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On the Fundamental Solution of the Operator of 

Dynamic Linear Thermodiffusion 

J. Gawinecki, N. Ortner and P. Wagner 

Abstract. The fundamental matrix of the 5-by-5 system of partial differential operators de-
scribing linear thermodiffusion inside elastic media is - by a standard procedure - expressible 
through the fundamental solution of its determinant. This determinant is equal to the square of 
a wave operator multiplied by the so-called operator of dynamic linear thermodiffusion, which 
is of the fourth order with respect to the time variable. In this paper, we deduce, by means of 
a variant of Cagniard-de hoop's method, a representation of the fundamental solution of this 
operator by simple definite integrals. This formula allows the explicit computation of thermal 
and diffusion effects which result from instantaneous point forces or heat sources. 
Keywords: Fundamental solutions, linear partial differential operators with constant coeffi-

cients, thermodiffusion, evolution operators 
AMS subject classification: 35 £05, 35 1<22, 35 C 05, 73 B 30, 73 C 25, 80 A 20 

1. Introduction and notations 

A system of partial differential equations describing linear thermodiffusion in elastic 
solids has been presented first in 1961 by Ya. S. Podstrigaë (cf. [15]). He considers 
the displacement, the temperature distribution and the concentration density inside the 
solid as unknown functions. In 1974, W. Nowacki (cf. [9]) gave a different version thereof 
by introducing chemical potential as an independent variable whereby concentration 
density can be expressed. 

The purpose of this paper consists in deriving an explicit integral representation for 
"the" fundamental solution of the non-trivial irreducible factor of the determinant of 
this system. This factor is called operator of dynamic linear thermodiffu3ion and it is 
defined by

P(t3) = ô + aôi + b 2 + côA + daL 2 + e&.	 (1) 

In Section 2, we shall first discuss the connection of the fundamental matrix of the 
system A(0) of thermodiffusion with the fundamental solution Ep of P(0). We also show 
that P(ô) and A(s) are quasihyperbolic and that, therefore, their fundamental solution 
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and matrix, respectively, are uniquely determined if some natural growth condition is 
assumed. We then introduce dimensionless variables therewith reducing the number of 
five constants involved in the definition of P(0) to three. 

In Section 3, we deduce an integral representation for Ep by employing a variant 
of Cagniard—de Hoop's method. This new, short procedure replaces the more intricate 
method we had recourse to in [14: pp. 538 - 542] on dealing with the thermoelastic 
operator. Let us point out that, similarly to what has been done in [18], the fundamental 
matrix of A(0) could be constructed explicitly starting from the representation of Ep 
given in Proposition 2. 

Eventually, let us establish some terminology. As usual, the three-dimensional Eu-
clidean space is written as R3 . In matrix products, which are indicated by a dot, x is 
understood as a column vector and the raised letter T means matrix transposition, such 
that xT x is the square of the modulus lxi of x, while x x  is a 3 x 3 matrix. The 
character I denotes the 3 x 3 unit matrix, and the bold face letters u and F are reserved 
for vector fields. We write A,d for the adjoint matrix of the square matrix A, i.e., A' 
is (_i)'+i times the determinant of the matrix resulting from A after deletion of the 
i-th column and of the j-th row. (Hence AAad = Aad A det(A)I.) This definition also 
makes sense for a square matrix of partial differential operators A(3). The Heaviside 
function is denoted by Y. We consider differential operators with constant coefficients 
only, and employ the differentiation symbols 

(ax,
ô ô 

at = ,	 a=() 

L= V T .V, V.VT= grad div. 

We make constant use of the theory of distributions as it is explained in the textbooks 
[7] and [16] and we adopt their notations for thedistribution spaces V and S'. 

