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Nonregular Pseudo-Differential Operators

J. Marschall

Abstract. We study the boundedness properties of pseudo-differential operators a(z, D) and
their adjoints a(z, D)* with symbols in a certain vector-valued Besov space on Besov spaces By,
and Triebel spaces F;, (0 < p,g < o©). Applications are given to multiplication properties
of Besov and Triebel spaces. We show that our results are best possible for both pseudo-
differential estimates and multiplication. Denoting by (-,-) the duality between Besov and
between Triebel spaces we derive general conditions under which (a(z, D)f, g) = (f, a(z, D)*g)
holds. This requires a precise definition of a(z, D)f and a(z,D)* f for f € F}, and f € B:,.
Keywords: Pseudo-differential operators, function spaces, nonregular symbols, paramultipli-
cation, pointwise multiplication
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0. Introduction

One approach to nonlinear partial differential equations is based on the study of lin-
ear differential equations with limited regularity. This leads naturally to applications
of pseudo-differential operators with nonregular symbols to nonlinear differential equa-
tions. In the monograph by M. Taylor [17] one can find many applications of the calculus
of nonregular pseudo-differential operators to nonlinear differential equations. And in
this book there are also applications of adjoint pseudo-differential operators. In [7, 9,
10, 12, 22] the reader can find a deeper study of the calculus and of some of the applica-
tions. Our operators contain as a limiting case the paradifferential operators in the form
introduced by Y. Meyer [12]. As a rule, in order to obtain optimal results one needs
the whole scale of symbols studied here and in [11]. For such results see, for instance,
(9, 10].

In the paper [11] we studied among others the symbol class SBJ(r, u; N, A) which
is defined by means of vector-valued Besov spaces B;,oo(Bf\"_oo). Among other things
we proved the boundedness and compactness of the corresponding pseudo-differential
operators and their adjoints on Triebel spaces F, , for the values of the parameters
0 < p,q,p < oo. Here we prove the boundedness of these operators and their adjoints on
Besov spaces B} ,. By approximation [11: Lemma 1] this immediately implies compact- -
ness. And more generally, we introduce symbols related to B;,,,(Bf\\{w). This allows us
to prove sharp estimates. We are even able to prove some unexpected estimates for these
operators on Triebel spaces. This is done in Section 3. In Section 2 we give a complete
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construction of a(z,D)f and a(z,D)* f for f € F;  and f € By ;. Usually one defines
a pseudo-differential operator on S(R") and then extends by continuity. But this works
only if 0 < p,gq < oo. The construction given here works in the full range 0 < p,q < oo,
and is consistent with the usual one. For another approach using elementary symbols see
(22]. It should be remarked that we need much less regularity in the £-variable than [22).
In Section 4 we study in detail under which conditions (a(z, D)f,g) = (f,a(z,D)*g)
holds. It turns out that this is the case, when the boundedness conditions of Section
3 hold. This involves a deeper study of the duality of Besov and Triebel spaces, and
of the approximation of distributions in F  and B; , by entire analytic functions of
exponential type. And in the final Section 5 we apply our estimates, and we characterize
the multiplication of Besov spaces B,, B, ,CB,, (0<p,q,p,v< oo), and also the

P.q =

mixed multiplication B}, ,-F; , C F; ;. This section ends with a discussion of the sharp-

ness of our pseudo-differential estimates. And we obtain a complete characterization of
the conditions, when boundedness of our pseudo-differential operators holds.

1. Preliminaries on function spaces

Denote by S(R™) the Schwartz space of rapidly decreasing functions, and by S'(R") its
dual, the space of tempered distributions. Let F and F~! be the Fourier transform and
its inverse, respectively. Let px € S(R™) (k € Np) be real-valued such that

supppo C {¢: €] < 2}

) M
supppk C {€: 2 -1 §|§|§2k+'} (k€ N)

and for any multi-index « there exists a constant C, > 0 such that

ID%k(€)l < Ca27HOl (k€ No) - 2)

S =1 (€€ R™). . @)
k=0

Such system exists (see Triebel [20: Remark 2.3.1.1]). One may even choose ¢ in such
a way that px(€) = ¢(27%¢), if k£ > 1, for some function ¢ € S(R"):

Let 0 < p,g < co and s € R. Let {vix}ren, & S(R") be a system of functions
satisfying (1) - (3). Define the Besov space B; , and Triebel space F} ; as the spaces of
all tempered distributions f € S'(R™) such that ’

1fllas, = [ {25 F " (0xF )} lieery <00 (@)

Iflles, = {25 F " (@xF )} llLrqey < 00 if p < o0. (5)

‘For their basic properties see Triebel {19 - 21]. In particular these spaces are independent
of the chosen system {¢i}xeN, and they are quasi-Banach spaces. The Triebel spaces
F3,, (0 < g < o0) are defined in Frazier and Jawerth [2]. Define F3, , (0 < ¢ < 00) to
be the space of all tempered distributions such that

) i 1/q
“f”F;,', = slup (21n 2 2k’q|f_l(<pkff)|q dz) < 0o (6)
22 Ql,j k=j
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where the supremum is extended over all dyadic cubes .
Qui={z: 27k <z <c2(li+1) (i = Lom)}
where I = (I1,...,l,) € Z" and j € N. It holds that
B;,min{p.q) - F ¢ Bp max{p,q} M
for 0 < p,g € 00 and s € R.

The following three lemmata arc one of the main tools when we are estimating
nonregular pseudo-differential operators.

Lemma 1. Let {fi}ken, be a sequence of functions and 0 < ¢y < ¢; such that
suppF fo C{€: [¢] < a1}

suppFfi C {€: e22° < €| <12} (keN).
Let s € R and 0 < p,g < co. Then it holds that, for some constant C > 0,

@ X f| < Cli2* il
k=0 g,
Al <Cll2*flllay i p< oo
k=0

Fa :
More precisely, if the right side of the inequality in (a) or (b) is finite, then { Zk —o fk}
converges in S'(R™) to a distribution Y 7o | fx satisfying this inequality.
Lemma 2. Let {fx}ken, be a sequence of functions and ¢ > 0 a constent such that
suppFfe € {€: [¢) <2*} (ke No).
Let s € R and 0 < p,q < 0.
(a) If s > n(max {1, l} — 1), then it holds that

k=0
(b) Ifs > n(max {1, # é} 1), then it holds that
(&)

More precisely, if the rtght side of the inequality in (a) or (b) is finite, then { Ek 0 fk}
converges in S'(R™) to a distribution Y po o fx satisfying this inequality.

Both these lemmata are wellknown (see, for example, (5 - 8, 12, 20] or [22]). The
counterpart for £, . (0.< ¢ £ c0)is [11: Lemma 13], it holds that

1/q
<C 21"/ 2%29|£,19d . 8
. < Sll'ljp( Z | £l 1') (8)

Qu,; k=j

S C”{zhfk}”n(u)'
BS.«

< C”{2k’fk}”u;(u) if p < oo.

In case s = n - (max {1, %} — 1) there is the following version.
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Lemma 3. Let {fi}xen, be a sequence of functions and ¢ > 0 a constant such that
supp Ffi € {€: [€) <c2*} (k€ No).
Lets=n- (max{l,%} —1)vand0<p§oo.
(a) If v = min{1,p}, then it holds that, for some constant C > 0,

o

Y oS

k=0 B}

(b) If 0 < p < 1, then it holds that, for some constant C >0,
o o]
> i
k=0

More precisely, if the right side of the inequality in (a) or (b) is finite, then { 22\;0 fx } N
converges in S'(R™) to a distribution Y ;o fi satisfying this inequality.

< C”{2ksfk}”n(u)'

RS C“{2k’f’=}||u(1°°)'

B;w

Proof. Step 1. Let g = 3 5o, fx (we assume the convergence for a moment) and
let g« = F~!(¢xFg). Then for some natural number x = x(c) we have

oo
ge= Y, Florxf;
j=k—x

which implies

Is|

B! oo < Csip2"" ”g*"LP

1/~
[e o]

<cap | 3 175

1=k—«

oo

1/~
< Csup2®® ( > 2"‘“"’I|f“w||Z~||ff||Z»)

j=k—x

oo l/"/
<o (Sl
k=0

where we have used the convolution inequality [20: Remark 1.5.3.2).

Step 2. Let 0 < p < 1. Using the vector-valued version of the inequality of
Plancherel-Polya-Nikol’skij (see [13: Proposition 2.4.1/(b)] and [11: Lemma 18)), we
get :

=] ¥ Flea -0y

j=k—x

SC</ pdy)l/p

sup 2j"(%_1) |7 or(z — ) fi ()]
J2k—x
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and hence by the Fubini-Tonelli theorem

lorller < € (//

< co-tn(i-1)

sup 2’" l)lf_ ex(z — 9)fi(v)|
j2k—x

p 1/p
dzdy)

sup 2(=1)] 5

i2k=x

Le
which yields (b).

Step 3. It remains to prove that { Zk —o f"}N converges in S'(R™). In case (a) it
follows from the inequality just proven that

N N 1/y
1 a| so(Semain) —o wmve
k=M k=M

and hence { Zk 0 f"}N 1s a Cauchy sequence in B; , and thus convergent. In case (b)
the vector-valued inequality of Plancherel-Polya-N 1kol’sklj yields

>
k=0

and thus { ZkN=o f& }N converges in L' il

<C

sup 2k’|fk|
L k

LP

We conclude this section with a remark concerning the topology where the conver-
gence takes place. Let
<R}

SR}.

