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A Numerically Rigorous Proof of Curve Veering
in an Eigenvalue Problem for Differential Equations

3

H. Behnke

Abstract. We consider parameter-dependent self-adjoint eigenvalue problems for differential
equations. Frequently the eigenvalue curves show the interesting phenomenon of curve veer-
ing. We propose a numerically rigorous procedure for proving this phenomenon in concrete
situations.
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1. Introduction

Self-adjoint eigenvalue problems for ordinary or partial differential equations are very
important in the sciences and in engineering. Frequently these problems depend on a
systemn parameter, and one can observe the surprising phenomenon of curve veering (see
Fig. 1). The curve veering phenomenon was studied by von Neumann and Wigner [25] as
early as 1929 and can be seen for quite different problems, for example for vibrations of
plates dependent on plate geometry [6, 19], for eigenfrequencies of a constant curvature
ring dependent on eccentricity [22], for eigenfrequencies of a rotating circular string
dependent on rotating speed or for the prediction of molecular geometry [15: pp. 265
and 310]. For all these problems we can ask the key question: are veerings in discretized
(approximate) models representative for veerings in continuous models?

So far there have been only generic statements on curve veering, and the proof of
this phenomenon for a concrete situation has been possible only in special cases. We will
propose a procedure that allows the proof of curve veering in a concrete situation (for
the continuous model) without requiring special properties (for example, monotonicity)
of the eigenvalue curves. The procedure will be explained by means of an example.

We consider the natural bending vibrations of a free-standing blade of a turbine disc.
The mathematical model we use to describe this problem [12] results in a parameter-
dependent eigenvalue problem (the real parameter, §2, being the angular velocity) for a
system of ordinary fourth-order differential equations.
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In this paper we will shbw how verified bounds of the form
p(Q)—e<MQ)<p()+e  forall Qel0,30] (1.1)

can be computed for the lowest eigenvalue curves A(§2). Here, ¢ is a small positive num-
ber, and p is an explicitly known function. The eigenvalue curves show the interesting
phenomenon of curve veering (see Fig. 1); by means of the calculated bounds we can
prove that the lowest eigenvalues curves do not cross each other.
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Figure 1: The loWest eigenvalues as function of the angular velocity

"Verified” means that rounding errors are rigorously cbntrollqd by the use of interval
arithmetic. An advantage of our method is that it can be applied to eigenvalue problems
for partial differential equations as well.

2. The eigenvalue problem

We consider an eigenvalue problem that results from the theoretical treatment of the
vibrational behavior of turbine blades, an important subject in turbomachinery (see
Irretier [12 - 14]). A considerable amount of work in this field deals with the computation
of the eigenfrequencies of the blades. Qur model. problem (Irretier) takes into account
all essential parameters such as the stagger angle a at the blade root (z = 0), the angle
of the twist yz (the principal axés of each cross section are called 7 and (, they are
related to y and z by the function of the twisting angle yz; r is the blade direction),

the blade cross section ®(z) and the rotation of the turbine with the angular velocity
2 (see Fig. 2). ‘ '

The mathematical model results in the following eigenvalue problem for ordinary
fourth-order differential equations:

(%" + &y, u")" — Q}(O') — Q*(v cosa — w sina) cosa = v

(2.1)
(®y:0" + @,0")" — Q*}(Ow') + Q%(v cosa — w sina) sina = Aw
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and the boundary conditions

v(0) = v(0) = v"(1) = v"(1) = 0
(2.2)
w(0) = w'(0) = w"(1) = w"(1) = 0 :

where

©=0(z) = [, D(6)(e + §)dg . (2:3)
¢, = @,,(:c) = &, cos’(yz) + &¢sin’(yz) = — (B¢ — y) cos(27z) +3(®¢ + B,) (24)
. = &:(z) = Py sin’(72) + B¢ cos?(v2) = §(&¢ — ®y)cos(2yz) + J(&¢ + &,)  (25)
@y:.= By:(z) = (8¢ — &y)sin(yz) cos(yz) = 1(&¢ — &,)sin(2yz). (26)

Figure 2: Notations

The (dimensionlesé) parameters have the following méa.ning:

T Cartesian coordinate of the blade (0 < z < 1)

