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of Periodic Generalized Functions
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Abstract. Let n denote a strictly positive integer. We construct a complex differential algebra
Gn of so-called 27-periodic generalized functions. We show that the space D;(:) of 27-periodic
distributions on R" can be canonically embedded into G,. Next we lay the foundation for
calculation in G, . This algebra G, enables one to solve, in a canonical way, differential problems
with strong singular periodic data which have no solution in D;(,,").
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1. Introduction

In the last two decades, the attempts to overcome the impossibility result of L. Schwartz
concerning the multiplication of distributions (see [10]) have progressively lead to the
. elaboration of the theory of generalized functions. The main contributors are H. A.
Biagioni [1}, J. F. Colombeau [3], Yu. V. Egorov [6], M. Oberguggenberger (7] and E.
Rosinger [9]. See (7, 8] for a comprehensive account of the topic.

One major motivation of this theory is that some differential problems such as
nonlinear problems or even linear problems which have no solution in the space of
distributions can admit solutions in algebras of generalized functions.

The existence of differential algebras with a canonical embedding of distributions
as a linear subspace and having optimal properties was evidenced by J. F. Colombeau
(see [4]). These algebras of generalized functions are named Colombeau algebras.

Nevertheless, apart from the author’s works in {11, 12]- where the embeddings of
distributions in algebras of generalized functions are not canonical, nothing has been
done in case involving periodicity.

‘This paper is devoted to the construction of an algebra, whose elements are called
pertodic generalized functions, with a canonical linear embedding of 27-periodic distri-
butions, and where periodic of mathematical objects attached to it, such as Fourier
series, play a basic role. More precisely, let n denotes a strictly positive integer and let
A be a subset of the smooth 27-periodic functions on R”. Then our algebra, denoted
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by Gn, is a factor of an a]éebra of functions defined on A(™ with values in the algebra
of smooth 27-periodic functions on R”; in this way we follow Colombeau'’s idea.

2. Notations

Weset T = [—m,+7], R} = (0, +00) and N* = N\ {0}, where N is the set of non-negative
integers. For each n € N*, let ]:2(:) denote the algebra of 27-periodic complex-valued
measurable functions on R™ and Sé:) the subalgebra of C*°-functions in fé:) with the

topology of uniform convergence of functions and their derivarives. If u € Eé::) and
a = (aj, ldots, ay) € N*| we set

a. a ay a Qan
a“‘(ﬁ)« '“(axn) |

Ly ={fery

For ¢ > 1 we set

e = (e [, 1f@)dz) " < oo}

257 = {1 € 2| Il = ess sup|f(2)] < +o0}.

We denote by D;(:) the space of 2x-periodic distributions on R”, that is the topological
dual of é'é:) which is considered as a subspace of D'(™). An element T of D;(,r") which is
a function acts on f in E,S;) by (T, f) = ﬁ fzn T(z)f(z)dz. If p€ Z™, x € R™ and
Te 'D;(:), then the Fourier coefficient of index pof T is denoted by f(p) or'fp, and e'P?
is denoted by e,(z), where pz = p1z; + ...+ pazn. The periodic Dirac measure, that is
3" ey, will be denoted by é,,, or by § if no confusion can arise. We have (f,,),, € S'(Z™)
and (u,), € S(Z") for u € S.LE:) where §$'(Z") and S(Z") are the complex spaces of
slowly increasing and rapidly decreasing sequences, respectivgzly.

3. The definition of the subset A™

We now define some special subsets of f,'é:r) and Sg:) which are needed for the construc-

tion of our algebra. Let me N, I, = {p€ Z||p| <m},n € N*and xy € 88,). We define
the following subsets:

AR = {Lp €& dp)=1ifpe Im}
A = {(p € é‘é:) : ¢ = $®™ for some ¢ € E,'é:)}

A — U AE:)
meN -

AD(x) = {¢ € &7 @) = 1t p € I, 6] < IRP) i p & In}

AM(x) = {<p € f,'é:) : ¢ = $®" for some ¥ As,ll)}.
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We note that
AP = | AR,

xétgl,)

Let € £ and ¢ = $®". We have 3(p) = %(p1) - (pa) = $®"(p) so that if

p € A ,then g(p) =1for p€ I, and if p € A(")(x) then <p(p) =1 for p € I, and
18(p)] < 1X®"(p)| for p & I'm