We provide both sets with the relativ topology of S'(R™). Let f() — f in S'(R").
Then it holds that

Br; (R) = {f €F,

(9)

By (R)={feB;,

im0, ad Sl SEmnt O, (0
for any s € R, 0 < p,g < oo (see (1, 5]). Hence Br: (R) and Bp; (R) are closed
in F)  and B, , respectively. Now it is wellknown that bounded subsets of S'(R")
are relatively compact and metrizable (see [18]). Thus Bp; (R) and Bg; (R) with
the relativ topology of S'(R") are compact metric spaces. This is a generalization of
the weak* compactness of the closed unit sphere in case 1 < p,q < oo to arbitrary
0<p,gq< oo

In Section 4 we present an improvement of the convergence in Lemmata 1 - 3, which
is better than convergence in §'(R™).
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2. Non-regular pseudo-differential operators

For abbreviation we often write fi = F~ (¢« F f) and for a function a : R" x R® — C
let us write -

aj(z,€) = f;_z(soj_(n)fma(~,5))-

Define the vector-valued Besov space B;'V(Bf,oo) as the space of all a € S'(R™ x R")
such that

lallsg . cay.) = ||{2 lasta My }

< oo
v (L#(dz))

For their properties see Schmeifier and Triebel [13]. We need these spacés for the

parameter values 0 < g < 00,1 <A< 00, r > 5 and N > %.'Ifinaddit,ionr> ﬁ,

there is a description of these spaces by means of differences. We refer to {13: Theorems
2.3.4.1 and 2.3.4.2]. In the language of [13] B;,”(Bf\vyoo) are the spaces SB;E with

F=(N,r),p=(\u)and g = (oo, v).

Letm,réR,OS&S1,0<p,1/$oo,r2ﬁ,r>0,1§/\§ooandN>§. For
a symbol a we write a € SBJ*(r, p,v; N, A) if ’

—~km k. k.
sl.:p2 ” ||a($,2 Yo (2 )“B,’:"wHLw(dz) < (11)

- sup2_k("'+6')“a(z,2k-)apk(2k-)| < 0.
k

B; ,(BY )

These two norms make SB{*(r,p,v; N, A) into a quasi-Banach space (into a Banach
space, if £, > 1). It follows from [13: Theorem 2.4.1] that under the present parameters
values and if r > ﬁ each symbol a € SBJ*(r, u,v; N, A) is a continuous function.

The definition of these symbol classes is mainly motivated by the pointwise estimate
in Proposition § (and also by Proposition 4). When using the Littlewood-Paley decom-
position of Besov and Triebel spaces as a starting point, it almost immediately allows
good estimates for our pseudo-differential operators. Choosing u =v =N = ) = o0
one sees that our symbols include the classical Hormander classes S 1'5- Let us compare
our classes with those of Yamazaki [22). He considers only the case § = 0,1 < p,v < 0o
and N = A = c0. In [22] estimates are obtained by decomposing a symbol into reduced
(or elementary) symbols.. This can be done with our symbols equally well. By comparing
the symbol classes on the reduced symbol level one sees that our class SBF*(r, u, v; 00, 1)
equals the class S'(BM,")™ in [22] (here M = (1,...,1)). The class SF"(r, u,v;00,1)
studied in [11] is even more general than the cla.ss S'(FM ')”‘ in [22]. On the othéer
hand, in [22] general anisotropic spaces are allowed. However, our discussion extends to
pa.rabohc Besov and Triebel spaces (compare [8]). Thus our approach is more general
than the one in [22], and it gives sharper results.

" Fora symbol a € SB{*(r,pu,v; N, ) and a function fe S(]R"j define

a(z, D) f(z) =

e €a(z -
e [ el OF 1(6) (2)
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to be the associated pseudo-differentia.l operator. Let

a;k(z,€6) = Fp L (0i(m)Fz=nal-, ) er(€).

We decompose the symbol into three parts

a(z,€) = aV(z,£) + a?(z,€) + a®(z,¢)
where

oo k~4

a)(z,€) = ZZa,,k(z £) (13)

k=4 ;=0
oo k+3

a(2)(:z:,f) — Z Z aj’k(x’g) (14)

k=0 j=k—3

2,6 =3 3 4u(=6). (15)

k=0 j=k+4

The adjoint pseudo-differential operator is defined to be, if f € S(R"),

ale, D) f(z) = gy [ €4 aurbv) e (16)
in the sense of oscillatory integrals. From
F(ajx(z, D) fi)(€) = /e_i”'faj,k(y,ﬁ)fl(y) dy = /fzaj,k(é = 1,6)F fi(n)dn

one sees that there is only a contribution if || ~ 2% and’

1 <max{j,k} +4 if[j -k <3
~ max{j, k} iflj—kl >4

It follows that

j+3

Y. Y ak(=D)fi (19)

0j=k+41=35-3

oo k—4 k43

Dz, D) f=Y > aju(z,D)fi - (1)
k=4 j=01=k-3
oo k+3 k+6

a®(z,D)" f=>" ajx(z, D)* fi (18)
k=0 j=k~3 {=0
D

a(a)(:c, Dy f=

x
]

Moreover

suppf(aj,k(:z:,D)'f,) - {{ 2 €]~ 2"}. (20)
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In case 0 < p,g < oo, S(R") is dense in B, , and F; .. In this case one can define
a(z,D)f and a(z, D)* f on B, ; and F, , through extension by continuity if an estimate
on S(R") is known. If p = 0o or ¢ = 0o, this is no longer possible.

The following approach works in the whole range 0 < p,¢ < oco. It is probably
wellknown to the experts but still unpublished. In [22] there is a different approach
using elementary symbols. Starting from (12) and (16) the extension is done in two
steps. In the first step we begin by defining a;x(z, D)fi and a;i(z, D)* f; if f is in B, ,
or in FJ . This is done in the following two propositions. This is the other main tool

p.q
in the estimation of pseudo-differential operators.

Proposition 4. Let a : R x R® — C be a bounded and measurable symbol such
that

suppa(z,-) C {€: |¢] < c2*}.

Suppose 0 < py,p2,p < 00, 1 <A< oo and pll =<+

1,1
B op2’

(a) If 1 <p; < oo, orif0<p1<1dnd
Ffci{e: g < 2},

and if N > n - max {%, %, piz}, then for some constant C > 0

la(z, D)fl o, < € lla 2 ||, WSl
(b) If 1<p; <00, 0rif 0< py <1 and

supp Fza(-,) € {n: Inl <2’} x {€: €] < c2*}
suppFf C {{: €] < c2'},

and ifN>n~rnax{%,i,1—pll,pl‘—% , then for some constant C > 0

latz, D fll,, < €2t t=0mlmax {13} =0 ot 2 | Sl

For the proof of the proposition we need the Hardy-Littlewood maximal operator
M, defined for 0 < 7 < oo by :

1/r
M, f(z) = sup ok dy) .

1
r>0(|B($,T‘)| B(z,r)

Recall that M, is bounded on L? if 7 < p < oo and bounded on LP(I7) if 1 < p < oo
and 7 < ¢ < oo.

Proof of Proposition 4. Step 1. Let

Koz —9)= g [ 7 a(a )
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be the kernel of a(z, D). Then if 1 < 7 < 2, it follows from the Hélder and the Haus-
dorff-Young inequalities that

la(z, D)f(z)] = { kG- y)f(y)dy‘

<c 3 ([ |K(I,I_y)%(z_y)|"dy)”" M, f(z)

<C Z 2“7 ||F,

< Clla(z, 2| gos- M- f(2)

‘Pvffa(z’ ))H M: f(z)

where the dotted space B:/; is the homogeneous Besov space. Then the boundedness

of M, yields assertion (a) in case 1 < p; < 0.

Step 2. Let 0 < 7 < 1. Then by the the Plancherel-Polya-Nikol’skij inequality (see
[20: Remark 1.3.2.1])

(e, D)@ = | [ Kz, - )10
< carn(3-1) (/ |K(z,z - y)f(y)Irdy)l/r
< c2t°(2=1) oz, Mo M, f(z)
< Clla(z,2*)|| g1 M- f(z)

from which assertion (a) follows. Note that in case p; = p = 1 we have the additional
restriction F f C {€: [¢] < c2¥}.
Step 3. Let

K.(y,fl _y) =

be the kernel of a(z, D)*. By considering the kernels it is clear that assertion (b) follows
from (a) by duality if 1 < p; < 00. Let 0 < p; < 1. Since

[ K = i@y = s [[ e F e T = GO dede

(2m)m

the Plancherel-Polya-Nikol’skij inequality yields

‘/A (y,z —y)f(y)dyi < ¢ (%) (/lK‘(y,z -9 f)|" dy)l/m (21)
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where p = max{j, k,!}. But then by the Holder and the Bernstein nequalities

la(z, D) fl| 1y < carn (1) (/ (/ |K*(y,z —y)l’"dz) ”/mdy)l/“llfllm

<Gl (. 110

2»1

< 02 ()] g, 24 () |, 1 lless.

