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Nonregular Pseudo-Differential Operators 
J. Marschall 

Abstract. We study the boundedness properties of pseudo-differential operators a(x, D) and 
their adjoints a(x, D) with symbols in a certain vector-valued Besov space on Besov spaces Bp',q 
and Triebel spaces F ,q (0 < p,q < oo). Applications are given to multiplication properties 
of Besov and Triebel spaces. We show that our results are best possible for both pseudo-
differential estimates and multiplication. Denoting by (.,.) the duality between Besov and 
between Triebel spaces we derive general conditions under which (a(x, D)f, g) = ( 1 a(x, D)9) 
holds. This requires a precise definition of a(r, D)f and a(x, D) * f for I E F , and f E B,. 

Keywords: Pseudo-differential operators, function spaces, nonregular symbols, paramultipli-
cation, pointwise multiplication 

AMS subject classification: 47 C 30, 46 E 35, 35 S 50 

0. Introduction 
One approach to nonlinear partial differential equations is based on the study of lin-
ear differential equations with limited regularity. This leads naturally to applications 
of pseudo-differential operators with nonregular symbols to nonlinear differential equa-
tions. In the monograph by M. Taylor [17] one can find many applications of the calculus 
of nonregular pseudo-differential operators to nonlinear differential equations. And in 
this book there are also applications of adjoint pseudo-differential operators. In [7, 9, 
10, 12, 221 the reader can find a deeper study of the calculus and of some of the applica-
tions. Our operators contain as a limiting case the paradifferentia.l operators in the form 
introduced by Y. Meyer [12]. As a rule, in order to obtain optimal results one needs 
the whole scale of symbols studied here and in [11]. For such results see, for instance, 
[9, 10]. 

In the paper [11] we studied among others the symbol class SB'(r, ; N, A) which 
is defined by means of vector-valued Besov spaces B 4O (B'). Among other things 
we proved the boundedness and compactness of the corresponding pseudo-differential 
operators and their adjoints on Triebel spaces F q for the values of the parameters 
0 <p, q, oo. Here we prove the boundedness of these operators and their adjoints on 
Besov spaces B, , ,7 . By approximation [11: Lemma 1] this immediately implies compact-
ness. And more generally, we introduce symbols related to B ( B 'm ) . This allows us 
to prove sharp estimates. We are even able to prove some unexpected estimates for these 
operators on Triebel spaces. This is done in Section 3. In Section 2 we give a complete 
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construction of a(x,D)f and a(x,D)f for f E F, and f E B ,q . Usually one defines 
a pseudo-differential operator on S(R') and then extends by continuity. But this works 
only if 0 <p, q < oc. The construction given here works in the full range 0 <p, q !^ no, 
and is consistent with the usual one. For another approach using elementary symbols see 
[22]. It should be remarked that we need much less regularity in the -variable than [22]. 
In Section 4 we study in detail under which conditions (a(x,D)f,g) = (f,a(x,D)*g) 
holds. It turns out that this is the case, when the boundedness conditions of Section 
3 hold. This involves a deeper study of the duality of Besov and Triebel spaces, and 
of the approximation of distributions in F',q and B q by entire analytic functions of 
exponential type. And in the final Section 5 we apply our estimates, and we characterize 
the multiplication of Besov spaces	B c B; q (0 <p, q, , I' no), and also the 
mixed multiplication F ç F;,q . This section ends with a discussion of the sharp- 
ness of our pseudo-differential estimates. And we obtain a complete characterization of 
the conditions, when boundedness of our pseudo-differential operators holds. 

1. Preliminaries on function spaces 
Denote by S(R) the Schwartz space of rapidly decreasing functions, and by S'(R) its 
dual, the space of tempered distributions. Let ,F and F' be the Fourier transform and 
its inverse, respectively. Let	e S(lR') (k E No) be real-valued such that 

suppo ç {: II <2} 

suppkc{e: 
2k-1 <11<2k+I}	(keN)	

(1) 

and for any multi-index c there exists a constant Ca > 0 such that 

ID' 'k (e)l	Ca2	(k E No)	 (2) 
=

(ellr).	. (3) 
k=O 

Such systemexists (see Triebel [20: Remark 2.3.1.1]). One may even choose pk in such 
a way that pk()	p(2_k), if k > 1, for some function E S(R 

Let 0 < p,q ob and s E R. Let { p k}keN0 c S(R') be a system of functions 
satisfying (1) - (3). Define the Besov space B q and Triebel space F q as the spaces of 
all tempered distributions I E S'(R') such that 

1)111	= {21c3.1_1 ( p k.Tf ) } IIIq(LP) < 00	 (4) 

IL(II;,, 
= {2F 1 (ço k Jf)}II L p (11) <00 if p < 00.	 (5) 

For their basic properties see Triebel 119 - 21]. In particular these spaces are independent 
of the chosen system {k}keN0 and they are quasi-Banach spaces. The Triebel spaces 
F,-,'. ,q (0 < q no) are defined in Frazier and Jawerth [2]. Define (0 < q <no) to 
be the space of all tempered distributions such that 

IIfIIF ,q = sup(2	I	dx) 
1/q <
	 (6) 

I , j	JQ,, k=j
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where the supremum is extended over all dyadic cubes 

Qi, = {x: 2l	x <2(l + 1) (i = 1,... ,n)}

where 1 = (1,.. . ,l,,) E Z" and j EN. It holds that 

Bpsp,rnin{p,q} '- 	--4 B	(7) 

for 0 <p,q !^ oc and .s ER. 

The following three lemmata are one of the main tools when we are estimating 
nonregular pseudo-differential operators. 

Lemma 1. Let {fk}kEN0 be a sequence of functions and 0 < c2 < c 1 such that 
supp.Ffo C {: IC  <ci} 

supp.Tfk	C2 2k	 c2k}	(k E N). 
Let s E R and 0 <p, q < oc. Then it holds that, for some constant C > 0, 

(a) f Cj12f } II(LP) 
k0	B;q 

(b) 1k	<C{2fk } IIpi	if p <	. 
k0	F;q 

More precisely, if the right side of the inequality in (a) or (b) is finite, then {	fk I N 
converges in S'(R") to a distribution	1k satisfying this inequality. 

Lemma 2. Let {fk}kEN. be a sequence of functions and c > 0 a constant such that 
supp.Ifk C {: Il <c2k}	(kEN0). 

Let s  Rand 0 <p,q < oc. 
(a) If .s > n(max{1,} - 1), then it holds that 

ifk	Cj{2k3fk}jq( 
LP)

. 

k0	B;q 

(b) Ifs> n(max {i, 1, } - 1), then it holds that 

fk ^ ^	:5 Cp{2fk III L ; (l q) if p < 00. 
k=0	Fp'q 

More precisely, if the right side of the inequality in (a) or (b) is finite, then { >'_ 1k } N 
converges in S'(R") to a distribution	1k satisfying this inequality. 

Both these lemmat are wellknown (see, for example, (5 - 8, 12, 201 or [22]). The 
counterpart for F,, q (0< q co) is [11: Lemma 131, it holds that 

1 1q 

fk	 Csup(21Thf >2fkIQdx	.	 (8) 
Ij k=0	p.	 k=j	 J 

In case s = n . (max {i, } - 1) there is the following version.
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Lemma 3. Let {fk}kEN0 be a sequence of functions and c > 0 a constant such that


	

SUppFfk ç	:	<c2'}	(k E N0). 

Let s=n . (max {1,}-1) and 0<p<oo. 

(a) If y = min{1,p}, then it holds that, for some constant C >0, 

fk 
k0 

(b) If 0 < p < 1, then it holds that, for some constant C > 0, 

	

"0 fkj^	CI{2fk}11L,(l). 
k0 

More precisely, if the right side of the inequality in (a) or (b) is finite, then {	1k } N 
converges in S'(IR") to a distribution	1k satisfying this inequality. 

Proof. Step 1. Let g = 1k (we assume the convergence for a moment) and 
let g = F'pk.Fg). Then for some natural number K = is(c) we have 

CO 

gk = j F'f 
j=k—c 

which implies

M g IB .	Csup2gkIILP
1 / 

<Csup2 
(j=k—K

'k * fi ll
Y 
P) 

 

Csup2k3 (
	2hI1kllfjp 

\j=k—sc 

(

00 

2ks1fkIIP) 

where we have used the convolution inequality [20: Remark 1.5.3.21. 
Step 2. Let 0 < p < 1. Using the vector-valued version of the inequality of 

Plancherel-Polya-Nikol'skij (see 113: Proposition 2.4.11(b)] and [11: Lemma 18]), we 
get

19k1	J 
CO 

 
II F'e,ok(x—y)f(y)dy 

j=k—sc

1/p 

15 C

(f lj^:k—K
sup 2' ( ') Fk(X -)f()I d)
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and hence by the Fubini-Tonelli theorem

'p 

(Jf	2'- ( 'P- - ')	k(X -	I dxdY) sup

	

 II	2(') IfIsup

I i I^''	 L P 

which yields (b). 

Step 3. It remains to prove that {	fk}N converges in S'(IR' 1 ). In case (a) it

follows from the inequality just proven that 

II N	II	 / N	 1fy 

1kM	c (	2k3 
IIk=M II B;	\k=M	

IfkIILF)	
- 0 if M,N -9 oo 

and hence {	1k } N is a Cauchy sequence in	and thus convergent. In case (b)

the vector-valued inequality of Plancherel-Polya-Nikol'skij yields 

II	 II 

II	fkIII	C 

II k

o

=

o

O	IlL,'	k	 II LP 

and thus { >i'=o 1k } N converges in V I 

We conclude this section with a remark concerning the topology where the conver-
gence takes place. Let

Bp. (R) = {f E F;,q: llfM. ^ R} 
p,q F"

(9) 
BB. (R) = {i E BP' ,q: lIMB

p
. <R}. F,'

.' 