We define p,, = szI.,. ep. Clearly we have that pn € AL, so Pm e AW, We
note that .

sin(m + 1)t .
(.—12) and lim p®" =6 in DQ(:).
sin 5 . m—+oo

pm(t) =

4. The construction of the algebra G,
Let X, denote the algebra of Eé:)-valued rrizips on A(™. We define the sets
for all x € S(l) and a € N” there exist r € R )
X(™ =du€Xy| NéNandc>0such that, forallm> N,
0 € AD(x) = 19°(u(¢Dlloo < c(m +1)"
for all ¥ € c‘:é:,),a € N" and ¢ > 0 there exist )
N =Luex, N € N and ¢ > 0 such that, for all m > N,

v € AV = 10°(u(@)llo < e(m +1)77 )
Proposition 1. X is a subalgebra of X, and N™ is a subalgebra of X(™).

Proof. Obviously X(™ and A" are algebras and N(®) c x(7). By using the
Leibniz formula it is easy to show that A(") is an ideal of X(*) W

The following lemma will be useful in the proof of many propositions of the first
part of this paper.

Lemma 2. Let u € X, fulfil the following property:

For all x € E;(,rl) there exssts (by)p € S(Z") such that for all a € N™ there ezist
(ap)p € S'(Z™) and N € N that, for all m > N, p € AP (x) implies [8*(u(¢))|lco <

gl apb,.
Then u belongs to N,

o
Proof. Let u € X, satisfy the above property, x € f,'é,,),a € N™ and ¢ > 0. There
exists N € Nsuch that if o € .AS:)(x) and m > N one has, with the previous notations,

18°(u(@lloo < Y apby.

pein
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On the other hand, since (1 + |p|)™? < (1 +m)~¢ when p does not belong to I, we set
16° (u(@Nlloo < (D _(1 + Ipl)?apbp) (1 +m)™?

for any ¢ in A(")(x) withm > N

Now we glve a characterization of the subalgebras X(®) and A'(") by the Fourier
coefficients u(<p)(p) of u(y) for p € A™, u € X, and p € Z".

Proposition 3. Let v € X,,. Then we have the following assertions:

(a) v € X if and only if for all x € Eéi,) and s € N there ezist r ¢ R, N € N and
¢ > 0 such that, for allm > N, p € As,?)(x) and p € Z",

C

Tul@)(P)] < c(m +1)"(1 + [1p?) .

(b) u € N™ if and only if for all x € Sé:,),s € N and g > 0 there ezist N € N and
¢ > 0 such that, for allm > N, p € As:)(x) and p € Z™,

lu(@)(P)] < e(m +1)79(1 + [|pl*) 7.
Proof. Since assertion (b) is similar to assertion (a), we shall only prove the last

one. For this let v € X y € 5(1) and s € N. From the definition of X(™) we derive
that for each o € N* with |a| < 25 there exists Ta € R,N, € Nand Ca > 0 such that,

for any ¢ € Aln )(x) with m > N, one has

18%(w(@))lloo < calm +1)™.

On the other hand, for any p € Z™ we have

3(u(@)(p) = (i) u(@)p)  and  [35(u(@))(P)] < 10°(u(¢))lloo
so that

( sup |p” |) lu(@)®)l < > 10*(u(®))loo-

a<2s

Moreover, it is well-known that there exists a strictly positive constant v depending
only on n and s such that, for any z € R", one has

> 1= = (1 + fall?).

lal<2s

By taking

r= Zra, N = ZNQ, c=~"" an

la|<2s lal<2s lal<2s

the assertion now follows i
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We are now in position to give the definition of the algebra G,,.

Definition 1. The algebra G, of periodic generalized functions is the factor a]gebra
XM A,

If u € X, and z € R™ we set u = (up),eam OF ¥ = (uy)y, [u(p)](z) = u(p,z),
and for any a € N" we define 8°u as (8°uy),. Clearly it holds 8*(X(™) c &™),
So if U € G, and u is a representative of U, writing cl(u) to denote the class of u,
we can consider cl(8%u). Because 8*(N(™) c N cl(8%u) is independent of the
representative chosen. Then if we define 9°U as cl(9%u), G, becomes a differential
algebra which is obviously assocative and commutative, with cl((1,),) as unit element
where 1, = 1 for any ¢ in A(™.

