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Weighted Inequalities
for the Fractional Integral Operators
on Monotone Functions '

Y. Rakotondratsimba

Abstract. We give a characterization of weight functions u and v on R™ for which the fractional
integral operator /, of order s on R™ defined by (1, f)(z) = [ |z — y|°~"f(y) dy sends all
monotone functions which belong to the weighted Lebesgue space L}(R") into the weighted
Lebesgue space L%(R"™). This characterization is done for all p and ¢ with 1 < p < oo and
0 < ¢ < o0. The analogous Lorentz and Orlicz problems are also considered.
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0. Introduction'

The fractional integral operator I, of order s (0 < s < n)on R™ (n € N* = N\ {0})is
defined by

@NE) = [ 2=l ) dy.

Let u and v be weight functions on R"v(i.e. non-negative locally integrable functions)
and let 1 < p € ¢ < co. Weighted inequalities of the form

(/Rn(l,f)"(z)u(z)dzf <C (/R f”(x)v(:r)d:t>% for ;11 f>0 (0.0)

were studied by many authors (see the references in {8]). A characterization of weight
functions u and v for which (0.0) holds was done by Sawyer and Wheeden [8]. In
particular necessary (and sufficient for 1 < p < ¢) conditions are

(/Q“(y)dy)% (L, @t +lza =)o r(y dy)ﬁ <
(Lvrma) " (/. 10t + oo~ uty) < e
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for all cubes @, where p' = ;1_’—-1-, zq is the center of @ and |Q| its Lebesgue measure.
In these conditions, the cubes @ can be replaced by balls B, and particularly taking
balls B = B(0, R) centered at the origin and with radius R, it appears that necessary
conditions for the above weighted inequality (0.0) are

(/ Iyl("")"u(y)aly>v (/ v'Fl_'(y)dy>p <c (0.1)
R<Iy] lyl<R
H 1/p
( / u(y)dy) < / |y|<’-">"’v-rf—l(y>dy) <c (0.1)°
yl<R R<ly]
R""</Iyl<Ru(y)dy> (/lylwv'r‘(y)dy) <ec (0.2)

for all R > 0, with a constant ¢ not depending on R.

For the convenience, in the second formula, we write the star since the considered
condition is known as the dual of the first one. Such a distinction will always be used
throughout this paper when we deal with the dual of an inequality or a condition.

We emphasize that in these conditions we do not make use of integrations on ar-
bitrary cubes, which are a brake for people who do computations. Thus (0.1) and its
dual condition (0.1)* can be easily checked mainly for radial weight functions (which
are often used in applications).

A function f satisfies the

Condition RM

and we write f € RM when f(z) = ¢(]z]) for some monotone function ¢ defined on
[0,00). We also write f € RD and f € RT if ¢ is a decreasing or increasing function,
respectively.

In this paper we deal with the question of characterizing those weight functions u
and v for which it is enough to test (0.0) for non-negative functions in RM. Although
(0.1), (0.1)" and (0.2) are no longer sufficient for (0.0) with general functions, we will
prove in Corollary 1.2 that both (0.1) and (0.1)* are sufficient to ensure (0.0) for all
non-negative functions in RM. Moreover we are also able to get a similar result for the
range of p and ¢ with ¢ < p. Since the technique we used is based on Hardy inequalities
we can also deal with the analogous Lorentz and Orlicz problems.

Statements of results on I, mapping LP into LY are given in Section 1. The next
Section 2 is devoted to the Lorentz problem, and Section 3 yields the statements for the
Orlicz setting. Proofs of all statements are given in Section 4.
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1. Lebesgue spaces results

Instead of (0.0) we write I, : L2 — L%, and when we only deal with non-negative
functions in RM, we denote the corresponding embedding by I, : LE(RM) — L%.

Our first result is

Theorem 1.1. Let 0 < s < n, 0 < p < o0 and 0 < ¢ < oo. Suppose that
I,: L? — L. Then there is a constant ¢ > 0 such that

</ [/|y|<|z|f(y) dy]qu(é)lx'(’_")qd’”)% <c (/R fp(:r)v(z)d:z)% (1.1)
</'R [/|z|<|y| lyl(’_")f(y)dy]q"(’)d’> ; Se (/R f”(x)v(z)dm)'lT (1.1)°

for all non-negative functions f. Conversely, both inequalities (1.1) and (1.1)* imply
that I, : LE(RM) — L9.