We provide both sets with the relativ topology of S'(R"). Let f(s) -, f in S'(R'1) 
Then it holds that 

1Il. < lirninf lII'	and	hu B. ^ lirninf 

	

II F; ,q	 ,_.	 II B;,q	(10) 

for any s E R, 0 < p,q 00 (see [1, 5]). Hence B;(R) and BB;(R) are closed 
in F; ,q and B ,q , respectively. Now it is wellknown that bounded subsets of S'(R") 
are relatively compact and metrizable (see [181). Thus BF;, (R) and BB;, (R) with 
the relativ topology of S'(R') are compact metric spaces. This is a generalization of 
the weak compactness of the closed unit sphere in case 1 < p, q	oo to arbitrary

0< p,q 00. 

In Section 4 we present an improvement of the convergence in Lemmata 1 - 3, which 
is better than convergence in S'(R").



114	J. Marschall 

2. Non-regular pseudo-differential operators 

For abbreviation we often write 1k = 1'(0k.Ff) and for a function a: IR" x R' —p C 
let us write 

Define the vector-valued Besov space B(B,) as the space of all a E S'(lR" x R) 
such that

	

IIaIIB;(B) = {2aj(x, )IIB	} L(LP(d)) 

For their properties see SchmeiBer and Triebel [13]. We need these spaces for the 
parameter values 0 <	oo, 1 A 00, r	and N >. If in addition r > 

JA A

there is a description of these spaces by means of differences. We refer to [13: Theorems 
2.3.4.1 and 2.3.4.21. In the language of [13] B(B') are the spaces SB F, with 
F = (N, r), P = (A, t) and q = (00, ii). 

Let m,rER,0<6<1,O<,v<cxD,r> ,r >O, 1<A<coandN> E . For 
a symbol a we write a E SBr(r, z, v; N, A) if 

sup 2m 11 jja(x , 2")^0k(2k.)MN LOO(d)
	

(11) 
k 

sup 2_ Im+ö Ia(x,2 k. )ok(2 k. )M Br(BN) <00. 
k 

These two norms make SB'(r, p, v; N, A) into a quasi-Banach space (into a Banach 
space, if p,' 2 1). It follows from [13: Theorem 2.4. 1] that under the present parameters 
values and if r> each symbol a E SB(r, y, ii; N, A) is a continuous function. 

The definition of these symbol classes is mainly motivated by the pointwise estimate 
in Proposition 5 (and also by Proposition 4). When using the Littlewood- Paley decom-
position of Besov and Triebel spaces as a starting point, it almost immediately allows 
good estimates for our pseudo-differential operators. Choosing i = v = N = A 
one sees that our symbols include the classical Hörmander classes Let us compare 
our classes with those of Yamazaki [22]. He considers only the case 6 = 0, 1 < ji, v 00 

and N = A = 00. In [22] estimates are obtained by decomposing a symbol into reduced 
(or elementary) symbols., This can be done with our symbols equally well. By comparing 
the symbol classes on the reduced symbol level one sees that our class SB'(r, M , v; 00, 1) 
equals the class S I (B T ) m in [22] (here M = (1,... ,1)). The class SF(r,i,v;oo, 1) 
studied in [11] is even more general than the class Sl(F,)m in [22]. On the other 
hand, in [22] general anisotropic spaces are allowed. However, our discussion extends to 
parabolic Besov and Triebel spaces (compare [8]). Thus our approach is more general 
than the one in [22), and it gives sharper results. 

For a symbol a E SBr(r, y, ii; N, A) and a function I E S(R') define 

I 1"'^a(x, a(x,D)f(x) = ).Ff(e)d	 (12)
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to be the associated pseudo-differential operator. Let 

a ,k(x , ) = 	(çaj(7).Fz_,1a(., e))k(e). 

We decompose the symbol into three parts 

a(x,e) = a'(x,e) +a 2 (x,e) +a3(x,e) 

where

oo k-4 
=	 (13) 

j=O 

a 2 (x,e)
k+3 

=	E a(x,)	(14) 
k=O j=k-3 
00	00 

=	
>	

(15) 
k=O j=k+4 

The adjoint pseudo-differential operator is defined to be, if f E S(R"),

a(x,D)f(x) =
	

( 16) 

in the sense of oscillatory integrals. From 

.F(ajt (x, D) fl ) (e) = J e''a,k(y, e)f'() dy = f 11at(e - , E).Ff,() d 

	

one sees that there isonl ia contribution if	2k and 

f<max{ik}+4 iflj—kI<3 
max{j,k}	ifj—k>4. 

It follows that

oo k-4 k+3 
aW (x , D)*f =

	

	> a,(x,D)f,	 (17) 
k=4 j=O l=k-3 
Co k+3 k+6 

a(2)(x, D)f =

	

	a,,(x, D)'f1	 (18) 
k=Oj=k-3 1=0 

	

00 00	j+3 
a 3 (x,D)f =

	

	 a,,k(x,D)11.	 (19) 
k=Oj=k+41=J-3 

Moreover	 - 
suppF(ajt (x , D)*fl ) 9	2k}.	 (20) 
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In case 0 < p,q < oo, S(IR") is dense in Bp' ,, and F,,. In this case one can define 
a(x, D)f and a(x, D)*f on Bp' , , and F; q through extension by continuity if an estimate 
on 8(R") is known. If p oo or q = 00, this is no longer possible. 

The following approach works in the whole range 0 < p, q 00. It is probably 
wellknown to the experts but still unpublished. In [22) there is a different approach 
using elementary symbols. Starting from (12) and (16) the extension is done in two 
steps. In the first step we begin by defining a,,k(x , D )fk and a3 ,k(x, D)f, if f is in Bq 
or in F',,. This is done in the following two propositions. This is the other main tool 
in the estimation of pseudo-differential operators. 

Proposition 4. Let a : R n x R" —p C be a bounded and measurable symbol such 
that

suppa(x,.) c	c2k}. 

Suppose0<pi,p2,/1<oo,1<\<ooandL—'	1 
-	 p1+p2 

(a) If 1<p 1 5oo, or if 0 <P1 <1 and 

Ffc {: IeIc2k1, 

and if N> i max {j, , _L 1, then for some constant C >0 

II a ( x , D )fII L P I < c	a(., 2k.)I B11, Ill IlL'2. 

(b) If 1<p 1 00, or if 0 <p i <1 and 

suppFa( . ,.) ç f,7 1771 c2i } x {: II	c2 k} 

suppJf ç {: II ç c2'}, 

and if  > nmax1 - 1—	- }, then for some constant C >0 2' A'	Pi Pi	2 

Ia(-T, D)*fIILpI	
A, 

	

C2(m{jk'}_k) n.(max I i,L}_i)	a( . ,2 k Pt	 .)lBN 1j ,' 1IfIIL92 
co 

For the proof of the proposition we need the Hardy-Littlewood maximal operator 
Mr defined for 0 < r < 00 by

hr 
Mrf(x) = sup(_1

	

f	If(y ) I T d) 
r>O \JB ( x , r)I B(z,r) 

Recall that Mr is bounded on LP if r <p < 00 and bounded on LP(l) if r <p < oc 
and r < q 00. 

Proof of Proposition 4. Step 1. Let 

1 
K(x, x - y) (2) f e'a(x, ) d
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be the kernel of a(x, D). Then if 1 r 2, it follows from the Holder and the Haus-
doi-ff-Young inequalities that 

I a(x , D )f(x)I = if K(x,x —y)f(y)dy 

C	2 (J K(x, x - y) 9(x - )d)	Mr 1(x) 

C E 2- al F' ( )I a(x,	Mr 1(x) 

k.)II  

where the dotted space B' is the homogeneous Besov space. Then the boundedness 
of Mr yields assertion (a) in case 1 <p2 

Step 2. Let 0 < r < 1. Then by the the Plancherel-Polya-Nikol'skij inequality (see 
20: Remark 1.3.2.1]) 

a(x , D)f(x )I = V K(x, x — y)f (y) dy 

•C2(') (j K(x,x	)frd) 

<C2(1)Ia(x,.)n,Mrf(x) 

< Ca(x,2Ic.)11Bo,Mrf(x) 

from which assertion (a) follows. Note that in case p ' = p2 = 1 we have the additional 
restriction TI c { : iei	c2'} 

Step 3. Let

K(y,x—y)= 1 
(2) J e'a(y,) d 

be the kernel of a(x, D). By considering the kernels it is clear that assertion (b) follows 
from (a) by duality if 1 Pi < oo. Let 0 <P1 < 1. Since 

e	K*(y, x - y)f(y) dy = ( 2r)' If eFa(e + - (,)Jrf(() J  
the Plancherel-Polya-Nikol'skij inequality yields

I /pj 
Pt f K(y,x—y)f(y)dy	C2(T 1 )(fIK * (y,x_y)f(y) I dy)	(21)
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where p = max {j,k,1}. But then by the Holder and the Bernstein inequalities 

i/P1	I/M 
' 

	

a( x , D)fM L'	C2	Pi 
n(-Li) 

(1(1 K(y,x - 11)1
p1 dx)	d)


(ii) 
<C2	'	a(., .)	) 11 LO Ill IILP2 

B2 PI ,p1 
P1 <C2 ()	2k.)M	

- ) LP IIIIILP2 
B2,Pl 

Step 4. Let P1 = P2 = . We want to prove the pointwise estimate 

a(x, D)*f(x)	C11 a( . , 2 k. )I BN	Mif(x)	 (22) 

if N > n, from which the case p ' = P2 = oo of assertion (b) follows. By duality we 
obtain the case p i = P2 = 1 of assertion (a), too. Now we have 

a(x,D)*f(x) I 
= I K*(y, x —y)f(y)dy 

(.=-00 

+00 
c 	sup K*(Y1x_Y)(x_Y))Mif(x) 

V 

:5 C / + 00

2sup 1 +k a(y , 2k .)II )Mif(x). 
V 

If N > n, then

suPM.F' ( + k.Fa(y, 2k.)) 
V

	1 1 L 1 - 
< Cli Ik( . 2k.)MBN MLOO 

I 1. 

and, since F_ I co +k ll	C, 

	

2( v+k)n sup k1:1 (a(y, 2k.)) II	< c	a( . , 2k.)ML, 
II L 1 -	 IIL'° Y 

Now (22) follows I 

Let us single out the maximal inequalities. 
Proposition 5. Let a: R n x R" - C be a symbol. 

