg [17]. 

Theorem 2.6. With the notation as before, assume that the operator G_ has closed 
range and let V E £(fl) be an operator subject to the following conditions: 

(i) For any non-negative vector x E 7i the vector Vx is also non-negative. 
1/2 (ii) The operator G + P,VP,_ is compact. 

Then there exists a maximal non-negative subspace M in Il which is invariant under 
the operator V.
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3. Contractive dilations of quasi-contractions 
Let 7-1 k and 7-12 be Krein spaces and A e 8(N 1 ,7-12). We consider Krein space extensions 

J 7-(i and 92 7-12 such that Q fl	and 2 fl 7.41] are positive definite, that is 

Hubert spaces. 

Definition 3.1. The set of contractive dilations of A, denoted by CD(A;9i,g2) 
consists of pairs (A, E) subject to the following properties: 

(1) E is a subspace of 9 1 of codimension at most k_(I - ADA). 
(2) A E 8(E, g2 ) is a contraction, that is [Ax, Ax] 5 [x, x] for all x E E. 
(3) Pjj2 Ac.z, = APjj1IE. 

We now describe the basic construction, following closely the approach in [5]. Let 

(3.1) 

on which we consider the indefinite inner product [-, -] defined by 

[x 1 + x 2 , y1 + y21 = [x1,y1] - [x 2 ,y2 J	(x1,y1 E 91, x2 , y2 E 92). 

Then (AC, (-, J) becomes a Krein space. Fix fundamental symmetries J1 and .12 on 
and 7-12, respectively. On K we have the fixed fundamental symmetry J where, with 
respect to the decomposition 

k = 'H1 EDR2(91 e7-11)(2e712), 

the operator J has the representation 

.1 1 0 0 0 

o -.12 0 0 
J=

o o 10 

o o 0 —I

Let A denote the trivial extension of A onto the whole Gi, that is A = APE,. We 
consider the linear manifold 7-I in AC defined by 

N = {x+AxIx E c1}(c2 eN2 ).	 (3.2) 

Taking into account that 7-I is the direct orthogonal sum of the graph of a bounded 
operator, hence a subspace, with another subspace, it follows that 7-I itself is closed, 
that is, it is a subspace of C. Endowing N with the indefinite inner product [., -j, we 
thus obtain a W-space (N, [., -]) with the strong toplogy induced by the strong toplogy 
of K. This implies that the Gram operator of 71 is C = PnJI7-I. 

In the following it will be useful to make use also of the decomposition 

7-I=N0 (g 1 e Hi) e(c2e7.I2)	 (3.3) 
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where ?-1 = {x + Ax I x E H i } is the graph of A. Letting C0 = Pi 0 JIflo, with respect 
to the decomposition (3.3) we have

G0 0 0 

	

C= 0 I 0 .	 (3.4) 
0 0 -I 

'Ho is also a subspace of K;, and of 7-b as well. Let us remark that i(7-b) = r._(1-AA). 
To see this, just note that for arbitrary x E 7-bi we have 

[x + Ax, x + Ax] = [x, x] - [Ax, Ax] = [(I - A' A)x, x]. 

Consider now the Jordan decomposition G 0 = Co+ - G0 _ of the Gram operator C0 and 
let 7-b- = c17(Go-) and 7-bo+ = 'Ho e 7-bo-• Therefore 

rankG0 _ = dim 7-b_ = ,.(Ho) = r. - (I - A D A).	 (35) 
Further, letting

G = Go+ e 'c1ei	and	G = G0 _ ED 1c2e2 
from (3.4) it follows that C = G - G is the Jordan decomposition of G and 7-1= 
71+ ED 7H_ is the corresponding spectral decomposition, where 

7-b k = 7-10-1. (c1 e fly)	and	7-L = 710	(G2 e 7-12).	(3.6) 
Remark 3.2. It is interesting to note that we can compute explicitly the operator 

Go, and hence the operator C. More precisely, taking into acount the form of the 
orthogonal projection onto the graph of an operator (see, e.g., [16]), with respect to the 
decomposition 7-11 e 7-12 we have 

(I+AA)'	(I+AA)'A 
P7.(o=

(I+AA'A -(I+AA'AA 
and hence

J1 - A'J2 A	(Ji + AJ2A)A 
C0 = P 0 JP 0 = B

	

	 B	(3.7) 
A(J1 + AJ2 A) A(J1 - AJ2A)A 

where
(I+AA)-1	0 

B=
0	(I+AA')1 

But, it seems that this does not help us too much, unless we can calculate the Jordan 
decomposition of a selfadjoint operator as in the left side of (3.7). 