The proof of the theorem will be given in Section 4.

The inequalities (1.1) and (1.1)* are in fact forms of usual Hardy inequalities [5:
p. 13]. With easy modifications of the classical proofs (by change of variables or by
a direct method as Sawyer’s proof) it is clear that if 1 < p < ¢ < oo, then inequality
(1.1) or (1.1)* holds if and only if condition (0.1) or (0.1)* is satisfied, respectively. If
1< p<ooand0<gq<p,then (1.1) and (1.1)* is equivalent to

/ [( / lyl(’-"“u(y)dy)'
n lz]<|yl
1—% ] )
v_v+lzdz v_Fl—'zd:c [o's)
x(/qul ()) ] (z)dz <

1-1

/ [(/ |y|""‘”"v‘v+'(y)dy) |
" [zI<|y|
. "
X (/ u(z)dz) ] u(z)dz < oo,
fzl<]z]

1_1 = _P_
q pandp p-1’

(12)

and -

(1.2)°

respectively, where % =

Thus as a consequence of Theorem 1.1 we get

Corollary 1.2. Let0 < s <n'end 1 < p < oo. Then, for p < g, conditions (0.1)
and (0.1)* together imply I, : LP(RM) — L%. This embedding is also true for the range
0 < ¢ < p whenever both (1.2) and (1.2)* are satisfied.
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Although for 1 < p < ¢ the conditions (0.1) and (0.1)* imply I, : LP(RM) — L3,
they are no longer necessary. To get the right necessary and sufficient conditions we can
observe that (1.1) and its dual mequahty (1.1)* with non-negative functions in RM are
equivalent to

1

</0°o [/(;F‘P(P)P"_ldp]qr("")"ﬁ(r)dr>% < c</0°° tp”(r)f)(r)dr) | (1.3)

1

(/0°° [/roos’)(ﬂ)p’"ldp} qﬂ('r‘)dr>% < C</0°° @P(r) 5(r) dr) ,’ | (1.3)*

for all non-negative monotone functions ¢, respectively. Here

and

ﬂ(r):r"_l/sn_lu(rw)da(w) and 6(7‘):7’"_1/“ () dof),

Sn—1 is the unit sphere of R™ and do is the area measure on S,_;. A key to get (1.3)
and (1.3)* are Hardy inequalities for monotone functions like

< / " (4w ()u(r) dr> "< ( / " () () dr) (1.4)
( [ v dr)’ < ( [ v dr> , (1.4)"

where A and its dual operator A* are given by

A

and

v

=2 [wed  wa  @w= [ w0

Indeed a characterization of weight functions g and v for which (1.3) (and conse-
quently for (1.3)*) holds for decreasing functions 3 was done by Sawyer [7] and Stepanov
[9]. The analogous problem for increasing-functions was solved by Heinig and Stepanov
[3]-

For 1 < p € ¢ < oo it is well known that mequa.hty (1.4) for decreasing functions is
equivalent together to

v

</0Ry(r)dr)% < c,(/oRu(r)dr> (1.5)

[

ol

and .
r

(/: r“'#(r)dlr) % (/OR'[/Oru(t)dt] ”  u(r) dr>‘ <e | (1.6)
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for all R > 0.

For 1 < ¢ < p < o0 it is required that inequality (1.4) for decreasing functions holds
if and only if together

~-1l.8

/ow [(/ory(t)dt)%(/oru(t)dt) ] u(r)dr < oo (1.7)

[( P~ #(p) dp) «
—p' . ;lr 6 r _pl |
( / [ u(t)dt} u(p),dp) ] r? [ /0 u(t)dt] v(r)dr < oo

where § = % - %. Results for the dual inequality (1.4)* can be found and deduced by
results in 7, 9]. Analogous results for increasing functions can be seen in [3]. Con-
sequently a characterization of the embedding I, : LE(RM) — L% can be reduced to
express inequalities (1.3) and (1.3)* in terms of operators A and A* like (1.4) and (1.4)*.
Thus our next result is the following

and

(1.8)

Theorem 1.3. Let 1 < p < o0 and 0 < ¢ < oco. Then the embedding I,
LE(RM) — LY is equivalent to the Hardy inequalities (with monotone functions) (1.4)
and (1.4) together, with weight functions p, v on (0, +o0) and u*, v* on (1, +00) given
by

u(t) = eabrtirlg(es) ;mw—mn“'mM))

an
y(t) = t=l-mlg(em) v*(t) = (Int)* '5((Int)* )t~
where 4 and ¥ are defined as above.