(a) Let
suppa(x,.), supp.Ff c {: il <c2'}. 

If 0 < i- <2 and N > E , then there exists a constant C > 0 such that 

	

Ia(x, D)f(x)I	Ca(x, 2k. )I BN	Mf(x).
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(b) Let
supp1a(.,.) 9 1,7 : 1 ,715 c2'} x {	j < c2k} 

suppFf ç {: 1ei <c2'}. 

If  < r < 1 and N > !, then there exists a constant C > 0 such that 

a(x, D)f(x) < C2 (max jk1}(1)	a(., 2k.)MN	L00Tf 

Proof. It remains to prove assertion (b) for the case 0 < 'r < 1. But the proof is 
the same as for the case r = 1 by taking (21) with p' = r as a starting point U 

Part (a) of Proposition 5 is from [5 ] . For general parabolic metrics of product type 
the proposition is found in [8]. In the present context the proof is much more readable. 
Proposition 4 is the main tool in the case of Besov spaces, and Proposition 5 is the 
main tool in the case of Triebel spaces. Note that there is a difference in the regularity 
needed for the -variable. 

Now we can define a,,k(x,D)fk and aj,k(x,D)*f, if f E B q or I E F, ,,. For the 
definition of a(x, D)f and a(x, D)*f for f in B ,q or in F ,q we then use Lemmata 1 - 
3. For example, it holds that 

suPPF(4aik(xD)fk)	{: iei 2k). 

Then Lemma 1 yields 

oo k-4	 (	k-4 

	

1: > a(x, D)fk	 12	aj,k(x, 
k=4 j=O	 B;q	 j=O

	H19(LP) 

	

If we can show that for say f E	the right side of this inequality is finite we 
conclude from Lemma 1 that there exist 9 1 E B q such that 

Nk-4 

> > a)k(x , D)fI —g i if 
k=4 j=O 

with convergence in S'(R'). We define a ( ' ) ( x, D)f = g. Similarly 

(j=k-3

k+3 
suPP.T 	aik(xD)fk) C { :	<c2'}. 

Here we can apply Lemma 2 or 3, and for suitable f we can conclude that 

N k+3
a,,k( x ,D)fk	92 if N — oo 

k=Oj=k-3
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with convergence in S'(R"), and we define a (2) (x, D)f = 92 - Finally 

j-4 
SUPPT(aik(xD)fk) c {e: I 23}. 

Here we can again apply Lemma 1 and for suitable f conclude that 

N

	

	 Nj-4


ai,k( x , D)fk = > ajk(x , D)fk -i 93 if N — oo 

	

k=O j=k+4	 j=4 k=O 

with convergence in S'(IR"), and we define a(3) (x,D)f = 93 . Thus a(x,D)f is well 
defined for suitable I provided we can show that the right side of some inequality in 
one of the Lemmata 1 - 3 is finite. Since by (20) 

sUPPF(aik (xD)*fI) ç {:	2k} 

the same reasoning applies to a(x, D)'f. 

It remains to prove that this definition is consistent with (12) and (16) when f E 
S(R). 

Lemma 6. Leta: R" x R n -* C be a symbol such that 

sup 2 1 a(.,	
DL°o 

DC) 

for some N > n max {, } with 1 < A <00 and let  E S(R'). Then the definition 
given for a(x, D)f above is consistent with (12), and the definition given for a(x, D)*f 
above is consistent with (16). 

Proof. Step 1. Let 0 E C000 (R'2 ) with t4'(e) = 1 in a neighbourhood of the origin, 
and let 'N() /,(2_N) For each E R" there exists a set E of measure zero - the 
complement of the Lebesgue set - such that if x 0 E, then 

	

...	a(x,) as 

Let	be dense in Rn and E u 0 E 1 . This is a set of measure zero and we claim 

that for (x, e) E x R"

 a(x,) as N - oo.	 (23) 

By hypothesis there exist a constant C > 0 and 0 < r 1 such that if 1 771 1, then 

Ia(x,e + i) - a(x, Ol !^ C(i + )"
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For (x, ) E x IR" choose a subsequence {,, I j such that ,, -* as j -i cx. Then we 
obtain

'(tPNF1a()) —a(x, 

5 ^ I -F- ' ON ( X - y)(a(y ,e) - a (y ,e:1 )) dy 

+ F;' (Fa(•, s,)) - a(x, ) + a(x, ) - a(x, C)I. 
Now choose j so large that the first and the third summand become small independent 
of N. Fix j and choose N so large that the second summand becomes small. Hence 
(23) follows. 

Step 2. From (23) and the dominated convergence theorem we obtain the assertion 
for a(x,D)f. Then the same argument applies toa(x,D)*f if m < —n. In case 
in > —n choose 1 E N such that 21 > m + n. Let a(x, D)*f (i = 1,2,3) in obvious 
notation.Then 

1	ft	 S 

	

W
(2ir)" ii	a\, (y , 0( 1 + Iel2)-'f(y)dyd 

1 

(2w)" If e'ea(O(y, e)(1 + II 2 Y'f() dyd if N . 

pointwise everywhere in R", and hence by applying (1 - Lx)' to both sides we obtain


	

4 (x,D)*f(x)	1 
(2ir)" Jf e'a( ' ) (y, )f ( y ) dyd 

with convergence in S'(R"), where the double integral is understood as an oscillatory 
integral I 

Thus we have completed the definition of a(x, D)f and a(x, D)*f modulo the proof 
of the finitness of the right side of some inequalities in the Lemmata 1 - 3. This will be 
done in the next section. 

3. Pseudo-differential estimates on B3 and F3 

	

p,q	p,q 

In this section we state and proof the main results of this paper. We begin with the 
action of SB%(r, /.z, ii; N, A) on B;,q. 

Theorem 7. Let a E SB"(r,j,v;N,A) be such that m  IR, 0< A ,v	, r >0,

(1—)r> B and 1A<oo. Let0<p,qooandN>n.max{,,}. 

(a) If 

	

n(max{ 1 i'
	

)	 I
+)r<s<r—n.max ,

IL PJ 	
0 

p J 

them the operator
a(x,D) B3+m 

	

p,q	Bp'
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is bounded. 

(b)If(15)r>!,zi<q<cxand 

n - (m{i+} - i) —(1-6)r <s=r_n . max O}, 

then the operator
a(x,D): B'	BP' 

is bounded. 

(c) 11( 1 —8)r >	, 0< q <mini 1,p} and 

n	(max{ 1,	+} - i) —(1 —ö)r	s < r _n . max { - 

then the operator
a(x, D):	—p B 

is bounded. 

Theorem 8. Let a e SB(r, IL, u;N,A) be such that m ER, 0< u, ii <	, r >0, 
(1-6)r>	and 1	A	oo. Let O<p.q<cx and 	>n . max {,,1 -}. 

(a) If 

n	(max {1 , i +	-	- r <s <(1 —S)r _n . max { - 

then the operator
a(x, D)	: Bp3 q	BP' m Iq 

is bounded. 

(b) If (1-5)r>,	>max{1,} and 

n	(max {i,i +	
}_

i) —r =s <(1 _)r_n . Max { - 

then the operator
a(x,D)*	Bpq* B m . 

is bounded. 

(c) If (1 —6)r>	and 

. (max{1,+i}_1) —r <s=(1 _S)r_n . max {_0}, 

then the operator
a(x,D): BP". —+ B

PIOO 

is bounded. 

We remark that in both theorems the restrictions on q are sharp. At the end of 
Section 5 we will present counterexamples. 

We continue with the action of SB(r,	v; N, A) on Fq. p,
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Theorem 9. Let a E SB'(r,u,zi;N,.\) be such that m E R, 0 < p,v 
(1-6)r> 11 and 1 <A oo. Let O<p,q<co. 

(a)IfO<p<1,0<p<1in case	 cx,N>n.max{.,,i!}and 

	

n (m{i, +	- —(1— )r = s < r - n - m{ - 

then the operator
a(x,D): F;m_ FP',q 

is bounded. 