?n

Step 4. Let p; = p2 = co. We want to prove the pointwise estimate

la(z, D) ()| < C|| laC- 2* ) gp_|,.. M £2) (22)

Lo

if N > n, from which the case p; = p; = oo of assertion (b) follows. By duality we
obtain the case p; = p2 = 1 of assertion (a), too. Now we have

la(z, D) £(2)] = ‘ [Ez- y)f(y)dy‘

+oo
< C( > sup ‘K‘(y,z —y)epu(z - y)‘)fo(r)

< ( Z 2("+k)"supH.7: <pu+k-7'-5f1(y, ))HLI)le(-T)
If N > n, then

S 2 a7 (o Feaw2)], < € o2
v>—k B

and, since ”]:_I‘Pu-f-k”L) <C,

Z 2(”+k)"SUPHf (v+xFea(y, 2" ))“u s CH ”a("zk')”L‘ HL°°
v<—k

Now (22) follows il
Let us single out the maximal inequalities.
Proposition 5. Let a: R® x R® = C be a symbol.
(a) Let
suppa(z,-), suppFf C {{: €] < c2k}.
If0<7<2aend N > 2, then there ezxists a constent C > 0 such that

|a(:z:,D)f(1:)| < C”a(:c,2k~)||3,, M, f(z).
max{1,7},00
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(b) Let '
supp Fza() € {n: Inl <2} x {€: [¢] < c2*}

supp Ff C {€: |¢] < c2'}.
If0<7<1and N > 2, then there ezists a constant C > 0 such that

|a(:t, D).f(1)| S C2(maX{j,k.l}—k)n(%—l)“ Ila(’72k<)“8"’ HL Mrf(z)
. 1,00 oo
Proof. It remains to prove assertion (b) for the case 0 < 7 < 1. But the proof is
the same as for the case 7 = 1 by taking (21) with p; = r as a starting point il

Part (a) of Proposition 5 is from [5]. For general parabolic metrics of product type
the proposition is found in [8]. In the present context the proof is much more readable.
Proposition 4 is the main tool in the case of Besov spaces, and Proposition 5 is the
main tool in the case of Triebel spaces. Note that there is a difference in the regularity
needed for the {-variable. :

Now we can define a;«(z,D)fx and a;k(z,D)" fi if f € By, or f € F; . For the
definition of a(z, D)f and a(z,D)"f for f in B} ; or in F; we then use Lemmata 1 -
3. For example, it holds that

k—4 ‘
supp]:(z aj,k(I,D)fk> C{e: el ~ 2k}'
=0
Then Lemma 1 yields
oo k-4 . k-4 .
Zzaj’k(z’D)fk <C {Qk’Zaj.k(x,D)fk}
k=4 j=0 B:, =0 ta(L?)

If we can show that for say f € B;”;"‘ the right side of this inequality is finite we

conclude from Lemma 1 that there exist ¢g; € B;,q such that

>

k=4 j=0

k—4

a,-,k(:z,'D)'f;c —q if N—o oo
with convergence in S'(R™). We define a{!)(z, D)f = g¢,. Similarly
. k+3 : . .
SUpr( > aj,k(zyD)fk> C {€: |€] < c2*}.
j=k-3

Here we can apply Lemma 2 or 3, and for suitable f we can conclude that

N k43

> Y aju(z,D)fk — g2 if N—oo

k=0 j=k-3 -
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with convergence in §'(R"), and we define a(®)(z, D)f = g,. Finally
-4 ’
SUPPf(Zaj,k(LD)fk) c{¢: [el~27}.
k=0

Here we can again apply Lemma 1 and for suitable f conclude that

oo N N j—4
Z Z a;k(z,D)fx =Zzajvk(I’D)fk — g3 if N>
k=0 jy=k+4 1=4 k=0

with convergence in S'(R"), and we define a®)(z,D)f = g3. Thus a(z,D)f is well
defined for suitable f provided we can show that the right side of some inequality in
one of the Lemmata 1 - 3 is finite. Since by (20)

suppf<zza,-,k(r,0)‘fz> C {&: g ~2*}
I

the same reasoning applies to a(z, D)" f.

It remains to prove that this definition is consistent with (12) and (16) when f €
S(R™). '

Lemma 6. Leta: R™ x R® — C be a symbol such that

-km k k
sup2 [ llaC-, 2% yer(2 ')“Bi“.m”m < oo

for some N > n-max{},1} with1 <A < oo andlet f € S(R™). Then the definition

given for a(z, D)f above is consistent with (12), and the definition given for a(z, D)* f
above is consistent with (16).

Proof. Step 1. Let 1 € C§°(R™) with #(€) = 1 in a neighbourhood of the origin,
and let ¥n(€) = 1(27N¢€). For each £ € R™ there exists a set E¢ of measure zero - the
complement of the Lebesgue set — such that if z ¢ E, then

Fo (¥nFea(-,6)) — a(z,6) as N — oo

Let {&1}: be dense in R™ and E = U2, Eg,. This is a set of measure zero and we claim

that for (z,£) ¢ E x R"
Fo (UnFra(-,€)) — az,6) as N —co. (23)
By hypothesis there exist a constant C > 0 and 0 < 7 < 1 such that if || < 1, then

|a(z,€ + 1) — a(z,6)] < C(L+ €)™ Inl"
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For (z,£) ¢ E x R" choose a subsequence {£; }; such that £, — £ as j — 0o. Then we
obtain -

F7 (9w Fea(,6) - a(z,6)|

< \ [0 0ma = )latw,€) - alw,6) dy
! (II)N]:ZG(':&, )) - a(I:&j) + |(l(:1,‘,€1j) - a(:z:, f)l

Now choose j so large that the first and the third summand become small independent
of N. Fix j and choose N so large that the second summand becomes small. Hence
(23) follows.

Step 2. From (23) and the dominated convergence theorem we obtain the assertion
for a(z,D)f. Then the same argument applies to a(z,D)*f if m < —n. In case

m > —n choose | € N such that 2l > m + n. Let as\',)(:r:,D)‘f (i = 1,2,3) in obvious
notation.Then

e / [ e €, 0+ I () v
J[ @B + R W dvde if N oo

271')"

pointwise everywhere in R™, and hence by applying (1 — A)' to both sides we obtain

a{(z, D) f(z) —

o [ €7 GG B ) v

with convergence in S'(R"), where the double integral is understood as an oscillatory

integral il

Thus we have completed the definition of a(z, D) f and a(z, D)* f modulo the proof
of the finitness of the right side of some inequalities in the Lemmata 1 - 3. This will be
done in the next section.

3. Pseudo-differential estimates on By A and F,
In this section we state and proof the main results of this paper. We begin with the
action of SB*(r,u,v; N,A) on B, ,

Theorem 7. Let a € SB(r,p,v; N, A) be such that m € R, 0 < p,v < 00, 7 >0,
1-=6)r> % and 1 <A< o0. Let0 < p,g < o0 andN>n~ma.x{,1—,,§,;7}.

(a) If

n~(max{1 l-{-l}—1)—(1—6)r<s<r—n~max{l—1,0},
s P s P

then the operator
a(z,D): By3™ — B, ,
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18 bounded.

(b) If (1 =é)r > 2, v<g< oo and

1 1
n‘(maX{l,—+—}—1)—(1—6)r<s=r—n-max{l—l,0},
pop uop

then the operator
a(z, D) : B,’,_+q'" — B;,q
18 bounded.

() If(1 = &8)r > 50<g< min{1,p} and

1 1 1
n'(max{l,-—+v—}—1)—(1—6)ris<r-n.max{--1,0},
L op

then the operator

a(z,D): Bit™ — B,

18 bounded. .
Theorem 8. LctaESBg"(r,;l,u;N,/\) be such thatm € R, 0 < u,v < 00, r > 0,
(1=8)r =% and1 <A< oo Let0<p,qSooandN>n'max{%,§,1—,'—1,%—% )
(a) If

-1 1
n-(ma.x{l,—+l}—l)—r<s<(l—6)r—nAma.x{——l,0},
g op A

then the operator
a(z,D)*: B, , — B, "

1s bounded. '

(b) If(1=é)r>2,  +;2max{1,1} and

ulov

; 1 1 . < 1 1
n- (ma.x{l,—+ —} —1) —r=s<(1 —6)r—n-max{— - —,0},
P b op '
then the operator
o(z,D)": By = B"
13 bounded.

(¢) If (1 - 6)r >  and

1 1 . 1 1
n~(max{1,—+—}—1)—r<s='(1—6)r—n~max{———-,0},
H P, o : 4 p

then the operator
a(z,D)*: B} _ — B, o

p,0o

13 bounded.

We remark that in both theorems the restrictions on g are sharp. At the end of
Section 5 we will present counterexamples.

We continue with the action of SBJ*(r, 1, v; N, A) on F,.
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Theorem 9. Let a € SBJ*(r,pu,v; N,)) be such that m € R, 0 < p,v < oo,
(l—6)r>;"5and1§/\§oo. Let 0 < p,g< 0. |

(a) If0<p§l,0<p<1incasey:oo,N>n-ma.x{%,i,;';,$} and

1
n~(ma.x{l,—+}-}—l)—(1—5)r=s<r—n~ma.x{l—l,0},
bop pop

_ then the operator
a(z, D) : F;;m - F;,

1s bounded.

11 11
(b) Ifﬂ<PS°°; V'SP,N>n-ma.x{;i,K,,—,,;} and

1
n~(max{l,—-}-l}—l)—(1—6)r<s=r—n~ma.x{l—l,0},
v p I

then the operator
a(z, D) : F;;"’ - F),

13 bounded.
(c) Iflz+%>l, %+£21,N>n~max{1,;7,%} a.'fzdv
1 1 1 1
n'(max{l,—-i-—}—l)-—r=s<(1—6)r—n~ma.x{———,0},
L “ p

then the operator
a(z,D)* : F,, — F, ™

13 bounded.

(d) 1f0<#<oo,p=oo,N>n~ma.x{1,;7,$} and

1
n~(max{l,—_+l}—1>—r<s=(l—6)r—n~ma.x{l—l,0},
4 p H P

then the operator

00,9

a(z,D)* : Fg, , = Fo
1s bounded.

