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Abstract. We shall study the behaviour of solutions of the equation

au -	_-ai (x,t,u, ±) = ao (x,t,11,	
)	( ( X, t) E QT = fix (0, T' )) at	i=1 axi

at a point (xo,to) E ST Ôfl x (0, T). Inded we establish a necessary condition to the regu-
larity of a boundary point of the cylindrical domain QT extending the analogous result from 
paper [13] to the degenerate case. The degeneration is given by weights (depending on the 
space variable) from a suitable Muchenhoupt class. It is important to note that the coefficients 
of the equation depend on time too. 
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1. Introduction 
In the present paper we are concerned with the behavior near by the boundary of a 
cylindrical domain of solutions to a second order degenèráte parabolic equation with 
coefficients which depend on time. 

The Wiener condition to the regularity of a boundary point for a linear parabolic 
equation with measurable bounded coefficients is due to Lanconelli [9]. A Wiener-type 
sufficient condition for a quasilinear parabolic equation has been proved by Gariepy 
and Ziemer [6, 141 and a necessary condition by I. V. Skrypnik [13]. In [1) Biroli has 
extended the result of [14] to the parabolic degenerate case with a weight in the Ai+2i 
Muchenhoupt class (see in [1] about literature). In our paper we use the method of [13] 
for proving a necessary Wiener-type condition for such a problem. 
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2. Notations, definitions and preliminary results 
To begin we recall some facts from [2] about A,, weights. Let 0 < r € R and x 0 € 
R' (n > 3), and put 

B(xo,r) = {X E R'Th x — xol <} and w(B(xo,r)) 
= IB(xo,r) 

w(x)dx. 

We say that a non-negative and locally integrable function w = w(x) in R" is a doubling 
weight if there exists a constant K1 > 0, independent of r and x0 , such that 

w(B(xo,2r)) < K i w(B(xo,r)). (2.1) 

Given p € (1, +oo), we say the weight w belongs to A,, if there exists a constant K2 > 0 
such that, for all balls B C R", we have 

/ 1	f w(x)dx) ( 1
	J w 1(P_1) (x)dx)

p—I 
K2 .	(2.2) measB	 measB B 

We say w € DC if there exists a constant K3 > 0 such that 

r 
w(B(xo,r)) K3 (-) w(B(xo,$))	for all s € (0, r]	(2.3) 

with K3 independent of x 0 ,r and s. 
We say the Poincaré inequality holds with weights w 1 and W2, /2-average and expo-

nent q (q > 2) if there exists a constant K4 > 0 such that 

W 

/ 
(B) 
1 L IF(x) - avB,Flw2(x)dx) 
2 

/	1	IOF(x)'2	
1/2	(2.4) 

<K4 (measB)'" w
i B) IB Ox	

wi(x)dx) 

for every ball B C R n and every F € Lip(B) where 

f 
aVB,4 F = 1 JB F(x)/2(x) dx. 

As it follows from the result by Chanillo and Wheeden [2], the inequality (2.4) holds for 
q > 0 with jz = 1 or p = w2 whenever w 1 € A2 and 

	

(measB i \ hI" /w2 (B 1 )\' k	(wi(Bi) 
measB2 	W2(B2) )	

K 
W2 (B2)	

(2.5) 

for all balls B 1 and B2 with B 1 C B2 and with K5 independent of the balls. 
Also, if v = v(x) is a weight, w € A,,(v) means an analogous inequality to (2.2) with 

dx and meas B replaced by v(x)dx and v(B), respectively. We also use the notation 
A(v) = U1 A,,(v).
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Remark 2.1. As it follows from the definition, if w E A, then there exist constants 
K6 >0 and 77>0 such that 

w(B(xo,r)) K6 
(

r "7 

-) 
w(B(xo,$)) 

for 0 < r s. 
Let now ci be a bounded domain in R" and QT = ci x (0, T). We shall study the 

behavior of solutions of the equation 

V(Z)	-	—ai (X, t ' U1	
) 

= ao (T, t, u,	
)
	((X, t) E QT)	(2.6) 

at a point (x0 , to) E ST =aQ x (0, T) under the assumptions that the functions a = 
a(x,t,u,p) (i = 0,... ,n) are defined for (x,t,u,p) E 9  [0,1'] x R x R" and satisfy 
the following conditions: 

(Cl) For almost every (fixed) (x,t) the functions ag(x,t,u,p) are continuous with 
respect to u and p, and for all (u,p) they are measurable functions of (x,t); 
a R (x, t, 0, 0) =0 for	0,... ,n. 

(C2) For some constant i' > 0, 

	

(a(x,t,u,p) - a(x,t,u,q)) (pi - qi) ^: ui w(z)p - q 2 ,	(2.7) 

and for some constant v2 > 0, 

ao(x,t,u,p)—ao(x,t,v ) q) < v2(v(x)Iu _v+vh1/2(x)w112(x)Ip_q)
(2.8) 

a(x,t,tt,p) - a,(x,t,v,q) < v2(v1h/2(x)wv2(x)iu - vi + w(x)Ip - qj) 

for i = 1,... 