2. The Operator of dynamic linear thermodiffusion 

For the reader's convenience, let us repeat first some elements from [4: p. 610]. The 
influence exerted by the action of external loads, heating and diffusion of matter inside a 
solid body results  in a displacement u = u(x, t), a temperature distribution T = T(x, t) 
and a chemical potential p = p(x, t). The relations which these functions fulfil in a space 
point x E 1R 3 and at the time i are called equations of thermodiffusion and have been 
investigated in various papers (cf. [2, 3, 9, 10, 15]). W. Nowacki gives the following 
partial differential equations for u, T and p (cf. [9: (1.1) - (1.3)/p. 205]): 

pÔu -	- (A + 1i)V . VT . u + /3 1 VT + 02 Vp = F 

	

5tT—iciT+ôtVT. u+aiOtp=Q	 (2) 
- KLp + I 2 aL V • U + 0r 2 ô1 T = M 

where F, Q and M correspond to the densities of the exterior force, of the heat gen-
eration, and of the diffusing mass, respectively. .\ and p denote the Lamé constants,
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p the mass density and 6, = (3A + 2)c (i = 1, 2), a l and a2 being the coefficients 
of thermal and of diffusion expansion, respectively. Furthermore, ,ç 1 and K2 are the 
temperature and diffusion conductivity coefficients, respectively, 01 and a2 are the coef-
ficients of thermodiffusion, ij =	and 772	iE where Ci and C2 denote specific heat 

c'P c2and potential per unit mass, respectively, and To and po stand for the temperature and 
potential at rest, respectively. All these constants are non-negative and the condition 
a l U2 < 1 is assumed throughout this paper. In [15], instead of p, the concentration 
function, which, up to a constant factor, is given by 

P + 772 VT. U + a2T 

is considered as an independent variable. 

The five equations in (2) can be rewritten as A(ô)(u,T,p)T = (F , Q , M)T where 
the matrix A(3) is defined by 

f(pa — A)I— * +u)v . vT	[3 1 V	02V 
A(0) =	 771aVT	 at - KJA	a1O 

772 a,VT	 U25t	at - K2A) 

If D(a) := det A(3) and ED denotes a fundamental solution of D(0), then we obtain a 
(two-sided) fundamental matrix EA of A(ô) in the form EA = A(3) ad ED (cf. the pro-
cedure in [6: Section 3.8/pp. 94 - 95]). Before discussing uniqueness, let us compute D. 
This can be done most easily by exploiting the rotational symmetry of A(c3) (compare 
also [5: p. 625]): 

D(t,x) 

= det A(t, l x i, 0,0) = 

pt 2 -(A+2)ix1 2	0	.0	fluixi 
0	pt2-,iix12	0 .	0 

=det	0	 0	pt2-,zlx12	.0 

iiii x l t	 0	0	t—KliXi2 
7721 x l t	 0	0	o2t 

= (pt2 - 1Lix12)2{(1 - a l (72)t4 - p( i + 1c2 )i x i 2t3 + pre 12.ixi4t2 

+ [[31 O l 2 + 022 771 - 01 711 -	- ( + 2p)(1 - ai2)] ixi2t2

132 lxi

0


0


alt


t -K2 I.T12 

+ [K 1[322+2[3ITh +(A+2p)( i +K2)JixI4t_(A+2)KI2ixI6}. 

Hence
D() = detA(ô) = p(l - c 1 o 2 )(pO —.j)2P(ô)
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where P(5) is the thermodiffusion operator defined in (1) and 

a = - 1—a1a2 
b	K1 K2 

1 - a 1 a2 

C	01 O l'12 + 02 0r 2 771 - 01	— 132 712 — (.\ + 21L)(1 - aicr2) 
p( l - a1a) 

d = 1 1I32 712 + 1C20177I + (.\ + 2iz)(ii . + k2) 
A l - aia2) 

C —	p(1—aia2) 

Note that a<0, b>0, d>O and e<0. 

The following proposition shows that, under these conditions, the operator P(ô) 
is quasihyperbolic in the i-direction (cf. [13: p. 442]). Therefore, the system A(ô) is 
also quasihyperbolic in this direction (cf. 114: p. 530]) and has a unique (two-sided) 
fundamental matrix EA such that e' t EA is a (5 x 5)-matrix of temperate distributions 
for all real values of a above some bound a 0 . Furthermore, if Ew denotes the unique 
fundamental solution of the iterated wave operator W() = p(l - a10'2)(pô? - 
with support in the half-space {(t,x) E R 4 : t	01, i.e., 

Ew
1	

-	I x I, Yt 
- aia2) ( 

and if Ep denotes the unique fundamental solution of P(ô) such that etEp is tem-
perate for all large a, then EA = A(ô) 4 Ew * Ep. In this sense, the construction of EA 
is reduced to that of Ep. We shall focus in this paper on the latter task only. 