In Theorem 9 we may always take 0 < ¢ < oo. This is surprising, since in the Besov
space case the restrictions on the parameter q are sharp. At the end of Section 5 we
discuss the conditions, under which boundedness holds. In particular, if 0 < p < oo,
and in assertion (a) 1 < p < oo or in assertion (d) 0 < p < oo, then no boundedness
result can hold whatever 0 < ¢ < oo is. In the cases of assertions (b) and (c) not treated
here there are conditions on ¢ even when the operator is a multiplication operator. Also
v < u becomes necessary.

For the proof of Theorems 7 - 9 we need two more lemmata.



124 J. Marschall

Lemma 10. If0< p < 4y <00 and 0 < v < oo, then
SB;"(T,#,U;N)/\) g SBE(T],#],V;N,/\)

where r — i‘- =ri- and (1 —6)r—§ =(1-6)r1— f‘- In particular it holds 6r = 6, 7,.

This lemma is a consequence of {13: Theorem 2.4.1]. The next lemma is found in

(5] or [22].
Lemma 11. Let s € R and 0 < ¢,7 < 0.
(a) If s <0, then for some constant C > 0

j 1/r
k=0
holds.

(b) If s > 0, then for some constant C >0

) )

In case r = oo the lemma holds with obvious modification.

Proof of Theorem 7. Step 1. It holds for every s € R
||a(1)(1;,D)f||B;‘q < C”f“B;'-t-’m.

In fact, by Proposition 4/(a)

< C”{zj’ai}”u

13

< C”{2j’aj}||”
19

holds.

k—4 k—4
Do aik(@ D)l <C| [ ajulz, 2 I felle < C2F™ | fill Lo
=0 Lr 7=0 Bﬁm Lo

and the assertion follows from Lemma 1/(a).

Step 2. Let p% = %+ % and n - (ma.x{l,lz+ ;7} —1) = (1 = &)r < s. Then using
Lemma 2/(a) and again Proposition 4/(a) it follows that

I|a(2)(x,D)f|

< C||a®(z, D)f|

14 (1-6)r- 2
BP:Q *

B;;}-‘(ql—ﬁ)r
oo k+3 1/q
< C(Z Z 2k(’+(1_6)r)q”aj,k(1,D)flc”‘i,l)
k=0 j3=k-3
oo k+3 . 1/q
< C(Z > ok (s+(1-6)r)q \ ||a,~,k(.,2k.)||8£,m “ka”‘ip)
k=0 j=k-3 !

<ClA

4m.
B "
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Step 3. Let u) = max{y,p}. Then by Lemma 10 a € SB}(r1, p1,¥; N, A) where

r-2=r - :_1 and (1 — §)r — % =(1-68))r —,-‘:‘—‘. If s < ry, it follows as above with
L="1 4 L and p=min{l,p} that
oo j—4 g\ 4
w0111y, < (S0 [S a0 )
=1 k=0 e

© j—4 q/p\ 1/9
<o(Lom (Sl onll, ) )
j=4 k=0

< Clf]

a4m4D—(1-6)r
"
BPJ

where we have used Lemma 11/(a). Now Steps 1 - 3 yield assertion (a).

Step 4. For assertion (b) we have only to improve the estimate for a®®)(z, D). Let
s =r; and p = min{l,p,q}. Then if v < ¢ < oo, then

oo oo 4 1/p
1z, D)1 . sc(z S a4z D)fe )
P k=o |l j=k+4 B:,

oo ) _ play\ /e
< C(Z( Z 2)’4”41-11:(:1:,D)fk”1p) )
k=0 \j=k+4
) ) A . . pla\ 1/p
SC(Z< > 279 flaik(, 2%y \wnfknz,,) )
k=0 \j=k+4 it
<cls|

s4m4DB - (1-8)r

BP-P g '

since s = v and (1 —8)r — % = (1= 61)ry — .+
Step 5. For assertion (c) we have to improve the estimate for a(?)(z, D). If

1 1.1 =

11 <1, letp—l—“+pand;q—p .

-+ - _lH fp<p

g p | >1, let pp =min{l,p} a'nd’“_{ma.x{l,y} ifp>p

and let p = min{1,p;}. Then using Lemma 3/(a) we obtain

”a(?)(z, D)f” B.-{-(l—&)r—ﬂ < C||a(2)(:z:, D)f” B"("L-‘)
PO

P1.,o0
oo k43 i/p
<o 3 20 oyt DI )
k=0 j=k-3

< C||f||8"-+ﬂ(“;-l)-(l-61)n

P2.p
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wherep%: 7‘11—+;,1—2. Ifﬁ—{-% <1l,thenp=p,p=land (1 -6 )ri =(1-8)r = —s. If

—’-+] > 1, consider first the case p > 1. Then p = p, =1and1=i+#. HOo<p<]l,

then p=p1 =pand n(; - ;—2) = -~ Then in any case p, > p and

1 1 1 1
n(——l)—(l—&l)r1+n(———>=n(—+l—l)—(1—61)r1=s.
4 P D2 K1 P

Thus we obtain since p = min{l,p} > ¢ .

|la®(z, D)f|

+
Bp™

B;:i‘-”'-ﬂ = C||f|

and the proof is finished B
Proof of Theorem 8. Step 1. By Proposition 4/(b), (17) and Lemma 1/(a)

4

Z Jk( 2k

| felle < C25™|| fi|
Lco

k(2 D) fe| <C

LP

Le-

N
Bx,oo

Hence by Lemma 1/(a), if s € R, then a(!)(z, D)* : B, — By ™

Step 2. Let p = min{l, p} o= max{y,p} and s < (1 =81)r1 = (1 = é)r —n -
max {; — 2,0}. Then with 7 = !

el

s - k46 a/e\ /9
"a_ m<C z (Z 2K(emme (Z “ak+j,k($’D)‘f’”27> )

j=—3 \k=

oo k+6 g/e\ 1/9
< C( s (1- 61)7'1 (Z ”fl”Ln) )
k=0

<l gmron

< Clfl ooz -0

Again we have used Lemma 11/(a).

Step 3. In case s = (1 — 6;)r; one obtains analoguously

”a B’ m <C”f| :+n —(1-6)r.
nmm(lr)
Step 4. If
— 1 _ 1,1
1 1 st let,ul—;zandpl_“+p
4 - e fp<u
L P >1, let py = min{l,p} andul_{max{l,p} ifp>u
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and let p = min{1,p;}. Then p < p, and

1 1 . -1 1 1 1
n|\——--J4+rn-n-{—+--1)=r—n-|maxql,— 4+ -3 -1
pr P 20 T H p

holds. Suppose s > n - (max{l,% + %} —1) — r, and let ;l]- = -;—] + p% and s; =
s+n- (pLx - ;7) Then using Lemma 11/(b) we obtain similar to the above reasoning
||a(3)(I,D)'f| s-mi(1-8)r- 8

BP-V

< C||a®(z, D)* f]

Jl—m-f(l—é)r-'}‘l
BPI.’

3 oo - oo q 1/q
<C Z (Z 2k(31—m+(l—_61)r1_ﬁ)‘1 Z aj,k(I,D)‘fj+l )
1=-3 \k=0 J=k+4 L»

- _ oo q/e\ 1/g
gC(Z2*("“"‘"(.**%_'))"(.'Z gf(n(%-l)—rx)p||_fj||;n) )

k=0 j=k+4

S C”f”B;l-qﬂ
2.

<C
<Clfly;.
since §) — :—1 +n- (}l—, - #) = s. Now Steps 1, 2 and 4 yield assertion (a) of the theorem,

and Step 3 yields assertion (b).
- Step 5. In case s = n - (ma.x{l,l—'—*— :7} - l) —r, if p = min{1,p} and %-%- % >
max {1, 1;} one obtains by using Lemma 11/(b)

|'a(3)(.’l), D)‘flIBc-m+(l-6)r- !-‘}
P.oo

) Csﬁp?(,,fn—w(ﬁ’r}—l))( 5 osa 2l |

j=k+4

, 1/p
Ml

< Ol s

P2.9

<Cllflly,

G-)-renG-m)=nGon)-reienGom) ==
n|l--1]-n+n|{-—-—)=n|l=-=-1)—-r+—4n|{-——) =s.
p p p2 P H P nm

This proves assertion (b) il

since
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In [11] we used a different argument to handle the estimation of a(®)(z, D)*. The
case 1 < p < oo was derived by duality from the estimate for at®)(z, D). It turns out
that in [11] in most cases the duality argument can be avoided. In any case the B-space
case treated here is easier than the F-space case treated in [11], where we have proved
sharp estimates. We use them in the following proof of Theorem 9 without further
reference. In fact, we show only those estimates which have to be improved.

Proof of Theorem 9. Step 1. If 4 = 0o and 0 < p < 1, then by Lemma 3/(b)

”“(2)(:5 D)f” n(.L yw<C Z Hsup?k" |ak+,k(x D)f"l "
< C”f”F"H»n(j;—l)-(l-&)w
pP.co

If0<p<ooand0<p<1,let uy = max{u,p} and % = ;—‘ + pi,. Then Lemma 3/(a)
yields

1/p
||a(”(fo|| 3o 5€ 3 (SF 0 oeratz DAL

I=-3 \k=0

<C”f” m+..(x 1)-(1-81)ry

PZP

= C"f” FM+H(}+¢—1)—(1-5),
P.OO

where we have used the embedding

FG=s) B, (24)

for 0 < p < ¢ < oo (see [3]). Thus assertion (a) is proved.
Step 2. For assertion (b) we use the embedding

(i1
A 5 (25)

for 0 < p < p< ooand 0 < g < oo (see 1, 6] and for the case p = co see [11: Lemma
16]). The proof of this embedding extends to

SB?(":#,P,N,)\) — SF&T(Tl)p,qu1A)
where r — 2 =r; — 2 and (1 — é)r — % = (1 - 61)r1 ~ 5. The symbol classes SF are
defined in [11]. Assertion (b) follows now from [11: Theorem 14).