We will denote by L2 (ci, w) the Banach space of all measurable functions 1, defined on 
ci, whose norm

If	
= f f2(x)w(x)dx 

is finite. W (Qi', v, w) will be the Banach space of functions f equipped with the norm 

Ill11 W(QT,v,w) = JQT f2(x,t)(v(x) + w(x)) dxdt 
 

IOf(x,t)l (I Of(x, t) w(x) +	V(X) ) dxdt.	
(2.9) 

(QT + j	I 

2 

 

We use also functions from the space V2 (QT, v, w) endowed with the norm 
2 

11111 2	=	
in

f2(xt)v(x)dx+f
QT 

IOf(x,t)I w(x)dxdt.	(2.10) V2 (Qr 'V w) o<t<T 	 I Ox	I 
We will denote by W2'(Q, v, w) and l'2(QT, v, w) the spaces of functions belonging, 
respectively, to W21(QT,V,W) and V2(QT,v,w) and being equal to zero on Sr.
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Definition 2.1. We say that a function u e V2 (QT, v, w) is a solution of the equa-
tion (2.6) if, for all functions	(x, t) in W21(QT,V,W) vanishing at t = 0 and t = 
the identity

IT(U,T,b) = 0 

is satisfied, where

1• 

I(u,b) 
= ff { - v(x)u(x,t)-

o	 (2.11) 
au\ ô	

(	
au dxdt. x

x 
t,u ) (x) i=1

axi 

Definition 2.2. Let I E W2'(QT, V , W ) and g E L2 (, v) for which 

u(x,i) = f(x,t) 	((x, t) E ST)	 (2.12) 

u(x,0)=g(x)	(xEl).	 (2.13) 

We say that u = u(x,i) in V2' (QT, v, w) is a solution of the problem (2.6), (2.12), (2.13) 
if u - f E 1 '2 (QT, v, w) and, moreover, for any 7h E W(Qg, v, w) and r E (0, T), 

in 
v(x)u(x,r)(x,r)dx - j v(x)g(x)(x,0)dx + I(u,i) = 0.	(2.14) 

Definition 2.3. We say that (xo,to) E ST is a regular boundary point of the region 
QT for the equation (2.6) if for any its solution u, defined in QT, satisfying the condition 

(u— 1) E V2(QT, v , w )
	

(2.15) 

with f e C(QT) fl W2'(QT,V,W) and 0 E C°°(R'') which is equal to one in a , neigh-
borhoud of (xo,to), the equality 

urn	u(x,t) = f(xo,to)	((X, t) E QT)	 (2.16) (zo,to) 
holds. 

For any set E C R", let 

M(E) = { 0 E C(R") I O(x)> 1 for all x E E} 

and define

C2,(E) = inf {j w(x) 
1 2, ^

 

2 

dx 4 E M(E)}. 

In the following we shall need two lemmata.
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Lemma 2.1 (see [131). Let {f3}EN be a bounded numerical sequence such that

/3<Af3 1 a'	(iEN) 

with positive constants A,a and S E (0, 1). Then 

'fl ç CA"' 

for a constant C depending only on S and a. 

Lemma 2.2 (see [5: Theorem 1.2)). Let the Poincaré inequality hold with w 1 = w 
and w 2 = v or w 1 = w and w2 = w, p = 1 and W  A i + 2i,w' E A2 _ 21 . Then for 
an arbitrary function u E C 000(B(xo,R)) one has

au w(x)dx	(2.17) 
18(zo,p) 

u 2 (x)v(x) dx	
v(B(xo, p)) 

L(10	

2 

	

w(B(xo,p))	102:1 

or

 

	

JB(ZOA 
u2(x)w(x)dx <C1p2IB.	 w(x)dx	 (2.18) 
 (zo,R) 

with a constant C 1 independent of u and 0 < p < R. 

3. Regularity at the boundary 
In this section we prove our main result: 

Theorem 3.1. Let the functions ai satisfy conditions (Cl) and (C2). Suppose 
moreover the following: 

(i) v,w E A2. 

(ii) The Poincaré inequality holds for w 1 = w2 = U) with p = 1 and some q > 2. 

(iii) The Poincaré inequality holds for w 1 = w and w2 = v with any p = 1 or u = v 
and some q > 2. 

(iv) The inequalities (2.17) and (2.18) hold. 

Then for (xo,to) E 3l x (0,T) to be a regular boundary point of the domain QT to the 
equation (2.6), it is necessary that 

I C2,,,(B(xo,r) \ Il) dr 
I	C2w(B(xo,r))	

= c.	 (3.1) 
0 

Remark 3.1. Put, for any 9 > 0, 

Q (xo, to) = B (2:0,	
2 v(B(xo, r))	- 9r2 v(B(xo, r))) 

	

) 
x (t0

 - 29r w(B(xo,r))	w(B(xo,r)) 
to 
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and define, for any set F C Rn+I, 

M(F) 
= { E C°(R') 	1 for all (x, t) E F} 

and

r,,,,, (F) = if {suJ 2 (x, t)v(x)dx + ifw(x)	dxdt 

	

'EM(F)	 ax 

As well as in [14] it can be proved that 

r	(Q(xo,to) \ QT)	 Cz,w(B(xo,r) \ ). 
Also we can easily obtain that 

	

(Q(xo,to))	v(B(xo,r)) 

C2,w( B(xo, r )) r2w(B(xo,r)) 

so that condition (3.1) is equivalent to 

r	(Q(xo,to) \ QT) dr 
-=.	 (3.2) 

	

j	v(B(xo,r))	r 
0 

From Theorem 3.1 and (3.2) we have that, in the case v(x) = 1, our necessary 
condition coincides with the sufficient one from [1]. 