Proposition 1. Let a < 0, b > 0, c,d E C and e < 0. Then the ihermodiffusion 
operator (1) is quasihyperbolic in the i-direction, i.e., 

a0 ER: Va>Oro : V(r,e)E R4 : P(a+ir,i)0.	 (4) 

In particular, P(s) possesses a unique fundamental solution Ep E D'(R4 ) such that 

20`0 E R: Va > a0 : e_tEp E S'(R4 ).	 (5) 

Moreover we have suppEp C {(t,z) E R4 : I > 01. 

Proof. Similarly as in [14: p. 532], we have to analyze the behaviour of the roots 
of the polynomial 

P(a + ir, i) = (4 - a(3 p2 + b(2 p4 - c(2 p2 + d(p4 - ep6 :	p)	(6)
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with the abbreviations ( = + ir and p = II (not to be confounded with the density 
of mass also denoted by p). For p —* oo, the expansion ( = Ap2 + Bp + C +... yields 

(A4 — aA3 + bA2)p8 + 

(4A3 B - 3aA2 B + 2bAB)p7 + 

(6A2B2 + 4A 3C — 3aAB2 — 3aA2 C + 2bAC + bB2 — cA2 + dA — e)p6 + 

=0. 

Since a < 0 and b> 0, the two roots A 1,2 of the equation A2 — aA + b = 0 have negative 
real part. This implies that the corresponding two solutions (1,2(p) of Q((, p) = 0 
(where Q is defined in (6)) also have a negative real part if p is a large positive number. 
On the other hand, for A = 0, we infer from b> 0 and e <0 that B = ±iFT. Hence 
there is no branch point over p = oo on the Riemannian surface over the p-plane which 
is defined by Q((, p) = 0, and the other two solutions ( 3 , 4 (p) have the expansion 

(i\ 
(3.4(P)=±1V_P+const+O)	for 

This shows that the real part of (,(p) is bounded for large positive p. The same is 
evidently true for all roots if p remains bounded, and hence the condition (4) is satisfied. 
Since this implies by [13: Prop. i/p. 442] that there exists a unique fundamental 
solution Ep of P(ô) satisfying (5) (and having its support in the half-space where 
t > 0), the proof is complete  

In order to simplify further elaboration, we introduce dimensionless variables (comp. 
[14: p. 529]): For y > 0 and e = (E l, 1-2) with E l, E2 E C, we abbreviate by E the 
unique fundamental solution of the operator 

	

P,(o) = (,9t- _t A)
	—	'L)(ô - z) — e 1 OL + e25 

=	- (-y + -y')O +— (1 + Ei)ôi I + ( y +	+ e 2 )Ojz — & 

which fulfills condition (5). Linear transformations of the co-ordinates yield tr3u' 
E.7, (f, t)  as a fundamental solution of the operator 

tuO'

—(1 + e i )truô + (-y + 7' + e 2 )t 0 r0 u5gL — ru & 

for r0 , to, u > 0. Therefore, putting

	

I_ l jK2 V:
A+p

=/ c1c	p	
a,a2  	2p'	

= Vi a 1 2 
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and
.?1+K2+\/(Il—?c2)2+41c1k20icT2 

2,/1—oi(r2 

- 

	

01 771 + 02772 - fll a l 772 - /9272171	
() El -

	(1—a!r2)(A+2) 

-	kl/32772+?C2/3i771 
2 -	- —o, 1 .72 (A + 2)


we obtain a representation of Ep in terms of E-ye: 

Ep(t,) 
= (	

)3/2	 _ 
l2

E,.. ( 
• iiic	P

	̂ -0'1262
1

+̂2y

 

We point out that -y, E, E2, -, - and E..ye are dimensionless quantities. In analogy 
to [17: p.411 and [11: p. 207], the quantities t o 1 and r0 . could be called characteristiê 
frequency and characteristic length, respectively. y is a measure of the interdependence 
of thermal and diffusion effects. Note that we always have y > 1 and that -y = 1 would 
correspond to the limit case defined by 610r2 = 0 and r., = 'c. On the other hand, e is 
a measure of the mutual interaction between strain, heat trnsfer and diffusion. Under 
physical conditions, El and E2 are small positive constants. 