Step 3. For the case © = oo and 0 < P < 1 of assertion (c) see [11: Theorem
14]. Hence suppose that 0 < p < oo, ; +1 ;> 1 and : > 1. Since trivially

% + % > max {1, ;7}, Step 5 of the proof of Theorem 8 yields

o -

”a(s)(x D)* f|

8" m+(1 s)yr-2 <C||f|| ,.(.L 1)=ry

P?P
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where we have used (24). Observe that % + ;7 > 1 implies p < p,. Now assertion (c)
follows.

Step 4. Using (25), assertion (d) follows from

||a(2)(x’D)0f”F;°_.;“ < C”a(Z)(z’ D).f”B‘(‘l.;‘)'-m

k+6
ak+1,k(z, D)* (Z fj)

3
<C Z supzk((l—6)r—m)
k .
Jj=0

- {=-3
< CJlf]l 1
and the proof is finished B

L#

4. Adjoints and duality
Let
(f,9) = / f(2)3(z) dz (%)

be the L%-scalar product. More generally, denote by (-,-) the (S',S)-duality bracket,
and let (f,¢) = (f,9). The question arises whether it holds

(a(z,D)f,9) = (f,a(z, D)"g), (27)

and as we will see, the answer is yes whenever the boundedness results of Section 3 hold.
However, we begin with the following

Lemma 12. Let a: R" x R® — C be a measurable symbol such that
la(a, )] < C(1 + €)™
for some constant C > 0 and m € R. Then for every f,g € S(R™)
(a(z,D)f,9) = (f,a(z,D)*g).
Proof. Suppose first m < —n. Then by Fubini’s theorem
1 o —
(a(z.D)f,0) = e [ [ €457 ate, 077 dudeaz
1 ‘ —_—
= (27!')" /// f(y)gl(y—_r)fa(x,{)g(x) dl'dfdy
= (f,a(z, D)9g).

If m > —n, choose | € N such that 2! > m + n and let a'(z,£) = a(z,&)(1 + |¢]2)~".
Then by the definition of an oscillatory integral a(z, D)*g = (1 — A)a!(z,D)*¢ and
hence

X (a’(z’D)fvg) = ((1 - A)lfsal(z’D).g) = (f,a(z,D)'g)
and the proof is finished il
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Denote by Bg;,q and Fo';lq the closure of S(R") in B; , and F; | respectively. Recall
that S(R") is dense in B;’q and F,;"q if and only if 0 < p,q < 00. Let p = ;{—l if
l<p<owandp =00if 0<p<1,andlet s ='s—n-(ma.x{1,,l-,} ~1). It holds

(B;,q)l = Bp_’,sq' (28)

(see [19]), and there are similar results for the Triebel spaces (see [6, 19, 20]). But we
need a generalization of (28) and its analogue for Triebel spaces. Let X be a Banach
space and M be any topological vector space such that there exists a continuous injection
M — X', and such that M separates the points of X. Then (X, M) form a dual pairing
and we can speak of the weak topologies o(X, M) on X and 6(M,X) on M (see [18]).

Proposition 13. Let p' = ifl<p<oocandp =00 if0<p<1, and let

p—1
ss=s—n- (ma.x{l,—l —l).

(a) Let ¢’ = q—f—l fl<qg<ooandq =00 if0<q<1. Then it holds
H(B_’

(b) Let ¢’ = P xf1<q<ooand1<p<oo and let ¢' —oozf0<q<1 or
0 <p< 1. Then tt holds
H(F;,,"q;).

Proof. Step 1. Let py =‘min{1,p}, f€By,and g € B;f;,. Then for some

constant C > 0
oo j+3

IEDDS /lf,gkldz
J=0 k=33
oo 143

<cy, 3 2G| gal,,

J=0k=3-3
<Clifls; Nollas,

This yields assertion (a). Note that in case 0 < p < 1 we have used the mequa.llty of
Plancherel-Polya-Nikol'skij [20: Remark 1.3.2.1].

Step 2. Let 0 <p< 1, fe F) andg€ F" B" . Then by using the
vector-valued inequality of Pla.ncherel Polya-Nikol’ sku (13: Proposmon 2.4.1/(b)] we

obtain
j+3

()l < / S 3 lfordds

=0 k=j— 3

<c

L

sup sup 2j"(%"1)|ijk|
7 [k—ji<3 .

<clif|

loll s

This yields the case 0 < p < 1 of assertion (b). The case 1 < p < oo can be treated
analoguously. .

Fc



Nonregular Pseudo-Differential Operators 131

Step 3. To treat the cases p = 1 and p = 0o we need to describe the duality between
FJ and Fg,., for 0 < ¢'< 00. If @ = Qu,j, define (compare [2])

supg(f) = 2% sup |£i(=z)|-
b4 (_,'

Then
oo J+3
I(f,g)IS/Z > |fion|dz
1=0 k=j5-3
co 43

< Z Z Z/Qu | figr| dz

j=0k=j-3 1

oo Jj+3
<C Z Z Z Z Supgq, ; (f) SUPQm,x (g)
j=0 | k=j-3|il-m|<8n

and hence, arguing as in the proof of [2: Theorem 5.9] we obtain by using [2: Lemma
2.5 and (5.6))

oo J+3

I(f,9)| € /Z Z |fjgk|dz < C||f||p;°_q”9||1~‘;;,

J=0k=j5-3

and the proof is finished il

With that proposition we are able to improve in the following Lemmata 14 - 16 the
convergence in Lemmata 1 - 3.

Lemma 14. Let p' = ;lj—lifl <p<oocandp = 0 if 0 < p <1, and let
s'=s-n-(max {1, ;7} —1). Let {fi}ken, be a sequence of functions and 0 < cz < ¢1
constants such that

suppFfo C {€: €| < a1}

supp Ffe C {€: 022" < €| <c12¥}  (keN).
ca-fe
Let s€e R and 0 < p,q < 0.
(@) Let ¢ = & f1<g<ocoend g =00 if0<g< 1 If ||{2’“fk}||"(u) < oo,
then

N oo ,
ka — ka in o(Bj ., B;",).
k=0 k=0

(b)Letq':q—_’_—lifl<q§ooand1§p500,andletq’:ooif0<q§lor

O<p<l If ||{2"’fk}||u(") < o0, then

(o]

. ‘
S — Y fe ino(Fl,Fr%)
k=0 k .

=0
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Lemma 15. Let p' = ;{—1 fl<p<ooandp =00 if 0 < p <1, and let
s$ =s—n- (max{l, ;—,} - 1). Let {fr}xen, be a sequence of functions and ¢ > 0 a
constant such that

supp Ffr C {€: [¢] < 2%} (k € Np).

Let s€ R and 0 < p,q < oo.

(a) Let ¢ = 2 zfl<q<ooandq—ootf0<q<1 If

A s>n-(ma.x{l,; -1) and ||{2"’fk}||"(u)<oo,
then

N oo
ka — ka in a(Bp ¢ B;,:';,).
k=0 k=0

(b) Let ¢ = ;& ifl<qg<ooand 1 <p<oo,andletqgd =c0if 0<qg<1 or
O<p<l. If
s>n- (max{l —1) and ||{2k’fk}||u(“) < o0,
then

N )
ka — Z fo ina(Ep, Fat).

We remark that both lemmat,a have to be modified in the Fy,  -case (compare [11:
Lemma 13]). The relevant condition is in that case

/g
sup (2”‘ / Z 2k £, |9 d:z:) < oo. (29)
L,y Qi,; k=j

Lemma 16. Letp' = - 2 ifl<p<ooandp =00 xj’0<p<1 Let {fx}xen, be
a sequence of functions and c > 0 a constant such that

suppFfi C{€: €] <c2¥} (k€ Np).
Lets=n-(ma.x{1,;7 —1) and 0 < p < 0.
(a) Let ¢' = ,,—ET fl<g<ooandg =o00if0<q<1, and let vy = min{1,p}. If
ks
"{2 fk}”n(Lr) < 00,
then

N oo
dDofe = Y fr  ino(B] . BY,).
k=0 k=0

(b) Let0 < p< 1. If
H{th*}”m(lm) <o
then

N oo
ka - sz in O'(Bp oo,Bgo,l).
k=0 k=0

The proofs of Lemmata 14 - 16 are a combination of the proofs of Lemmata 1 - 3
with that of Propostion 13.

Now we are in position to state and proof the main results of this section.
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Theorem 17. Leta € SB*(r,p,v; N, \) be such thatm € R, 0 < p,v < 00,7 > 0,
51—6)r2i‘-and1§/\goo. Let0<p,q§ooandN>n~ma.x{-;-,’x,%}. As before
et

ez s
p = and q =

oo if0<p<1 oo fl0<qg<l1

and lets' =s—n. (ma.x {1 l} - 1). Suppose that one of the following conditions holds:
(a)n-(ma.x{l + 1 }—1)—(1—6)r<s<r—n ma.x{———O}
(b)n~(ma.x{1,;;+;}— )—(1—6)r<s=r-—n-ma.x{;—;,0} and (1 -6)r >
v < g <oo.
(c)n~(ma.x{1 + 2 }—1)—(1—5)r—s<r-—n ma.x{——— 0} and (1-6)r >
2, 0< ¢ < min{l,p).

Then for any f € Byt™ and g € B;f;, it holds that (a(z,D)f,g) = (f,a(z,D)"g).