Now we define auxiliary functions Uk = u k(x , t) (k E N) that will play a fundamental 
role in the proof of Theorem 3.1. For k E N we define a numerical sequence {k}kEN 
such that cxk - 0 when k - 00 and 

OIk	 11	i=a\ n(q-2) —a K7 = ( –K1K6
_ 

29 )
	 ,	K7 <1	 (3.3) 

/ 

with the constant K5 from inequality (2.5), K6 and ' from Remark 2.1 and some q> 2 
for which the Poincaré inequality is valid. Let 

Ek = B(xo,ak) \ Q	and	E(k) = Ek \ B(x o, ak+l) .	(3.4) 

Let further Mk(Ek) and M( k)(E( k)) be the subsets of M(Ek) and M(E) consist-
ing of functions with support contained in B(xo,&k_l) and B(xo,k_l)\B(xo,k+2), 
respectively. 

Lemma 3.1. There exists a constant C2 > 0 such that 

inf JRn	
2 

dx E Mk(Ek)}.< C2 C2,(Ek)	 (3.5) 

i{Jft w(x)	dx E M(E)} C2 C2,(E).	(3.6)
n	^ ax



A Condition to Regularity of a Boundary Point	165 

Proof. We will prove only inequality (3.5), because (3.6) can be proved as well. 
Let Xk E C(R") with 

	

xk(x) = 1 for Ix —xoI ak,	and	xk(x) =0 for Ix - xoI 2 ak_I 

and
1 

axi - (1 - K7)ak_I 
Then, for 0 E M(Ek) with xkcb E Mk(Ek), we have 

inf	
JR- 

w(x)Iôi—I dx 
'EMk(Ek) 13x1 

B ,	(X2	 Iaxkl2)c3 inf	 kI—I w(x)dx+ 

	

'EM(Ek) B(zo,ck_,)	ôx	 Li 
inf

1	\	I	w(	
a2 dx ^ C4 (i + (1— K7)2) EM(Ek)JB(zoQk,)	IOxI

C2C2,,(E) 

and the assertion is proved I 

Let diam Q be the diameter of the region ft From now on, putting R = 2 + diam I, 
B will denote the ball of radius R centered at x 0 . We introduce a non-increasing function 

E C°°(R) with 

0<(s)<1, 7(s)=O for s>2, 7(s)=l for s<1, 1'^ < 2- 
ds - 

Further, let 

h(x) = 7(I x - xol)	and	A(t) = ( a 
2w(B(xo,ak)) 

It - tol). 
\	v(B(xo,a,)) 

For a given point (xo,to) E aQ x (0,T) we can choose a number k0 such that 

2 v(B(xo, ak0))
cxk0 w(B(xo, ak0)) < 

	

And for k > ko,(x,t) E Qk = Dk x (0,T) and Dk = B	we define the function
Uk = u k( x , t) as the solution of equation (2.6) in Qk satisfying 

u k( x , t) = h(x).\k(t)	((x, t) E OD x (0, T))	 (3.7) 

uk(x,0) = 0	 (xEDt).	 (3.8) 

Extend then the function Uk = U t(x , t ) to B x (0,T) by setting it equal to At = At(t) 
for (X, t) E Pk x (0,T).
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Lemma 3.2. There exists a constant K8 > 0 such that the function Uk = u k(x, t) 
satisfies

v(B(xo, ak)) II U kII '2(Qk , vw) ^ K8 a w(B(xo, Ok)) 
C2 ,(Ek).	 (3.9) 

Proof. It is easy to show that for h > 0 and 0 < r <T - h the integral identity 
T n 

	

IID,, {v(x)Euk(xt)Ih(xt) + > [a i (xt	
auk)] a(x,t) 

,Uk,
h 

-

	

	
-	

t)}dxdt = 0	

(3.10)
['0 (Xlt ,Uk, auauk)] (x

h 

holds for any 1' E V2(Qk,v,w) in which we use the notation 

[g(x,t)]h	J g(x,r)d. 

Let us put in (3.10) the function 

(x, t) = [uk(x, t)]h - (x) [k( t )]h	(0 E M k( Ek)) .	 (3.11)

In the inequality obtained from (3.10) by substituting (3.11), we integrate by parts the 
term containing a N [u,(x,t)],, pass to the limit ash -i 0, and estimate using (2.7) and 
(2.8). Thus we get

7.	 2 

	

fDk v(x)u(x,r)dx +fJ w ( x ) Ut
 D,	 ax 

C

	

J/ (i +
	

u(x,t)v(x)dxdt	 (3.12) 

+ 
f	 v(B(x,	2 

D, [v(x)(x )
+a ° W(x)1 dx}. 