The basic observation in [15] is that the fl-maximal non-negative subspaces corre-
spond, via the angular operator method, to contractive dilations of A. We next adapt 
this idea to our setting, even though due to the indefiniteness of the spaces 'H I and 7-12 
we cannot simply use the angular operator method from the Krein space theory. On 
the other hand, we are able to perform this only in case A is a quasi-contraction, that 
is r. - (I - A'A) <o. Note that in this case the operator G_ has closed range and the 
results in Lemma 2.4 apply.
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Lemma 3.3. Assume that (I - A*A)= ,c < oo and let £ be an 7-1-maximal 
non-negative subspace. Then 

A. : E = PC, , L Pç,f '-4 Pç2 f	(1 E £)	 (3.8)


is correctly defined, codimç,E = i, and the pair (A,,,, E) is in CD(A;Q1,g2). 

Proof. Let £ be an 7-1-maximal non-negative subspace. We first note that, since 
£ c 7-1 and (3.3), we have

AP,,f = P12f	(1 € C).	 (3.9) 

We first prove that Pc, IL is injective. To this end, let f € £ be such that PG , f = 
Since 7-1 c 9 1 we have P,f = P7, Pc1f = 0 and hence, by (3.9), it follows that 
P-, 2 f = 0 as well. Therefore, f E ftC e (c' ED 7-12) = 92 e 7-12 . This implies f = 0 since I 
is a non-negative vector and the subspace 92 e 7-12 is negative. 

As a consequence of the injectivity of the operator P, IL, we get that the operator 
A as in (3.8) is correctly defined and 

r= {f+A,jfee}.	 (3.10) 

For the moment all we can say is that A is a closed operator and E is a linear manifold 
in Gi. Since £ is non-negative we have 

[Ax,A,x] <[x,x]	(x E E), 

that isA is contractive. In addition, for arbitrary x E e we have 

P 2 Ax = P 2 (x + Ax) = AP-,(x + Ax) = AP-,x 

and hence P7. 2 A = APN 1 IE holds. 

We now prove that the codimension of the linear manifold E in G is exacly ,c. Since 
C is a 7-1-maximal non-negative subspace, by Proposition 2.4 there exists the generalized 
angular operator K,• : 7-1+ - 7-L such that 

£= {x+KtxxE7-1+}. 

Taking into account (3.6) we get 

Pç,C+7-10 _ 2 7 1 (c 1 e7-1 1 )=c1 .	 (3.11) 

We claim now that the operator Pc, is injective also when restricted to the subspace 
£+7-1_. Indeed, let 1€ £ and h € 7-1— be such that PG , ( l+h) = 0. Since h E 7-li 712 
this implies P,h = P-,,h and hence Pç,l = —P,, h, therefore Pg, e7j , I = 0. Thus, 
I E 7-1	(92 e 7-12) . Taking into account (3.3) it follows that 1 = (x+ Ax) + 92 for 
some 92 E 92 e 7-12 and x =	h. But, by the construction of the space 7-1_ we have 
h = x + Ax where x =	h, and hence 1 = —h + 92 Now remark that the subspaces
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fib— and g2 fl2 are negative and orthogonal with respect to the inner product [_1 .1 
and hence the vector I = —h + 92 is either negative or null. But 1 is non-negative, as 
any other vector in £, and hence 1 = 0 and h = 0. The claim is proved. 

Since £ is a non-negative subspace and 7-t 0 _ a negative subspace it follows that the 
sum £ + 1-1_ is direct and, taking into account that Pc, is injective on C+* ho—, from 
(3.11) we get 

which proves that the codimension of E in 9 1 is exactly dim flo_ = ic 

We now prove that E is closed. First consider the subspace fl = ker(P 0 _ K) 
C fl and remark that codim 7 fl	dim flo_ = re. Define the subspace £' of £ by 

£'= {x+KxxE7-i} 

and note that since Kc Hi ç 92efl2 it follows Pç,C' = P91 1-C+ . Since 'H +  a subspace 
of fl it follows that

'H' = {f+AfIfePc,fl}. 