- v =1v(z) y component of the eigenfunction (displacement)
w = w(z) z component of the eigenfunction (dlspla.cement)
a " stagger angle at'the blade root '
vz angle of the twist
Q angular velocity
®,,%,,2,. squares of the radii of gyration .
®,,d¢ squares of the local radii of gyration
® = &(z) blade of cross section
20(z) ° " normal force in the blade due to rotation
€ ratio to the disc radius/blade length

A eigenvalue (square of the -eigenfrequency).
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In this paper we will restrict ourselves to a special case suggested by Prof. Irretier

(Gesamthochschule Kassel):
¢ ¢ =1 (constant blade cross section)
¢ ® =87land &, =1
e a =7 and € = 0.457
¢ 0< Q<30

This means that we have to deal with a parameter-dependent eigenvalue problem (de-
pending on the real parameter ), which will be studied for some different values of ~,
0 < v < {5. Equations (2.1) then read as

(®,0" + @y, w")" — Q}(OV') = Av
(2.7)
(®y:0" + @,w")" — Q}(OW') — Q®w = Aw.

In our paper we will give numerical results and figures for ¥ = 2. For v = 0, equations

(2.7) are decoupled and the eigenvalue curves A;(Q) and A3(Q?) cross each other near
Q=09 :

3. Inclusion method

Let (H,(:|-)) be an infinite dimensional Hilbert space with the inner product (:|-) and
the norm || - ||. Suppose that V is a dense subspace of H and that we have the inner
product [-|-] in V' such that (V,[-|]) is a Hilbert space (the norm in V is denoted by
1-1). The embedding V — H is assumed to be compact. :

We consider the right-definite eigenvalue problem
Find A € R and 0 # ¢ € V such that [p|v] = A(p|v) for all v € V. (3.1)

Problem (3.1) has a countable spectrum of eigenvalues, and the eigenvalues can be
ordered by magnitude:

O<A <A <., and lim A; = oo. (3.2)

j—oo

The Rayleigh-Ritz procedure for calculating upper bounds is a discretization of the
Poincaré principle

[ule] .
A= € N). 3.3
1= B 2 () G €N) (3.3)
If we choose the linearly independent trial functions
Up,...,un €V (n € N), (3.4)

we can reduce (3.3) to an n-dimensional subspace V, (the span of the chosen functions
Y1,...,Un) and obtain the values

Al <Al < <Al (3.5)
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which are upper bounds to the following A;:

<Al G =1, n). (3.6)

We call A[j"] a Rayleigh- Ritz bound for Aj. If we form the real (n X n)-matrices
‘Ao = ((uilt‘k))i,k=l,m,n and Al = ([uilukl)i,k=],...,n’ (37)

the Rayleigh-Ritz bounds are the eigenvalues of the matrix eigenvalue problem
Az = A4, (A", ) e R x R™). (3.8)

The Rayleigh-Ritz bounds are monotonically decreasing in n € N.

The Lehmann-Goerisch procedure (see [16 - 18] and [5, 8, 10]) for calculating lower
bounds can be understood as the discretization of a variational principle for charac-
terizing the eigenvalues as well. This principle and a proof of the method is due to
Zimmermann and Mertins [27].

Let p € R be a spectral parameter such that for an N € N the inequality
AN < p< ANt (39)
holds true. We express the first N eigenvalues in the form
1 .
AN+1-i=p+ — (i=1,...,N)
3
(assuming o; < 0). For u € V, w, € H denotes the uniquely determined solution of the
equation
[u|v] = (wulv) for allv € V,
the following o; therefore are characterized by
[e]u] = p(ufu)

R  =1,... . .
7= B B -+ A O (10

A negative upper bound for o, results in a lower bound for Ay 4;_;. In order to discretize
(3.10), we determine wy,...,w, € H such that

[uilv] = (wilv) forall vevV, (3.11)

then we define the matrix

A = ((wilwk)) (3.12)

t,k=1,...,n

and solve the matrix eigenvalue problem '
(A, _ pAo)z = T(A2 —2pA; + p’Ao)x ((r, z) € R x R"). (3.13)

If for n € N the condition A[,:,'] < p is fulfilled, then (3.13) has exactly N negative
eigenvalues

n<n< ... <tn<0< ... <7,
These 7; are upper bounds for our 0; (0; < 7 fori =1,...,N). We obtain the lower
bounds P
A= ot <)\ (G=1,...,N). (3.14)
TN+1-j

This discretization (3.13), (3.14) is the Lehmann-Goerisch procedure. We call A;'["] a
Lehmann- Goerisch bound for A;.
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4. Specification for our problem

In this section we define the function spaces and trial functions for our inclusion method
and prove that the assumptions of the previous section are. fulfilled.