5. Some basic properties of G,

We recall that the convolution of two elements fand g in L;Sr") is defined by
(F+9)e) = gz [ Fe = vy = s [ o - v)ay
*g)(z) = —— T — = — z — .

g o) Jon ve)dy = oo | fWle(z —y

Whenever T € 'Dz(") and ¢ € 5%,,), the convolution T * ¢ = ZT(p)cp(p)e, belongs to
("). On the other hand we have (T, ) = 3 T(p)@(—p).

The definition of a canonical linear embedding of D;(:) mnto G, 1s based on the
following two propositions.

Proposition 4. If T € D™, then (T * ¢), € X(™.

Proof. Given T € D2(") X € 8.2,) and a € N", there exist s,A € R such that
IT(p)] < A(1 + |Ip||)* for all p € Z". We can write

(Tre)= 3 0 T@)ePes + 3 (i) T(p)E(P)ey-

pEIR p€lIp,

We have |(ip)°| < m"l®| whenever p € I and card I, = (2m + 1)". Then for ¢ €
AP (x) it follows '

16°(T * @)lleo < A((2m + 1)Pm (1 + my/R) + 3 111 + 21 1R2(P)1)

and from this last inequality we obtain

18°(T * 9)lloo < A(27n%/2 + 315211 + I1p1)?IRO()]) (m + 1)l D+

which means that (T * ), € X(™ 11
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Proposition 5. Ifi: D;(:) — XM is defined by i(T) = (T*go)‘p, then i'is o linear
one-to-one map satisfying i‘l(/_\/(")) = {0}. .

Proof. Obviously i is linear. Let T € D™ such that i(T) = 0. Then T *¢ = 0 for
all ¢ € A", hence if m is any element of N we have T *p®" = 0. Since limm_—400p% = §

in Dz( ™ and T+ 6 = T, it follows that T = 0.
Let us now prove the second claim. Clearly we have i(0) = 0 € A(™. Suppose

that T € D;(,,") and i(T) € N(™. 1t follows from the definition of (™ that there
exists (N,c) € N x R} such that ||(T * p&")||lcc < ¢(m + 1)7! for m > N. Therefore

limm—too(T * p8") =0 in DZ(,,) ftom which one concludes that T = 0 .

Corollary 6. The linear map j: D27r — Gn defined by J(T) = cl(i(T)) is one-to-
one and the relation j(3°T) = 0*(j(T)) holds true for any a € N™. .

Proof. Thisis an obvious consequence of Proposition 5 and the well-known relation
0% (Txp)=(0"T)*

For f € Sé,':), let (f), denote the sequence taking the constant value f. Clearly
(f)y € X™ hence we can consider cl((f),) in Go. We have the following

Proposition 7. If f € £, then (fx o — f), € N(W,
Proof. Given x € séi,) and p € As,':)(x), we have
fro—f=3 (8 -1)f(p)e,.
peln,

Hence for any a € N” it holds

10°(fx o= Fllw < Y 1p° I( I "(p)| + 1)If(P)I

p€In,

Now by applying Lemma 2 to u = (f * ¢ — f), with a, = [p®|(|X®"(p)| + 1) and
b, = |f(p)l, we conclude that (f +¢ — f), € N 8 .

Corollary 8. The map o : &g:) — Gn defined by o(f) = cl((f)y) s a one-to-one
morphism of differential algebras and jls(") =o0.
2

Proof. Obviouslysisa one-to-one morphism of differential algebras and the second
claim follows straigtforwardly from Proposition 7l :
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6. The relation of association

We can identify an element T € ’D;(,,") with j(T) and say that a generalized function

is a distribution if it belongs to j(’D2(:)). But there is another natural way to compare
distributions and generalized functions, namely the association process.

Definition 2. An element U ¢ 'D;(:) is said to edmit T € D;(,,") as an associated
distribution if U has a representative u such that

1
1 _— ®ﬂ =
lim @n)" /I [w(p™))(z)f(z) dz = (T, f)
forall f e 5%:). This relation called association will be denoted by U=T.

We claim that this definition is independent of the chosen representative u. For, if
U =0, that is u € A", there exist N € N and ¢ > 0 such that [|u(p@")||eo < c(m+1)"
for m > N, from which it follows that U ~ 0. '

It is easy to see that every distribution is associated with itself, that is, iM=T
for T € D".