Since fl is closed and A is bounded it follows that P,1-(' = Pç,L is closed. Taking 
into account that codimePç, C < ic oo it follows that the linear manifold E is closed, 
too.

Finally, since the operator A c,. is closed and its domain E is a subspace, the Closed 
Graph Theorem implies that A is bounded I 

Lemma 3.4. Assume that ,.c_(I—AA) ,c <. If(A;E) is in CD(A;gi,g2), 
then

£ = {x + A,,.xl x E Ej	 (3.12) 

is an fl-maximal non-negative subspace and codimç 1 E = ic 
Moreover, this is a bijective correspondence between the class CD(A; 91, 2) and the 

class of fl-maximal non-negative subspaces. This correspondence is inverse to that in 
Lemma 3.3. 

Proof. Since A, is contractive we readily check that £ is non-negative. To prove 
that £ is a subspace of 71, let f = x + Ax for some vector x E E. Then 

AP,j ,f = AP, (x + Ax) = AP7 ,x =	= P 2 (x + A,.c,x) P2f. 

In view of the definition of 71 this implies that £ ç R. 

From Lemma 2.4 it follows that there exists an 7-1-maximal non-negative subspace 
£ D L. Then, by Lemma 3.3 we get that P,r is a subspace of 9 1 of codimension 
it. Since Pç1 C D Pç,L = E is a subspace of codimension in 91 at most it it follows 
that P 1 L E, in particular £ = £ is an 71-maximal non-negative subspace and 
codimç, E = ,c I
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4. The main result 

Let R, and R2 be Krein spaces and consider two operators Ti E 8(7i,) (i = 1, 2). We 
assume that there exists pairs (V1; ) (i = 1, 2), subject to the following conditions: 

(a,) 1, is a Krein space extension of 'H i such that gi fl	is positive definite, 
that is a Hubert space. 

(b 1 ) V1 E B(,) is a dilation of Ti , that is PV, = T1P,. 

(c i ) V1 is expansive, that is [VI x, V, x] > [x, x] for all x E 91. 

(c2 ) V2 is contractive, that is [V2 y,V2 y]	[y, y] for all y  92. 

As a consequence of assumption (b 1 ) it follows that g i fl	is invariant under the

operator V, (i = 1, 2). 

Definition 4.1. Let A E 8(1-1 1 ,1-12 ) be an operator intertwining the operators T1 
and T2 , that is AT, = T2 A. The set of contractive intertwining dilations of A, denoted 
by CID(A; Ti , T2 ), consists of pairs (A, E) subject to the following properties: 

(1) E is a subspace of 9 1 of codimension at most ic_(I — AA), invariant under Vi. 

(2) A E 8(E, 2) is a contraction, that is [Ax, Ax]	[x, x) for all x E E. 

(3) P 12 A. = AP7., I 

(4) A,,. V, I  = V2 A,.,. 

We consider the W-space 1-1 as in (3.2). With respect to the decomposition (3.1) of 
the Krein space K: we define

0V2 

yb 	
(4.1) 

Lemma 4.2. The subspace 1-1 is invariant under V. 

Proof. Let h be an arbitrary vector in 1-1. By (3.2) we have h = x + APE , x + y 
for some vectors x E 91 and y E 92 e 1-12 Then, by the definition of V, we have 

V(x + AP7 ,x + y) = V1 x + V2 AP71 x + V2y 

= (Ph , Vi   + P72 V2 AP?.( , x) + Pç, 0-,., Vi 	(4.2)


+ (Pc 2 e- 2 V2 AP,x + V2 y). 

We take into account that V1 are dilations of Ti and that AT, = T2 A, and get 

P-, 2 V2 APi.j ,x = T2 AP,x = AT, P7 ,x = AP71Vx, 

therefore
P,Vix+P2V2AP,x = P-7 ,Vi x+AP 1 Vi x E 1-10-

Since 92 e 1-12 is invariant under V2 , we use (4.2) to conclude that Vz E ill
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By means of. Lemma 4.2 and in view of the results in the previous section, we 
conclude that the invariant subspace representation of the set CID(A; T1 1'2) holds in 
this setting, similarly as in [5].. 

