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The Modified Canonical Proboscis 

R. Finn and J. Marek 

Abstract: A canonical proboscis domain ci corresponding to contact angle	as introduced

by Fischer and Finn and later studied by Finn. and Leise, has the property that a solution 
of the capillary problem exists in fl for contact angle 7 if and only if Ii' -	< 170 - 
We show in this paper that every such domain can be modified so as to yield the existence 
of a bounded solution also at the angle 7o• The modification can be effected in such a 
way that for prescribed e > 0 the solution height must-physically become infinite when 
7-l > 170- -	over a subdomain that includes as large a portion of ci as desired.. 

Keywords: Capillarity, contact angle, mean curvature, canonical proboscis, subsidiary vari-
ational problem 
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1. Background material 

The underlying idea for this paper can be traced to a discovery of Concus and Finn [lithat 
solutions of the capillary surface equation in wedge domains depend discontinuously on the 
data. We restrict ourselves here to configurations in the absence of gravity, in which case the 
equation for a surface S- u(x,y) over a domain ci takes the form 

div Tu = 2H,	Tu =	Vu	
(1)


Jl+Ivur 
here the constant H is the mean curvature of S. The physical requirement that S meet vertical 
walls over the boundary L öci in a prescribed constant angle y yields the boundary 
condition

	

v- Tu =cosy	 (2)


on L ; here v is outer dijted unit normal. 

Physically, one seeks a solution of (1), (2) with prescribed volume V, corresponding to 
that amount of liquid in a capillary tube. It can be shown that wheziever such a solution exists 
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over a given base section Q, it is uniquely determined by V and by y. The dependence on V 
is evidenced only by addition of constants; if fl is the physical base of the tube then in order 
for the solution to have physical meaning V must be sufficiently large that u(x,y) > 0 
throughout Cl. 

It was shown in [1] that when Z contains an isolated protruding corner of opening 2a <it 
such that fr - > a then regardless of V there is no surface u(x,y) satisfying (1) as a 
classical solution in Cl and (2)on the smooth part ofZ. On the other hand, explicit examples 
can be given of surfaces with those properties that are uniformly bounded and continuous on 
the closed domain, and for which fr-4 a. 

This discontinuous dependence suggests use of the property as a way to measure very 
precisely the contact angle between various liquids and solids . The effectiveness of the 
method has already been shown in earth-based experiments (where a less pronounced 
discontinuity appears) using corners with rectilinear sides, by Coburn [2, P . 2201 and by 
Weislogel [3] in configurations for which the critical angle Y was about 80°. These results 
can presumably be sharpened further in a gravity-free environment and correspondingly 
improved accuracy can be expected in general for configurations with y close to 90°. But 
when y is close to zero or to it the procedure can be subject to experimental error, owing to 
the smallness of the region near the vertex in which the discontinuity would manifest itself. 
With a view to obtaining more clearly observable behavior, canonical proboscis domains 
were introduced in [4]. For prescribed y y0 and arbitrary but fixed R0 , the rectilinear sides 

Figure 1. Integral curves of (3). These curves meet all horizontal translates of the 
indicated circular arcs in the given angle y0 

of the corner used in the above experiments are replaced, for y >0, by curves satisfying the
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equation

,JR-)?cosy0 ySlnyo	
3 x+cJR_Y2+RoSinyQInR JR2?., 

and for y<Oby the reflected images	 x- axis. In the case O<y0 <, these curves are 
illustrated in Figure 1, for varying values of c. Only those that he between the asymptotes 
y iR0cosy 0 we of interest for us. All of these are horizontal translates of a single curve, 
which meets the x-axis in the angle a0=-y0I, forming with its reflected image a 
protruding angle 2a 0 there, and which extends backward to x -, approaching the 
asymptotic lines. 

Geometrically, the curves are determined by the property that they meet all translates 
C of the right semicircle of radius R0 centered on the x- axis in the constant angle y0 see 
Figures l and 2. For simplicity in exposition, we assume in what follows that O<y<. 
The discussion for the complementary case is analogous. 