(b)If<p<oo,v<p,N>n.max{j,,!,i} and 

n• max 	+	- —(1— 8)r <s = r - max 

then the operator
a(x,D): F;" - F;,, 

is bounded. 

(c) If + >1, + > 1, N> n max{1 ' 1 ,0 and 

	

n (max{i , i +	- i) —r = $ <(1 —6)r _n.max{ -
it P 

then the operator
a(x,D)* F , ,, - Fm 

is bounded. 

(d) IfO<<cx, p=, N >n.max{1,,} and 

. (max {i+ } - i) —r <s (1 —)r _n . max { - 

then the operator
a(x,D) F,,, - F 

is bounded. 

In Theorem 9 we may always take 0 < q 5 oo. This is surprising, since in the Besov 
space case the restrictions on the parameter q are sharp. At the end of Section 5 we 
discuss the conditions, under which boundedness holds. In particular, if 0 < It < oc, 
and in assertion (a) 1 < p < oc or in assertion (d) 0 < p < oc, then no boundedness 
result can hold whatever 0 < q 15 oo is. In the cases of assertions (b) and (c) not treated 
here there are conditions on q even when the operator is a multiplication operator. Also 
ii	becomes necessary. 

For the proof of Theorems 7 - 9 we need two more lemmata.
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Lemma 10. 11 0 < ,u < p i <oo and 0<11< 00, then 

SB'(r, ii,v; N, A) c SB(ri ,.u i ,v; N, A) 

where r— = r 1 -	and (1 —8)r— n = (1-6 1 )r i - . In particular it holds tSr = 

This lemma is a consequence of [13: Theorem 2.4.1]. The next lemma is found in 
[5] or [22]. 

Lemma 11. Lets ER and 0< q,r <00. 

(a) Ifs < 0, then for some constant C > 0 

23 
/ i	\ 1/r 

(	
Ilk 	 C{2ai} 

holds.

(b) If s > 0, then for some constant C > 0 
1 /r 1	/00 

2s (>12 I lk
j r)	C{2'a} 

1.	\,=, 

holds. 

In case r = 00 the lemma holds with obvious modification. 
Proof of Theorem 7. Step 1. It holds for every s E R 

Ik'(x, D )fII B;	C hill B;m.


In fact, by Proposition 4/(a) 
k-4	 ^^ ^^k -'

ak(x, D)fk	C ^^ 

a,k(x, 2k.))	 111k II LP	C2km [f 
j=O	 LP	 j=O	 8'OO L-

and the assertion follows from Lemma 1/(a). 
Step 2. Let	= + and 	(max {1,.+ } —1) —(1 -ts)r <5. Then using 

Lemma 2/(a) and again Proposition 4/(a) it follows that 

a(2)(x, 
D)fI B''' 

C Il a 2 (x, D)fM
pj 

/00 k-f3	 I/q 

>12 
2k(	 q 

MLPI) 

/ 00	 1/q 

C ( E 
k+3 

2k(s+(16)r)q 
llaj,k, 2k.)MBN L Ilk ii) 

\k=o jk-3 

CMfB;+m.
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Step 3. Let li j = max{,p}. Then by Lemma 10 a e SB(r i , i ,z';N,A) where 
=r1 — -- and (1—t5)r— =(1 —5 1 )r i - -fl-. Ifs <r 1 , it follows as above with 

)A

	

	 JAI p	 pt 

i I_ —
JA I	P2  +1 and p = min{1,p} that

	

00	Ij_4 iiq s I/q 

D)fIIB.	
2JSq	

a,k(x, D)fk)
j=4 	 lL 

(	
2J3	a,k(x, D)fk II) 

91P) 1/q 

	

j=4	(k=O 

< CMfI.+rn+_U_6)r 

where we have used Lemma 11/(a). Now Steps 1 - 3 yield assertion (a). 

Step 4. For assertion (b) we have only to improve the estimate for a() (x, D). Let 
s = r1 and p = min {1,p,q}. Then if ii q oo, then 

	

/ 00 II	 p	1/p 

lI a ( x , D)fl B'	c ( :	> a,k(x, D)fk	
) \ :k =-O II j=

00

k+4 B,", 

(k'=O

00 p/q 1/p 

2jsq 	
q

\j=k+4	
ILP)	) 

/00 / 00 

c (	(	2"	2k.)IIBN	
1 Ilk IILP2) Ph) 

1/p 

k=O \j=k+4 

Cf
Bp., 

since s = r1 and (1 — ö)r - = (1 — 5 1 )r i - 
$A	 JAI 

Step 5. For assertion (c) we have to improve the estimate for a(2)(x, D). If 

{ <1, let J=i+!andi=,z 
1	1	-	p1	p	p	

ifpji 
>1, letp 1 =min{1,p} and1 =tm{1,p} ifp> 

and let p = min{1,p i }. Then using Lemma 3/(a) we obtain 

a 2 (x, D )fM .+(1-6)r—

	

	Ca(x, D)fI 
B 

n(1-i)
P 
P1. 

/ 00 k+3
21_aik(x,D)fkIlPI) 

\k=o j=k-3 

c IIfl m+n(-



126	J. Marschall 

where- = -L +-L . 1f 1 + 1 <1, then P2 p,p= 1 and (1-6 1 )r i =r (1-8)r = —.s. If P1	Mi	p2	L	p 

+ > 1, consider first the case p 2 1. Then p = P' = 1 and 1 = - +	If 0 <p <JA	P 	1, 
MI	p2 

then p = p = p and n( i - 1) = -fl-. Then in any case P2 > p and P	P2	Mi 

n( — i) —(1 — 1 )r i 
+n ( —	

= n (I + _ i)_ (1 —)r = 

Thus we obtain since p = mini 1,p) 2 q 

a(2)(x, D)fJ < C lI fIl p,q 

and the proof is finished I 

Proof of Theorem 8. Step 1. By Proposition 4/(b), (17) and Lemma 1/(a) 

N

k- 4	

LP

I II' I
Ea,k(x, D)*fk 

	
a,k(.,2k.) IIfkIL	C2kmIIfkII!P. 

0 	II	 j=O	 II	1 

Hence by Lemma 1/(a), if s E R, then a ( ' ) (x, D)* B ,q	Bm. 

Step 2. Let p = min{1,p}, j = max{, p} and s <(1 — S i )r i = (1— 5)r — n 
max {— ,0}. Then with = + 

3k 

(t2

	 /-4-6 

Ia(x, D)flIB.	C	 k(s—m)q (
	kk+j,k(x, D)f1l) 

q /p I/q 

p . q
j=-3 k=O 

/ 00	 /k+6 

\k=o	
MI1ILP2) 

IP) 1/q 

c Mf . p2,q 

ClIfIl  

Again we have used Lemma 11/(a). 

Step 3. In case .s = (1 — 5 1 )r 1 one obtains analoguously 

ClfM;+11_(i_6),. 

Step 4. If

{ <1, let i i=p. and J--i+i 
PI 	P 

	

—	
if  >1, let P1=min{1P} and it, =max{l} ifp>1z
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and let p = min {1,p i }. Then p P2 and 

	

/1	l\
	 ('U--- + r 1 —n—+ --11 =r—n (max< 1.—+

\P' P1 	
1

i P	1	\	I. P PJ 

holds. Supposes > n (max{1, +	—1)— r, and let	-L +	and s 1 = A	P	
P

I	P1	P2 

	

s + n. (- -	Then using Lemma 11/(b) we obtain similar to the above reasoning 

11
_131 (-,  D)f ll ._m+(l_6),_ IIBp.q 

Ca ) (x, D)fM-m+(1-6)- a 
Bp,,q 

	

3 / oo	 00	 q	11q 

	

C	 aik(xD)*fi+s) 

	

1=-3 \k=o	 IIj=k+4 

(k=O

00	 / 00	 q/p 11q 

	

C 	 ( .	2j(n p11f1 p \ 

 \j=k+4	
LP2) ) 

Cf
B;2" 01 p2.q 

CMfM; 

	

since s 1 - - + n ( -	= s. Now Steps 1, 2 and 4 yield assertion (a) of the theorem, 

and Step 3 yields assertion (b). 

	

Step 5. In case s=n . ( max {1,.+}-1)—r,ifp=min{1,p} and	>

max {i, } one obtains by using Lemma 11/(b) 

I a) (x,D)*f fl  +('


	

IIBO,.	 P 

	

C sup2'	 ')) (	fla(., 2k 
k	

.)M BN	lI IiMLP2) 
Pt

II 

P2-9 

S Cftfu 
lla;q 

since

/1	'\	(1	1'\	(1	\	n	(1	1'\ n — - lj — r i + n	-	J = n ( — 1J -	- + n ( - - — = 
S. 

' p	I	\P— P2-1	\P	1	11	\P P11 

This proves assertion (b)I
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In [11] we used a different argument to handle the estimation of a () (x, D). The 
case 1 <p < 00 was derived by duality from the estimate for a() (x, D). It turns out 
that in [11] in most cases the duality argument can be avoided. In any case the B-space 
case treated here is easier than the F-space case treated in [11], where we have proved 
sharp estimates. We use them in the following proof of Theorem 9 without further 
reference. In fact, we show only those estimates which have to be improved. 