As a consequence we can state the following two corollaries.

Corollary 1.4 (Decreasing functions with 1 < p < gq). Let0<s<n, 1< p<
g < 00 and [p.v(z)dz = co. Then the embedding I, : LB(RD) — LI (for decreasing
functions) is equivalent to the four following conditions together:

z|*%u(z) dz ' < v(z)dzx ’ .
(AKJI'(M> < (LKR(>) | a9

1

g (/Iz|<ﬂ |z|""l [/Iyl<|zl " dy]

’

—-P

;"
v(z) dx) < (1.10)



80 Y. Rakotondratsimba

1 1

(/ (R® - |I|3)qu(:c)dz> ° < c;(/ v(z) dx) ’ (1.11)
|z|<R |zi<R

1

(/|ZI<Ru(z)dz> '
x ( / ey /|y|<.,,”(y)"y}

for all R > 0, where ¢,....,¢cq are non-negative constants not depending on R.

_pl

v(z) d:c) ’ < ey (1.12)

Corollary 1.5 (Decreasing functions with 1 < ¢ < p). Let0 < s <n, 1 < q <
p < oo and [, v(z)dz = co. Then the embedding I, : LE(RD) — L (for decreasing
functions) is equivalent to the four following conditions together:

/"[(/lyklzl |y|’q“§y) dy) % </|;|<|2l v(z) dz) _%} olx|"’u(z) dz < oo (1.13)
/"[(,/|z|<|y| |~ u(y) dy) g (/IZKM [/l;ldz' v(y) dy] -

1
»7

6 -p
x |2|"P v(z) dz) :| [/ v(y) dy] || v(z) dz < oo (1.14)
lvi<izt

1

/"[</lyl<lxl(|1|’ ) Iyl’)qu(y)dy) ;(/|z|<|x|v(2)dz> -%] ov(x)dz < oo (1.15)
/“‘"[</|z|<|z| u(z)dz) ; </lz|<|y|(|y|’ ~ |z}

-p' ;1, []
x[/ v(z)dz] v(y)dy) } u(z) dz < oo C16)
1<ty

11
wherce—q

=

The proof of Theorem 1.3 and Corollaries 1.4 and 1.5 will be given in Section 4.
Analogous results for increasing functions are also possible by using Theorem 3 and
other results in [3].
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2. Lorentz spaces results

For1 <p<ooandl < ¢ < oo we set

1

oo P
lle=a [7] ] o] e
* 0 {v: 19(w)|>A}

and for 1 € p < co we set

1

. b4
”g”L,w = su /\[/ u(z) dz] .
*\>° {v:ls(m)|>2}

Let u,v and w,, w, be weight functions on R™. In this section we deal with an analogy
of inequality (0.0) which takes the form

”wZ(Isf)”w o < C||wlf”L51n for all functions f > 0.

The consideration of such an inequality with four weight functions is useful in the
Lorentz setting, since the weights cannot be combined as in the Lebesgue case (with

expressions like [ (|f(z)|u(z))’v(z) dz).

In this section, we always assume
1<piq1 <o and 1< p2,q2 < co. (2.0)

The above embedding is denoted as I, : LP'P?(w;) — L%'92(w,), and when we will limit
onelelf to the case of non-negative functions in RM, then we write I, : LP1P2(w, )[RM)]
— L%9(w,). Contrary to the Lebesgue case (i.e. p; = p; and 1 = ¢2) and as
mentioned in [4], a characterization of I, : LP'P?(w,) — L%'92(w;) is not known in
the literature, and until now it is still an open problem to obtain-easy necessary and
sufficient conditions for this embedding.. However for I, : LE*P2(w,)[RM] — L9 (w,)
we have the following

Theorem 2.1. Let 0 < s < n, and p;,p2 and q1,q2 as in (2.0). Suppose I
L3P (wy) — L9 (w2). Then there is a constant ¢ > 0 such that

weol| - P7" d

B ( /m ) y)

w, ( / Iyl""f(y)dy>
1<yl

for all non-negative functions f. Conversely inequalities (2.1) and (2.1)* together imply
I, LPrP3(3y )[RM] — LU 92(w,).