I'o 
I	\ 

1h \ 
I

0 

0	 P 

Figure 2. Canonical proboscis configuration 

We form a canonical proboscis domain by choosing an arbitrary point on one of the 
curves and its reflection in the .r- axis, and joining the points by a circular 'bubble" of radius 
p chosen so that the equation

R0	1001	 (4) 
tLoIcos y0
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will hold in the closed domain thus formed; here 10, 1 and are the respective area and 
circumference of the configuration, see Figure 2; the subarcs F 0 of the above semicircles that 
meet the proboscis curves then become extrenzois of a subsidary variational problem, see, 
e.g., (5, Chapter 61. These curves sweep out a subdomain Q,, which we refer to as the 
proboscis portion ofC O3 or simply proboscis. ln[6]itis proved that this construction js 
always possible, and that R0 cosy 0 < p < 2R, so that the proboscis can be chosen to occupy 
as large a portion of Q, as desired. Further, it is proved in [6] that y 0 is exactly the critical 
angle y, for the configuration, in the senses that for fixed prescribed V 

(1) A solution of (1), (2) exists in	if and only if fr —< kO -q, and 

(ii) As fr - I fv0 - the solution rises to positive infinity throughout the 
entire portion of the domain that lies between any of the constructed extremals and 
the vertex P. 

From (ü)we see immediately that ifwe start with a value ofy for which a solution exists 
over the entire domain, choose V large enough so that the surface will cover the base, and then 
let y ' y 0 , then the surface must either become very large over a relatively large portion of 
LI O or else uncover a portion of the base in the "bubble". Assuming that the changes occur 
slowly until y is very close to y0 , and very rapidly thereafter, we will have found a 
procedure that could presumably be used for accurate measurements of small contact angles. 
In fact (7] computer calculations do suggest that this kind of behavior actually occurs and that 
the procedure should therefore be feasible in many cases of interest Nevertheless, the change 
is not strictly discontinuous as occurs in the case of rectilinear bounding segments at the 
corner (i.e., the solution no longer remains bounded as y tends to y) and the question arises 
as to whether a similar global behavior can be achieved in the context of a configuration for 
which the solution continues to exist and remain bounded globally even at the critical angle 
y 0 . We intend in this paper to answer that question affirmatively. 

The key to the matter appears to be the difference in the magnitudes of the curvatures near 
the vertex P of the two configurations. In the former case the curvature vanishes, in the latter 
the limiting magnitude is Rcosy 0 > 0. We can prove that any solution is necessarily 
bounded whenever the limiting magnitude is less than R 4 cosy 0 , but it suffices for our 
purpose to consider the case in which the corner is formed by two straight segments, in 
which case it is easier for us to prove the existence of the desired solutions. What we shall do 
is make a continuous deformation of the boundary, depending on a parameter E >0, such 
that a neighborhood of the vertex goes into straight segments of length a(r) tending to zero
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with E, the remainder of the proboscis portion of Cl goes into a new proboscis, 
corresponding to a contact angle y = y 0 -, and the radius E) of the bubble adjusts itself 
so that (4) continues to hold. We shall then show that for a suitable range of E, y 0 continues 
to be the critical angle, and that the solution exists and is bounded throughout the perturbed 
domain when y=y0 . But ify decreases toy 0 —c, then the solution becomes infinite inthe 
entire proboscis; thus a simple experiment reflecting these facts will suffice to bound the 
actual contact angle betweeny 0 -t  and y,. 