Proof of Theorem 9. Step 1. If j 00 and 0 <p < 1, then by Lemma 3/(b) 

3 

	

a(2) (,, D )fM (i-1)	C	sup2 \ kn(1_i) ak+,,k( x , D)fk I LPV 
1=-3 k 

<Cf	m+n(*1)(I6). F,, 

IfO<p<oo and 0<p<1, let i	 Then Lemma 3/(a) 
P	$L1	P2 

yields

3 /00	 1/p 

a(2)(x, D)f n(1 1)	 (	2k1_ak+,,k(x, D)fk IL9) 

cII fII+n(1-1 B,	)-(1-6), 

c IIfII + p 

where we have used the embedding

3+n(1-1) 
F,00 	_ B' 

q,p	 (24) 

for 0 <p < q oo (see [31). Thus assertion (a) is proved. 

Step 2. For assertion (b) we use the embedding 

' '—i F' p,q	 (25) 

for  < z <p 00 and  < q co (see [1, 6] and for the case p=oo see [11: Lemma 
16]). The proof of this embedding extends to 

SB(r, p , p; N,A) '— SF'(r i ,p, q; N, A) 

where r — =ri — and (1 — 6)r — = (1 — 6 1 )r i — . The symbol classes SF are /A	P

defined in [11]. Assertion (b) follows now from [11: Theorem 141. 
Step 3. For the case ji = oo and 0 < p < 1 of assertion (c) see [11: Theorem 

14). Hence suppose that 0 < 1z < 00,	+ > 1 and + > 1. Since trivially91

+ ^ max {1,}, Step 5 of the proof of Theorem 8 yields 

	

II a(x, D)*fIi .-..+(I-6).-fl < C M fM "('-l)-'i	C fI[F,. 

	

8,0	 B	 p,q 9	 92.9
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where we have used (24). Observe that + > 1 implies p < p. Now assertion (c) 
follows. 

Step 4. Using (25), assertion (d) follows from


a 2 (x, D)fllF.	Ca2(x, D)'fII  

	

3II

	 (j=O

k+6 \ II 
C > sup2 k((1_6)t._m) Mak+l ,k(x, D)* 
1=-3 	I IIL' 

C IVIL-
and the proof is finished I 

4. Adjoints and duality 
Let

	

(1,9) = Jf(x)(x)dx	 (26) 

be the L2 -scalar product. More generally, denote by (.,.) the (S', S)-duality bracket, 
and let (f, g) = (f,) . The question arises whether it holds 

(a(x,D)f,g) = (f,a(x,D)g),	 (27) 

and as we will see, the answer is yes whenever the boundedness results of Section 3 hold. 
However, we begin with the following 

Lemma 12. Let a: R n x R" -' C be a measurable symbol such that 

a(x,)I :^ C(1 + II) 

for some constant C > 0 and m E R. Then for every 1,9 E S(R') 

(a(x,D)f,g) = (f, a(x, D)*g). 

Proof. Suppose first m < —n. Then by Fubini's theorem


1 
= If!	e)f(y)g(x) 

1 
= (2ir)' If! f(y)(x, e)g(x) dzddy 

= (f,a(x,D)g). 

If m > —n, choose I E N such that 21 > m + n and let a'(x,) = a(x,)(1 + II2)-'. 
Then by the definition of an oscillatory integral a(x, D)g = (1 - )'a'(x, D)g and 
hence

(a(x,D)f,g) = ((1 —/)'f,a'(x,D)g) = (f,a(z,D)g) 

and the proof is finished I
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Denote by b ,q and P',q the closure of S(R") in B q and F; q , respectively. Recall 
that S(R'3 ) is dense in B q and F; q if and only if 0 < p,q < oo. Let p' = --j- if 
1 <p<oo andp' =ooif0<p<l,andlets' =s—n•(max{l,}_1). It holds 

(. ; ,q )' =	 (28) 

(see [191), and there are similar results for the Triebel spaces (see [6, 19, 20)). But we 
need a generalization of (28) and its analogue for Triebel spaces. Let X be a Banach 
space and M be any topological vector space such that there exists a continuous injection 
M '.- X', and such that M separates the points of X. Then (X, M) form a dual pairing 
and we can speak of the weak topologies o(X, M) on X and o(M, X) on M (see [181). 

Proposition 13. Let p' =P -j- if 1 <p	c andp' =	if 0 <p < 1, and let

= s - n . (max {i, } - 1). 

(a) Let q' = -j- if 1 <q 00 and q' = 00 if 0< q :5 1. Then it holds 

B; ,q	(B;,)'. 

(b) Let q' =--j- if 1< q 00 and 1 p 00, and let q' = 00 if 0< q	1 or 
0 <p < 1. Then it holds

F;,q '-* (F;)'. 

Proof. Step 1. Let p1 = min{1,p}, f E B g and g E B,. Then for some 
constant C > 0

CO j+3 

I(f, g)I E I f I fjgk I d 
j=Ok=j-3 

j+3

2(*T')Ifj9kILP, 
j=O k=j-.3 

CMI Ila; q lI9MBy', 

This yields assertion (a). Note that in case 0 <p < 1 we have used the inequality of 
Plancherel-Polya-Nikol'skij [20: Remark 1.3.2.11.	

0 

Step 2. Let 0 < p < 1, f e F ,q and g e = Then by using the 
vector-valued inequality of Plancherel-Polya-Nikol'skij [13: Proposition 2.4.1/(b)] we 
obtain

=j+3 

I(f)IJ	f,g,dx 
j=O k=j-3 

C sup sup 23(*_I)fjgk 
i Ik—iI:^3	 LP. 

< 

This yields the case 0 < p < 1 of assertion (b). The case 1 < p < 00 can be treated 
analoguously.	 0
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Step 3. To treat the cases p = 1 and p = no we need to describe the duality between 
F1 , and R00' 1- q for 0 < q< no. If Q = Q,,, define (compare [2]) 

SUpQ(f)=2'2 sup Ifj(x)I. 
rEQ,,, 

Then
0° j+3 

	

I(f9)IJ	 fgdx 
j=O k=j-3 

00 i+3 ii	i	i:1 1 fjgkdx 
j=Ok=j-3 I 

oo	j+3 

<C >>	j2	E supQ,j(f)supQ(g) 
j0 I kj-3 11—ml<8n 

and hence, arguing as in the proof of [2: Theorem 5.9] we obtain by using [2: Lemma 
2.5 and (5.6)]

00 i+3 

	

I(f, g )I :S
	

fgkdx
1,q' j=O k=j-3 

and the proof is finished I 
With that proposition we are able to improve in the following Lemmata 14 - 16 the 

convergence in Lemmata 1 - 3. 

Lemma 14. Let p' = P P-r if 1 < p < no and p' no if 0 < p < 1, and let 
s' = .s - n - (max {i, } - i). Let {fk}kEN0 be a sequence of functions and 0 < c 2 < Cl 
constants such that

supp:Ff0 ç {: II	c} 

suppfk c { : c2 2' < I Cl < c12k}	(k e N).
i-I - 

Let s  R and 0< p,q no. 

(a) Let q' = q-1
_2__ if 1 < q no and q' = co if 0 < q	1. If II{2 ks fk }II,q(L, ) < no, 

then
N	 00 

1k	' 1: fk	in a(B B ' '1 

	

p,q'	p',q',• 
k=O	k=O 

(b) Let q' = q q if 1 < q :5 no and 1 p no, and let q' = no if  < q 5 1 or 

0 <p < 1. If 11 {2k8fk}p(11) < no, then 

N	 00 

1k	>fk	in o(F;,q,FP-, ,q' 
k=O	k=O
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Lemma 15. Letp' = -'-j ifl <p< 00 andp' = 00 ifO <p< 1, and let 
s' = s - n (max {i, } - 1). Let {fk} keN0 be a sequence of functions and c > 0 a 
constant such that

supp.Ffk C { :	<c2k}	(k E No). 
Lets E Rand 0 <p,q 00. 

(a) Let q' = -1-j- ill <qc,o and q' =00 if  <q < 1. If


	

> n . ( max {i, 11 —1)	and{2I03fk}jq(p) < 00) 

then
N	 CO 

>2 1k " >21k ina(Bq,B'). 

(b) Let q'	--j- ill < q 00 and 1 p < oo, and let q' = 00 if 0< q 1 or 
O< p <l. If 

	

.s > n . ( max 	, } —1)	and	{2k3fk}MLp(,q) < 00, 

then
N	 00 

>2 1k	" >21k	zna(Fq,F,). 

We remark that both lemmata have to be modified in the F,, ,q -case (compare [11: 
Lemma 13]). The relevant condition is in that case 

sup (2'f >22k3QIfkIdx)	 (29) 
Ij  koo 

Lemma 16. Let p' = -2-r if 1 <p < oo and p' 00 if 0 <p < 1. Let {fk}kEN0 be 
a sequence of functions and c > 0 a constant such that 

SUppFfk ç { :	<c2k}	(k E No). 
Lets =n . ( max {1,}-1) and 0<p<oo. 

(a) Let q' = -2-1- if 1< q oo and q' = 00 if  < q 1, and let y = min{1,p}. If 
1I{2 k3 fk }II, (L, ) < 00, 

then

	

N	00 

>21k ; >21k ina(B,B,1). 

(b) Let 0 < p < 1. If 
{2k3fk}ILp(,) < 00, 

then
N	00 

>21k - >21k in P	CO 

The proofs of Lemmata 14 - 16 are a combination of the proofs of Lemmata 1 - 3 
with that of Propostion 13. 