The proof of Theorem 2.1 will be given in Section 4. Inequality (2.1) and its dual ver-
sion (2.1)* can be seen as boundedness of generalized Hardy-type operators on’Lorentz
spaces. Such a problem was treated by Edmunds Gurka and Pick [2]. With their results
we can deduce the following

< 'c”wlf”Lc,,,l (2.1)

P292
Ly

< oSl g (2"

P2¢
Lh2%
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Proposition 2.2. Let 0 < s < n, and p),p; and q1,q; as in (2.0) and satisfying
the condition

max{p1,p2} < min{q1, ¢z} ' (2.2)
Then condition (2.1) is equivalent to
1
. s=n —

llwal - 1" 1rapill e || o 11<r e S (2.3)

for all R > 0. Also condition (2.1)* is equivalent to
1 s—-n .
[[w2lp 1<l p2aea poved B 2V i Sc (2.3)

- for all R > 0. Consequently conditions (2.3) and (2.3)* together imply the embedding
I, LBr#P2(w))[RM] — LY 92 (w,).

Recall that, for each measurable set E, 1g means its characteristic function.

The proof of Proposition 2.2 also will be given in Section 4. The conditions (2.3) and
(2.3)" together are sufficient for the embedding I, : L8'P*(w;)[RM] — L%92(w;) and
they are necessary for the embedding I, : LP'P*(w;) — L9%(w;). Hardy inequalities
results for monotone functions in the Lorentz setting are not largely studied in the
literature, so we will limit our result to the above sufficient conditions.

3. Orlicz spaces results

Let u,v and w;, w2 be weight functions on R™. In this section we consider the Orlicz
version of inequality (0.0) which is of the form

;! [/R ; (Cawz ()L, f)(2))u(z) dz | < @7 [C‘ /R 1 (wi(2)f(2))v(z) dz |

for all non-negative functions f. This embedding is denoted as I, : L (w;) — L22(w-),
and when we will limit oneself to the case of non-negative functions in RM, then
we write I, : L¥(w,)[RM] — L% (w;). Here &, and &; are p-functions. Note
that ® is a ¢-function if it is a non-negative increasing and continuous function on
[0, 00) with ®(0) = 0 and lim(—o ®(t) = c0. A p-function @ is said to be subadditive
if &(s +t) < ®(s) + ®(t) for all s,t > 0. Further, ® is an N-function if it is a
convex @-function such that lim;_.g ﬁtﬂ = 0 and lim—o ﬁtﬂ = oo. The N-function
complementary associated to & is defined by $*(¢) = sup,sq{st—®(s)}. Such a function
leads to define the Orlicz and Luxemburg norms -

flo =sop{ [ 1folw: [ @ (aliw<1)

and
1flc@rw =inf {2 >0 /<I>(,\“|f|)w <1},

respectively.

Except the case of w; = 1 and L = w, which was solved by Lai Qisheng [6] (see also
an other particular case in [4]), a characterization of I, : L®'(w;) — L¥2(w,) is still an

open problem. However for I, : L¥1(w;)[RM] — L¥(w;) we have the following
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Theorem 3.1. Let 0 < s < n, let ®; be an N-function and &, a p-function.
Suppose I, : L (w,) — L®3(wy). Then there are constants ¢; > 0 and c; > 0 such

that
;! Po| Cowa(z)|z)™™ d u(z)dz
[/m ( (2)lz] [/Wlf(y) y]) (=)

< ¢! [Cl /[;" P, (wl(x)f(x) v(z) dz] (3.1)

)
$;! [/ﬂt“ ®, (Czwz(z)[/lzklyl lyl*~"f(v) dy] )u(z) d:z}
)

e [Cl / @, (wi(z)f(z))v(z) d:z:] (3.1)°
R" .
Jor all non-negative functions f. Conversely inequalities (3.1) and (3.1)* together imply
I L2 (w))[RM] = L2 (w,).

The proof of Theorem 3.1 will be given in Section 4. Adapting the usual Lebesgue
case, we obtain yet the following

Proposition 3.2. Let 0 < s < n, let ®; be an N-function and &, a @-function
with &, ®;' subadditive. Then condition (3.1) is equivalent to

11-|<RH .

@3,ev

®;! l:/R<|,| $, (czwz(z)lxls—n )u(a:)d:v] <@ ere™} (3.2)

for-alle > 0 and R > 0.-Also condition (3.1)* is equivalent to

EVW)

o;!