2m

Definition 3. Two elements U and V in G, are said to be associated or - weak!
equal if U — V is associated with 0. In this case we write U ~ V. ’

Obviously association is an equivalence relation which is compatible with addition
and differentiation but not with multiplication as shown by the following example.

Example 1. Let d € X(!) be defined by d(¢) = ¢. Then d and d? are representa-
tives of j(é) and j(§)?, respectively. We have limm_400SinZ - pm = 0 in Dg(,,l), that is
i(sinz) j(8) = 0, but j(sinz)? j(6)? =~ j(cos? £). So j(sinz)? j(6)? # 0.

Proposition 9. We have the following assertions:

(a) If f and g are two elements of Lgs,"), then j(f)i(9) = fg.

(b) If f belongs to E7) and T to D™, then j(f)j(T) ~ fT.

Proof. Let ¢ € 8%2). If we set dy = (2—;3—,‘d:c, then we can write o
/I [(f *p3") g+ pS") — fg| ¥ du
= /I (f *P2")(g % p&" — g)b du +/I (f*p3" = fgt dp

whence we obtain, by applyfﬁg the Cauchy-Schwarz inequality,

‘/I [(f *p2")(g * &™) — fg] P dy

< (IF * 62 llalg * £8™ = glla + 115 * 2" = Fllallgll2)Iblloo-

©
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Now by using the Parseval equality we have the following relations:

A

If % o212 < NI fll2,

lg* " — gl = > 13(p)
pPEIN,

If o2 = flIE =Y If)I.
p€I7

Whence from the convergence of the series 3" |f(p)|2 and 3 |§(p)|> we derive that
the last two sums converge to 0 whenever m — +oo, proving assertion (a). Since
i(f) = o(f), assertion (b) becomes obvious il

7. Restriction to subspaces

Let k and n be integers such that 1 < k < n and U € G,. We denote by u a represen-
tative of U and by F the subspace {r € R™ : z441,...,7Zn = 0} of R® that we shall
identify with R¥. We define the restriction of u to F as the element of X(*), denoted
by u|, such that for any x € Al

() (%) = [B(x®™)]
IfveX™ and u—v € N then ur —vr = (u—v)r € N So we have the
following definition.

Deflnition 4. If U € G, and u is a representative of U, then the restriction of U
to the subspace F denoted by U)r is the element of Gx defined by Ujx = cl (u|5).

If no confusion can arise, for any strictly positive integer ! we shall denote the em-
bedding of Dg(,i) into G; by the letter j. The following statement is a result of coherence.

Theorem 10. We have the following assertions.
(a) If f is an element of Eé:), then j(f)7 = i(fiF)-

b) If T € D™ is a continuous function with continuous partial dersvatives o
2w

order lesser or equal | with respect to the last n — k variables where | > 25X, then

p
I(T)r = i(TiF).
() IfT € 'D;(:) is continuous with Y |T(p)| < +00, then I(Thr =i(TyF).

Proof. We identify R" with R*¥ x R"~* and denote an element z of R™ by (:z:' T );
we shall use the same convention for Z". The partial derivatives of T with respect
to z will be denoted by 32’3 for B € N"~*, Since assertion (a) follows directly from
Proposition 7, we shall only prove assertions (b) and (c).
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If f € £5F and € € T*, we set fe = f(- — €) and T = T(~¢, ). We have

(T8 ) = ot [ [ [ 7€~ v a] st

By the Fubini theorem and the subtitutions ¢ =y’ — 75, 2’ =y’ and 2" = —y" we derive
that

n _ 1 1 " ' n
((T* 8", f) = @) /I [(%)k /P Te(y") fe(y )dé] P (y) dy.

For £ fixed , let ap(¢) denotes the Fourier coefficient of index p of T ® f¢. Since
Fe(@') = e ' Ef(p'), we have a,(€) = e~*P€ f(p')Te(p"). Now we want to prove that
the sum ) |a,(£)| is finite in order to derive that T¢ ® f¢ = 3 a,(£)e, by using the
continuity of T¢ @ fe. Since (f(p')),,r belongs to S(Z*) we only need to prove that

¥ ITe(p")| is finite for 3 Jay(€)] = (X 1F(2)) (T [Te(p™)))-

Let B € Z™~* with |B| < I. Since afTE is a continuous function, it follows that afTE
belongs to L?(Z"~*), and since 2 Te(p") = (ip")ﬂi‘;(p"), by the Parseval equality we

derive that
> [ Y@ |Te( )P = Y 105 Tell3

|BILt 18I1<!t

where || - ||2 is the L?-norm in L%(Z"~*). On the other hand there exists ¢ > 0 such that
Cipici@)?? 2 1+ [Ip"|?)! thus

ST+ TP < e Y 185 Tel3 < +oo.
18It

Now using the Cauchy-Schwarz inequality we obtain .