Let I = (0,1) be a real interval. As usual in the theory of Sobolev spaces, we use
the notation (Lg(I) (:[-)o) and (H™(I),(-})m) (m > 1) for the Hilbert spaces and

1/2

.Ilullo=(/qlu2dx) o (UIGLz(I)ﬁ

. N . 1/2 . ‘
o lullm = ( > -IID"uIIE) (u € H™(I))

0<p<m
- Mulllm = [1D™u]lo - . (we H™D)

for the norms and semi-norms, respectively. We define the quantities related to problem
(2.7) o R
H= (L2(1)) , (4.1)

the inner product in H:
. . l,‘ N 1 (IR . f ‘ " :
U= [fordes [frgpas tor f=(P)ig= (") en @2
0 0 o S 4 S

({feH2(1|f(0)_o and f(0)_o}) O (43)

and

, . .
[flgla = / ((I’zf{'gi’ + @y f2 97 +92@f191)
J A

1
+ [ (Busiss + ufiet + 76504 - Prgr)ar D
[ o

o 1= (o= () v

V is ‘a closed subspace of the Hilbert space (HZ(I)) (with respect to the product
topology). In order to have a bilinear form [-|']a which is monotonous in 2 we define

[flgle = / (*1>zf{'9§' + 9. f79) + QO fjq] + szx"gn)iiz
0

1 .
4 [ (0uusist + @y ftst + 0701101 dx (45)
0

for:._'f = (fl):g’= (91) €. V.
f2 92
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The eigenvalues of the problems

Find A*(2) € R and 0# ¢* € V such that

[0*|v]h = A*(V)[e*|v] forall veV (4.6)

and —
Find A(©2) € R and 0# ¢ € V such that

[plvla = A(Q)(p|v) forall veV (4.7)

are related by A*(Q) + Q2 = A(2), hence V) it is sufficient to know either A(Q) or A*(f).

For feV,
[ fla=VI/ifla
denotes the norm ?) generated by [-|-]a. For f = (fi, f2)7 € H*(I) x H*(I) let

WA= AR +1AIB)7 and 1A= (IANE + HI£012) 2.

These last two norms are equivalent in V.
Now we can formulate

Theorem 4.1. V 1is a dense subspace of (H,(|)) For 0 < 2 < 30 and for v € R,
the embedding (V,[-|-]Q) — (H,(:|)) is compact. .

Proof. Since
cs(1) € {f € HX(I): £(0) =0 and f'(0) =0} C La()

and C§°(I) is a dense subspace of LQ(I), Visa dense subspace of (H,(:|-)).
For all r,s € R and 0 < § € R we have

~6r% — zsz < 2rs < 6r% + 352. . o (4.8)

If we use the notations

ma).c {‘D,.(z)‘ z € [0, 1]}
max {<I>y(z)| z€ [0,1]}
max{‘b,,(:c)' z € [0, 1]}

= max{sz2 9(1:)‘ Qe[0,30),z € [0,1]}

(5]
C2
C3

Y Figure 1 shows the eigenvalue curves of problem (4.7) for v = 5.
2) See Theorem 4.1 for a proof of the positive definiteness of [-|-]a.
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and the right inequality (4.8) with § = 1 there follows for all v € V

1
w1} < / (22 + @y )u? + (By + @y )uf? + 92 O +uf) + 02(ud + u))de
0
< max {cl +c3,c + C3,c4,900}l|u||2.
In order to .prove the V-ellipticity of [|-]q, we define
1 1
c=5(8~8,)=43085  and  d= (&, +%)=44055.

For any u € V and for 0 < < 30 we obtain from (4.5)

1 1
luld > 1ull= /u”T (g’ %y‘) u'dz > //\min(Q)u”Tu"dx
. vz v :
] 0

where Q) = ( * t’v' ) The characteristic polynomial of the matrix Q is

P() =" = (&, + &) ) + 8,0, — &2,

and therefore

1
Amin(@) = 5(%: +8,) = /5(2, + @,)2 + @2,

=d- C\/cosz(Z'yz) + sin?(2vz)
=d—c
=1.