/|,|;R¢2(c'2w2(’)‘l5v2,1|'"_"1R<|~|H(,,:,w)u(x)dx] <o) (32)°

for alle > 0 and R > 0. Conseguently conditions (3.2) and (3.2)* together are sufficient
for the embedding I, : L¥'(w)[RM] — L% (w;) and necessary for the embedding
I, . Lf‘(wl) — L?:’(‘wg)

The proof of Proposition 3.2 will be given in Section 4. In view of a result of Bloom
and Kerman (1] equivalent expressions which do not involve the Orlicz norm can be
used instead of conditions (3.2) and (3.2)*.
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4. Proofs of results

In this section the proofs of our results are collected. We begin by that of Theorem 1.1.

Proof of Theorem 1.1. The necessity of conditions (1.1) and (1.1)* can be easily
obtained, since for all non-negative functions f

" d z—yl* " d (I, . .
i /Iyl<lz|f(y) ygc/lsf—z|<2|=:|l I f(y) dy < (L f)(=) (4.1)

and

/ Iyl f(y) dy < c / i) dy < e(Lf)z)  (42)
|zl<|y|

ly—z|<2|yl

where ¢ > 0 is a constant which depends only on s and n.
- For the converse, for all non-negative functions f we first have

(I f)(z) = Ai(z) + A2(z) + As(2)

where

Ay(z) = /MS%M Iz =yl F(y) dy

A(z) = / Iz — 41" f(y) dy
3zI<]yl

Ay(z) = / Iz — 41" f(y) dy.
ilzI<lvl<$z]

For A,(z) we observe that 1|z| < |z — y| whenever |y| < 21z| and consequently

fw)dy < clel*~ /

lvl<iz

@) < clal' [

lyl<3l=l

If(y)dy-
Also since 3|y| < |z — y| whenever |z| < |y|, we have

Aqx(z) < c/

3zI<lyl

lyl* =" f(v) dy < ¢ /

i=1<]

lyI°~" f(y) dy
yl

with also ¢ > 0 a constant depending on s and n. To estimate A3(z), the crucial point
is that

sip f(y) < C('n)ﬁ / f(2) dz

2lziI<lyl<2|=z| Lz|<|z]<4|z|
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for all non-negative functions f € RM and z # 0. By this inequality we get

As(z) < ( sup f(z)) / |z — y|*~™dy
jlzl<iz|<2lz]| FEAN I TES
< ( sup f(z))/ |z -y~ dy
Flzi<lzl<2|z lz-yl<5|z|

< c( sup f(z))|:z:|’
%|z|<|z|<2|z|

< colelC [ f(z)dz

. LzI<]z|<4]z]

(s—n) (s—n)
alel ™ [y e SO [y 1A ) dy

Izl<|=| I=zl<]sl

<ale™ [ fedva [ i)
lz|<}z] |z|<]z]

where c,...,c; are non-negative constants which depend on s and n. With the above
estimate we have proved that
EH@ <Gl [ fodac [ wPT a0
lyl<|z| Izi<lyl|

for all non-negative functions f € R.M. and consequently inequalities (1.1) and (1.1)*
together imply I, : LE(RM) — L1 B

Proof of Theorem 1.3. Note that by Theorem 1.1 the embedding I, : LP(R.M.)
— L is equivalent both to inequalities (1.3) and (1.3)*. To see the equivalence between
(1.3) and (1.4) (resp. (1.3)* and (1.4)*) we will do a change of variable which preserves
the monotonicity of the functions.

We first consider (1.3). Let &(t) = t=. Then it is clear that
oo r 9
/ [/ p""v(p)dp] r(=™94(r) dr
0 0
oo " \ q )
z/ [/ w(tﬁ)dt] r(=m™95(r) dr =/ [Ap o @)I(r™)r*%u(r) dr
o LJo 0
~ [l o mpr@ sty a = [late o om0 d
0 0
with p(t) = t=9+1=nlg(1 %) We also have
[ ewsemar = [“eoeremiedr
0 o .
z/ (9o ®)P(t)(t= )t~ gy
0

_ /Ooo(cp 0 ®)P(t)u(¢) dt
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with v(t) = t%(l"‘)ﬁ(t%). Consequently inequality (1.3) can be written as

(/mmwoéwumawﬂ'5c<Awwo¢vmwo&)i (4.4)

0

We are reduced to see the equivalence of this last one with inequality (1.4). The point
is that @ is an increasing and continuous function on (0, 00). Indeed suppose that (4.4)
is true for all non-negative increasing (resp. decreasing) functions. Take an increasing
(resp. decreasing) function 3 and define ¢ = ¢ 0 ®~!. This is an increasing (resp.
decreasing) function and consequently by (4.4) the inequality (1.4) is true.