S < [0+ TR [ Sa+ i)

When I > 25% then the sum 3 (1 +||p"||?)~! is finite, and so is 3 |ﬁ(p”)|, proving the
expected result.

From the equality T ® f¢ = 3" ap(€)ep, by the Fubini theorem and the uniform
convergence of this series in R" we get

(T 085 1) = ﬁ/z (Z ap(é)) de.

pEIR

Since BfT is continuous for |B| < I, so is £ — ||8£T5||% Thus this last function is
bounded on Z¥. Then we can derive from the above inequalities that e ap(é)

is uniformly bounded with respect to m on the set I*. Whence we derive from the
Lebesgue bounded convergence theorem that

Jim [ ( > ap(s))d£= L (San@) de= [ r-c.00-0e.

peIy,
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Finally we have

lim (T )5, f) = ﬁ /I T(€,0)£(¢) d¢

m—-+o0
which implies that j(T)r ~ j(Tj5), and assertion (b) is proved.

Now we shall prove assertion (c). It follows from the fact that 3 IT(p)I is finite and
from the continuity of T that T = ET(p)e,, holds, whence we obtain

T+pS" =Y T(p)e, and  (T*p8)r= Y T(p)ey.
. pein . peln

Now we can use again the Lebesgue bounded convergence theorem to obtain the weak
equality of j(T)r and j(T|5) 8l

8. Periodic generalized complex numbers and point values
Let C denote the algebra of complex-valued maps A defined on A" and satisfying the
property: -

For all x € €Y there exist r € R, N € N and ¢ > 0 such that, for all m > N and
¥ €AV, W) < e(m+1)".
Further, let 7 denote the subset of C consisting of elements ) satisfying the property:

For all x € £ and ¢ € R there exist N € N and ¢ > 0 such that, for all m > N
and § € A(x), IA(®)| < e(m +1)1.

We have the following
Proposition 11. If T € D™, we set (T,u) = (T,u(z/)®"))¢ for u € X, and
¥ € AW, Thea T(X™) C C and TN ™) C J.

Proof. These two inclusions can be proved in the same way, thus we just prove the
first one only. Let u € X(™. If p € A™, we have (T,u(p)) = ¥ T(p)u(¢)(—p). Let
€ £, We choose s € N fulfilling 3 |T(p)|(1 + ||pl|?)~* < +00. From the definition

of X(™) there exist r € R, N € N and ¢ > 0 such that for any ¢ € AS,'.')(x) withm > N
and any p € Z" one has

[u(e)(P)| < c(m +1)7(1 + ||pl?)~".

Then wé have

(T, u(e))l < [cz ITEI( + [1pI?)™*] (m + 1)

for any ¢ € As,'.')(x) proving that (T, u) € C1ll
Obviously C is an algebra and J is an ideal of C, therefore we give the
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Definition 5. The algebra of periodic complez numbers is defined as factor algebra

c=c/J.

Subsequently, speaking about elements of the algebra C, we shall omit to mention
periodic.

To each complex number z we can assign the class in C of the constant map A such
that A(¥) = 2 for all ¢ € A()). Thus we define a morphism between the algebras C and
C which is clearly a canonical embedding. We denote it by 1.

For any n € N there also exists a canonical embedding of C in G, as follows. If A
denotes a generalised complex number with A as representative, then we assign to it
the element of G, which is the class of [$®" — A(¥)]. Obviously this class does not
depend on the chosen representative A. Then we define a one-to-one morphism which
is denoted by j.

Deﬂnition_ 6. An element U of G, will be called constant if there exists A in C
such that U = j(A).

Let z € R™" and U € G,. If u and v are two representatives of U, it is easy to see
that {¢p — (u — v)(¥®")(z)] is an element of J. Thus we give the following

Definition 7. Let z € R® and U € G,. Then the point value of U at z is cl [¢p —
u(yp®")(z)).

Clearly if U is constant, then U takes constant point values but the converse is false
as shown by the following example.