Theorem 18. Leta € SBJ(r,u,v; N, )) be such thatm € R, 0 < p,v < 00, 7 > 0,
(1—6)r2‘ﬂ‘and1§/\§oo. I,et0<p,q§ooandN>n'ma.x{%,);,1—1,1—l .
As before let '

£ ifl<p<Loo A fl<g<o
=37 and g =<1
oo if0<p<l oo #f0<qg<1
and lets' =s—n- ( max {1, ;7} - 1). Suppose that one of the following conditions holds:

n
o

(a)nl(max{l,ﬁ+i}—1)—r<s<(1-—6)r—n ma.x{———O}

(b)n-(max{l,%+%}— J-r=s<(1-68)r—n- ma.x{——-—O} and (1-6)r > 3
%+%Zma.x{l,i}.

(c)n~(max{1,%+;7}— )-r<s=(1-8r—n- ma.x{———O} and (1-6)r > 2,
g = oco.

Then for any f € By , and g € B, +"' it holds that (a(z,D)‘f, 9) = (f,a(z, D)g).
It suffices to prove Theorem 17, the proof of Theorem 18 being similar.
Proof of Theorem 17. Observe that for z = 1,2,3 we have boundedness
a')(z, D) : B’+'" — By,

a' Nz, D)* : B"", — B_"I_"'.

Now by the proof of Proposition 4, aN)(:z D) and a (I,D)‘ are integral operators
adjoint to each other. Let fN = Zk o f&- Then

(a'2(z, D)fY, ) = (aRsa(z, D)FY, g™*)
= (fV, a4 oz, D) g"**)
= (f,a%(=z, D)%g).
Since by Lemmata 14 - 16 fN — fino(B34™, B,.* '"‘) and a'(z, D)fN — o (z,D)f

P
in o(B,’, o ;,"q,), the theorem follows B
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Theorems 17 - 18 have obvious counterparts for operators on Triebel spaces. For
the appropriate symbol classes and the exact boundedness results needed see [11].

Theorem 19. Leta € SF{*(r,u,v; N,A) be such thatm € R, 0 < p,v < 00, 7 > 0,
0<6<1,(1-6)r=%andl <A< oo Let0<p,q§ooandN>n-max{1,;-,,%}.
Let

— p g—1
p =

2 ifl<p<oo L fl<g<owadl<p< o
' and ¢' =
o if0<p<l

o0 f0<g<lor0<p<l1
and lets' =s—n- ( max {1, ;7} — 1), Suppose that one of the following confditions holds:
(a)n'(ma.x{l + < }—1)—(1—6)r<s<r—n ma.x{———O}

(b)n-(max{l,;+;}—1)—(1—6)r<s=r—n~ma.x{i—;—,,0}, 1-6r>3%
and if s =r, then v < ¢ < c0. : ' '

Then for any f € F,;’l';’" and g € Fp‘,,’;, it holds that (a(:z,D)f,g) (f,a(z,D)*g).

Theorem 20. Leta € SF(r,pu,v; N, A) be such thatm € R, 0 < p,v < o0, 7 > 0,
0<é<, (1—6)r>—and1</\<oo Let0<p,g<ocand N >n- max{l 1 }

1
' g
Let

£ fl<p< oo A fl<g<owandl<p<oo
pP=47% and ¢ ={%
00 if0<p<l1 © f0<g<lorlO<p<l1

and let s' = s—n~(ma.x {l, %} — l). Suppose that one of the following conditions holds:
(a)n-(max{l,%-}-;—)}— H-r<s<(l-6&r—n- ma.x{——— 0}.

(b)n-(ma.x{l,i-}-%}— )-r=s<(1-8r—-n- ma.x{———O} and (1-6)r > 2,
and if s = —r, then 0 < ¢ < V',

Then fo1: Ia.ny fE€F;, andge F;,”;f'" it holds that (a(z,D)"f,g) = (f, a(z,D)g).
There are also results in.case s = 0o and § = 1. The values for the parameter s are

in this case (see [8, 11])

n- (ma.x{l,; ' 7 —1)<s<r and n- (ma.x{l,; 17 —1)—r<s<0,
respectively. There are also results in the framework of Theorem 9. Note that assertions

(a) and (d) resp. assertions (b) and (c) are dual statements. We leave the formulation
of the results to the reader. .

There is still another kind of dual results. We formulate it only for Triebel spaces,
but there is an obvious counterpart for Besov spaces.
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Proposition 21. Let a € SB*(r,p,v; N, ) be such that N > n, 1 < X < o0,
0<p,v<ooand(l1-46)r> % Let 1 < p,q < 0o and suppose that

s>n-(max {1, + %} —1) = (1= 8)r.
If a(z, D) : Fyt™ — F;  is bounded, then so is a(z,D)" : Fpij]’ — F 0™, h
Proof. Step 1. The hypothesis implies the boundedness of
a(z,D), a®(z,D): Ft™ — F?,
a(z,D)*, a®(2,D)" : Fy3, — Fpiy™

and hence the boundedness of a®®)(z, D) : F;;’" — F;,. Let fe Ft™and g € Fow
Then as in the proof of Theorem 17 .

(1,08, D) 9)| = (a2, DV ,9)| < Cllfl| pyym

which yields

16 (2. D) gll p=s-m < Cllgl| o -
P ?hq

Step 2. We claim asg)(z,D)‘g — a®(z, D)*g in S'(R™), thus completing the proof
of the proposition. If f € S(R"), choose h € S(R"™) with compact' spectrum such that
||f - h||p.+m < €. Then

: P.q .

|(£,49(=,0°9) - (£,57(z, D)"g)|
< |(5;6(z,D)*9) = (h,a$(z, DY'9)|
+](f = haQ(2, D)%) | +{(f - hrali (2, D))
< Cellgl ., |
since the first summand vanishes if N and M are large enough. Thus {a(z, D)} N is

a Cauchy .sequence in §'(R™) and therefore convergent to a limit which is by definition
a®(z, D)*g. Hence a'®)(z, D)* is bounded; too il
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5. Remarks on multiplication properties

The theorems of Section 3 have immediate applications to multiplications. We first

consider sufficient conditions. Note that if a € B}, ,, then

f—af=>> aifi

k=0 j=0

defines an operator a(z, D) in SBY(r, u,v; N, ) for any N and ), which we decompose
as usual into a = a(!) 4 a(? 4 o),

Theorem 22. Suppose that 0 < p,q,u,v < oo and r,s € R. Then

-
Bﬂ,v "By, C B;,q

P.g =

holds in the following two cases:

(a) ()r>3.
(ii)n~(ma.x{l,i+%}—l)—rSsSr—n~max{
(iii) Ifs=r—n~max{%—:—,,0},thenugqgoo.
(iv) Ifs=n-(ma.x{1,%+;—7}—1)'—r, then%+$2max{1,;—,}.

- 10},

= -

(b) (i)r=§and0<p<oo, 0<v<l.
(ii)Tl'(max{l,ﬁ+;7}—1)—T<s<r—n-ma.x{i—£,0}.

Proof. Step 1. Assertions (a)/(i) - (a)/(iii) and (b) are clear by Theorem 7. The
condition 0 < v £ 1 in (b) is forced by a € L™.

Step 2. Let s = n~(max{1,l-’;+;7}—1)—ra.nd 1+
analoguously to Step 5 in the proof of Theorem 7 we obtain

% > ma.x{l,;j}. Then

oo 3
D> aruife

k=01=-3

la®(z, D)f|

flls;,-

r
Bu,v

g3 SC pror-g SOl

This yields (a)/(iv) il

Theorem 22 has a lot of forerunners. Let us mention only (1, 4, 14, 16, 19, 22]. In
fact, most cases have been known for a long time. We remark that the inequality

la® (2,0l g, < Cllallg, IIfl wez-- (30)
Pee a4 p.min{1,p}
holds if s = r — n - max {% - ’1—,,0} and v < g < co. The proof is straightforward. For

mixed multiplication there is the following immediate consequence of Theorem 9.
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Theorem 23. Suppose that 0 < p,q,u,v < o0, r > ﬁ and s € R. Then
B, FpaCFy,

Py =
holds if the following conditions are fulfilled:
(1) n~(ma.x{l,%+-;;} -1) —rSsSr—n-max{%—-;—,,O}.
(ii) Ifs=r—n-max{-;;— ;;,0}, let p <pandv<p.
(iii) Ifs=n-(max{1,%+%}——l)—r, lei%+;7 > 1 and %+;72 1.
The caser > % of Theorem 22 is sharp. Counterexamples are scattered through the

literature (see [1, 14, 16, 19] and especially [4: Theorem 4.2]). There is one exception,
namely the case 0 < p < 1 of (a)/(iv). The sharpness of this condition follows from the
following

Proposition 24. Let 0 < u,v,p,q,) < oo and r,s € R be such that % + ’1—, >1,0<
A<, -‘l;+$ < i andr+s=n(i+%—1). Then there ezistaeB;’” andeB;’q
such that a®(z,D)f ¢ Bj . for any 7 € R.

Proof. Step 1. Let ¢ € Cg°(R*) be such that ¢(£) = 1if2< € < 4,9 > 0 and

suppy C [%, 14—7] Define o(€) = ¥(£ + 1) and extend both functions ¢ and ¢ to R:

P(&) = ¥(—€) and 0(€) = o(—£) if £ < 0. Next extend them to R™:
(@ =[[#&) and  o(¢) =[] o)
=1 =1
It holds that

for some constant ¢ > 0. Now let ¥;(£) = ¢(277¢) and 0;(€) = a(277¢).