Now we are in position to state and proof the main results of this section.
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Theorem 17. Let a E SBr(r,,z,zi;N,A) be such that mE R, 0 <z,zi ( cc, r > 0, 
(1-8)r > and 1 <A <co. LetO<p,q 00 andN >n.max{,*,}. As before 
let

1-r f<ro	 ,	I-r ifl<qoo 
and	q= 

(oo	ifo<p<l	 100	if0<q1 
and let s' = .s - n (max {i, } - 1). Suppose that one of the following conditions holds: 

(a) ri (max {i, +	—1) —(1— 6)r <s <r - n max	- 

(b) n• (max{1,+ } —1) —(1-6)r <s =r_n . max{_ ,0} and (1-6)r > 
, liqcx. 

(c) n . (max{1,+ 1 1 —1) —(1-8)r =s <r_n . max .. {_ ,o} and (1-5)r > 
, 0<q<_min{1,p}. 

Then for any f E	and g E B, it holds that (a(x,D)f,g) = (f, a(x, D)*g). 

Theorem 18. Leta E SB'(r,u,u;N,A) be such that rn ER, 0< ,u,v <cc, r >0, 
(1—)r 2 and 1 <A <oo. LetO<p,q <cc andN >n — - }• 
As before let 

p I-r if
	< oo	

and	q,
	I	ifl<q<_oo 

=	 = 
1 00	ifo<p<1	 100	if0<q1 

and lets' = s_ri . ( max {1,I } —1). Suppose that one of the following conditions holds: 

(a) n (max {i, + } -1) - r < s < (1 - 5)r - n max { - o}. 
(b) n . (max{1, +} _i)_r = s< (1-8)r—n.max{-_,0} and (1-6)r > 

+2max{1,}. 

(c) n . (max {1,+}-1)—r <s =(1—)r—n.max{—,0} and(1-8)r > PP 11 P
q = cc. 

Then for any f E B ,q and g E B,'" it holds that (a(x,D)*f,g) = (f,a(x,D)g). 

It suffices to prove Theorem 17, the proof of Theorem 18 being similar. 

Proof of Theorem 17. Observe that for i = 1, 2,3 we have boundedness 
a(x,D) B;" -i 

a'(x,D)*: B,', -p 

Now by the proof of Proposition 4, a(x,D) and a(x , D)* are integral operators 
adjoint to each other. Let f" = > j Then 

(aW(x,D)f",g) = (a4(x,D)fN,g8) 

fN (t)	N+8 - , 	a f.J.f4 x,	g 
= (fN,a()(x,D)*g). 

Since by Lemmata 14 - 16 f' - f in a (B; - ", B,m) and a( ' ) (x, D)f N	a(')(x, D)fp,q
in a(B,g,B';), the theorem follows I
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Theorems 17 - 18 have obvious counterparts for operators on Triebel spaces. For 
the appropriate symbol classes and the exact boundedness results needed see [11]. 

Theorem 19. Leta E SF(r,u,v;N,A) be such ihaim ER, 0< y, V  00, r >0, 
0<8<1, (1 —t5)r > 2 and 1 <A cx. Let  <p,q <00 and N> n . max {1,i, }. 
Let

_.2_ ifl<p<oo	 ifl<q<cx and l<p<c,o 
P' =	 and q' 

(oo	if O < p 1	 00	zf0<q<lorO<p<1


and let s' = $ - n . (max { 1, 1 1 — 1). Suppose that one of the following conditions holds: 

(a) n• (max {i, + !} — i) —(1— 8)r <S < r — n . max{ . — 

(b) n• (max {i, 1 +	—1) —(1— ö)r <S = r — n max { — ,o}, (1— 6)r > 
and ifs=r, then v_<q_<oo.	 S 

Then for any f E	and g E F,, it holds that (a(x,D)f,g) = (f, a(x, D)*g). 

Theorem 20. Let aE SF'(r,,i,v;N,A) be such that rn ER, 0< p,v <00, r >0, 
0<8<1, 0 —8)r > and 1 <A cc. Let O<zp,q <cc and N> n . max {1,,}. 
Let

"—i---	 < ifl<poo	
and	q g = J q-1	 < ifl<qcc	< and 

Ioo	if0<p<1	 00	ifO<q<lorO<p<1


and lets' s - n• (max {i, } — 1). Suppose that one of the following conditions holds: 

(a) n . (max 11, 1 + 1 1 —1)— r <S <(1-6)r— n -  max { — 

(b) n.(max{1,l+.L}_1)_r $ < (1-6)r—n.max{—,0} and (1-8)r > 11, 
and ifs:=—r, then O<q<v'. 

Then for any I E F q and g E F7" it holds that (a(x,D)f,g) = (f,a(x,D)g). 

There are also results in.case i cc and 8 = 1. The values for the parameter s are 
in this case (see [8, 11]) 

n (max {1,, } —1) < s < r and n•  (max {1, , } —1) — r < s < 0, 

respectively. There are also results in the framework of Theorem 9. Note that assertions 
(a) and (d) resp. assertions (b) and (c) are dual statements. We leave the formulation 
of the results to the reader. 

There is still another kind of dual results. We formulate it only for Triebel spaces, 
but there is an obvious counterpart for Besov spaces.
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Proposition 21. Let a E SB(r,p,u;N,A) be such that N > n, 1	..\	00,

0 < j,v 00 and (1- 5)r 2 . Let 1 p,q co and suppose that 

> n. (Max {i, + 1 1 - i) -(1- )r. 

If a(x,D): F;- m -F;,q is bounded, then so is a(x , D)* :	- FTm.jq 

Proof. Step 1. The hypothesis implies the boundedness of 

a'(x,D), a 2 (x,D) F'"	F' p,q	p,q 

a'(x, D), a( 2)(x D)* F' —+ F-- 

and hence the boundedness of a() (x, D): F3 + m - F' Let f E F't" and g E F ' p,q	p,q• 
Then as in the proof of Theorem 17 

(3) 
(f, aN (x,D)g) = (aN 

(3) 
(x,D)f,g)I :5

p9 

which yields

lIa2(x,D)gIF_._	:5 CIIMF;;q,.• 

Step 2. We claim a(x , D)*g - a(3)(x,D)*g in S'(R), thus completing the proof 
of the proposition. If f E S(R), choose h E S(R') with compact spectrum such that 
11f 	<e. Then 

(3)	 (3) (f, a (x, D)g) - (1 a (x, D)'g) 

(3) (h, a (x, D)g) - (h, a (3) (x, D)g) 

+ (f - h,aN (3) (x,D)g) +.j(f - h,a(z,D)g) 

Ceg. p ,q' 

since the first summand vanishes if N and M are large enough. Thus {a(x, D)g} is 
a Cauchy sequence in S'(R") and therefore convergent to a limit which is by definition 
a() (x, D)'g. Hence a()(x, D) is bounded, tool
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5. Remarks on multiplication properties 

The theorems of Section 3 have immediate applications to multiplications. We first 
consider sufficient conditions. Note that if a E B , , then 

f — a.f=>>ajfk 
k=o j=O 

defines an operator a(x, D) in SB(r, It, v; N, A) for any N and A, which we decompose 
as usual into a = a' + a(2) + 

Theorem 22. Suppose that 0< p,q, IA, v < oo and r,s E R. Then 

B; , c B 

holds in the following two cases: 

(a) (i)r>
JA 

(iii) If s = r — n . max { — ,o}, then v < q <on. 
(iv)Ifs=n.(max{1,+}_1)_r, then i+i> max {1,i}. 

(b) (i)r= ! and 0<iz<oo,0<v<1. 
JA 

(ii)n.(max{1,+}_1)_r<s<r_ri.max{i_1,O}. 

Proof. Step 1. Assertions (a)/(i) - (a)/(iii) and (b) are clear by Theorem 7. The 
condition 0 < i 1 in (b) is forced by a E L00. 

Step 2. Lets = n . (max {1, + } — i) — r and + > max {1,}. Then 
analoguously to Step 5 in the proof of Theorem 7 we obtain 

00 3 

a2 (x , D )fM	 ak+:fk	 C ll a ll , If llBp.q k=O I=-3 

This yields (a)/(iv)I 

Theorem 22 has .a lot of forerunners. Let us mention only [1, 4, 14, 16, 19, 22). In 
fact, most cases have been known for a long time. We remark that the inequality 

Ia(2) (x, D)*fM Bp,q	
C MBa ll	Mill • a_	 (30) 

Bp,,,.n( Ip) 

holds ifs = r - n max { I - ,o} and ii q no. The proof is straightforward. For 
mixed multiplication there is the following immediate consequence of Theorem 9.
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Theorem 23. Suppose that 0 <p, q, i, ii oo, r> 11 and s E R. Then 
JA 

B,p.FqcFq 

holds if the following conditions are fulfilled: 

(i)ri . (max {l,+}_1)_r<s_<r_n. max {)__i3O}. 
(ii)Ifs=r—n . max{—,0},let 1z<p and v<p. 

(iii) If s = n• (max {i, +	—1)— r, let + >1 and + 2 1. 
The case r > 2 of Theorem 22 is sharp. Counterexamples are scattered through the 

literature (see [1, 14, 16, 19] and especially [4: Theorem 4.2]). There is one exception, 
namely the case 0 <p < 1 of (a)/(iv). The sharpness of this condition follows from the 
following 

Proposition 24. Let 0< p,zi,p,q,A <00 and r,s E R be such that + 2 1,0< 
)< 1,	< and r+s=n(+—l). Then there ezistaEB, and fEB,q 
such that a(2) (x,D)f	for any r ER. 