Conversely it is clear that (1.4) implies (4.4), since for each non-negative increasing
(resp. decreasing) function ¢ also 3 = @o® is an increasing (resp. decreasing) function.

Next we deal with inequality (1.3)*. We set O(t) = (Int)!/*. It is clear that © is a
non-negative continuous and increasing function on (1, 00). We have

q

/000 [/roop"ltp(p)dp} i(r)dr

~ /Ow [/e:(r‘)<p((lnt)%)t'ldt] qﬁ(r)dr

= /OOO[A'(P 0 ©)9(exp(r®))i(r)dr
~ /lo.o[A‘(so ° 6)]q(t)(lni)%-1a((1nt)%)t—ldt
= /1°°{A‘(<p‘ 0 0))9(t)u*(t)dt

with p*(¢) = (lnt)%_lt“a((lnt)%)t_l. On the otliex_' hand we also have

/0co @P(r)o(r) dr ~ [wwp((lnt)%)(lnt)%_lﬁ((lnt)%)t_‘dt
- /1 (00 OP(t)* (1) dt

with v*(t) = (lnt)%_lﬁ((ln t)%)t‘l. Consequently inequality (1.3)* can be written as

1

([mmwvoewa»wwa)'SQ([“Woeraw%n&)ﬁ

The equivalence of this last inequality with condition (1.4)* can be seen as above Bl

Proof of Corollary 1.4. We have to prove that the Hardy inequality (1.4) (resp.
(1.4)*) with non-negative decreasing functions holds if and only if (1.9) and (1.10)
together (resp. (1.11) and (1.12) together) are true.



Fractional Integral Operators 87

As we have recalled in Section 1, inequality (1.4) with decreasing functions is equiv-
alent to (1.5) and (1.6) together. Now with

p(t) = txlaHi=nlg(ix)  and  u(r) = Al lged)

we get the following:

R R RY/n
/ u(t)dt =/ t%["’“'"]ﬁ(t%)dtz/ r"’ﬁ(r)drz/ |z|*%u(z) dz
0 0 0 lz|<RY/" :
R R RY"
/ u(t)dt:/ t%“-"la(t%)dm/ 6(r)drz/ o(z) da
0 0 0 |z|<RM™

and

> o | o
/ t_q[l(t)dt =/ t"[(’_n)q+l—n]ﬁ(t:)dt
R R

~ / r(=m9g(r) dr / || ¢*~™u(z) dz
RY/n Rl/n<|:|

e = [ [ /

_p,
R / [/ v(y) dy] 2| v(z) dz.
[z|<RY~ [ JiyI<|z|

With these quantities, the conditions (1.5) and (1.6) are exactly (1.9) and (1.10).

_pl _pl

/oRt”'[/o‘V(p)dp]

Next we will prove the equivalence of (1.3)* with both conditions (1.11) and (1.12).
Let (Tg)(r) = [T t*"'g(t)dt (0 < s < n). Since we assume L o(r)dr = fpav(z)dz =
00, by a result of Sawyer [7] the inequality (1.3)* is equivalent to

| (/om p’[/ori(t)dt] i)(r)dr),%

oo o\
< c(A gq'(r) (ﬁ(r))l_q dr)

for all non-negative functions g. First we have (T*h)(r) =r*~! [ h(t)dt. Indeed,

| xaemea= [ [ [ oo dp] h(t) ds

= /om g(p) [p"‘ /0,, h(t) dt] dp.