This yields ‘1u | 3 > fol u"Tu"dz = |||ul||?. Hence the norms | - | g, [|-1] and ||| - ||| are
equivalent in V. Since the embedding (H?(I),(+|-)2) — (L2(I),(-}-)o) is compact, the

embedding (V,[-|]a) < (H,(-|-)) is compact B

In order to determine a spectral parameter p (see (3.9)), we mention that the eigen-
values of our problem (4.7) are monotonous increasing functions in 2. Lower bounds
for A(0) will be computed; we use the same notations as in the proof of Theorem 4.1.

We define an orthogonal, symmetric matrix
X in X
U (cos 3  sin 3 )
inl —cosX/’
sin cos
Now we have

U <cos(2'y$) sin(2yz) ) UT = (cos(2'y:z: —7) sin(2yz —9) ) .

sin(2yz) - — cos(2yz) sin(27x —v) —cos(2yz —7)
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For any u = (uj,u;)T € V we have v = (vl,vg)T :==Uu €V and u = Uv. From the
left inequality (4.8) we obtain

2
luld > 1ull

. .
cos(2yz —sin(2yz
/(CUHTUTU( ( 7 ) ( v ))UTUuII+duIITUTUuII) dz
o
1

—sin(2yz) —cos(2yz)
o (i, T e
> /0 l <v1'2 (6(005(271 -7)- %I sin(2vz ;v)l) + d)
| + vy? ( ( — cos(2yz — ) — é|sin(2yz — 7)|) + d)) dz.

We will now discuss the functions® h;: [0,1] 3 z — hi(z) € R,

hi(z) = c( — cos(2yz — v) — 6|sin(2yz — ‘7)|) +d

) (4.10)
ha(z) = c(cos(2'y:z: —-) - 3| sin(2yz — 7)|) +d.
Let be R, 1 <b < c+d. We define
sin ¥y
b= —+—+.
® cosy + ﬁ":—b
For 6 = é;, we obtain
h2(1)=b and ha(z)>b for all z € [0,1] and 0<"/§-1—2
Furthermore let
. - { 35 arctan & + 3 ifbe(l,d)
N ifbe(dect+d)
Then we have
hi(z) 2 a:= hi(zm) forall z €[0,1] and 0.< v < ﬁ
If a > 0, the choice of b was reasonable and the eigenvalues y of the problem
Find ¢ € R and 0 # ¢ = (91,92)T € V such that
f / (4.11)
/ (apivy + bpyvy) d y/ @101 +pav2)dz Vv =(v,0)T €V '
0 0 :

3 Without introducing the matrix U we would obtain similar functions hy and h3, but the
lower bounds are worse.
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yield lower bounds for the eigenvalues of (4.7). The eigenvalues of (4.11) can be com-
puted from the solutions of the following two linear problems with constant coefficients:

ap{™ = 1Dy in (0,1,  ©:1(0)=i(0) = {(1) = @"1) =0  (4.12)

b’ = P2 in 0,1, 02(0) = 93(0) = #3() = ') =0 (413)

Ifr,eR,0< 7 <T1iy; fori €N, is a solution of

cost; coshty +1 =0,
then the eigenvalues of (4.12) are #51)

=ar} (i € N). The corresponding eigenfunctions
are :

¥1,i(z) = (cos 7 + cosh 1;)(sin 7;z — sinh 7;2) — (sin 7y + sinh 7;)(cos 7;z — cosh TiT).

Next we will explain how to construct the trial functions 4u,'. We consider the
polynomials p, : [0,1] — R,

pi(z) = 2* (6 —4z 4+ 12)
p2(z) = ° (10-10z + 32:2) .
Ale) = (-2 (29)

which satisfy the boundary conditions (2.2). To avoid the well-known numerical prob-
lems with ill-conditioned matrices, we construct an orthogonal basis from the polynomi-
als p; (orthogonal with respect to the L inner product (-|-)o) using the Gram-Schmidt
process and the computer algebra program Mathematica (see [6, 26]). Besides the round-
ing error-free calculation of the functions p;, we have the advantage that Mathematica
can produce a C or C++ code for our polynomials. (In C++ a polynomial arithmetic
combined with interval arithmetic can be used to compute the inner products without
any analytical calculation.) We obtain®)

2

pi(z) = ?(6 4:z:+x)

2

pa(z) = I—g( — 326+ 8247 — 6612° 4 182 :::3)

2
ps(z) = ;95 (37490 ~ 181120z + 305815.2” — 218966 2" + 57376 3 )