Proof. Step 1. Let 0 e C'°(R) be such that () = 1 if 2 <	4, ,1' 2 0 and

suppC [, }. Define o) = 1,( + 1) and extend both functions and to R: 

= t&( — ) and a(e) = o ( —e) if C < 0. Next extend them to R": 

= J1 t,b()	and	a() = fl o(,). 

It holds that
_()d=c	(IeI; f   

for some constant c> 0. Now let	= 0(2e) and o() = 
Step 2. For R 2 1 large enough let x3 = R(j,0,. . . ,0), and choose A0 < zi and 

A 1 <q such that = + -. Define 

a(x) =	 - x) 

f(x) = j_*28)(n(_1)_8)F_181(x 

It holds that
00	 00	 00 

a = > aj E	f =	f, E B q ,	a2(x,D)f = >ajfj. 
j=1	 j=1	 j=1 

By Step 1, if j < k —4, then 

* (2 -J '- ' ( . — x)F ' i( .	x)) 

= F'  (WkWe	
. J (2	— )a() d) 

= cF'cok(x - x,)
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Step 3. Let gj (x) = a3 (x)f3 (x). Then, if k <j, 
T-1 Wk * 9j(X) = Ci	 - xi).


Suppose Wk(l) = p(2_ k e), if k> 1, so that 

'k*gj() = c2 j+y_1(2k(x - 

Observe that IF'(x)I	C(1 + I x I) +. Hence, if Ix -	<2-k it follows that 

V' *g(x)<C2	j(2kRj - lI)* <C2(Rl)+. 
j>k,i	 j>k,i 

Since
i-i

j+(l _j)+ Cl+ 

we obtain if Ix - xii <2

i	J1 'k *gj(x) 
I 

< C2cT(Rl)_r

k<j<i 

and hence
i .F 1 Pk *gj(x)	C2'(Rl)*. 

j>k jI 
Now choose R	1 so large that CR+	i'(0)i. Then there exists 0 <	1 
such that if ix xii < 2k then, 

:* gj(x)I <21* I_1k(x - xe)) I 
jot 

and hence

> * 9j(X) I > f 2kn 1-f ;_Iç(2k(x - x,)) 

j>k	 I 

But this yields

* gj(x)	^ 
(C)A2knA	i_i f -	I_1(2k(x - xi)) IAdx 

LA	 1=1	Ir x,I_<2 6 

= (-C ) :" 2 —kn(1—A) L1< IF Iç(x)A 
dx	1-' 

Consequently a(2 (x,D)f B,, for any 'r E RI
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Remark 25. Let a f.J = 2 N (n (_ I ) _ 7 )F_ 1 t , N and IN = 2N(n(*_1)_s).T_bo.N. 
Then the sequence { aN}N is bounded in	 for any 0 < ii oo, and the

sequence {fN}N is bounded in B " ,q and F; q for any 0 < q oo. Let r+s = 11 P 
Now if k N - 4, then

F ( ipk):7(aNfN)) = 

It holds that

II	kn(-I)'kl
	=	( 1) II sup 2 

Ilk .	Ii'	F	' IlL	". 
/ 00	

1/p 

I 2(

	

	1)IF	P 

\k=o	
LP)	= 11 5 11 n(1_i) = 

00 
if p < 00 

B' P. P 

where 5 is the Dirac measure, and we conclude that the sequence {dNfN}N is unbounded 
11(1-1)	 (1_i) 

inF,	andBJ ,ifO<p<oo and O<p'<ool 

Now let us consider sharp estimates in case (b) of Theorem 22. 

Porposition 26. Let 0 <p < oo and 0 < ii 1: The inclusion 

Bj . B; , c B;,, 

holds in the following two cases: 

(a) n . (max {1, +-1) - <s =' _n . max{ - 1,o} 

and	. 
(i) 0 <.P00 and ziq 1 

or
(ii)0<p<p and 

(b) n . (max {i, +	—1)— = s < - n . max{ - 101

and

(i)p'<p<oo and <	
J, 

or
(ii) O<pa', q= oo and vp. 

Proof. Step 1. If p	p < cc, (a)/(i) is found in [19). Therefore let p <p = 00. 

Then a( ' ) (x,D): B', q	B 0oq and 

a2)(x, D)f1180	Ca2(x, D)fIIB,. 

'00	3	 1/q 

Q 

k=OI=-3	
IL) 

C fl a D , MIMB
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and
/	 lIj-4	g	1/q 

II a(3) (xD)fIB	:5q	c(	V	fkai)	 MfMB

\ j

00

=4 II k=O 

Thus (a)/(i) is proved. For (a)/(ii) see [16: Theorem 4.3.1]. 

Step 2. (b)/(i) follows from (a)/(ii) by duality, the case 1 p p' of (b)/(ii) follows 
from (a)/(i). Now let v p 5 1. Then by Lemma 3/(a) 

3 00	 1/p 

Ia( 2 )(x, D)f	 c (
	2'Ilak+,fk 

CIIaII	BC' 
Since obviously a 0) (x, D) and a(3) (x, D) satisfy the desired estimates, (b)/(ii) follows I 

All the conditions are not only sufficient, but also necessary. In (a)/(i) v < q < 1 is 
necessary (see [4: Theorem 4.2(5') and (7)]). In (a)/(ii) - < 1 < is necessary (see 
[16: Theorem 4.3.2)). The case p = it = 00 and .s = 0 is not possible (see [16: Corollary 
4.3.2]). By duality it follows that	+ in (b)/(i) and q = oo in case 1 <p :5 
of (b)/(ii) are necessary. In case 0 < p < 1 the condition + is necessary by 
Proposition 24. By Remark 25 q = oo is necessary, hence ii p, too. Observe also that 
by [16: Remark 4.3.4] in case 1 p < 00 

B° . B° cB,q	 (31) 00,P	p,g 

if and only if 0 < ii 1 and p = q = 2. Thus we have obtained a complete description 
of the inclusion in the case of Besov spaces. 

Now we discuss the sharpness of Theorem 23. In (iii), if + 1 ^ 1, then + ^ 1 
is necessary, and if 1 +	1, then	+ 1 > 1 is necessary. In (ii), if p	i, then

v q !^ oo is necessary. For all this see [4: Theorem 4.21. Now let p <p and suppose 
that B v •F, q c	for s = r_n(_). Then if p, > p, then BFq 
and again by [4: Theorem 4.2] it follows ii p as a necessary condition for (ii). Again 
we see that the conditions in Theorem 23 are sharp. 

For the cases not considered in Theorem 23 there is the following 
Proposition 27. Suppose that 0 <p, q, p, ii < oo, r> and s E R. Suppose also 

that ii < p. Then
Fa c F;, 

holds in the following two Cases: 

(a) n (max{1, 1 +	- 1) -r s = r, p <p and ji q. 

(b)s=-.-r, +1 and q<v'. 

Proof. ii p implies c F, and hence by [11: Theorem 211 the conclusion 
follows I
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Again by [4: Theorem 4.2] the conditions v < q in (i) and q ii' in (ii) of Proposition 
27 are necessary. The necessity of v p is deeper. The following proposition is the 
mainstep in disproving p < &i in Proposition 27. 

Proposition 28. Gwen s E IR there exists f € S'(R') with compact support such 
that fEBif0<p<v<oandfF;if0<p<co. A13of(F,)'if 
1 p 5 oo and 0 < q < co. 

Proof. Step 1. Let a> 1, 

0	and	,cj =	1'(11(1+ 1))'(1111(l+ i))° (j €N). 

Since a > 1 there exists c € R such that ,c / ic. Next, if j E N, let 

= {x:	<xi <cj and 0< xj < 1 (1> 2) I. 
In R. there are contained Ni dyadic cubes of sidelenght 2 — ' where 

N	2"j 1 (ln() + 1))' (In ln(j + 

Let € C°((0, 1)72) and = Nç0 where N is such that 

2N > max {, n . (rax {i, } —1) - s, n . (max {i, } —1) - 

Note that if I cel 2N, then the cancellation condition 

Ix'V)(x) dx = 0	 (32) 

holds. Let {Q'' }' <r<N., be an enumeration of the dyadic cubes contained. in . -Ri , and 
Xrj = 2'l if Q T" = Q1,. Then define 

= Ni 
i =	2' ln(j + 1)(lnln(j + 1)) a tb(2j4(. - rJ)) 

j1 r1 

From
supp(2''(. - r,))) ç Qr 

it follows that the support of f is compact. 

Step 2. We prove that I € Bo'if 0 < p < v oo. Note that 2't/.'(2i(. - 
x''i )) is an (Q",s,p)-atom in the sense of Frazier and Jawerth (see [21: p. 62]). Using
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the atomic decomposition of Besov spaces due to Frazier and Jawerth (see [21: Theorem 
1:9.2]), we obtain

i	 Nii 	 VIA I/v 

IIfMB.	c(	(	(2	ln(j + 1)(lnln(j + i)))	
) \j=i \r1 

/ 	 1/v 

<c( j(ln(j + 1))'(lnln(j + i)) 
\j0=01	

(i_k)) 

<00 

since u > i. 

Step 3. Due to the cancellation condition (32) we can apply [2: Theorem 3.71 to 
bQ,, = 2it,t(23+'(. - 2 -3 1)) which yields

p,q.
	 ( 33) 

Since the Q) are disjoint it follows for any 0 < q	that 

11f
	(f, bQ , .j )XQi 11 LP(I) 

= {ln()- + 1)(1nln(j + 1))OXQr.i},(11) 

/ 00 

c(	j_i(1nu+l))P_1(lnln(j+1))1)) 
j=1 

=00 

and hence I F ,00 by (33). 