2. The deformation 

Since the equations are formally invariant under similarity transformation, we may normalize 
the configuration by fixing R0 . We observe that the given proboscis is one of the family of 
curves (3) simply covering the strip O<y< R 0cosy0 , and for the resulting field of 
tangential directions, y'(x) is a decreasing function of y. The semicircles C1  meet all these 
curves in the angle y 0 . Given E, 0< € < y0 , we introduce a rectilinear segment T tangent 
to the given proboscis at its vertex, andoflengthsuchthatitmeetsthecurveof the family (3) 

CR0

2 1 0 
Figure 3. Construction of the modified probosds the arc V, is a horizontal translate 

of the original L,, through P. It is that arc of the family that 
through the endpoint of T8 

passing through its endpoint in the angle E. This point is easily determined, as the semide 
C through it will then subtend the angle c with the x- axis, see Figure 3. We compote ensi)
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sin
-	 (5) 

• We now construct a new family (3), corresponding to the angle y' = - E. That curve 
of the family passing through the endpoint of the segment 7' just constructed will meet the 
segment tangentially-, we use this curve together with 7' to construct a new proboscis 
boundary V. We take the points at the same height 1* as new initial points for "bubble" 
construction, so that (4) will continue to hold, in the form 

Ic1 1 —R1Jr Icosy0 0 (6) 

see Figure 4. We proceed to show that this procedure uniquely determines a new 
configuration.

- -

	 ::^7 ^-	U, EB	 EP 

Figure 4. Bubble construction 

Lemma 1. The procedure just described can be continued winl a maximum value 
sin-'(h / R0 ) Is obtained; throughout the deformation, p(c) Is uniquely determined, 

with p(0) p0 ,and there hokLs p> R0cosy0. 

The value CM is achieved when the proboscis portion Cl of fl' consists entirely of 
rectilinear segments, at which point the domain has the appearance of a section of an ion 
cream cone, with the ice cream surface tangent to the cone on the intersection circle. 

Proof of Lemma 1: We assume that the procedure has been completed . up to some given 
value of E, and we wish to continue it further. Setting 

F(p;C) 'I')'I R4E'fcosy 0	 (7) 

it will suffice to show that F zC)*0.We note that Oisunvariedin the differentiation. 
Referring to Figure 2 for notation, we may thus write'
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I"I" 1 2 
[(it - + sin  cos 1, 1V  = 2 p(ir — 13),	 (8) 

and compute

I=2c((it-13)+ tan 131 

so that F(p;c) =0 is equivalent to
p = R0cosy0 

which by (6) is equivalent to 

(n -13) — sin 13 cos 13 +..!.(pfIIQ,D=a 

Since (7r-13)> it /2> 1, it suffices to prove that p ,I-[Q ,,I >0. This is however evident 
due to the monotonicity of the height of £,, since p exceeds the height change and 
exceeds the change in abscissa, so that the product ofthe two exceeds	 I. 

Since by Corollary 4.1 of [6], p> R0cosy 0 in the initial configuration, our proof has 
shown that this inequality persists throughout the deformation. Since R0 cosy 0 > h, the 
construction remains physically (and mathematically) possible, with a bubble protruding 
above and below the proboscis, until the segments extend to the maximum height h of Q. In 
this configuration, c achieves its largest possible value E, sin -'(h / R0 ) that the procedure 
can yield, see Figure 2.0 

In practice, the chief interest in the procedure will presumably center on small values 
I 0 , for the purpose of locating the contact angle between values y 0 and y0—c. 

3. Canonical properties 

We must show that throughout the indicated procedure, y 0 remains the critical angle for 
the configuration, in the sense that a bounded solution of (1), (2) exists over Q' whenever y0 
^ y :5 Tr /2, but no solution exists when 0 ^ y < y 0 . We follow in general outline the 
corresponding discussion of [6]; there are, however, necessarily differences in detail. As in 
161, we begin by observing that y, e y 0 , in view of the protruding corner of opening 
2a it- y. We must prove that y,, ^ y 0 . In [6],that conclusion was obtained by showing 
that only a particular continuum of TMexiremal" subarcs rof semicircles of radius R0 could 
meet the boundary in angles that equal y 0 at smooth intersection points or are not less than 

at re-entrant corner points, and minimize the functional
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tJi-IE I COs Y +jQ' I .	 (9) 

among all such arcs. See the Theorem" in [6]; here E and Q are the portions of E'and of 
Cl' cut off by F on the side opposite to that in which the curvature vector points. 