2

NOEE 7235 ( ~ 2548170 + 19398020z — 54146415 22 + 70839756 z°
— 44146336 z* + 10620480 :1:5)
) .
ps(z) = ﬁ (40512210 — 437785780 z + 1790279235 2% — 3625862604 z°

+ 3896636744 z* — 2131724400 z° + 468087750 :1:6)

) The polynomi.a]s fulfill the equation pi(1) = 1.
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2
pe(z) = %( — 4034766 + 58114976 z — 32356764922 + 923419434 >

— 1482348280 * + 1354376928 z° — 658061874 z° + 132109516:7)

Now we choose n,,n; € N, set n = n;, + n; and define

(1(’)-) fori=1,...,n ‘

u; = 0
A (p ) fori=n;+1,...,n+n2=n

t—n,

as trial functlons For v = (U],UQ)T E C"[O 1] x C*(0, 1] we consider the dlfferentlal
operator

N <I>v +d>,v”" Qzev '+ Q%
MU:{( sy (00} + 0%, w1

(By:0) + B, 08)" — Q(Ovh)
With the functions w; defined by B
v w; = Mu; . ~fori=1...ﬁ

the equation [u;|v]a = (w;i|v) for-all v € V is fulfilled. Now we can compute the
parameter-dependent matrices .

Ao(Q) = ((uilu:;))fk

t,k=1,...,n

Al(Qj = ([uilukln)i,k=1,...;h |
A () = ((w‘lwi‘))i,k=1

and establish the parameter-dependent matrix eigenvalue problems for calculating upper
Rayleigh-Ritz and lower Lehmann-Goerisch bounds.

5.. Generalized temple quotients

In this section, we will consider the general matrix eigenvalue problem
" Az=ABz, ) ‘ - (5.1)

for real (n x n)-matrices A and B, A = AT B BT, B positive definite. Equation
(5.1) has eigenpairs (At,z:) e RxR™ (i =1,... n) For u,uv € R™ we define the
following inner products and blllnear form: : ’

{ulo}y = uTo (52)
(ulv)m =uTBv S - (5.3)
(ulv]m = u:rA_v,= u'B BT'Av = (u|B7'Av)m. . (5.4)

’
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The eigenvectors are assumed to be orthogonal: (z|zk)m = éix (4,k=1,...,n). Then
we have for all u € R"

(b = Y(wlehy end fululy = YAzl = B AWy, (55)

=1

For a, € R with a < 8 we define
p(A)=(a—A)YB~-A) and Pya,f)=((B7'A~a)u|(BT'A~B)u),,.
Now (5.5) yields

ZP(A-')(Ulz-‘)?w =af Z(ulxi)?w —(a+8) Z A(ulzi)y + Z A} (ulz:)3
= af(ulu)m — (a + B) (B~ Aufu) m + (B™'Au]|B~! Au)

= Py(a, B).

The next two theorems in this section are similar to those in [20] (see also [7]). For
reasons of simplicity, we will provide only the results for matrices; the theorems can be
proved for the more general case of compact self-adjoint operators (see [11]) as well.

(5.6)

Theorem 5.1. Let o, B € R with a < . The following statements are equivelent:
a) The interval [a, B) contains at least one eigenvalue of Az = ABz.
b) There ezists a vector 0 # u € R™ such that

(i) (B~'Au — au|B~'Au — Bu)y <0

(il) (B7'Au — Bulu)p # 0.

Proof. We will show a) = b). Let us assume A; € [, ). From this there follows

Po(a,8) =Y p(Ai)(z5lz)ie = p(Aj) = (a — A;)(B — Aj) <0

=1 :
and (B_IA:I:J' - ,B:cj|z,~)M = A]‘ - B#0.

To prove that b) = a), we will assume that there is no eigenvalue of Az = ABz in
[a, B). We have

(B™'Au - au|B~' Au — Bu),, = Pu(a,B) = Z.p(Aj)(uh:;)?w <0. (5.7

Let J = {j € {1,...,n}| A; = B}. Then p(A;) = 0 for j € J and p(A;) > 0 for
7€ J. For j & J, (5.7) implies that (u|z;)p = 0, hence J = @ cannot hold true, since
(ulzi)M =0 for i = 1,...,n contradicts u # 0. On the other hand,

(B! Aulu)y = ZAi(ulxiﬁw = ﬂZ(“lzi)?w = B(ulu)m,
=1 i€J

that is, (B~! Au — Bulu)py = 0, a contradiction to (ii) B
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Remark 5.2. In Theorem 5.1/a), we may choose the interval (a, (] instead of the
interval [, 8). Then the condition b)/(ii) has to be replaced by (B~ Au — aulu)um # 0.