—p,

/ (T g)(t)dt

(4.5)
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On the other hand, we have

A((T'h)(r)dr = /01 [r"l /Or h(p) dp] dr
=/0! h(p)[/ptr”ldr}dpz/OtK(t,p)h(p)dp

with K(t,p) = t* — p*. Thus, inequality (4.5) is reduced to

(/om [/(;TK(r, p)h(p)df’] p"’(’)d’) £ </w Ko (r)dr> "o

for all non-negative functions h, where i(r) = [ [ 5(t) dt] _plf;(r) and ji(r) = (a(r))“"'.
Such inequality was studied by Stepanov in [10] and is known to be equivalent both to

(i) ( /R Tt = RO () dr) " ( / ’ (ﬂ(r))“"dr) % <o

and

(ii) </ (r) dr> g (/OR(R’ - r’)"(ﬁ(r))l—qdr>% < e

for all R > 0. Here we have

/OR (a(r)) "dr = /ORa(r)dr ~ /lxldu(z)dz

and since [~ 9(r)dr ~ Jg~ v(z)dz = co, we have

1

°ol?(r) dr " = h rf)(t)dt _p,f)(r) dr "
R R 0
~ [/ORﬁ(t)dt} —’F ~ [/Izkﬂv(a:)dz}

' wr’— N 5(r)dr = z|* — R®) v(y)d —pvzdl'
/R( ROy o(r)d ]R“(II R)Mm:l(y)y] (z)

/ "B ey (i), / ~ |2l*)9u(z) da.

L
P

With these expressions, then conditions (i) and (ii) are exactly (1.12) and (1.11), re-
spectively I
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Proof of Corollary 1.5. As in the proof of Corollary 1.4, we have to get the
equivalence of the Hardy inequality (1.4) (resp. (1.4)*) for non-negative decreasing
functions with conditions (1.13) and (1.14) (resp. (1.15) and (1.16)).

As we have seen in Section 1 for the range 1 < ¢ < p < oo, inequality (1.4) is
equivalent both to (1.7) and (1.8) with

pu(t) = trleati=nlgyk) and v(r) = txll=nlg(en),
Using the above computations of foﬂ u(r)dr and foR y(r)dr and by making change of :

variables condition (1.7) takes the form as (1.13). Also using the above expressions, we
see that condition (1.8) is the same as (1.14).

Again the key to obtain (1.4)* is the Hardy inequality (4.6) which is equivalent both
to (for the range 1 < ¢ < p < o)

(iii) / B [( / T - z’)”a(r)dr) ” < / ‘ '(ﬁ(r))“"dr) T(ﬁ(t))“"dt

and

@ [~ [( I g(,)d,)

where % =

1.9

</0 (t* —r’)"([t(r))l—qdr> ] (t) dt < oo

-

and

1_1
g pP

atr) = (a(r)' 7, a(r) = (ar)' 7Y, D(r):[/orﬁ]_plﬁ(r).

The condition (iii) is the same as (1.16). Since [ #(r)dr ~ [fOR 5](1—;;') a.nd.l—;,’io -
= —-%0, (iv) yields the condition (1.15) il

Proof of Theorem 2.1. As in the proof of Theorem 1.1, by (4.1) and (4.2)
the embedding I, : LE‘P?(w;) — L¥'92(w;) implies conditions (2.1) and (2.1)*. For

the converse we have only to observe that by (4.3) both (2.1) and (2.1)* imply I, :
L0 (wn RM) — L5 (a7) B

Proof of Proposition 2.2. Let a and b be measurable non-negative functions.
The Hardy type operators we consider are '

(Hf)(=) =a(1‘)/ly|5|zlb(y)f(y)dy and  (H'g)(z) = b(z) /MSIyla(y)y(y)dy

We have the following
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Lemma. Let py, p; and qu, g2 reals satisfying conditions (2.0) and (2.2). Then
7Sz < ellfllgion foratt

if and only if

. v
= b1,. . .
3 MR e < oo (4.7)

sup ”alR<|.|’
R>0 L::#z

Similarly
g

|L5n; < C||g(~)||L:m forall g
if and only if ' ‘
< oo. (4.7)*

—1 1
a .
v R<||

sup ”bl 1<R
ol 1<Ellzae i

The first part of this lemma can be obtained by adapting Theorem 3 in [2]. The
second part can be deduced by the first one by using a duality argument.