3. An integral representation for E,,, 

In the sequel, we shall consider only P.(a) and its fundamental solution E.. For 
convenience, we also use the constants a, b, c, d and e corresponding to the definition in 
(1). Hence we set b = —e = 1 and 

a=— ( y +7'),	c= — ( 1 + E i),	d=y+	+E2	 (8) 

with -y and 61,62 as in (7). Applying the Fourier-Laplace transform as in [14: p. 5381, 
we obtain, for a > (Jo and ao as in (4), 

=	k—.00 I 
e(u+iT)t dr J P( 

e	
d 

a + iT, i) 
1R3 

+i k 

= lim 11- 
k oo 27r 2 I xl 27ri 

a—ik

eC(d( psin(pIxI)dp I '. 
 Q((, P) 

0 

1 

	

-	 -' C 
- 27r21x1 'C C —iIxI) - H((,ilxl)) 

where Q((, p) = P,((,ip,0,0) (compare (6)), 
00 

	

1 
I pe_z)dp

H((,z) =	 for Rez >0 and Re( > o 
0.
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and
+ik 

=	
k-. f e' t G)d(	(a > co)- 

a-ik 

Let us suppose first that z > 0. If (is real with ( > a0, then thesubstitution p = (s 
yields

cc 2 [se_z(3 ds 
H((, z) 

= 2 J Q((, (s) 

By analytic continuation, the validity of (9) extends to complex ( with Re( > ao, once 
we have checked that Q((, (s) does not vanish for Re( > co and 0 < s < oo. Because 
of

Q((, (S) = (4 (1 - a(s2 + (24 - cs 2 + d( S4 + (256) 

= (4s4(s2 + 1)(( + li (s)) (( + 12(s)) 
with

	

	 _ ____________ 
ds2 - a ± /(ds2 - a) 2 - 4(1 - cs 2 )(s2 + 1) 

	

fi,2(S) =	 2s2(s2 + 1)	 (10 

and since 1 - cs 2 and ds 2 - a are positive, we indeed have Refi , 2(s) > 0 and hence 
(+ fi (s) 0 0 for Re( > 0 and i = 1,2. 

We now interchange the inverse Laplace transform with the integral in (9) and 
obtain from [12: p. 2171 the following (still for z > 0 only): 

Co
/ (2e' çL	J £ (H((, z)) =	ctQ(( () )5 ds 

0 

Y(t)	

-	(_

(2 
"sds


- 2i
0

ds 
- 2i 

.0 
t/z 

- Y(t) I [li( s )f2(s )( t - zs) - fl ( S ) - f2(s) 

	

- 2i	 fi(s)2f2(s)2 
0

1	(e_12(i)(i_z3)	e_u1(s)(t_z3)'\	ds 
+ f() - 12( 5 )	f2(5)	—fl (S)2	) s(s + 1) 

Finally, we come back to E. , e by analytic continuation with respect to z. For the 
it	it then arising two integrals over s from 0 to	and to - , respectively, we can use as 

integration paths semicircles in the right half-plane (compare Fig. 1). The substitution 
s	-s in the second integral and the formulae 

ds2 —a	 1—Cs2 
fl(S) + 12(5) = s 2 (s 2 + 1)	and	fl(S)Y2(S) = s4 (s2 + 1)



Figure 1 

The algebraic function
Figure 2 
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yield

Y(t)	I fi (s)f2 (s)(t + i I xs ) — fl (S) - 12( 5 ) E(ix)=	i 4r2ix ic	 fi(s)2f2(s)2	
11 1	(e12(3)(t+i r i , )	eu1 (')O+ i k i3\	ds 

+ Y1 ( -S ) - f2 ( S )	12(5)2	—	 f, ( S )2	) j s( + 1) 

where C is the circle through 0 and i which is symmetric with respect to the imaginary 
s-axis and oriented in the counterclockwise direction (compare Fig. 2). 