Now we will give a proof of Temple’s inclusion theorem.

Theorem 5.3. Let p € R, 0 # u € R" and v = B~'Au. We define the Schwarz
constants . i

ao,4,8 = (u|u)m (5.8)
aya,B = [ululpm = (viu)p (5.9)
az,4,8 = (v[v)m = [v|u]m. (5.10)

We assume a1 4,8 — pao,a,B # 0. For p# too the Temple quotient is given by

a2,A,B — pa1,A,B

TA,B\P) = ) 5.11
A (p) ajy,A,B — PQGo,AB ( )
or else by aan
TA_B(:*:OO) = m (512)
With these assumptions
p < 7a.8(p) (p7a,8(p)]

implies that the snterval {

Ta.8(p) < p [r4,8(p), p)

contains at least one eigenvalue of the eigenvalue problem Az = ABz.

Proof. We consider the case 74 8(p) < p (the other one follows from Remark 5.2)
and identify p = 8 and 74 p(p) = @ in Theorem 5.1. The assumption a;,4,8—pa0,4,B ¥
0 corresponds to b)/(ii) in Theorem 5.1, furthermore we have

Py(a,B) = az.4,B — (a+ B)a1,a,8+ aBao,aB
=a4,8— a4 —f(a1,4B— ®ag,a,B)
=0.

The case p = oo follows from taking limits B

If the assumptions of Theorem 5.3 are fulfilled, (p,u) is not an eigenpair of Az =
ABz, since Au = pBu implies (B~ Auju)p — p(u|u)m = 0, which contradicts a 4,8 —
pao,a,B # 0. This implies

a2,A,B —2paj,aB + p2ao,A,3 = (B_lAu - pu|B_1Au - pu)M > 0.

Therefore a;, 4, — pag,a,p < 0 if and only if 74,8(p) < p, that is, if 74,8(p) is a
lower eigenvalue bound, the denominator will be negative, if T4,g(p) is an upper bound,
the denominator will be positive. Thus, the statement of Theorem 5.3 remains valid
if the Schwarz constant az 4,p is replaced by an upper bound aj 4,8 < Gz,4,58. This
can be useful if the calculation of the ezact solution of the linear system Bv = Au is
to be avoided or if it is impossible. An advantageous method for calculating a small
@2,4,8 > az,4,8 Without knowledge of the exact v has been shown in (3].
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Theorem 5.4. Let c € R with 0 < ¢ < Apin(p) and & € R™. Let
JR— 1, . - .
a2,4,B = {0|Au}m — {3|Bo — Au}pm + ;{Bv — Au|B% — Au}pm. (5.13)

Then a2, 4,8 < @2,4,B.

Proof. For z € R" the Cauchy-Schwarz inequality provides

c{z|z}m < {z|Bz}m < ({.7:|:1:}M)1/2({Bz|B:r}M)1/2.

Thus, ({z|z})"/* < 1({Bz|Bz})"/*. This implies
(ele)u = {alBz}m < ({=le}m)"/* ({B=1B2} )" < 2 {BelBa}m
in turn and therefore
(5= vl5 = v),, < ~{B3~ Au[B5 — Au},,.

The upper bound is obtained by
(vlv)m = (vlv)m + (515)m — 2{5|Bv}m — ((315)m — 2{5]Au}m)

= (0 —v|[0—v)m + {0|Au}pm — {|BY — Au}m
< {#|Au}m — {9|Bo — Au}y + %{Bﬁ — Au|Bt% - Au}pm

and the assertion is proved B

If we want to prove that an eigenvalue problem Az = ABz has n distinct eigenvalues
A < Az < ... < Ay, the following procedure based on Theorems 5.3 and 5.4 (see [4])
can be applied:

1. Calculate 0 < ¢ < Apin(B).

2. Let p:=—oc and i :=1. i

3. Choose an appropriate u € R, let v & B(~1) Au, and calculate 74 5(p) using
G2,A,B-

4. If 74,8(p) < p, then break off.

5. Set the interval A; to (p, 74 8(p)).

6. If i <n,let p:=714p(p)andi:=1+1, go to step 3. ~

If this procedure does not break off at step 4, then A; € A; for disjoint intervals A; (i =
1,2,...,n) has been proved, that is, our matrix eigenvalue problem has no multiple
eigenvalues. Furthermore, max (A;) can be a very precise upper bound to A;. The
quality of this upper bound evidently depends on the choice of the vector u € R". To
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obtain good bounds, u has to be a good approximation to an eigenvector which belongs
to A; (2, 3].