Example 2. For m € N* let ¢,, denote the function in Sé',:) defined by pm(z) =
sinz -exp(—msin® z;). Let u € X, be such that u(p®") = ¢,, and u(p) = 0 otherwise.
Clearly u € X(™. Then we can set U = cl(u). Let z € R*. If sinz; = 0, then
om(z) = 0, otherwise [pm(z)| < exp(—msin® z;) with sin? z; > 0. Then we conclude
that U(z) = 0 for any z € R™. On the other hand we have

0 . .
——@m(z) = cosz;(1 — 2msin’® z;) exp(—msin’® z,).

61‘1
Hence we derive that

aiﬁtpm(o,zg,...,z,,)=1 for any m € N*

whence u € N that is U # 0.

Remark. We can also take ¢, such that ¢n,(z) = cosz; - [1 — En(sinz,; )] where
E,. is an elementary factor of Weierstrass, that is the function defined on C by En(z) =

(1 —2)exp(z + ;—T + ldots + :n—":)
The notion of association in C is provided by the following

Definition 8. Two elements A and A’ in C are said o be associated if they admit
representatives A and A’ such that limm_.+°°[/\(p,_,,)— M(pm)] = 0in C; we write A == A",
One says that A is assoctated with z € Cif A = i(2), that is limmp, 400 AMpm) = 2.

Obviously the association in C is an equivalence relation. Now we shall compute the
point values of [j(6)].
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Example 3. For any ¢ in A" we set o(p) = sup{m € N|p € AEA‘)}. Let ¢ be

defined by di(¢) = P?}:,)- Obviously d) € X and if ¢ = %®" with ¢ € AM) then

o(p) = o(1). We recall that d is defined by d(p) = ¢ (see Example 1).
If o € A, then d(p) — di(p) = 2 pern #(p)ep. Thus for x € £, a € N" and
pE As,'.')(x) we have that

[0° (d(e) = di(@) ]l < D P°HIRE D).

peI},

Now from Lemma 2 it follows that d; — d; belongs to N hence j(§) = cl(d;).
Consequently if z € R", we have

(6))(2) = <l (da(w®", ), = a1 | [ 2ot )z

Since o(pm) = m,
on _ - [sin (m+ %)Ik]
dl (pm ,.T:) - k|=|l Sin %‘ .

In particular, d;(p&",0) = (2m+1)" whence limm— 400 d1(p2",0) = +00. Subsequently
we shall denote this last equality by [j(6)](0) ~ +oo.

Now we introduce some rudiments of the integration theory for periodic generalized
functions on compact subsets of R®. This will be sufficient for our purposes, in par-
ticular, to define the Fourier coefficients of periodic generalized funtions (which involve
only integration on I7).

9. Integration on compact subsets of R

Let K denote a compact subset of R" and u an element of X("). Then for any 1 € As,l,),
u(¥®") is integrable on K and

e O

is clearly an element of C. On the other hand if v € X(™) is such that u — v € M),
then .

v [ - o) de
K
belongs to J. Therefore the following definition makes sense.

Definition 9. Given U € G,,, the integral of U on the compact set K of R" is the
element of C denoted by [, U(z)dzr and defined by

[o@d=a(s - [ uweie )
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where u is an arbitrary representative of U and 3 € A1),

Note that the expression U(z) under the integral is just a notation and must not be
confused with the point value of U at z. It is obvious that this kind of integration has
the property of linearity as the classical one. Thus we are going to give some further
results of coherence.

Proposition 12. If U and V denote two elements of G, then for any o € N™ we
have

/6°U(a:)V(x)dx=(—1)|°’|/ U(z)8°V(z)dx.
In In

Proof. This result is a direct consequence of the fact that on the one hand u(y)
and v(y) are 27-periodic for any ¢ € A(™, u and v being representatives of U and V,
respectively, and on the other hand, integrating by parts, this equality holds with U
and V in £ 1

Proposition 13. Let K denote a compact subset of R and f an element of fé:)
Then we have the following assertions:

(a) If f € LE™, then [, [i(f))(z)dz ~ [, f(z)dz.