Lemma 4.3. Let (A,() be an element in CID(A;Ti ;T2 ). Then the subspace 
£ defined as in (3.12) is N-maximal non-negative and invariant under V. This cor-
respondence is bzjective between the set CID(A; T1 T2 ) and the set of all 1-1-maximal 
non-negative subspaces invariant under V. 

Proof. Most of the statements are already proved in Lemmas 3.3 and 3.4. Only 
the invariance property must be checked. Let (A; () be in CID(A; Ti , T2 ). If f is an 
arbitrary vector in £, then I = x + Ax for some x E E. Then 

Vf = V(x + Ax) = V1 x + V2Ax = V1 x + A,0 Vj x EL. 

Conversely, let £ be an 'H-maximal non-negative subspace invariant under V. If x is an 
arbitrary vector in 1, then V(x + Ax) E £ and hence, V1 x = y and V2Ax = Ay 
for some Y  E = Pç,L. Therefore, VI E c (and V2A = AV1IEU 

The main result of this paper is the existence of contractive intertwining dilations 
for quasi-contractions in KreTn spaces. 

Theorem 4.4. If A is a quasi-contraction, then the set CID(A; Ti , T2 ) is non-void. 

Proof. We verify that the hypotheses of Theorem 2.6 are fulfilled. First, since V1 
is expansive and 1/2 is contractive, for any vector x = x 1 + x 2 with x 1 E 91 and x 2 E 92 
we have

[Vx, Vx] = [Vi x i , Vi z i ] - [V2 x 2 , V2 x 2 ] > [x 1 ,x 1 ] - [x 2 ,x 2 ] = [x, x), 

that is V is expansive and hence it maps non-negative vectors into non-negative ones. 
Since dimflo_ = r, - (I - AA) < oo it follows that the operator G has closed range 
(cf. (3.5)). We now take into account (3.3) and get that 

Pi. + VP	(P0 + Pç,ej.j ,)V(P.j.jo + P0302) 

=(P 0 +Pc 1 ©i ,) VP	+P€o+ VPc 2 ei2 +Pcie,VPc2ei2. 

From (4.1) it follows that PC, e, 1 VPc 2 e 2 = 0 and, since 92 N2 is invariant under 
V2 and No+ c 1-1k N 2 , we also have that . P10 VPç,02 = 0. Therefore 

P7. + VP, zz(P 0 +Pciei.j,)VPi 

and hence rankPii VP j < dim No_ = K < , in particular, the operator 
is compact. 

The assumptions of Theorem 2.6 are verifed and hence there exists an 'H-maximal 
non-negative subspace invariant under V. In view of Lemma 4.3 this implies that there 
exists a contractive intertwining dilation of AU
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Theorem 4.4 is mostly useful in the case that Ti are contractions and V1 € B(G,) are 
isometric dilations of T1 (i = 1,2). These isometric dilations always exist, even with 
the minimality property V>0 V1 11 N, = 9i in addition, and, in this case, they are unique 
modulo unitary equivalence (see, e.g., [9)). 

We finally indicate how our Theorem 4.4 contains some other results on the existence 
of contractive intertwining dilations. 

If 'H I and N2 are Hilbert spaces and A is a contraction, that is K_(I - A* A) 0, 
then this is the classical theorem of lifting of commutant of D. Sarason and B. Sz.-Nagy 
and C. Foia., as well as its other generalizations (see, e.g., [23]). 

If 7- 1 and N2 are Hilbert spaces but A is a genuine quasi-contraction with 0 
- A* A) <cc, then we obtain the result of Ball and Helton (cf. [5: Theorem 4.2], 

but also [3: Theorem 3.1]). 
Assume now that both N 1 and N2 are Krein spaces and that A is a contraction 

with r. - (I - AD A) 0. If in addition A O is a contraction, one obtains a particular case 
of Theorem 3.5 in [9] and otherwise one gets Theorem 3.2.1 in [12]. 

Finally, if N 1 and N2 are Krein spaces and A is a genuine quasi-contraction, our 
Theorem 4.4 covers Theorem 4.1 in (2). 
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