Step 2. For R > 1 large enough let z; = R(j,0,...,0), and choose A¢ < v and
A1 < ¢ such that } = ,\Lo + ;—, Define

ay(@) = 7562 () =) 71y (o - 1))

fj(:z:) = j_ll_l28j("(-;‘_l)_’)f_]gsj(x — x))
It holds that

a=Y aj€B;,, f=) fieB, az,D)f=) q,f;
j=1 i=1 ;=1
By Step 1, if 3 < k — 4, then
Flor (2"”?“1/5(- —z;)F loj(: —'9-';'))
=77 (on@e ¢ [ wizie - njotnyan)

= cF pi(z — z).
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Step 3. Let g;(z) = a;(z)f;(z). Then,if k < j,
Florxgi(z) = 5 X Fou(z — ;).

Suppose i(€) = p(27%€), if k > 1, so that -

Flok g (z) = c2k"j‘§.7:_1<p(2k(:v - z;)).

Observe that |F~1p(z)| < C(1 + |z])~*. Hence, if |z ~ z;| <27, it follows that
> 1F ek e gi(a) <02 30 T (2RRY — 1)) 7Y < catn(R)E.
Skl ‘ >kl .

Since

: 1-1 ' .

S iHi-a)t <o

j=1 '

we obtain if |z — 2| < 27 ‘

> 1F ek rgi(@)| < C2*(RDTE
k<j<i ’ '

and hence

Y | F ek # gi(2)| < C2F(RE.
i>k
Izl

Now choose R > 1 so large that CR™% < £]F~1¢(0)|. Then there exists 0 < § < 1
such that if |z ~ z;| < 27%6, then . . .

2P Nenn gy(a)] < G2H|E (2 - )|
e
and hence

> F ok xgs(a)

> %2""_1—%|f_lcp(2k(a: - z,)) |
>k ‘

But this yields

C\* kna — —1/ -1 koo AL
> ()2 ! Flo(2%(z - d
X (2) ; |z—z,|§2"‘6| _‘P( (x zl))v| T

c\> —kn(l—A)/ -1 A - -1
~Y 9 Fp(z)| dz l
2) _ |z|56| | | gf

= o0.

> f_ivl; *gj(z)

>k

L

Consequently a(?(z,D)f ¢ Bj o forany 7 € R
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Remark 25. Let ay = 2V("(3-1)=7) 7-14y and fy = 2V(r(3-1)=2) -1,
Then the sequence {any}n is bounded in B, and .F] , for any 0 < v < oo, and the
sequence { fny} n is bounded in B, and F) forany0 < g <oco. Letr+s = n(%-{—%—l).
Now if k < N —4, then

F erFlanfn)) = cF s

It holds that

Sup2k"(%_l)|f_lgpk| = ”5” n(d-1) = 00
k : - Lp Fp.el. :
] /e
(Z2kn(;‘;—l)p”}-—l‘pk”2p) = ||6]| n(k-1) =00 if p<oo
k=0 87-#

‘where § is the Dirac measure; and we conclude that the sequence {dn fn } ¥ is unbounded
1_ n(l—
in oz P and BpG " if0<p<ooand 0 < p< ool
Now let us consider sharp estimates in case (b) of Theorem 22.

Porposition 26. Let 0 < it < 0o and 0 < v < 1. The inclusion

Bl B, < B,
holds in the following two cases:
1 1 .n ;‘n ) 1
(a)n-(ma.x{l,;+;} —1)—; <s—;—n~ma.x{;—;7,0}
and . . . o :
(()0<pu<p<ooandr<g<l

or . .
ii 1_ 11l
({[i)0<p<pand ;- ;< <o o
) (max (1,24 3 1) = 3 =5 < § =n-max{E - 1.0)
and :

<4+

N

(i) ;‘z'<'p§oo and %

1
q
or .
(ii)0<p§#1,é=o'oand1/§p. N
Proof. Step 1. If p < p < o0, (2)/(1) is found in [19].' Therefore let ‘;u <p=oco
Then a(!)(z, D) : Bgo.q - Bgo,q and. .

||a(z>(x,1))f||Bg°_' < C||a(2)(z,D)f||B:'/q,.

o 3 ‘ . 1/q
<c( 53 #reloncinl,

k'=0 ==3
< Clel

flse,,
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and

. oo || j—4 q 1/q
||a(3)(z,D)f”Bg°,. < C(Z D fay > = C”a”f?,'."v“
j=4 |l k=0 Lo '

Thus (a)/(i) is proved. For (a)/(ii) see [16: Theorem 4.3.1].

Step 2. (b)/(i) follows from (a)/(ii) by duality, the case 1 < p < ' of (b)/(i1) follows
from (a)/(i). Now let v < p < 1. Then by Lemma 3/(a)

1/p
||a(2)(z D)f” ,,(1 y < C(E Z okn(1 ”)”akﬂfkllu)

k=0i=—3
< C”““B,’,‘_’J‘

n(-}-x)' ™
/
Since obviously a(!)(z, D) and a®)(z, D) satisfy the desired estimates, (b)/(ii) follows il
All the conditions are not only sufficient, but also necessary. In (a.)/() vr<qg<lis
necessary (see [4: Theorem 4.2(5') and (7)]). In (a )/ (i) 5 1 l < ; < 1 is necessary (see
[16: Theorem 4.3.2]). The case p = u = oo a.nd s=0is not posmble (see [16: Corolla.ry
4.3.2]). By duality it follows that l <= + in (b)/(1) and ¢ = o incase 1 < p < u'

of (b)/(ii) are necessary. In case 0 < p < 1 the condition 1 + > i is necessary by
Proposition 24. By Remark 25 ¢ = oo is necessary, hence v < D, too Observe also that
by [16: Remark 4.3.4] in case 1 < p < oo

. BY,C B (31)
if and only if 0 < ¥ <1 and p = ¢ = 2. Thus we have obtained a complete description
of the inclusion in the case of Besov spaces.

Now we discuss the sharpness of Theorem 23. In (iii), if + + > 1, then 1 + >1

is necessary, and if l ; <1, then 2 % >1lis necessary In (i), if p S u, then

v<g<oois necessa.ry For all this see [4: Theorem 4.2]. Now let u < p and suppose

that B} ,-F;  C Fy  fors=r— n(——;) Thenif py > p, then B ,-F;  C B;:,( __)
and aga.m by [4: Theorem 4.2] it follows v < p as a necessary condition for (ii). Agmn

we see that the conditions in Theorem 23 are sharp.
For the cases not considered in Theorem 23 there is the following

Proposition 27, Suppo.se that 0 < p,q,u,v < 00, 1 > and s € R. Suppose also
that v < pu. Then
o FaCF,
holds in the following two cases:

(a)n'(ma.x{l,%+%}—l)—rSs:r,pS,uanduSq.
(b)s=—-r,l+131andq§u'.

Proof. v < p implies Bj , C F;, and hence by [11: Theorem 21] the conclusion
follows il '



Nonregular Pseudo-Differential Operators 141
Again by [4: Theorem 4.2] the conditions v < ¢in (i) and ¢ < ' in (ii) of Proposition

27 are necessary. The necessity of v < u is deeper. The following proposition is the
mainstep in disproving u < v in Proposition 27.

Proposition 28. Given s € R there ezists f € S'(R™) with compact support such
that f € B}, if0 < p < v <ocoand f¢Fy,if0<p<oco Alsof¢ (E2) if
1<p<Looendl<q<oo.

Proof. Step 1. Let 0 > 1,
2 1
ko=0 and ;=) "' (In(l+1)) " (Inln(l+1))™ (5 €N).
=1

Since ¢ > 1 there exists x € R such that Kj / k. Next, if j € N, let
Rj:{z: Kj-1 <z <k; and 0< 2y < 1 (122)}.
In R, there are contained N; dyadic cubes of sidelenght 277 where
Nj =277 (1n(j +1)) " (Inln( + 1)) .

Let € C5°((0,1)") and ¢ = ANy where N is such that
2N>ma.x{s, n~(ma.x{l,% —1)—s, n-(ma.x{l,% —1)—3}.

Note that if |a| < 2N, then the cancellation condition
/a:“t/;(x) dz =0 - (32)

holds. Let {Q™/ }1<r<n; be an enumeration of the dyadic cubes contained:in-‘R;, and
g™ =271 if Q™ = Q,;. Then define :

oo Nj
=35 27 n(j + 1)(Inln(j + 1)) (27*(- - z™9)).

Jj=1r=1

From . ' .
suppy (27F!(- — 2™7)) C Q™

it follows that the support of f is compact.

Step 2. We prove that f € B;, , if 0 < u < v < co. Note that 2’(3—’)1/)(2’*‘(- -

z™)) is an (@™, s, u)-atom in the sense of Frazier and Jawerth (see [21: p. 62]). Using



142 J: Marschall . .

the atomic decomposition of Besov spaces due to Frazier and Jawerth (see {21: Theorem

1:9.2]), we obtain
<cf

gt

< o0 ’

N; -A ’ u viuy 1/v
(Z'(z-ﬁln(H1)(1n1n(j+1))")> )

r=1

s i1

IA

1/v
j‘f(ln(j + 1))"(1 (lnln(] + 1))”(]_7))

il
-

since v > p.