Using the Poincaré and Gronwall inequalities, from (3.12) we obtain 

7. 

k

2 

f v(x)u(x7T)dx+Jf w(x)X7t 
D	 ax 

C6 ak 
v(B(xo,ak))

fDk
 "0 i2 — I w(x) dx 

-	w(B(xo,ak))	ax i 

for r T. Hence, by Lemma 3.1, the estimate (3.9) follows I
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Lemma 3.3. There exists a constant K9 > 0 such that, for k > k0, 

2 v(B(xo,ak+s)) ) m(k) = inf { uk(X, )I Ix xoI	k+5, I - t01	&k+5 w(B(xo, ak+5)) I 
<K9 { 2 C2w(Ek)	

(3.13) 
) 

-	akW(B(XOk))f	. 

Proof. Set
v(B(xo, ak+5))  =	IUk(x, r(

7(k) = a5 w(B(xo, ak+5))	
and	Uk(x, t .) mm	 t) 1 

m(k)' J 
Then from the definition of capacity and doubling condition for w we get 

w(B(xo,co k ))a 2 <C7C2,W(B(xo,ck+5)) 
to+r(k+5) - 

<C8 r'(k +5)	J	JB w( 
	I 2	 (3.14) 

x)II dxdt.
 — 

to-r(k+5) 

Now from Lemma 3.2 it follows 
to-4r(k+5) 

	

1
W(x)r/ 	I

ailk
I dxdt < Cg[rn(k)j 2 r(k + 5) C2 (Ek ).	(3.15)

	

JB	IôxI 
t 0 -r(k+5) 

From (3.14) and (3.15) we have the thesis I 
In the next sections the a priori estimates on which the proof of Theorem 3.1 is 

based will be proved. 
Theorem 3.2. Let all of the assumptions of Theorem 3.1 be held. Then there exists 

a constant K10 > 0 such that the solution tzs = U k( x ,t) of problem (?.6) , (3.7),(3.8) 
satisfies

2 C2(Ek) 
+ 

2 v(B(xo,ck))
Uk(X,t)I	K0 {kw(B(xoak))	w(B(xo,ak))}	

(3.16) 

for

(x, t)	 (x, t) E Qk I x — X <ak3, it - oiak_3v(B(xo,a3))) 
w(n(xo,ak_3)) 

Theorem 3.3. Let all of the assumptions of Theorem 3.1 be held. Then there exists 
a constant K11 > 0 such that

{
2 C2,w(Ek)	2 

tL 
 k( x , i)	Uk+1(X, t)	A 11 a	 + w(B(xo, ak))	k w(B(xo, ak)) j	

(3.17) 

for

Ix - xoI < a k .. 4	and	It - t0 < a..4 v(B(xo, ak....4)) 
w(B(xo, ak....4)) 

Let us remark that the Theorems 3.1 - 3.3 in the non-weighted case were proved in 
the paper [13]. 

Using Theorems 3.2 and 3.3 we can now prove Theorem 3.1.
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Proof of Theorem 3.1. We construct a solution of equation (2.6) in QT satisfying 
condition (2.15) with function f E C(QT ) fl W2'(QT,IJ,W) and discontinuous at (xo,to) 
as soon as the inequality (3.1) is not satisfied. 

Thus, let us assume the boundedness of the integral on the left-hand side of condition 
(3.1). Then using (3.3) and (2.5) we can easily show that 

v' .1 2 C2,w(Ek)	2 v(B(xo,ak)) 
.%	 + a $ 	<.	(3.18) 

k=i	w(B(xo,k))	w(B(xo,ak)) j 
We can then find a number k1 E N such that 

V' 1 2 C2,W(Ek)	2 v(B(xO,clk)) j	1 

k=k, 
k wB(xo,k +kw(B(xok))f < (3.19) 

where K11 is the constant from Theorem 3.3. We will show that the function U k 1 = 
u 1 (x, t) defined above as the solution of the problem (2.6), (3.7), (3.8) is discontinuous 
at (xo,to). Let 5 > 0 be an arbitrary number. By the convergence of the series (3.19) 
and estimate (3.13), we have m(k) - 0 as k -, 0. In this way a number k2 = k2 (5) and 
a point (X6, t6) E QT can be chosen so that 

1uk 2 (x06)I	and	Ixo - xo 2 + Ito - to  < 8	(3.20) 

From (3.17), (3.19) and (3.20) we have
k2-1 

IUk,(X5,to)I	Ik2(O,6)I + E j U k+I(X 6, t O) - Uk(X5,t) 
k=k, 

So it follows that
liminf Uk,(X,t) < 1	((x, t) e QT). (z,i)(xoto) 

This inequality proves the non-regularity of the boundary point (x 0 , to) and thus The-
orem 3.11 

4. Pointwise estimates of the function Uk = uk(x, t) 

In this section we will use the following 
Lemma 4.1 (see [7]). Let the assumptions (i) - (iii) of Theorem 3.1 be satisfied. 