(b) If f €&, then [, [i(/)(z)dz =1 (fy f(z)dz).
Proof. Let f € L?(Z"). Then by the Cauchy-Schwarz inequality we have

’/K(f*pﬁ" - f)(z)dz| < \/m(/x If + p®" — f|2($)d:z:)l/2'

On the other hand, there exist k¥ € N* and k translations 7,,...,7¢ such that K C
U, 7i(Z™). Thus we obtain

k
* ®n _ 2 dz < * Qn _ 2
15 eo8 - 50 D N SO

and since the integrals of the right-hand side are equal to [, |f * p8" — f|*(z)dz it
follows that

1/2
< Vkmes K ( > If(p)l’) :

PEI;,

l/K(f*pﬁ" ~ Pe)de

By assumption f € L?(Z"), hence limpy— 400 szI" |f(p)|2 = 0 whence we deduce that
assertion (a) holds. Assertion (b) results directly from Proposition 7 i

Proposition 14. We have the following assertions.

(a) If S and T are two elements of D™ then

2w

e [ BN BTIE)de = el (8 + T, 927)) o
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(b) If T is an element of 'D;(,,") and f belongs to 55:), then
1 e . dz = (T
& L IDI@ GO d =T, 1)

In particular

G L BN le-p)Iz) dz = (7).

Proof. Let x € Sé:) and ) € As,l,)(x). By setting ¢ = ¥®" we have

a5 |5+ o))t = Y 5,6,0-06,

= Z SpT-pp—p + Z SpT—pP—pPp-
PEI] PEIL

Since (S+T,p) =S §pf_,$_, we derive that

< D URER + 1) I5,T, K82

peIn,

T (54N (T 9)e)de — (S o)

Now we obtain assertion (a) by applying Lemma 2.

In the same way, for f € Sé:) we obtain

Gy LTz = (0| < Y (2551 + DG -

p€Iy,

whence we conclude that assertion (b) holds il

10. Convolution

Convolution in S,_E:) can be extended straightforwardly to G,. This extension is compat-
ible with the embedding j and the association process as it will be proved in Proposition

16.

Definition 10. Let u and v denote two elements of X,. Then the convolution of u
and v, denoted by u * v, is defined by (u * v)(p) = u(p) * v(p) for p € AM).

Proposition 15. Equipped with convolution, X, is an associative and commutative
algebra. X(™) is o subalgebra of X, and N ™) an ideal of X(™,

Proof. The first assertion is obvious and the second one follows from the fact that

16°(f * 9)lloo < 110° flloollglloo for f,g in €57 and a € N W
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Now let u,v,w, ¢ denote four elements of X(") such that u — w and v — ¢ are both
in N(™). By writing
urv—wrd=(u—w)*x(v—@)tw*(v—-—¢)+éx*(u—w)
it becomes obvious from Proposition 15 that u*v —w* ¢ € N("). We give the following

Definition 11. Let U and V denote two elements of G,. The convolution of U and
V is the element of G,, denoted by U * V and defined by

U sV =l o)ell,
where u and v are arbitrary representatives of U and V, respectively.

Obviously, equipped with convolution, G, is an associative and commutative alge-
bra. We have the following :

Proposition 16. We have the following assertions.

(a) If S and T are elements of 'D;(:), then j(S) * j(T) = j(S * T). In particular
i(6) x3(T) = §(T).

(b) Let U,V in Gn and S,T in D™, If U~ S and V~T, then UV ~ S+ T.

Proof. Let us prove assertion (a). Since S and T are distributions we must compute

0%[(Sxp)* (Txp)—(S*T)+9] =0°((S*xT) * (¢ +p — )]

where a € N® and ¢ € As,',‘)(x) with x € 58,). We have successively
(S *T)* (o xv— )] =D (i) S(P) T(p) (B(p) — B(p))es

10°[(S+ D)+ (0 x 0 = e < 3 10°5(0) T@NIR" (P + DIZ®" (P
peIn . ’
and by aplying Lemma 2 we obtain assertion (a).
To prove assertion (b) we use the following lemma (cf. [2: p. 54 - 56]).

Lemma 17. If (Tm)meN 18 @ convergent sequence of periodic distributions on R™,
then there ezist two constants M and u such that

I T(p)] < M(1+[lp])"
for allm e N and p € Z™.

Suppose that U and V satisfy the conditions of assertion (b) in Proposition 16.
Letting u and v denote their representatives we set um = u(p®") and vm = v(p&"). By
assumption, we have 3° . um=Sand ), .. vm="Tin ’D;(,:‘). It follows that,
for any pin Z", 30 ., @m(p) = S(p) and 3., o Um(p) = T(p). If f denotes an
element of Eé',:), then we have

(Um *vm, f) = Y @ (p) 5 (p) F(-p).