In the present instance, we establish y :5 y, by showing that there exist no subarcsatall 
of semicircles of radius R0 with the properties just described. Using results of [81 or of [9], 
we then obtain additionally that a bounded solution does in fact exist for all y in y 0 :5 y 
ir f2, yielding the desired discontinuous dependence. 

We distinguish cases, as in [6]. We may assume, as in [6], that 0 < Y 0 < 7r /2. We note 
that no minimizing exma1 can include a semicircle, see Theorem 6.11 of [5]. 

Case 1. r meets the circular arc L' of Z in two interior points  and q, see Figure 5. We 
may assume as just noted that  < 7r t2. From the relation (6.53) of [5] with a = 0, we find 
that the second variation 3 of takes the form, for the particular variation r = acos , 

2cos2ö( 

	

smy	p• 
3 —a2 sin2ö + 2a . I cosy -&)	 (10) 

Since R,) sin b = psin(ö+ y) we conclude 3 = —a 2 cotö <0, so that F cannot minimize. 

V	 q 7f If	 'I 

' (	
2	j	

C; 

Figure 5. Cases land 2
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'Case 2. F meets E' at an interior point p and at a re-entrant corner q, see Figure 5. A 
small rotation of F about the center of L leaves (I invariant and reduces this case to the 
previous one.

up 

Figure 6. Case 3 

Case 3. F meets the proboscis Z at points p and q above and below, each of which is 
either an interior point or a re-entrant corner, and F is oriented as in. Figure 6. The 
configuration cannot be symmetric, as the construction was effected so that the incident 
angles in that case would be less than Y. We may suppose the point  to be the one closer to 
the vertex; we introduce the symmtrical arc F that meets in the symmetric points q and 

fr . F isa rotation ofF about q, and meets E',, at q in an angle exceeding y 0 . But according 
to the construction, F meets E' in equal angles less than y 0 . So this case cannot occur. 

Case'4. F meets two interior points p and q of the proboscis with orientation as in 
Figure 7. We may assume that either the configuration is symmetric or else that p is the point 
closer to the vertex. We introduce the center point and line Lof symmetry of F, as indicated 
in the figure. The line through q.paralleltoC must enter fl'asindicated, as the slope ofE, 
is negative at q. We then find 5 + r = n 12 and hence 5 + y, > 7r t2. It follows from 
Threm 6.16 of [5] that F : cannot minimize, and thus this case is excluded.
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n	- 

Figure 7. Case 4 

This reasoning extends also to the case in which one or both of the contact points is a 
juncture point with Z. That is so because according to Theorem 6.10 of [5] the angle 
between r and E equals or exceeds y 0 when F minimizes, and the proof of Theorem 6.16 
of [5] carries over without change when that occurs; the variations need only be restricted to 
positive ones, and these suffice for the proof. 

Case 5. 1'. meets two points on a single arc of the proboscis, with orientation as in Figure 
8. Since the vertex angle with the vertical is y 0 and since L, is convex, the orthogonal to F at 
p must have positive slope. Since that arc of Z, has negative slope, F would have to include 
a semicircle and hence could not minimize. 

Case 6. F meets two points on a single arc of the proboscis, and has orientation opposite 
to that indicated in Figw 8. From the differential equation 

dy ysino_.JR_y2cosj'o
(11) 

£Lr ycos I'0 + 4R-y2 sinS'0 

defining the curved portion of E',, (see [41), we may calculate its curvature K. Setting 
y = R0sinr, we find
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K 
= - cos(i +

(12) R0cost 

Figure 8. Case 5 

and since

r = sin-<sincos	 (13) 
RO 

we find r+ 0 <irI2, from which follows Ixl< 1 / R0 .On the rectilinear segments we have 
K =0. Thus, in any event the oriented curvature of 1' exceeds that of the boundary in the 
indicated orientation, so that this case cannot occur. 

Case 7. One end of r terminates in the vertex V of the proboscis. This case is excluded 
by Theorem 6.10 of [5].