Then there exist constants CIO > 0 and h > 1 such that 

(Q) ff IuI2hw(x)dxdt+ 
(Q) Jf	() 

h—i 

CIO sup 	u2(x,t)v(x)dx 
iEJ v(B) B 

(	 (4.1) 
X sup —!L f u2(x,t)v(x)dx 

iEJ v(B) JB

w(x) +
(meas B)2/t1	 ôu 2

dxdt 
W(Q) A - 
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for any u E V2 (Q,v,w) on Q = B x J, with J being an interval and B a ball, I JI = 
measJ and 

W(Q)	 v(Q) = JIJ v (x ) dx	v(B) 
= lB 

Let ak_3 p < R, 

G(p) = {(xt) I x - xo <p, It - to	
v(B(xo,p)) 2 
w(B(xo,p)) J 

0< e <p and 1i ^! pk(p,e) with 

/lk(p,E) = sup {uk(x, t) I (X, t) e {G(p + e) \ G(p -	fl Q}.

We then define the set 

F(p, j) = Qk \ G(p) U {(x, t) E Qk fl G(p) uk(x, t) <} 

and the function 

u'(x,t) 
= 1 min fUk(X,t), ,Uj

 u,(x,t)	 for (x,t) € Q, \ G(p) 

 for (x, t) E Qk fl G(p). 

Lemma 4.2. For ak_3 p R, 0 <c < p and M ^! / z k(p, E ) we have 

SUP I v(x)u(x,t)dx 
+ff
	

w(x)Utdxdt 
O<t<T Dk	 (p,p) 

:5 C11 pP(E,,p) 

where
2 v(B(xo,ak))	 1/2

c2w(Ek)] Pk(Ek,p) = ICk w(B(xo,a,)) 

[2 
v(B(xO ,k))	 2v2 (B(xo,p))1 

1/2

C2 ,(Ek) + p w(B(xo,p))j 

and C11 i3 a constant depending only on n, i.'i u2 and T. 

Proof. Into the integral identity (3.10) substitute the function 

(x,t) - I	- (x) 4(t)	for 0< 
h <e2 v(B(xo,p)) 

- [Uk	
h	 w(B(xo, p)) 

Here
= min {[Ak(t)]h,}	( E M(Ek)).

(4.2) 

(4.3)
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After this substitution we transformthe term containing	 obtaining 

7.

RD, b(x)[uk(x,t)]h { [u(x,t)] h O(x)A(A)0)I 0
L v(x) 1 

[?42 
. ]h 

 (x, r)+ ([uk(x , T)]h - [u(x, T)J 
h) 

- [uk(xr)]h(x)4(T)}dx 

+
 Jf

v(x)[u(x, t)]h(x) a4(t) dxdt. 0 Dk	ot 

Using this representation on passing to limit with respect to h in the integral identity, 
we get

	

ID v(x) f [u(x, T)] + (u k( x , T	k )	(x, T)- Uk	12 

- Uk(XT)(X)A(T)}dX 

	

7.	

thLk ô 

+ YDI	 a (xtUk -_) h- [ux, 	
(4.4)i9xi,  

a0 (X)	 ôUk ) IUk (z)
 t, U k,	I	(±, t) - (x)A(t)] 

ax 

+v(x)uk(x,t)(x) a4(t) 

=0. 

Using inequalities (2.7), (2.8) and (3.9) we can estimate the left-hand side of (4.4) 
obtaining	 - 

	

J v(x) [u(x,T) ] 2 dx + ff	w(x)XtHdxdt 
Di, 	(p, A) 	Ox

	

< 

c12{	
2 v(B(xo,k)) C2(Ek) + 1IF(Pa)v(x)u(x,t)dxdt (4.5) -/kw(B(xoak)) 	

.  

1

Uk (x 7 t)dxdt}. + /L [V(X)IUk(X,)I + w 2 (x)v h /2 (x) I OUk(X t) I] I ()



A Condition to Regularity of a Boundary Point	171 

We estimate the latter part on the right-hand side of (4.5) using the Holder and Young 
inequalities, (3.9) and the observation that 

	

u k(x , t ) = 0	for t < t 0 - 2	v(B(xo,cxk))
w(B(xo, ak)) 

We have 
T

, [v(x) Iuk(x, t )I + w'2(x)v'12(x) ôUk(x, 
1 ) 1 u (x, t) dxdt 

JID,	 ax 1 

it fknG(p)
[v(x)uk(x )I + wh/2(x)vh/2(x) 0t2 k(X t)
 

dxdt 
I	ox	j 

+ IJ	[v(x)Iuk(x, )I + w h /2 (x)v h /2 (x) I OUk(X t)	
t4$(x, t) dxdt 

C^IF(p,) L	 Ox	j 
2 

- JIF(P, IA ) 
w(	 oUk(x,t)I dxdt x)I

2 	Iax I 

+ C13 { JJF(P'A) v(x)u(x, t) dxdt 

[	v(B(xo,ak))	 1/2	v2(B(xo,p))1 1/2 } 

± 1	 C2w(Ek)]
	

Ip2 

	

w(B(xo,ak))	 w(B(xo,p))j 

Hence from (4.5) it follows 

ID,. [u(x, r)] 
2 

v(x) dx + IfF ( P,.U)
w(x) I OU k(x , t) 2 

 Ox 

c1{JI
D,
 v(x)[u(x,t)]2dxdt+PPk(Ek,p)}. 