Step 3. Due to the cancellation condition (32) we can apply [2: Theorem 3.7] to
bq,; = 273 (27*(- — 2771)) which yields

s

H{IQI E g’bo)xo} (33)

LP(l°)

Since the Q™ are disjoint it follows for any 0 < ¢ < oo that

H{zj(%“) (£, bgrs )xQ':’ H Lr(19)

= H{ In(j + 1)(Inln(j + 1))"x§r.,»}

<

=0

Lr(19)

. 1/p
57 (InGG + 1)) (Inln(G + 1))""’“’)

“

[
I
-

and hence f ¢ F, , by (33).
Step 4. Define

oo Nj
g=z 2js(1n(j+1))"l.¢)(2j+l(,_xr,j)).
j=1r=1
Plainly
oo N;
(fLa)=Y_> ( lnln(]+1) /¢(21+1(z =) d
j=1r=1

cz2 in lnln(]+1)) N;

=1

= O0.
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Thusf¢( ) 1fweca.nshowg€Fp",;for1 <p < ooand0 < g < oo By [2
Theorem35] in case 1 < p < oo we have C

| loll - < c||{(;n(j+1))'-1xqf.,}\

LP(19)
. o0 . 1/p
< C(Z (In(j +.1))"’N,~2-f">
Jj=1
oo 1/p
(E] ln(] + 1) )
=1 .

< 00

and hence g € F7, and in case p = co we have

1/q
IIgIIF;.qscsup(lP!“ 5 z-f"onml»-q) |
' d QriCP

Let |P| =27%" and j > k. If P C R;, then at most 2U=%)" of the Q™ are conta.med in
P, and hence

: e ,
<|P|“ 'Z 277" (In(j +1))-q> <C(n(G+1)~"
QricPp _ o

S0 571 (1 + 1)) (Inlngs + 1) w27

J=Jjo

Moreover, P N R; contains at most
20 =R(n=D9J;=1(1n(; + 1)) " (Inln(j + 1)) ° Coet

cubes Q™’. Hence

o 1/q
(IPI“ > 2""‘(ln(j+1))'“> < C(ln(Go +1)) ™"

QmicCP
Thus we find g € F°, a.nd since our estimates show that
M N;
2221’ In(j + 1)) " %27 (- - z™)), — g
)=1r=1

as M — oo in F® weﬁndgel:“t;fql

0,9
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The idea of the construction of f is taken from Step 5 of the proof of [16: Theorem
3.3.2]. Note that

(F3) = B (34

if 1 < p,g < oo (see [6]). Thus in that case Step 4 is immediate by Step 3. It is
a conjecture that (34) holds in case 0 < ¢ < 1 too, but this is only known if p = 1
(see [19]). The difficulty is that one cannot use the Hahn-Banach theorem because the
underlying spaces are not locally convex.

Now there is the announced

Proposition 29. Suppose that 0 < p,q,u,v < 00 and s € R. Suppose also that

T 3 L}
Bu,v ’ Fp,q < Fp,q

holds and one of the following two conditions: -
(a) s=randp<p.
(b) s=—r and%-{-%fl.

Then v < u.

Proof. Let 4 < v, let f € B}, be as in Proposition 28 and choose ¢ € C$°(R™)
such that ¢(z) =1 in a neighborhood of supp f. Then - f = f ¢ F7, hencev < pis
necessary for (a). Now let s = —-r and g € F; , be the distribution constructed in Step
4 of the proof of Proposition 28. Then (fg,¢) = (f,g) = oo and thus fg ¢ S'(R"™),

which is a contradiction. Hence v < u is also necessary in case (b) fl

To complete our characterization we need to consider the case r = ﬁ Then 0 <
v < 11is necessary (see [4: Theorem 4.2)).

Proposition 30. Suppose that 0 < u < oo, r = f, 0<v<1,0<p,q< o and
s €R. Then
By, Fpa S Fpy

holds if one of the following two conditions is fulfilled:

(a)n-(ma.x{l,‘l‘-*-%}—l)—ﬁ<s=ﬁ—n-ma.x{%—;7,0}
and

(i) u<p<1,v<p, and v <min{y,q} in case u=p
or

(ii) p < p and v < min{y, q}.

(b)n-(max{l,%+%}—1)—f=s<§—n‘ma.x{£—%,0}
and

(0<pu<landp=oc
or

(i) ; + 3 <1

aaten. ¢ lh
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Proof. Since B:,/.,” — F;',ép, (2)/(1) follows from the fact that F;j;p is a multipli-
cation algebra (see [1, 6]). Now let p < p and :—, = ﬁ + plz. Then

) j—4 a\ 1/q
a®(z, D) f|| puru < C (Z?"/“q szaj )
. P j=4 k=0 Le

< Cllall gz 11l s, ,

< Cllall gyre £l -

Now (a)/(ii) follows easily, and (b) is a matter of duality

It is an easy consequence of Remark 25 that in case % + % >land 0 < p < o0 of
(b) the inclusion does not hold. By {4: Theorem 4.2(7)], p < 1 is necessary for the case
p < p of (2), and also v < p is necessary for (a)/(i). Also v < min{u,q} for the case
p < p of (a). The proof of [16: Theorem 4.3.2] shows that the case p = 4 = oo and
s = 0 is not possible. And by [16: Remark 4.3.4], if 1 < p < oo, then

B, Fl, C FS, (35)

if and only if 0 < v < 1,1 < p < 00 and ¢ = 2, which completes our discussion.

These counterexamples also provide counterexamples for Theorems 7 - 9. In fact, in
Theorem 7/(b) the condition v < ¢ < oo is necessary, in Theorem 8/(b) the condition
Lt % > max {1, ;7}, in Theorem 9/(b) the condition v < p and in Theorem 9/(c) the
condititon % + ;7 > 1. This follows by letting a(z, D) be a multiplication operator. But
much more can be said. Let a € B , for r 2 2 and let

oo k+3

bz, &)=Y D 2a(z)ex(6) € SBI(r,uviN,N) (36)

k=0 j=k-3

where (1 — 6)r > ﬁ and 0 < v < 00, N € Nand 1 < A < oo are arbitrary. Observe
simply
laell oo < C2*¥ [lax]l,, < €257 ol

r .
BI‘-OO

Now lét

n-(ma.x{l,;“-+i}—l)—r=sl<r—n~ma.x{%—%,p}_

#,00

and -’q— < ma.x{l, %} Then there exist a € B} ,, and f € B;!; such that af ¢ By
Evidently a(®(z, D)f ¢ B;!,. Then suppose that ‘

n~(max{1,%+;7}—1)—(l—6)r=s<r—n~ma.x{%—%,0}.

Then

! oo
h=Y 27 f e B,
k=0
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and since s > s; . ’
b(z, D)k = a'¥(z,D)f ¢ B3,

Hence in Theorem 7/(c) the condition 0 < ¢ < min{l,p} is necessary. Similarly in
Theorem 8/(c) the condition g = oo is necessary. In fact, suppose

n-(ma.x{l + - }—1)—r<s—(1—6)r—-n ma.x{———O}

s;=r1 —n~ma.x{% - ;7,0} and 0 < ¢ < oo. There exists a € B}, , and f € By}, such
that af ¢ B;!,. But then a®(z,D)*f ¢ B;!,. Since by lifting

||a(2)(1: D)* f|

5, ~ ||z, DY fIIB-

we find b(z, D)* f ¢ B3

Finally we discuss brleﬁy the sha.rpness of Theorem 9. Suppose that in Theorem
9/(a) we have

p.¢» and hence g = oo is necessary.

no(max{l;%+-1-}—1)—(1—6)r=s<r-—n-ma.x{

) - %’0}

and i + i > 1. Then % + % > 1 for any v is necessary, and hence 0 < p < 1. Thus if
1 < p < oo, then no boundedness result can hold. If i— + :—, <1, then v < p is necessary
by Proposition 29. But we must have v = co. Hence, if 0 < u < 00 and’1l < p< < o0,
theri no boundedness result can hold whatever 0 <'q < oo is. For the case /1 = 00 see

[11: (36)).
Next, in Theorem 9/ (b) let

® i

n-(max{l, 2 +1}-1)-(1-8)r<s=r-n- max{———O}

If 4 < p < oo, then v < p is necessary, and if p < g, then by Probosition 29 we must
have v < p. But in that case we have boundedness if v < ¢ < oo (see [11: Theorem
14]), which is necessary, too.

Similarly, in Theorem 9/(c) let
n-(ma.x{l + < }—1)—r—s<(1—6)r—n max{———O}

If % + ;—, > 1, then % + ;7 > 1 is necessary. Let % + ;7 < 1. Then by Proposition 29 we
must have v < u, and here we have boundedness if 0 < ¢ < v’ (see [11: Theorem 14]),
which is necessary, too.

Finally, in Theorem 9/(d) let
n'(ma.x"{l,i+%}—1) —r<s=(1-6r—n- max {5 — 2,0},

0<p<oocand v = 0. If 0 < p < pu, then no boundedness result can hold by
Proposition 29. Let y < p < 0o. Then similarly to the necessity of ¢ = co in Theorem
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8/(c) we prove that a boundedness result cannot hold (observe that v < p is necessary
for Theorem 23/(ii)). For the case pu = oo see [11: (35)].

Summing up we have obtained a complete description of the conditions, when
boundedness of pseudo-differential operators holds. This characterization extends with-
out any difficulties to the symbol classes SF*(r, u,v; N, A) studied in [11]. Let 0 < u <
00,1 <p<L oo, (1-6)r2 3 and

n-(max{l,L+3 -1 -(1-8r=s<r—n- max { — 7,0}.

Then there exists b € SFJ(r, 1, v; 00,00) such that b;(z, D) is unbounded on Fy .. The
point is that for b defined by (36) we have

be SFX(r,p,v;00,00) N SBY(r, u,v; 00, 00)

and hence our previous discussion yields the result. Similarly, if 0 < p, u < 00, (1-6)r 2

Z and
m

n'(ma-x{l,i+;7}—1)—r<s=(1—6)r—n~ma.x{71‘—-;7,0},

then there exists b, € SF{(r, pt,v; 00, 00) such that b;(z, D)* is unbounded on F;&. The
other cases are already treated here and in [11].
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