I-

8. F meets Z at a point p interior to V. and a point q interior to E'. We will exclude this 
case by using that q is exterior to the closed disk formed by completing L. The essential 
geometrical features that are needed are shown in Figure 10. The configuration has been 
rotated about the center of E' so as to bring p and q to the same height The completed E' is 
shown and EL,, suppressed for clarity. Ify 0 +ö :5 7r /2 then the segment p7q cannot lie above 
the center of L. Since q is exterior to Z,	must have length exceeding 2psin(y 0 + o).
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Figure 9. Case 8 

The follows

R sin  > psin(y0 +	p(siny 0 cosö + cosy, sin ö) 
Icosb>p(siny0 cot5cosy 0 +cos 2 y 0 )	 (14)


^p(siny 0 tan y0 COS 'y0 +cos2YO) 
=p 

which contradicts Lemma 1. Theefore y 0 + 5 > ir/2. By Theorem 6.16 of [5], r could not 
minimize, a contradiction. 

This exhausts all cases, and establishes that the functional is positive for all extremals 
F. By the "Theorem" in [61 and also [8] and [91 (see also Lemmas 6.3, 6.4 in [61) and taking 
into account the analogous discussion for the range y 0 > 7rt2 ,we obtain
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Theorem 1. A solution of( 1), (2) exists in a canonical proboscis domain Q' and 
is uniformly bounded in CI', throughout the closed range fr ywj ^ fr0 - '7 ,for any € in the 
range 0< c 

As y crosses y 0 , an extremal near P will meet V, in the angle y, forming an exiremal 
subdoman fladjacent to P for which 4) :5 0. There is no longer a classical solution 
throughout CI', but a solution continues to exist as a soluzione illimizata in the sense of 
Miranda [10], remaining smooth exterior to C1 but achieving the value u = +00 throughout 
If. Physically, the solution attempts to rise to infinity throughout If. If y 0 is close to 0 or 
11 and y close to y 0 , then	will be very small and the discontinuity difficult to observe. 
We note, however, that according to the construction, when y has decreased to	— 
then the arcs IF will meet the curved part of E Kp in the angle yand will therefore become 
extremal for CI'. We assert: 

Theorem 2. In any domain C4 bounded between one of the arcs F and the 
vertex P, there holds cF(CI;y)<O. 

It follows that no smooth solution can exist in 11. for this angle, and it must be expected 
that physically the surface will attempt to rise to infinity throughout this subclomain. Thus at 
the angle v = - c the singular behavior occurs throughout a domain that can be chosen to 
occupy as large a portion of CI' as desired, and it should therefore be possible to make it 
easily observable. This basic property of the modified canonical proboscis should facilitate a 
very accurate deternfination of y c ,; if the discontinuous behavioris not observed at y =y0 
butisobservedaty =y o — then yo—E-'^ycr-'^YO. 

Proof of Theorem 2. Since the arcs Fare extremal for the functional 4) on the curved 
part of Z,,, there follows 0 whenever I' abuts on that part of Z.,,, thus 4) is constant on 
that set. At the vertex P. 4) =0 obviously. As one moves through the family of arcs r in the 
direction away from P, the angle y decreases, since all arcs have the same radius. Thus, it 
suffices to show that on the rectilinear part of L there holds %, >0. We calculate easily 

= 2R 1. cos(a+y)	 (15) ôy	sin  

which is positive since a + y <ir/2 according to the construction. 0
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Remark: Our construction has been effected so as to keep the theoretical critical contact 
angle unchanged from that of a given (initial) proboscis domain. From the point of view of 
practical construction of a modified proboscis, it would presumably be preferable to start with 
a proboscis domain corresponding to contact angle y 0 - F- and draw external tangents to L,, 
from apoint Ponthex-axis,makingangles a 4—y 0 with that axis. The construction is 
equivalent to what we have done, and the same experiment would again yield 
y o —E _'^ y;r ^ y0. 
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