 
0 

Now using the Gronwall inequality we obtain (4.2) I 
Proof of Theorem 3.2. Let k-3 p R. We define two numerical sequences 

{P'}EN and {p2,i}2EN by putting 

2	1+a1 
1+	

2	
1+ao 

2	1+2co—, 2 

	

P	and	P2=	 P 

where a i are defined by (3.3). Moreover consider infinitely differentiable functions 
X = xi(s) (i E N) on R such that 

0<x(s)<1 

= 1 on Lp , p 1 and X i(s) = 0 on R \ [p1, 

	

dx(s)I < 1+0 1	2 

ds
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Then let

t1(x ) = x (Ix - x 0 I 2 )	and	 w(B(xo, p)) - 
(t) = Xt v(B(xo,p))	) 

f  

and substitute into (3.10) the function 

(x, t) = [uk(x,t)]' V, i 2(x):2(t) 

for arbitrary non-negative numbers r and s. Integrating by parts the term containing 
[u(x,t)J,, passing to the limit as h -* 0 and estimating using (2.7) and (2.8), we 

obtain 

I Ur+2(x, 7-)O,+2(X)O,+2(T)v(x) dx 
Dk 

7. 

+ ff w(x) I	2 u(x, t)2(x)2(t)dxdt 
II

7• 

_____________	 w(B(xo, p)) 15 2 (r + s + 
1)2 JJD k 

t4 2 (x, t) [W(X) + v(B(xo, )) v(x)] (x)(t) dxdt. 
p2 0 

Hence using Lemma 4.1 and applying the iterative technique (see, e.g, [13: Lemma 2.2]) 
to

(x,t) E Qk, Pi,i	IX 	xo	P2,i 
m, = m(p) = sup {
	 v(B(xo,p)) 
IUk(x,t)I	w(B(xo, p)) it to  

< P2	
}	

(4.6) 

we obtain the following estimate with some h> 1: 

2h 

[m]2
7. x

 ff
u (x, t) [	

w(x)	+ w(B(xo, p))v(x) ]

0	
p2v(B(xo,p))	p2v2(B(xo,p))	

(x)(t)dxdt.	
(4.7) 

Let us estimate the integral (4.7) applying Lemmata 2.2 and 4.2. We have 
7.

u(x,t) [
	

+ 22 
W(X)	w(B(xo,p))v(x)1 

JID,	2 v(B(xo,p))	p v (B(xo,p)) 0

JIG(,,,).QIum+1)(x,t)2I	w()	
+

w(B(xo,p))v(x)] dxdt
. 	I	[2 (B(xo, p))	p2 v2 (B(xo, p)) i	(4.8) 

2 
1	

J1F(P,+,',.,+1)
k(X,t)IC17	 w(x) I	 dxdt v(B(xo,p)) 	a	I 

C18	
1	

rn+1Pk(Ek,p). v(B(xo, p))
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Here Pi+1 is such that Pi+i < P2,i+I, and Xi+1(s) = 0 for s > Pi+i. 
Now, from (4.7) and (4.8) it follows that 

2?, 

[m] 2 5 C1 '	Pk(Ek,p)mI+I	 (4.19)v(B(xo, p)) 

and further, by Lemma 2. 1, we get

C20	
1

Pk(Ek,p).	 (4.10)v(B(xo,p)) 

Now for proving Theorem 3.2 it sufficies to show that for p ^! ak_3 

/.L(p,ak) :5 c21 f	+ a, 
C2,(Ek )	2 v(B(xo,k)) 

I w(B(xo,c))	w(B(xo,ak))f	
(4.11) 

For p = c k3, inequality (4.11) follows from (4.10). If for some p > k3 we had 
rn i (p) < u(ak_3,ak), then that p will satisfy (4.11). If however m ' (p) > p(ak_3,ak) 
for some p, then for all i E N we have m1+j(p) > U(ak_ 3 , k ) and we operate a change 
in (4.8). In this case

F(p,+ i , in11(p)) c F(at_ 3 , rnj+'(p)) 

and we obtain instead of (4.8) 

UP [ _2 

w(x)	w(B(xo,p))v(x)1 
p v(B(xo,p)) + p2  v2 

	

JID, (B(xo,p))	
(4.12) 

2 
OUk(X,t) dxdt. 

C22 v(B(xo,p)) 
1	Jf	w(x), 

ox F(a*_s,m.,(p)) 

So as above we get the inequality

2h 

aT 
[m1(p)] 2 

<— C23 Pk(Ek, clk_3)mi+1(p). v(B(xo, p)) 

Hence,by Lemma 2.1, for a given p we have (4.11) and this completes the proof of 
Theorem 3.2 1
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5. Integral estimates for the difference Uk(x ) t ) - uk+l(x,t) 

We shall need auxiliary functions fk = fk(x) and g = gk(x) defined, respectively, as 
the solutions of the problems 

(wxx)) = 0 (x C Dk = B \ Ek, 1k - he W(D,w))	(5.1) 
i=1	 axi 

E - (w(x)!(x)) = 0 (x C D(k) = B \ E, g - h C iT(D,w)) .(5.2) 

Lemma 5.1. There exists a constant C24 > 0 such that 

Ilk II W21(Dk,w)	C24 C2 ,w(Ek)	 (5.3) 

II9 k IIw21 (D( k )W)	C24 C2 ,(E).	 (54) 

Proof. We will prove only the inequality (5.3), the proof of inequality (5.4) is 
analogous. In the definition of a weak solution for equation (5.3), choose as test function 

b = fk - cb	(EM(Ek)). 