In continuation of the proof of Proposition 2.2, now the equivalence of (2.1) and (2.3)

is given by the first part of this Lemma by taking a(z) = we(z)|z|*™™ and b(y) = w_.lGi

The next part with b(z) = we(z) and a(y) = Tl(yjly"_n involves the equivalence of
(2.1)* and (2.3)* 1

Proof of Theorem 3.1. Since the proof is similar to that of Theorem 2.1, we leave
any detail il

Proof of Proposition 3.2. As in the proof of Proposition 3.1, we are reduced to
get the following

Lemma. Let &, be an N-function and ®; a p-function with ®,®;"' subadditive.
Then
®;! [/ @g(Cg('Hf)(z))u(x)dz} < ;! [Cl/m Ql(f(z))v(:z:)dx]
R" n
for all non-negative functions f is equivalent to

b
®2 |:-/R<|z| &2 (cza(x)” ev [I<R

for alle >0 and R > 0. Also

¢;,w> u(z) dm] <& e (4.8)

<o7! [Cl /R" @, (g9(z))v(z) d:c]

;! ':/ 2 (Ca(Hg)(z))u(z) dz
Rn
for all non-negative functions g is equivalent to

Q),;l /l;KR‘I)z (Clzb(I)H ;—UIR<|.|”¢;’CU)u(I) dz] < QI—I[C;E—J] (4.8)‘
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for alle >0 and R > 0.

Proof. Since the proofs of both parts are similar, we only prO\"e the first one and
begin with the necessity of the condition (4.8). Clearly the inequality in the first part
of the Lemma implies

' [/ﬂ<lz| b (Cza(z) [ /WR 5(y)f(v) dy] ) u(z) dz]

- [C, /|z|<R ®, (f(a:))v(:l:) d:c}

(4.9)

for all non-negative functions f and all R > 0. Condition (4.8) is a consequence of this
last inequality. Indeed, let € > 0 and R > 0. Then by the definition of the Orlicz norm

s=mtneall,,. = [ @

for some non-negative function f with fItI<Rq>1 (f(z))ev(z)dz < 1 and consequently
we obtain ‘

S =a; T/}KM &, (c,,,a(x)”6%1|,,<RH¢M)u(;)dx}

- o7 | /R » ‘1’2(020(1) /WR b(y)f(y)dy> u(x)dx}

< ¢! -C, /l;KR(I)l(f(J:))u(x)dz:I

S ‘I)_][016_l].

Now we deal with the sufficiency of the condition (4.8). Without loss on generality
(and to simplify) we can only do the proof when n = 1 and on (0,00). Let f be a
non-negative function on (0,00). If [ b(y)f(y)dy < oo, then for some integer m,

f b(y)f(y)dy € [2™,2™*!] and there is an increasing sequence of non- negative reals
(zr)fe_o so that

ok — /o“ b(y)f(y)dy = /zuu W) () dy (k< m—1)

&

2 = [T s

Thus with z,,4; = co we can write

(0’V°°)= U [1k,$k+1)~

k=-o00
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When fooo b(y)f(y)dy = oo, the first identities also holds for all integer k, and the last
one remains still valid. The main key for our proof is again the inequality (4.9) with
R = zj and the function f1j;,_, .,). We will postpone below the proof of (4.9). With
these preliminaries we can obtain the conclusion as follow:

S = /°° <I>2(4—IC?(Hf)(:r))u(z) dz

<y / (4-1402 o(z) [ / ” b(y)ll,k_,,z.)(wf(y)dy]>u(z>dz

k<m

< &, | Cra(z) |: “b Yooz f(y)d ])u(z)dm
k;,,/ < | M0t o) dy

< Z q)ld);l Gy /1:’k ®, (f(:z:)l[“_‘,“)(z))v(x) dx]
k<m 0

< @, <I>_ (o Z/ P, (f(:v )v(x)d:c]

k<m

<&,9;! [Cl /0 %, (f(:z:))v(a:)d:z:].

Finally we show how condition (4.8) implies (4.9). Indeed let R > 0. We can assume
that .

0< / @, (f(z))v(z)dz < oco.
lz|<R
Thus if we choose an ¢ = ¢(f, R) > 0 with
./| < R@,(f(:z:))ev(x) dz =1,

then ]|fl| |<R“(¢1) e» < 1. Consequently, by the Holder inequality and condition (4.8),
we get

S= ¢

<l th a(a:)(/l;“ bf1|.|<3)]u(:z:)dz

-
b
B /R<le ? ch a(z)”e—vl|.|<R“¢:,eu”fll'|<R”(¢1),£"] u(z)dz

=/ p
R<|z| L

< 8,91 Cie7Y)

~

L~

~

cra e,

. u(z)dz

=9,9;! [Cl / ‘I)l(f(z))v(z)daj
lzl<R ]

and the assertion is proved B
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