R(s) = /(ds2 — a) 2 — _4(1— s 2 )( s 2 + 1)	 (12) 

defines a Riemannian surface p : S —* over the s-plane. Its branch points are the 
roots of the polynomial 

q(s) = (d2 + 4c)s 4 + (4(c — 1) — 2ad)s2 + a2 -4 

and its genus g is either 0 or 1, i.e., S is horneomorphic to a ball or to a torus, respectively 
(compare [1: Section 17.15/p. 128]). Since a < —2, g = 0 occurs if & + 4c = 0 or if the 
discriminant of q, that is 

(4(c - 1)- 2ad) 2 - 4(d2 + 4c)(a2 -4) = 16[e + E2 — E,62(7 + 7')] 

vanishes. For simplicity, let us concentrate on the case of e + C2 < e,e2 (-y + y_i). In 
this case, both functions li (s) and 12(5 ) are real-valued on the real s-axis. 

Since the integrand in (11) remains invariant under a sign change of R, the integral 
in (11) can be written as one over the closed contour p-i(C) on S. Let w denote the 
corresponding complex one-form on S, i.e., 

/	1	t + ilx l s	(t + ilxls)2	e_ f(t)(tk13)	ds 
1(u) +	2	—	f(u)2	)sR(u)
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2—a+R(u) where s = p(u) and 1(u) denotes the single-valued function d232(32+1) on S. Because 
ds is holomorphic on S (compare [1: Section 17.15/p. 128]), this is also true for 

in the branch points of S. Furthermore, w has essential singularities in the points over 
s = 0 and s = ±i and it is analytic at the points on S above s = ± i4_ and s = 00, 

respectively. Indeed, e.g., for s - 00, we have f,(s) = c 7 s 2 + Q(_3) for j 1,2 
and some constants c j , and the power series of the exponential function readily leads 
to the estimate w(u) = 0(s 2 )ds for s = p(u) —4 oo. As in [14: p. 540], we now 
distinguish two cases. For t > l x i, we can homotopically deform C into the real line 
without touching the essential singularities ±i. Hence, inside this cone, E. is given by 

1	 s3x	 sin (sfi(s)lxi) E'(t,x) = 2
2 lxi	

1 Jl - cs2 + fi(s)2R(s)
(13) 

e_f2(3)t sin ( sf2 ( s ) I x i) 1> ds 
-	f2(s)2R(s)	J s• 

In the case of 0 <t < Ix I, however, we also have to consider the residues of w at ±i. 
Hence in this case, it holds	= E + E with 

E 2 (t x)	
1	(e_f1(3)(i+ikIs)	e12(3)(t+i 

, =	Resai{  
27r l x l	 fi(s)2	-	12(S)2) 

1 
X 

(li(s) - f2(s))s3 (s 2 + 1) } (14) 

(Let us note that the above residue at the essential singularity s = i can of course be 
represented by a curve integral. There does not seem to exist a "canonical" contour 
though, and we resorted in [14: Formula ( 14)/ . 5421 in the case of the thermoelasiic 
operator to develop this residue into a power series in the variables t and xj.) 

In conclusion, we have proven the following 

Proposition 2. Let -y > 1, e 1 > 0 and E2 > 0 satisfy e + e < e 1 e2 (-y + -y') and 
let Ep E-fle be the unique fundamental solution of 

P() := (O - y)(ô - 7'L)( - i) - EiOL + 28t 

	

= - (-y + ')Ô + ô2 & - (1 + ei)Oi + (, + ' + 2)O	- 

fulfilling (5). Define a,c and d by (8), 11,2 by (10) and R by (12), respectively. Then 
is a locally integrable function and 

E-r,e(t, x) = Y(t)E(t, x) + Y(t)Y(lxi - t)E 2 (t, x) 

where ES and E	are given in (13) and (14), respectively. 
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