We then obtain 

Now, using Lemma 3.1, we have (5.3)1 
Let us denote

15k = Uk - Uk+1	 (5.5) 

and
( (X, t) C Qk, Ix - xol < &k_3	) 

	

dk = sup Iök(x,t)I	 2	v(B(xo,ak_3))	.	(5.6) 
I	 It—t01 <ak_3 w(B(xo, k-3)) 

For any function f = f(x,t) and numbers A 1 and A2 with A 1 < A2 , we define 

[f(x,t)] = max{ ±f(x,t),0} 

[f(x, t)](fl1 A2) = max { mm [f (x, t), A21, A }. 

Moreover we define for 

	

/2>0	and	tk = to +_i
w(B(xo, (kk-1)) 

the sets 

F(p) = {(x,) e B x [0,tk] ± [ök(x,	 p [J(x,t) + k(x,t)] }, 

F(p) = F' (p) U F(p) 

T(p) = {(x,t) C B x [0,tk] I 16k(x,t)I
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where

fk(x, t) = fk(x )7(a ± x - xol ){.Xk_2(t) - 

gk(x,t) = 9k(x){7 (j: 1 I X - xol) — 7 (a 2 I X - xOI) }k2(t) 

and where -y and \k are the functions introduced in Section 3. Further, for an arbitrary 
subset E C B x (0, T), we denote by x = xE(x, t) its characteristic function. 

Theorem 5.1. For arbitrary u > d, there exists a constant K12 > 0 such that 

sup JB
v(x) [6k(x, t)](_) 2 xF() (x, t) dxdi 

O<t<tk

	

I	I I' 

	

+	 w(x 
a 

)I_6k (x , t) dxdt JIT() nF()	I	I 

	

1 2 v(B(xo, Ok))	 1/2	 (5.7) 

<K12lak(B)C2w(Ek)}

1 

	

< {2v2(B(xo,a))	

/2 
+C2,w(Ek) 2 v(B(xo,ak)) ) 

	

w(B(xo,ok))	 Ok(B) J 
Proof. Since F() .= F(p)UFi), we prove the inequality (5.7) only for F(). 

Define for	 - 
v(B(xo, ak+2)) h < Ok+2W(B(XoOk+2)) 

the function

(x, t) = [[8kh(x , )1() - 14Jt(x, t)]h - p[gk(X, t)]h] 
+	

(5.8) 

where Skh(x , t ) = [u k( x , t )]h - [uk+1(x,t))h. As well as in [13), using condition (3.3), we 
check that the function 0 defined by (5.8) belongs to the space V2(DK x (0,tk),v,w). 
We plug in the integral identity (3.10) for Uk and uk+1 obtaining 

r 

JIB v(x)t5k,h,(x,t)+	([ai (X, tuk,_a).J 
0	 i=1 

	

lai 
(

X i t
	

ôUk+I\l \ ô, 
-	,Uk+1,	

)ih)	 .	 (59)  ox 

	

( [ao(	Ouk\l -	 OUk+i\ldxdt -	X,t,Uk,	J	 (x, t,uk+1
OxJJh

	[ao	
Ox )ih)} 

=0.
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We transform the first term under the integral sign in (5.9) in the following way: 

IL
v(x)Sk,hb(x, t) 

B v(x)	{ [[kh(x, r)]	- [J(x, r) + §k( X , r)] hi + (-4) 

+ 2 (ökh(x,T) - [8k,h(x,r)](_,))	
(5.10) 

[Ek,h(x,T)1(_) - [J(x,r) + k(x,r)]hJ }dx 

r 

+ JJ v(x) [Jk(x,t) + " (XI 0 1
 h 

0

- [Jk(x , t ) +k(x,t)1hJdxdi. 

Using (5.10), passing to the limit as h - 0 and applying (2.7), (2.8), (2.17), (2.18), 
(3.9), (5.3), (5.4), we obtain from (5.9) 

IB v(x) [Sk , h(x, r)]_ ) XF+()(X, r)dx 

T 

+J1  w(x)ô6k 
B

	
ax XF+(,)nT(,4)(X,t)dxdt 

0 

c25{ 2 

v(B(xo,Ek)) 
-	Pk w(B(xo, ak)) 

C2, .(Ek) 
1• (5.11) + JIB v(x)(x, i)xF+()nT()(x, t) dxdt  

0
r 

+ ii ) 
(V(X 	

a6k(xt) 
0

k(x,t)I + wh/2(x)vh/2(x)	
ax B 

X [6k,h(x, t)] ( _ ) xF+()(x, i)dxdt}. 

We estimate the last integral of the right-hand side of (5.11) using the Holder inequality,



A Condition to Regularity of a Boundary Point	177 

getting
r 

I I (() 16k(x,t)I + w1/2(x)vl/2(x) 106k(x 
Ox

, t) 
JB\.  