Therefore using Lemma 17, we obtain

Y (umrvm, f) =Y S()T(p) f(-p)

m—-+00

by the Lebesgue bounded convergence theorem. Then Y, .. (um *vm, f) = (ST, f)
which signifies that U *V = S« T
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11. Fourier coefficients

In this section we define Fourier coefficients for generalized functions. This notion is
compatible with the embedding j and the convolution operation. We use it to charac-
terize a generalized function having an associate distribution.

Definition 12. Let U € G, and p € Z" The Fourser coefficient of tndez p of U is
the generalized complex number U(p) (2”),, Jz- U(@)li(e-p)l(z) dz.

This definition means that if u is any representative of U, then we have

(p) = c [(2—;); /I [w($®™)|(2)e P2 dz

Y

Proposition 18. We have the following assertions.
(a) If T € D™ and p € Z*, then §(T)(p) = i(T(p)).

(b) If U and V belong to G, then, for allp € Z™, (U/*V)(p) = (7(p) V(p)
Proof. We have

(T)(p) =cl [(2 T /;n (T *®™)(z)e™P*dz

v

which means that _](T)(p) = ol [T(p) $®"(p)]y. When o € As,l,), the equa.llty O (p) =

1 holds for m > sup; <<, |Pk|, whence we conclude that J(T)(p) = l(T(p)) proving
assertion (a). Assertion (b) results from the definition and the relation (u/*\v)(p) =
u(p)v(p) for v and v in X,

In the following statement we use the notation u(p®") = um, for u € A,,.

Theorem 19. IfU and V belong to G,,, then U and V are weakly equal if and only
if the following conditions are satisfied:

(i) U and V admit representatives u and v for which there ezist two constants M
and p such that |i5(p) — 0m(p)| < M(1 + ||pl|)* for any p € Z™ and any m € N.

(ii) For all p in 2", U(p) =~ V(p).

Proof. We may assume that V = 0. If u is a representative of U such that
liMyn— o0 tm = 0 in D, then for all p in Z" we have limm— 400 im(p) = 0, that
is condition (ii). Condition (i) follows obviously from Lemma 17.

Conversely, if conditions (i) and (ii) hold for a representative u of U, we conclude
as in the proof of part (b) of Proposition 16 that U ~ 0l
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12. The principle of nonlinear operations in G,, and C

For k € N, let F denote a complex-valued function defined on R™ x C* which is periodic
with respect to the first variables. We suppose that, when identifying C with R? and
CF with R?*| F is of class C* on R” x R?* and satisfies the following condition:

For all (a, 8,7) € N® x N* x N¥, there exist M > 0 and g > 0 such that, for all

r € R",
a\“/a\P/a\" .
(37) (a_é) (6_77) Fle, €+ )

where (£,7) € R?* and € + in = (€ + imy, ..., & + inx).

A function F which satisfies the above inequality with (a,8,7v) = (0,0,0) is said to
be slowly increasing at infinity uniformly with respect to z. Thus this condition means
that F and all its derivatives are slowly increasing at infinity uniformly with respect to
z.

< M(1+ 1§ +aml)*

If uy,...,ux are k elements in X, we set F(uy,...,ug) = [F(ul(np), et ,uk(w))]‘p,
which is obviously an element of &,,. We have the following

Proposition 20. If uy,...,ux are k elements in X", then F(u,,...,ux) € X",
Moreover if vy,...,vx are k elements in X(™) such thatu; —v; e N fori=1,... k
then F(uy,...,ux) — F(vy,...,v) € N7,

2

Proof. It is a straightforward adaptation of Colombeau’s proof for the non-periodic
case (see [3: p. 21 - 24]) N

Consequently if (Ui, ...,Ux) € (Gn)*, we can set F(Uy,...,Ux) = cl[F(uy,...,ur)]
where u,,...,ux are representatives of Uj,...,Uy, respectively. In the same way, if
(Ay,...,Ax) € Ek, we set F(Ay,...,Ax) = cl[F(A,..., )] where Ay, ..., \; are rep-
resentatives of A, ..., Ag, respectively.

These operations enable one to solve nonlinear differential problems with strong
non-linearities (see [11, 12]). We can show that the results on the Goursat problem
obtained in [11] are valid in the new algebra G,.
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