The same holds true if we start the procedure from above:
1. Calculate 0 < ¢ £ Apin(B).
2. Let p:=oco0 and ¢t :=n.

3. Choose an appropriate u € R", let v &~ B(~1) Au, and calculate 74,5(p) using
a2,4,B.

4. If p < 74,8(p), then break off.
5. Set the interval A; to [74,8(p), p).
6. If i > 1,let p:=74,8(p)and 1 := ¢ — 1, go to step 3.

Thus, sharper inclusions for the eigenvalues may be obtained by

A; € [min(4;), max(A;)) fori=1,...,n.

6. Application to parameter-dependent matrices

If the procedure based on Theorems 5.3 and 5.4 is applied to a parameter-dependent
generalized matrix eigenvalue problem

Az = ABz
with
A [a,b] 3 02— A(Q) e R**" and  B: [q,b] 3 @+ B(Q) € R™*",

A(Q) = AT(Q), B(Q) = BT(Q), B(R) positive definite for all Q € [a‘, b]. Then
@0,4,B, G1,A,B, @2,4,B and Gz 4,p also depend on the parameter . Thus, 74,8(p) :
[a,b] 3 @ — (74,8(p))(2) € R is also a real function. Here the following question arises:

How can lower and upper bounds for 74, g(p) be calculated?

An idea that suggests itself is to calculate constant bounds for 74, g(p) over a given
interval [a, 8] C [a, b] by means of interval-analytic methods (that is, to bracket the
range of the real function 74 g(p)([a, B])). This approach is unsatisfactory, since no
intervals [a, 8] with "reasonable” diameter can be chosen, if even one eigenvalue curve
shows a gradient in [a, 8] that differs substantially from zero. In order to calculate
sharp bounds for an eigenvalue curve, this curve should be "flattened” in advance. This.
"flattening” can be achieved by means of a parameter-dependent spectral shift; however,
it can generally be achieved only for one eigenvalue curve at a time.

To be more precise, we suggest the following procedure: First, we choose parameters
a and f such that [a, 8] C [a,}]. The discussion of numerical examples will clarify the
issues that have to be taken into account for this choice. If in the i-th step bounds for
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Ai,a,B are to be calculated, we will determine an interpolation polynomial p; for Ai,A,B
in [a, 8] and define

Hi(Q) = A®) - () - B). (6.1)

The eigenvalues of Hiz = ABz and Az = ABz are closely related. In fact, we have
25, H:,B(Q) = Aj,4,8(82) — pi(Q) for j = 1,...,m, that is,

’\i,Hg,B ~0 in [a,ﬂ],

and the eigenvectors of both problems are identical. Next, we calculate Ty, p(p — p:)
instead of 74 p(p) and determine bounds for the range of 7y, p(p — p;) by means of one
of the well-known methods in interval mathematics (1, 21, 23). The elements of this
range are close to zero if 8 — « is sufficiently small:

—& < {(rm.8(p-5)@| Q€ [0, B} < 7 (62)
This reéults in the bounds
13,(9) —¢€; < /\i,A,B(Q) < ﬁ,(Q) + & forall Q¢ [01, ,3]

Further algorithmic details can be found in [4] where the special parameter-dependent
matrix eigenvalue problem is treated.

If the quantity c is not known a priori, a ¢ with 0 < ¢ < Apin(B(R)) for all € [a, f]
can be determined by means of the proposed algorithm (applied to the special eigenvalue
problem B(2)z = Az).