Step 4. Define

00 N, 

	

g =	2'(ln(j + 1))(2J+ I (.	r))) 
j=l r1 

Plainly
00 

	

(1,9) =	(lnln(j + 1)) 0' IV, (2j+' (x - r))) dx 
j1 r1 

= c2 3hl (In in(j + 1)) a N 

00
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Thus f.(F)'ifwe can show geF; for 1<p<ooandO<q<oo.'By[2: 
Theorem 3.51, in case 1 < p < oo we have 

II g MF- .	c{(InU + ' )Y'xQ }L,p(gq) 

c(
	(ln(j + 1)yPN2_3n) 
j=I 

1/p 
c(i-1(1n(i+i))-P-1) 

<00 

and hence g E F, and in case p = 00 we have 

/ 
IIIIFq 15 Csu (IPI'	2(1n(j + 1))_9) 

Q' • ' CP 

Let IPI = 2-kn and j > k. If P c R, then at most	of the Q" are contained in 

P, and hence

/ 0

	

\1/q 
(IPl1	2(1n(j+1)Y)	:5C(1n(j+1)). 

Q"CP 

IfPflRr/zøforj=jo,...,ji,then 

j'. (ln(j + 1))'(lnln(j +i))	2. 
.7=30 

Moreover, P fl R, contains at most 

2 (i 2j	(1n(j + 1)) -1 (lnln(j +	 .,. 

cubes Q') . Hence 

/	 \1/q	 0	 0 

IP1' >	2 —in (1n(j +	:5 C(ln(jo + 
Q"CP 

Thus we find g E F q , and since our estimates show that 

M N 

>	2(1n(j + 1))'i(23'(. - x')). -i .g	. 
j1 r1 

asM— . 00inF, q ,we find gEF;qI
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The idea of the construction of f is taken from Step 5 of the proof of [16: Theorem 
3.3.2]. Note that

(Pp-q")' = F; ,9 ,	 (34) 

if 1	p, q	(see [6]). Thus in that case Step 4 is immediate by Step 3. It is

a conjecture that (34) holds in case 0 < q < 1 too, but this is only known if p = 1 
(see [19]). The difficulty is that one cannot use the Hahn-Banach theorem because the 
underlying spaces are not locally convex. 

Now there is the announced 

Proposition 29. Suppose that 0 <p,q, It, zi <cc and .s E R. Suppose also that 

Br . F3 CF' p,q - p,q 

holds and one of the following two conditions: 

(a) s r and p < 

(b)s=-r and 

Then v ji. 

Proof. Let ii < ii, let f E Br be as in Proposition 28 and choose ' E Cr(R") 
such that (x) = 1 in a neighborhood of supp f. Then f = f F, hence ii < ji is 
necessary for (a). Now let s = -r and g E F g be the distribution constructed in Step 
4 of the proof of Proposition 28. Then (fg ,) = (f, g) = cc and thus fg 
which is a contradiction. Hence ii < i is also necessary in case (b)I 

To complete our characterization we need to consider the case r = . Then 0 < 
ii 1 is necessary (see [4: Theorem 4.2]). 

Proposition 30. Suppose that 0 <ji < co, r =	0 < v 1, 0 <p,q cc and 
JA 

sER. Then
B'•F' CF3 i,v	p,q - p,q 

holds if one of the following two conditions is fulfilled: 

(a) n - (max {i, 1 +} -1)- <s = - n max { - , 01 
and

(i) i <p <1, LI p, and v min{z,q} in case = p 
or

(ii) p < 1A and 1 < min {p,q}. 

and
(i) 0 < ,u 1 and p = cc 

or
(ii) I + I < 1. 

I	P
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fl/1	fl/p Proof. Since	' Fp ,q , (a)/(i) follows from the fact that	is a multipli-




cation algebra (see [1, 61) . Now let p < p and 1 = ! + -- Then 
P	A	P2 

I j-4	 1/q 

la	 D)fI 
p,

(	

2jn/pg 

j=4	lk=O

	^ q

) 	IlL' 

<C II a IIFn,, II f llFo p,q	P2,1 

ClI a	< III hF" s,..	p,q 

Now (a)/(ii) follows easily, and (b) is a matter of duality U 

It is an easy consequence of Remark 25 that in case I + 2 1 and 0 <p < -: of 
AP (b) the inclusion does not hold. By [4: Theorem 4.2(7)], p 1 is necessary for the case 

p <p of (a), and also ii < p is necessary for (a)/(i). Also ii min{p,q} for the case 
p p of (a). The proof of (16: Theorem 4.3.2) shows that the case p = p = oo and 
s = 0 is not possible. And by [16: Remark 4.3.4], if 1 p < 00, then 

B° - 0, C p,q - F;,q	 (35)


if and only if 0 < ii 1, 1 <p < oo and q = 2, which completes our discussion. 

These counterexamples also provide counterexamples for Theorems 7 - 9. In fact, in 
Theorem 7/(b) the condition ii q oo is necessary, in Theorem 8/(b) the condition 
+ > max {i, }, in Theorem 9/(b) the condition v <p and in Theorem 9/(c) the 

condititon + 2 1. This follows by letting a(x, D) be a multiplication operator. But 
much more can be said. Let a E B,C) for r 2 and let 

00 k+3 

b(x, 0 =	2a(x)cpk() e SB°(r, p, v; N, A)	 (36) 
k=O j=k-3 

where (1 - S)r > and 0 < v 00, N e N and 1 A oo are arbitrary. Observe 
simply

hlakIL :^ C2hIak11L,	C2k_7lIaM8,. 

Now let
n. (max {1,1+1}_1)_r=si<r_n. max {._,0} 

and < max {1,}. Then there exist a E B 4O0 and I E Bps 'q such that of 
Evidently a(2) (x,D)f 0 B Q . Then suppose that 

(max {i, + 1 1 —1) —(1 - 5)r = .s <r - max{ - 

Then
Co 

h = 12_k6nfk E B,q
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and since s>s1
b(x,D)h = a(2 (x,D)f V B. 

Hence in Theorem 7/(c) the condition 0 < q < min{1,p} is necessary. Similarly in 
Theorem 8/(c) the condition q =oois necessary. In fact, suppose 

	

(max {i, +	—1) - r <s = (1— 45)r — n . max { — , o), 
11	P

s 1 = r - n . max f 1-- , O} and 0 < q <. There exists a E B , and I E B'q such 
that af 0 B q . But then a( 2 )(x , D)*f 0 Bp"q Since by lifting 

b(x,D)fJ 
p,q	 B;q 

we find b(x,D)*f B , g , and hence q = oo isnecessary. 

Finally we discuss briefly the sharpness of Theorem 9. Suppose that in Theorem 
9/(a) we have 

	

ii . ( max {i, +	—1) —(1— S)r = s <r — n max { - , o}


and I + 1 > 1. Then + > 1 for any v is necessary, and hence 0 < p 1. Thus if 
1 <p < oo, then no boundedness result can hold. If + <1, then i' <p is necessary 
by Proposition 29. But we must have ii = oo. Hence, if 0 <p < oo and 1 <p 
then no bounde4ness result can hold whatever 0 <q oo is. For the case p = oo see 
[11: (36)]. 

Next, in Theorem 9/(b) let 

(max {i, 1 + 1 1 —1) —(1— ö)r <S = r — n max f I - 

If p <p oo, then ii <p is necessary, and if p p, then by Proposition 29 we must 
have ii p. But in that case we have boundedness if v q (see [11: Theorem 
14]), which is necessary, too. 

Similarly, in Theorem 9/(c) let 

n . (max f l ' 1+1}—i)—r=s <(l-6)r—n.maxL--- 1 ,0 1 
I M	P L	p 	). 

If + > 1, then + > 1 is necessary. Let + 1. Then by Proposition 29 we 
must have ii < p, and here we have boundedness if 0 < q v' (see [11: Theorem 14]), 
which is necessary, too. 

Finally, in Theorem 9/(d) let 

	

(max {i, 1 +	—1) — r <s = (1— ö)r - max 1 .1 — 

0 < p < oc and ii = oc. If 0 < p < p, then no boundedness result can hold by 
Proposition 29. Let p <p < oc. Then similarly to the necessity of q = cc in Theorem
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8/(c) we prove that a boundedness result cannot hold (observe that v <p is necessary 
for Theorem 23/(i)). For the case p = cc see [11: (35)]. 

Summing up we have obtained a complete description of the conditions, when 
boundedness of pseudo-differential operators holds. This characterization extends with-
out any difficulties to the symbol classes SF"(r, ,u, ii; N, A) studied in [11]. Let 0 < p 
cc, 1 <poo,(1-6)r> and 

n . (max {1,+}_1)_(1_8)r=s<r_n.mfi_i01 La	p' I 

Then there exists b 1 E SF2(r, p, '.'; cc, cc) such that b, (x, D) is unbounded on F. The 
point is that for b defined by (36) we have 

b € SF°(r, p, v; cc, cc) fl SB60 (7- , p, v; cc, cc) 

and hence our previous discussion yields the result. Similarly, if 0 <p, p < cc, (1 —6)r > 
and

n (max ll,1 

then there exists b2 E SF(r, p, ii; cc, cc) such that b2 (x, D) is unbounded on F q . The 
other cases are already treated here and in [11]. 
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