0

[Sk,h(x, t)] ( 	XF+(,1 )(x, t) dxdt 

r	 2 1	w(z I08k(x,i)I 
2C25 JIB	

)	ox	I XF+()nT(,4)(x,t)dxdt 
0

7. 

+ C26 
JIB 

v(x)6(x, 
t)Xp+()flT()(x,t)dxdt 

 
0

{  +C2t	
2 v(B(xo,ak)) 1/2 1/2 
k

	

w(B(xO,k)) I	{v( F(1) \ T(z))} 

where
v(F() \ T()) = //	v(x) dxdi.	 5.12) 

J JF+(,)\r(,) 

Since j.t > d, from (5.6) we have

2	v(B(xo, ak_3)) .1 F+() \ T() C 
I 

(x, t) Ix - xoI < k-3, It - tol <k_3w(B(xo,k_3)) I 
and so

v(F() \T()) 1527	
v2B(xo,at)

(5.13) 
w(B(xo, at)) 

Now applying the Gronwall inequality, from (5.11) - (5.13) we get (5.7) I 

6. Proof of the Theorem 3.3 

From the integral identity (3.10) for Uk = u t(x , i ) and uk+1 = u+i(x,t) it follows that, 
for an arbitrary function E V2(QK, V , W ) and for 0 < r 

7.

Iv(xkx,ix,i) A 
0

n	

(X1 t,u&, Ou&(z,t,Uk+1, 
Ou k+1 \lO7 

Ox )ih	 (6.1) a
	Ox	

a
j 

[aO (
	

Out\	
(	

Ouk+1)]	(xt) 1sdxdi -	x,t,ut,— J—ao 

	

Ox,	 Ox	h	J 
=0.
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Define the numerical sequences {p} IEN and {o,}EN by the equalities 

Pi = ak+4(l+cll —a1) 
v(B(xo,ak+4)) 

= ak+4	 (1 + a 1 - a,). ai	
w(B(xo,ak+4)) 

Then define infinitely differentiable functions = -y(x) (x E R") and 5', = 5(t) (t E R) 
such that the following conditions are fulfilled: 

a) 7j(X) = 1 on the set {xI Ix - xoI	p 1 }, 71 (x) = 0 outside the set 1 X I Ix - xoI 
ps+i}, 0	y1 (x)	1 and C2sa'a1'. 

b) 5'1 (t) = 1 on the set {xI It—toI < o}, 5, (x ) = 0 outside the set {tI It—tol !^ a1+11, 
0 <(t) 1 and	<C29 aj 2 a' <  

Let us put in (6.1) the function (x, t) = [5k,h(x, t)JT-y 2+2 with arbitrary positive 
numbers r and s. After integratig by parts in the term containing Na 5k,h(x, t), passing 
to the limit as h -, 0 and using the inequalities (2.7) and (2.8), we get 

L. 
v(x) Ik(x, -)I -y 2(x) 8+2(r) dx 

+
 If

v(x) Ik(x, t)IrOk(',t) 2+2	 2(t) dxdt 
,	 Ox

o	 (6.2) 
<C3o(r+s+1)2a2 

^, (X)'W(B(xo,	 -

x aak)) .. r4-2	dxdi.--+ w(x)] Ik(X, t)I 
 v(B(xo, ak)) 

0 

From (6.2), as well as in Section 4, we obtain with some h> 1 

2h 

JA 	C3iaT	JJR(i+ ;ik

[ w(B	+	 v(x)jI
w(x)w(B(xo,ak))	1 

dxdt	
(6.3) 

x	
(xo,ak))	v2(B(xo,ak))  

where
14i) = sup {Ik(x,t)I I (X, t) E R(i)} 

with
R(i) = {(x,t) E Qk Ix - xoI <p; and t - ioi 

Let us consider two possibilities: 

1)1(i--1)<dk 

2) 1(i + 1) > dk.
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If t(i + 1) dk, then from the definition of .i(i + 1) we have 

	

SUP I I bk (X, t) I I X - xol <k+4, It -	
2 v(B(X O ,ak+ 4 )) 1 + 1) dk 

and (3.17) follows from (3.16) for Uk and the analogous estimate for u k+1 . If(i+ 1) > 
dk, then, as in [12], we can show that R(i + 1) C F(z(i + 1)) and using the inequality 
(5.7) we have

I	w(B(xo,ck)) +
	

w(x)	1 dxdt 

	

JJR(i+ 1) 
6k(X, t)2(x) (i) a 2 [v(x) 

v2 (B(xo, ak))	v(B(xo, ak)) =
 JL(

[6(x,	 7(X) (t) XF((i+1)) 
+1) 

	

[v(x)2w(B(xo,ak)) +
	w(x)dxdt x 	(B(xo,ck))	v(B(xo,ak))j 

2h 

___________ 1 2 v(B(xO,k)) c2W(Ek) 1/2 
} C32p(i+1)

	

v(B(xo, k ))	w(B(xo,ak)) 

C2 ,w(Ek) + k w(B(xo,ak))} 
jak2 v(B(xo,ck))	 2 v(B(xo,ak)) 

w(B(xo, 'k)) 

Then applying Lemma 2.1, we obtain (3.17) and with this the proof of the theorem is 
complete I 
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