7. Numerical results

Now we will apply the procedure from Section 6 to determine parameter-dependent
bounds for the eigenvalues of our problem (4.7). For this end we will first establish the
parameter-dependent matrix eigenvalue problem

A()z = A(Q) 40(Q) =, ‘ Ai() <Ai1(Q) fori=1,...,n—1

according to the Rayleigh-Ritz procedure. The upper bounds p,; for A; are upper
bounds for A; as well, :

Ai(Q) £ pu,i(N) forall Q€{a,f] and i =1,...,n
In order to calculate the lower bounds for the A; according to the Lehmann-Goerisch
procedure, we will consider the parameter-dependent matrix eigenvalue problem

(A41(Q) = pAo()) 2 = () (A2(R) = 2041(R) + p* Ao(R)) =

from which we obtain the lower bounds p ;,

[,

PLi() <A(Q)  forall Q€[a,f] and i=1,...,N.
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If we define

pi = %(Pu,; + pui) and €i = max { %(p..,.'(ﬂ) - pz,g(Q))IQ € [a,ﬂ]} ,
we obtain
Pi(2) — i < A(Q) < pi(Q) + &

that is, bounds of the form (1.1). If we want to prove a possible veering of the eigenvalue
curves i and ¢+ 1 in the interval [a, 8], it is sufficient to show Pi+1(Q)—pi(Q)~€ig1—&: >
0 in [a, B). Figure 3 shows the eigenvalue bounds p; + ¢; (i = 2, 3) of our problem (4.7)
for v = 155,71 = ny = 10 and [a, B] = [8.43,9.53]. Obviously there is curve veering.
(It is easy to prove p3(2) — p2(2) — €3 — €2 > 0 in (8.43,9.53] using well-known interval
analytic methods on the computer.)

forall Q€¢la,f] and 1 =1,...,N,

1400

1350

1300
ps’

/( 8.8 ) 9.2 9.4

A

Figure 3: Verified bounds for eigenvalue curves two and three

In Table 1 we give the polynomials p; and €; (7 = 1,2,3). For reasons of convenience,
the coefficients of the polynomials are given as points and not as intervals. (Intervals
would be the correct notation since we have to add two polynomials in order to compute
the p;, and we have to convert the binary representation into decimal representation.)
A verified inclusion is obtained by rounding up and down the last given decimal figure
by one.

Pi(R) = T30 igi ¥

] =1 [ =2 [ i=3
pio | 1.3543915E+01 | —2.9820202E+03 | 4.5513253E+03
piz | 1.8494134E+00 | 1.3005260E+02 | —1.1690165E+02
Pia | —5.4841855E~04 | —1.3240800E+00 | 1.3241119E+00
pis | 1.3686738E—06 | 4.5771071E—03 | —4.5774365E—03
€ 0.0416131 2.34309 2.2665

Table 1: Bounds for A;(Q) (: =1,2,3) and Q € [8.43,9.53] of problem (4.7)
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Remark 7.1. It is interesting to observe that the eigenfunctions cha.nge their char-
acter although the eigenvalues do not cross. Figure 4 shows the two components of the
eigenelements which belong to the second and third eigenvalue for Q = 5 and for = 13.

3000

2500

2000

1500

1000

500

10 12.5 15 17.5

.

Figure 4: Eigenvalues and eigenfunctions of problem (4.7) for y = 155

Even more accurate bounds can be obtained if a smaller diameter of the parameter
interval [a,f] is chosen. Then the interpolation polynomials approximate the eigen-
value curves more precisely. If we are interested in a parameter interval for which the
eigenvalue curves under consideration do not show the curve veering phenomenon, a

considerably wider parameter interval can be chosen. Table 2 shows the results for
e(0,6] and i = 1,2,3.

Pi(R) = T30 pini Q¥

[ i=1 [ i=2 [ i=3
Pio | 1.2295567E+01 | 4.8427217E+02 | 1.0773140E+03
Pi2 | - 1.9065905E+00 | 1.0359157E+01 | 2.9175993E+00
Pia | —1.7416498E—03 | 9.7290060E—04 | 2.3429395E—05
Pis | 1.2769295E-05 | —1.2917310E-05 | 3.3329712E-06
& 0.103188 1.59546 0.0940387

Table 2: Bounds for A;(?) (: = 1,2,3) and Q € [0.0,6.0] of problem (4.7)

To sum up: we have shown that we can prove the phenomenon of curve veering for
a concrete situation without requiring special properties of the eigenvalue curves. The
procedure is widely applicable since the inclusion theorems for self-adjoint eigenvalue
problems exactly result in the class of matrix problems that we discussed in our paper,
on the one hand, while, on the other hand, the power of the inclusion theorems has been
proved by means of numerous parameter-independent eigenvalue problems for ordinary
and partial differential equations (see (5, 6, 9, 27]).

It should also be emp;hasized that the use of computer algebra programs for or-
thogonalization allows to use classical trial functions (polynomials) without the usual
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numerical problems (see [6]). For further views on a combination of algebraic and
numerical calculations see [24].
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